• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2004.tde-20210729-134220
Document
Auteur
Nom complet
Marco Eugênio Madeira Di Beneditto
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2004
Directeur
Titre en portugais
Descoberta de regras de classificação com hierarquias conceituais
Mots-clés en portugais
Recuperação Da Informação
Resumé en portugais
A descoberta de conhecimento em bancos de dados (KDD - Knowledge Discovery in Databases) é um tópico de pesquisa que envolve diversas áreas de interesse como Reconhecimento de Padrões, Aprendizado de Máquina, Bancos de Dados e Inteligência Artificial. KDD é definida como um processo não trivial de identificação de padrões válidos, novos, potencialmente úteis e compreensíveis incluídos nos dados. Na mineração de dados, uma das etapas do proceso de KDD, o uso de hierarquias de conceitos pode permitir a descoberta de conhecimento num nível de abstração mais elevado, compacto e muitas vezes mais interessante. Amineração de dados em múltiplos níveis conceituais é mais complexa do que a mineração num único nível, pois o espaço de busca é geralmente maior. Alguns trabalhos empregam a pré-generalização dos dados como forma de reduzir este espaço, dificultando a descoberta em níveis de abstração arbitrários. No entanto, para descobrir regrasa em diferentes níveis de generalidade de maneira eficiente, sem pré-generalizar os dados, é necessário um acesso rápido às hierarquias bem como métodos de avaliação de consultas velozes. Nesta dissertação, é apresentado o sistema NETUNO-HC que realiza indução de regras de classificação em diferentes níveis de generalidade, através do uso de hierarquias de conceitos sobre os valores dos atributos de um banco de dados, sejam eles numéricos ou categóricos. É mostrado como o nível de generalidade das regras descobertas é afetado pela estratégia de busca empregada e pela variação das medidas de relevância. Além disso, como é demonstrado através de uma série de experimentos, o sistema NETUNO-HC implementa técnicas que resultam num aumento de eficiência significativo, a saber: (i) uso de uma primitiva em SQL para efetuar as consultas ao banco de dados, (ii) codoficação numérica da hierarquia conceitual, (iii) estratégia de Busca em Feixe (Bream Search), (iv) codificação e indexação das regras descobertas numa tabela hash.
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.