• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2007.tde-20220712-122220
Document
Author
Full name
Ernesto Coutinho Colla
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Title in Portuguese
Aplicação de técnicas de fatoração de matrizes esparsas para inferência em redes bayesianas.
Keywords in Portuguese
Inteligência Artificial
Reconhecimento De Padrões
Abstract in Portuguese
O objetivo deste trabalho foi desenvolver uma aplicação computacional que demonstre como técnicas de álgebra linear computacional aplicadas a fatoração de matrizes esparsas podem ser utilizadas para construir um algoritmo eficiente e paralelizável para inferência em redes bayesianas. Para atingir este objetivo o algoritmo implementado separa o processo de inferência em duas fases, a primeira fase simbólica e uma segunda fase numérica. Como será demonstrado, o processamento numérico da segunda fase pode ser otimizado e paralelizado utilizando estruturas de dados estáticas previamente alocadas e definidas na primeira fase. Esta separação viabilizou-se pela análise de algoritmos de fatoração de matrizes esparsas e algoritmos para inferência em redes bayesianas a partir de um arcabouço combinatório unificado. as estruturas combinatórias geradas na fase simbólica e comum aos dois processos são a chave para a implementação computacionalmente eficiente de um algoritmo capaz de lidar com grandes modelos.
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-07-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.