Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2005.tde-20210729-144244
Documento
Autor
Nombre completo
Alexey Antônio Villas Bôas
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2005
Director
Título en portugués
Aspectos algébricos e computacionais da teoria de bases de Gröbner não comutativas.
Palabras clave en portugués
Álgebra Computacional
Resumen en portugués
A Teoria de Bases de Gröbner foi introduzida no contexto do anel de polinômios comutativo por Bruno Buchberger em sua tese de doutorado em 1965. Essa teoria encontra suas primeiras aplicações na área de Geometria Algébrica e possui um papel central em Álgebra Computacional. Grande parte de sua importância se deve ao fato de ela fornecer uma solução algorítmica para o problema da pertinência em ideais do anel de polinômios comutativo. Os dois principais algoritmos presentes na teoria são o Algoritmo da Divisão e o Algoritmo de Buchberger. Alguns anos mais tarde, essa teoria foi generalizada por Mora para o caso não comutativo (mais precisamente para as álgebras livres) e posteriormente para contextos mais gerais, tais quais as álgebras de caminhos. Em particular, Mora apresentou uma generalização do Algoritmo de Buchberger, que é conhecida na literatura como Procedimento de Mora. Este trabalho tem o intuito de apresentar uma introdução à Teoria de Bases de Gröbner não comutativas. Apresentamos de forma bastante breve uma motivação para o estudo dessa teoria e um panorama dela para o caso comutativo. Em seguida, fornecemos as bases da teoria, suas principais definições e resultados mais fundamentais em um contexto mais amplo que o das álgebras livres. Um importante resultado devido a Farkas, Feustel e Green mostra que toda álgebra para a qual se pode desenvolver uma teoria de Bases de Gröbner não comutativas é isomorfa a um quociente de álgebra de caminhos. Incluímos esse resultado, acompanhado de uma demonstração detalhada. Outro resultado central afirma que um subconjunto G de uma álgebra de caminhos é uma Base de Gröbner se e somente se todas as relações de sobreposição e de divisão envolvendo seus elementos se reduzem para zero sobre G (por meio do Algoritmo da Divisão). Em outras palavras, esse resultado fornece um teste algorítmico para decidir quando o conjunto gerador (finito) de um ideal é uma... ...Base de Gröbner. Esse teorema foi demonstrado primeiramente por Buchberger para o caso comutativo, em seguida por Mora para as álgebras livres e posteriormente por Green para as álgebras de caminhos. Apresentamos aqui uma demonstração para esse resultado (em sua versão para as álgebras de caminhos) alternativa à dada por Green. A prova aqui vista é uma generalização do argumento de Mora para as álgebras de caminhos. O trabalho traz também discussões detalhadas da versão não comutativa do Algforitmo da Divisão e do Procedimento de Mora. Em particular, apresentamos duas versões bastante presentes na lioteratura para o último, todas acompanhadas de suas provas de correção. Discutimos ainda algumas das principais questões de computabilidade relacionadas com a Teoria de Bases de Gröbner não comutativas e outros resultados simples, mas não presentes na literatura. Finalmente, apresentamos uma introdução ao conceito de Base de Gröbner Regular criado por Mansson e Nordbeck. Discutiremos a importância dessas bases e apresentamos para elas uma definição alternativa àquela dada por seus criadores. Nossa definição faz uso do conceito bem estudado de relação racional e, em certo sentido, parece ser mais natural que a definição original.
Título en inglés
not available
Resumen en inglés
not available
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29