• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2000.tde-20220712-115205
Document
Auteur
Nom complet
Nina Sumiko Tomita Hirata
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2000
Directeur
Titre en portugais
Projeto automático de operadores: explorando conhecimentos a priori
Mots-clés en portugais
Computação Gráfica
Processamento De Imagens
Resumé en portugais
A morfologia matemática vem sendo largamente utilizada para processamento e análise de imagens digitais. O projeto de operadores morfológicos é em geral realizado de forma heurística. Devido à dificuldade inerente a este procedimento, técnicas de projeto automático são de grande importância e interesse. Várias abordagens neste sentido vêm sendo propostas, dentre elas técnicas que projetam operadores a partir de exemplos de treinamento (obtidos de amostras de imagens observadas-ideais) que representam de forma simples a transformação desejada pelo usuário. Tomando uma técnica de projeto de operadores baseada no modelo de aprendizado PAC (do inglês, 'Probably Approximately Correct') como ponto de partida, investigamos de forma geral algumas das limitações dessas abordagens. Com base nessa investigação, estudamos o projeto de W-operadores, colocando ênfase sobre questões relacionadas com a precisão de operadores projetados a partir de uma quantidade limitada de exemplos de treinamento. Os frutos deste estudo, apresentamos neste trabalho, são técnicas que exploram conhecimentos sobre o problema que desejamos resolver para projetar operadores mais precisos e algoritmos eficientes para implementar as mesmas. Soluções para problemas reais de processamento de imagens ilustram a aplicação das técnicas propostas
Titre en anglais
not available
Resumé en anglais
Mathematical morphology is being widely used in image processing and analysis. Designing morphological operators is usually done by heuristic methods. However, due to the inherent difficulty of such procedures, automatic design techniques are of increasing interest. In recent years, several approaches for the automatic design of morphological operators have been proposed. Some of them are based on learning from training examples (sampled from observed-ideal pairs of images representing the desired image processing mapping). Starting from a technique based on PAC (probably Approximately Correct) learning model, we investigate some limitations of those approaches. From this investigation, we study the design ofW-operators emphatizing questions related with precision of operators designed from a limited number of training examples. The results of this study, presented in this work, are techniques which exploit knowledge (about the image processing problem being solved) in order to design more accurate operators and efficient algorithms for implementing them. Solutions for some real image processing problems are given to illustrate the application of the proposed techniques
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-07-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.