
Energy-E�cient Virtual Machines Placement

Albert Philippe Marcel De La Fuente Vigliotti

dissertation presented
to the

Institute of Mathematics and Statistics
of the

University of São Paulo
to

fulfill the requirements of the degree
of

Master in Science

Program: Computer Science

Supervisor: Prof. Dr. Daniel Macêdo Batista

São Paulo, April 2015

Energy-E�cient Virtual Machines Placement

This is the original version of the dissertation written by

the candidate Albert Philippe Marcel De La Fuente Vigliotti, as

submitted to the examining board.

Acknowledgments

First of all, I would like to thank my supervisor, Professor Daniel Macêdo Batista, who has

given me the opportunity of this MsC, and provided me with his guidance. I thank the reviewers

who helped me to improve this work. I would like to thank my family and friends for the support

and encouragement, and �nally, I want to thank God for He has never abandoned me.

i

ii

Then Job replied to the LORD: ”I know that you can do anything,
and no one can stop you. You asked, ’Who is this that ques-
tions my wisdom with such ignorance?’ It is I–and I was
talking about things I knew nothing about, things far too
wonderful for me. You said, ’Listen and I will speak! I have
some questions for you, and you must answer them.’ I had
only heard about you before, but now I have seen you with
my own eyes. I take back everything I said, and I sit in dust
and ashes to show my repentance.” (Job 42:1–6)

Resumo

DE LA FUENTE VIGLIOTTI, A. P. M.Alocação Energeticamente E�ciente de Máquinas

Virtuais. 2015. 91 f. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2015.

Centros de processamento de dados (CPDs) são responsáveis por 1,5% do consumo mundial de

energia elétrica. Esse consumo tende a ampliar diretamente o efeito estufa e a emissão de gás

carbônico. Técnicas de virtualização, que já vêm sendo utilizadas em provedores de computação

em nuvem, podem ser utilizadas para aumentar a e�ciência energética de CPDs já que, com a

virtualização, a infraestrutura nesses centros passa a permitir o compartilhamento de um mesmo

hardware físico por várias máquinas virtuais (MVs). Uma alocação e�ciente de MVs pode diminuir

a necessidade de hardware e o consumo de energia.

Boa parte dos algoritmos de alocação de VMs existentes foca no compartilhamento de um único

tipo de recurso, como o processador, ou assume que as demandas de recursos são determinísticas.

Nesta dissertação de mestrado são apresentados e comparados algoritmos de alocação de VMs com

o objetivo de reduzir o consumo de energia elétrica, além de serem considerados vários tipos de

recursos com demandas não determinísticas. São implementados mecanismos de consolidação de

VMs para reduzir o consumo de energia em CPDs e sem violar SLAs. Três algoritmos são apre-

sentados. Os algoritmos diferem-se pela heurística implementada, sendo que dois deles baseiam-se

no problema da mochila e um modela o problema utilizando computação evolutiva. Em média,

em experimentos de simulação com con�gurações de computadores reais, os algoritmos propos-

tos reduziram o consumo de energia a partir de 52% até 89%. Um framework de programação,

disponibilizado como software livre, foi desenvolvido para executar as simulações e representa uma

contribuição secundária da dissertação.

Palavras-chave: E�ciência Energética, Virtualização, Computação em Nuvem, Alocação de Re-

cursos.

iii

iv

Abstract

DE LA FUENTE VIGLIOTTI, A. P. M.Energy-E�cient Virtual Machines Placement. 2015.

91 p. Dissertation (Master) - Instituto de Matemática e Estatística, Universidade de São Paulo, São

Paulo, 2015.

Data centers' electric power consumption corresponds to almost 1.5% of the total world wide elec-

tric power consumption, with the consequent greenhouse e�ect and CO2 footprints. Virtualization

techniques, which are already used by cloud computing providers, improve the energetic e�ciency

of data centers infrastructure, since they enable the sharing of a same physical hardware among

several Virtual Machines (VMs). An e�cient VMs placement can reduce the hardware and energy

needs.

Most of the existing VMs placement algorithms focuses on the sharing of a single resource, like

the processor, or assumes that resources demands are deterministic. In this dissertation, algorithms

to place VMs, aiming the reduction of electric energy, are presented and compared. Besides, the

algorithms consider multiple stochastic resources. The algorithms implement VMs consolidation

mechanisms to reduce energy consumption in data centers and without violating SLAs. three al-

gorithms are presented. The algorithms di�er by the implemented heuristic. Two are based on the

knapsack problem and one models the problem using evolutionary computation. In average, in sim-

ulation experiments considering con�gurations of real computers, the proposed algorithms reduced

the energy consumption starting from 52% up to 89%. A development framework, made available

as free software, was developed to run the simulations and represents a secondary contribution of

the dissertation.

Keywords: Energy E�ciency, Virtualization, Cloud Computing, Resource Allocation.

v

vi

Contents

List of Abbreviations ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Objectives . 1

1.2 Contributions . 2

1.3 Organization . 3

2 Concepts 5

2.1 Virtualization . 5

2.1.1 Hypervisor based Virtualization . 6

2.1.2 Operating System based Virtualization . 6

2.2 Cloud Computing . 7

2.3 Service Level Agreement . 8

2.4 Energy E�cient Computing Systems . 9

2.4.1 Energy and Power Models . 9

2.4.2 Sources of Power Consumption . 10

2.5 Power Models . 10

2.5.1 SPEC Power Benchmark . 11

2.6 Energy E�cient Virtual Machines Placement . 13

2.7 Optimization Techniques . 14

2.7.1 Linear Programming . 14

2.7.2 The Bin Packing Problem . 16

2.7.3 Genetic Algorithms . 17

3 Literature Review 21

4 Energy E�cient Virtual Machines Consolidation Algorithms 27

4.1 Knapsack Problem based Heuristic . 28

4.2 Evolutionary Computation based Heuristic . 29

4.3 Linear and Non Linear SPECpower Models Heuristics 31

vii

viii CONTENTS

5 Performance Evaluation 33

5.1 The pyCloudSim Simulation Framework and Methodology 33

5.2 Linear and Non-linear SPECpower Benchmark Pro�les 36

5.2.1 Linear SPECpower Benchmark Pro�le . 36

5.2.2 Non-Linear SPECpower Benchmark Pro�le 40

5.3 Experiments Using Workloads from the PlanetLab Project 44

5.3.1 Assumptions . 45

5.3.2 Linear Model Experiments . 45

5.3.3 Non-Linear Model Experiments . 54

5.4 Experiments Using Workloads from Google . 55

5.4.1 Assumptions . 56

5.4.2 Linear Model Experiments . 58

5.4.3 Non-Linear Model Experiments . 62

6 Conclusions 67

6.1 Future Research Directions . 68

6.2 Final Remarks . 68

Bibliography 69

List of Abbreviations

CSV Comma Separated Values (Valores separados por vírgula)

OS Operating System (Sistema operacional)

SLA Service Level Agreement (Contrato de nível de serviço)

VM Virtual Machine (Máquina virtual)

VMs Virtual Machines (Máquinas virtuais)

ix

x LIST OF ABBREVIATIONS

List of Figures

2.1 SPECpower measurement example of a Fujitsu PRIMERGY TX2540 M1 server

SPECPower Fujitsu PRIMERGY RX1330 Server . 13

2.2 Linear programming example . 15

2.3 Single-point crossover example (c = 6) . 18

2.4 Two-point crossover example (c = 4 and d = 6) . 18

2.5 N-point crossover example . 19

2.6 Uniform crossover example . 19

2.7 Roulette selection example . 19

4.1 Linear and non-linear SPECpower models . 31

5.1 pyCloudSim block diagram . 34

5.2 SPECpower with linear characteristics of a Sugon I840-G25 Server SPECPower Sugon I840-G25 Server 36

5.3 SPECpower with non-linear characteristics of a Fujitsu PRIMERGY RX1330 M1

Server SPECPower Fujitsu PRIMERGY RX1330 Server 40

5.4 Power consumption comparison using 100 Sugon servers with a linear SPECpower

model and PlanetLab workloads. Average case . 46

5.5 Used hosts comparison using 100 Sugon servers with a linear SPECpower model and

PlanetLab workloads. Average case . 48

5.6 Idle hosts comparison using 100 Sugon servers with a linear SPECpower model and

PlanetLab workloads. Average case . 49

5.7 Execution time comparison using 100 Sugon servers with a linear SPECpower model

and PlanetLab workloads. Average case . 51

5.8 Statistical plots of cpu-usage . 57

5.9 Statistical plots of mem-usage . 58

5.10 Statistical plots of disk-time . 59

5.11 Statistical plots of disk-usage . 60

5.12 Power consumption comparison using 130 Sugon servers with a linear SPECpower

model and Google workloads. Average case . 61

xi

xii LIST OF FIGURES

List of Tables

5.1 Simple example of 11 VMs workload scenario . 37

5.2 Simple example of 11 VMs placement using the Energy Unaware algorithm 38

5.3 Simple example of 11 VMs placement using the Iterated-KSP algorithm 39

5.4 Simple example of 11 VMs placement using the Iterated-EC algorithm 39

5.5 Simple example of 11 VMs placement using the Iterated-KSP algorithm with a linear

heuristic . 41

5.6 Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-

linear heuristic using the �rst local optimum (70% target load) 42

5.7 Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-

linear heuristic using the second local optimum (60% target load)) 42

5.8 Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-

linear heuristic using the third local optimum (80% target load) 43

5.9 Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-

linear heuristic using the fourth local optimum (90% of target load) 44

5.10 Average power consumption and dispersion metrics comparison using 100 Sugon

servers with a linear SPECpower model and PlanetLab workloads. 30 repetitions . . 47

5.11 Used hosts comparison using 100 Sugon servers with a linear SPECpower model and

PlanetLab workloads. Average case . 47

5.12 Idle hosts comparison using 100 Sugon servers with a linear SPECpower model and

PlanetLab workloads. Average case . 49

5.13 Execution time comparison using 100 Sugon servers with a linear SPECpower model

and PlanetLab workloads. Average case . 50

5.14 Iterated-KSP algorithm linear vs. non-linear heuristics comparison using 100 Sugon

servers with a linear SPECpower model and PlanetLab workloads 52

5.15 Linear vs. non-linear heuristics di�erence using the Iterated-KSP algorithm com-

parison using 100 Sugon servers with a linear SPECpower model and PlanetLab

workloads . 52

5.16 Linear vs. non-linear heuristics using the Iterated-EC algorithm comparison using

100 Sugon servers with a linear SPECpower model and PlanetLab workloads 53

5.17 Linear vs. non-linear heuristics di�erence using the Iterated-EC algorithm compari-

son using 100 Sugon servers with a linear SPECpower model and PlanetLab work-

loads . 53

5.18 Iterated-KSP algorithm linear vs. non-linear heuristics comparison using 100 Fujitsu

servers with a non-linear SPECpower model and PlanetLab workloads 54

xiii

xiv LIST OF TABLES

5.19 Linear vs. non-linear heuristics di�erence using the Iterated-KSP algorithm compar-

ison using 100 Fujitsu servers with a non-linear SPECpower model and PlanetLab

workloads . 55

5.20 Power consumption comparison using 130 Sugon servers with a linear SPECpower

model and Google workloads. Average case . 60

5.21 Average power consumption and dispersion metrics comparison using 130 Sugon

servers with a linear SPECpower model and Google workloads. 30 repetitions 62

5.22 Iterated-KSP algorithm linear vs. non-linear heuristics comparison using 130 Fujitsu

servers with a non-linear SPECpower model and PlanetLab workloads 63

5.23 Linear vs. non-linear heuristics di�erence using the Iterated-KSP algorithm compar-

ison using 130 Fujitsu servers with a non-linear SPECpower model and PlanetLab

workloads . 63

5.24 Iterated-EC algorithm linear vs. non-linear heuristics comparison using 130 Fujitsu

servers with a non-linear SPECpower model and PlanetLab workloads 64

5.25 Linear vs. non-linear heuristics di�erence using the Iterated-EC algorithm compar-

ison using 130 Fujitsu servers with a non-linear SPECpower model and PlanetLab

workloads . 65

Chapter 1

Introduction

Energy e�ciency has become one of the most important design requirements for computing

systems such as data centers and cloud systems, especially in this era of climate change and global

warming. Energy consumption by data centers represented between 1.1% and 1.5% of the total

world wide electric power consumption in 2010 Koomey (2011). This corresponds to the typical

yearly electricity consumption of 120 million households, producing negative greenhouse e�ects

and CO2 footprints, and worst of all, it is growing rapidly Koomey (2011). A way to help with

this issue is by �nding energy-e�cient techniques and algorithms to manage computing resources

Beloglazov et al. (2010) Fettweis e Zimmermann (2008).

It is important to observe that the performance per watt ratio of computers has been constantly

increasing every year, nevertheless the power consumption keeps increasing as well. If this trend

continues, the cost of the energy consumed by a server during its lifetime will exceed the hardware

cost. The problem is even worse for clusters, data centers and large-scale computing infrastructures.

An energy consumption rise of 16-20% per year can be observed in the last years, corresponding to

a doubling every 4-5 years

Increased �exibility and improved e�ciency can be achieved by using virtualized systems which

is the cornerstone technology that makes cloud computing and utility computing a fact nowadays.

The virtualization technology allows the consolidation, also known as allocation, of several servers

(Virtual Machines or VMs) into one physical machine reducing the hardware in use. It allows new

business models based on pay-as-you-go basis reducing maintenance of own computing environment

costs.

Energy e�cient VM allocation takes advantage of the fact that hardware can be switched to

low-power modes to reduce the overall energy consumption. Later it can be reactivated when an

increase of resources use is detected.

1.1 Objectives

One option to reduce energy and achieve more bene�ts of VM consolidation is to oversubscribe

the resources available. For instance, on the OpenStack, a software used to manage virtual ma-

chines, it is possible to increase the over-commit ratio OpenStack Manual - Chapter 5 - Scaling .

By doing this, it is possible to get higher CPU utilization levels, however if the CPU is aggressively

oversubscribed it could lead to performance degradation.

It is common to estimate the power consumed by a host based on the CPU utilization. While

1

2 INTRODUCTION 1.2

CPU utilization based models are able to provide an accurate prediction for CPU-intensive applica-

tions, they tend to be inaccurate for other types of applications like RAM memory or I/O intensive

applications, as concluded by Dhiman et al. (2010).

Several related works propose mechanisms to allocate VMs with the objective to reduce en-

ergy consumption, as Beloglazov e Buyya (2012b) Beloglazov e Buyya (2013) Meng et al. (2010).

However, the common assumption of these studies is that, either they observe just one resource (for

example, CPU) or they consider that all resources are deterministic (all the resources demands are

stable over time). Such assumption is not true all the time as shown by Chen et al. (2011), since

some resources are allocated with stochastic demands which are di�cult to accurately estimate.

To evaluate mechanisms to allocate VMs it is needed to run them in real data centers or in

simulators with realistic workloads. Simulation is an attractive option when one does not have

access to datacenters to evaluate his/her proposal. Cloud computing simulators like CloudSim

Rajkumar Buyya (2013) and GridSim GridSim make their decision only based on CPU obser-

vation, or do not consider power e�ciency VMs placement. So, a new cloud computing simulator

considering these features represents an important contribution.

Hereupon, the objectives of this dissertation are:

• To study the power savings impact of VM consolidation using a knapsack based algorithm.

• To propose an heuristic based on a knapsack based algorithm.

• To study the power savings impact of VM consolidation using a genetic algorithm.

• To propose an heuristic based on a genetic algorithm.

• To study the impact of using several resources in the VM consolidation process.

• To build a cloud simulation framework to simulate the proposed algorithms.

1.2 Contributions

The contributions of this dissertation can be divided into 3 categories: design of novel algorithms

for VMs allocation, aiming energy savings, considering multiple resources, design of novel heuristics

for non-linear power consumption models, and implementation of a framework for simulation of

energy-e�cient VM allocation algorithms. The detailed contributions are:

1. Three novel algorithms for VMs allocation considering multiple resources. Two using a knap-

sack model and one using an evolutionary computation model. The objective of these algo-

rithms is to reduce the energy consumption without violating SLAs.

2. Two novel heuristics for non-linear power consumption models using the real power consump-

tion models provided by the SPECpower benchmark.

3. Software implementation of pyCloudSim 1, a framework for simulation of VMs allocation

algorithms:

1https://pycloudsim.albertdelafuente.com . Last access on January 15, 2015

https://pycloudsim.albertdelafuente.com

1.3 ORGANIZATION 3

• An open source software implementation of the framework in Python released under the

Apache 2.0 license and publicly available online.

• An implementation of several algorithms for VMs allocation.

During the writing of this dissertation the contributions were published in three conference

papers:

• Albert De La Fuente Vigliotti, Daniel Macêdo Batista, �Energy-E�cient Virtual Machines

Placement", Proceedings of the 2014 Brazilian Symposium on Computer Networks and Dis-

tributed Systems (SBRC), pages 1�8, 2014. Vigliotti e Batista (2014)

• Albert De La Fuente Vigliotti, Daniel Macêdo Batista, �A Green Network-Aware VMs Place-

ment Mechanism", Proceedings of the IEEE Global Communications Conference (GLOBE-

COM), pages 1�6 , 2014. De La Fuente Vigliotti e Batista (2014)

• Thiago Kenji Okada, Albert De La Fuente Vigliotti, Daniel Macêdo Batista, Alfredo Gold-

man vel Lejbman, �Consolidation of VMs to improve energy e�ciency in cloud computing

environments", Proceedings of the 2015 Brazilian Symposium on Computer Networks and

Distributed Systems (SBRC), pending for publication.

1.3 Organization

The reminder of the dissertation is organized as follows:

• Chapter 2 presents the concepts used on this work as well as the scope of this dissertation

and its positioning in the area.

• Chapter 3 presents an overview of the state of the art literature on energy-e�cient VMs

allocation.

• Chapter 4 presents the proposed algorithms to allocate VMs aiming energy e�ciency and

considering multiple resources.

• Chapter 5 describes the architecture and implementation of pyCloudSim, a simulation frame-

work for energy-e�cient VMs allocation algorithms. The results are also presented and dis-

cussed, as the experiments performed to evaluate the performance of the algorithms.

• Chapter 6 concludes the dissertation with a summary of the �ndings and discussion of future

research directions.

4 INTRODUCTION 1.3

Chapter 2

Concepts

This chapter presents the concepts needed to understand the contributions of this dissertation.

On Section 2.1 the server virtualization concept will be introduced, which is the cornerstone of

Cloud Computing. The Cloud Computing concept will be introduced on Section 2.2, and the Service

Level Agreement concept on Section 2.3. On Section 2.4 an explanation about energy-e�ciency on

computing systems is made, and some power models are reviewed on Section 2.5. On Section 2.7

the mathematical optimization techniques used in this work are detailed.

2.1 Virtualization

In this section the server virtualization concept is presented. There are other types of virtual-

ization that are out of the scope of this study, like network virtualization, memory virtualization,

and database virtualization for example. Server virtualization is a technology that allows to create

logical computing units called Virtual Machines (VMs) that can accommodate an individual OS.

These VMs are able to run applications transparently isolated from the physical hosts where the

VMs run.

Although the virtualization term is being widely disseminated nowadays, it �rst appeared with

the IBM mainframes in the 1960's, as described in the work by Creasy (1981). At that time,

the virtualization was used to share system resources, including I/O and some privileged oper-

ations. Nevertheless, it was commercialized for the x86-compatible computers only in the 1990's

Beloglazov et al. (2010). Virtualization has become broadly available as hardware performance

increased over time. Currently, it is supported natively on most modern architectures like Intel

Intel-VT and AMD AMD-V . Several commercial companies VMware Inc. OpenVZ project and

open-source projects Kernel Based Virtual Machine Oracle VM VirtualBox o�er software pack-

ages to allow the use of virtualization.

Classic bene�ts of virtualization include improved hardware utilization, manageability and re-

liability. Several VMs with di�erent requirements can be hosted on the same server. With this

isolation abstraction it is possible to achieve a high granularity to such an extent it has services

isolated into separated VMs. This allows to schedule OS and software upgrades reducing the impact

of downtime and failures.

Virtualization also allows to improve system security by isolating multiple applications into their

own VMs. Intrusions would be con�ned to the VM in which they occur. It is possible to enhance

reliability as software failures in one VM will not a�ect other VMs running within the same host

5

6 CONCEPTS 2.1

Uhlig et al. (2005).

Data centers take great advantage of virtualization, since this technology is able to improve

the utilization of server resources, and thus, to reduce power consumption and electricity bills.

The bene�ts of virtualization scaled to a data center level have enabled the use of thin clients, by

allowing multiple users to connect to a pool of servers over the network. This practice could be

used as part of a Green IT policy, considering that thin clients consume signi�cantly less energy

compared to a regular workstation. Thin clients started gaining relevance with the adoption of

Software as a Service (SaaS), or Virtual Desktop Infrastructures (VDI) such as VMware View and

Citrix Xen-Desktop Beloglazov et al. (2010).

2.1.1 Hypervisor based Virtualization

Hypervisor based virtualization prioritizes isolation of resources, libraries and Operating System

(OS) from each VM from the host over sharing, by running a full OS both on the virtual machine,

also known as a guest machine or only guest, and on the host, with the consequent overhead. Some

examples of software that provide a hypervisor based virtualization are VMware VMware Inc. ,

Xen Xen Project and KVM Kernel Based Virtual Machine . This type of virtualization is called

�hypervisor based� because the OS, usually directly installed on the host, that control the guests is

called hypervisor. The name Virtual Machine Manager (VMM) is also used to refer to the hypervisor.

As technology evolved and many hardware virtualization extensions like Intel-VT Intel-VT and

AMD-V AMD-V got better over time, there has been a noticeable acceleration of key functions of

the virtualized platform. This e�ciency o�ers bene�ts, including: (A) speeding up the transfer of

platform control between the guest OSs and the hypervisor, (B) enabling the hypervisor to uniquely

assign I/O devices to guest OSs and (C) optimizing the network for virtualization with adapter-

based acceleration. Nevertheless there is still a performance gap, specially regarding I/O operations,

since some tasks need to be intermediated by the hypervisor.

2.1.2 Operating System based Virtualization

Operating system based virtualization, also know as containers, Virtual Private Servers or jails

is a virtualization method where the kernel of an operating system allows to have multiple isolated

user space instances rather than just one. Some examples of software that provide an operating

system based virtualization are LXC

LXC Development Group , CGroups Jackson e Lameter (2013), OpenVZ OpenVZ project and

Linux-VServer Linux-VServer Development Group . The terms �containers� and �jails� are used

to refer to each isolated user space instance.

The main advantage of operating system based virtualization is that this method allows to share

libraries from the guest and host OS to improve the performance and reduce the virtualization

overhead. Other typical scenarios include application separation to improve security and migration

of containers for load balancing in a cluster.

Recent studies have shown how operating system based virtualization could be used even in High

Performance Computing (HPC) environments, as shown by Xavier et al. (2013), where they have

conducted a number of experiments to perform an in-depth performance evaluation of container-

based virtualization for HPC. Such experiments included several performance benchmarks com-

paring native performance, container-based performance and hypervisor based virtualization such

2.2 CLOUD COMPUTING 7

as Xen. In their experiments they have showed that container based virtualization performance is

better than hypervisor based virtualization and, in some cases, almost similar to the native perfor-

mance. The problems when using hypervisor based virtualization technology in HPC environments

are caused mainly because of the high overhead of having a second operating system. The two virtu-

alization approaches share advantages, like migration, which allows to move a VM to another host

and fail over, which allows a VM to continue operations if a host fails, but some features are unique

to each virtualization platform, like full network virtualization in hypervisors and performance in

containers.

Operating system based virtualization is not as �exible as a hypervisor based virtualization

solution since the guests cannot run a di�erent operating system from the main host, for example,

a Linux host is not able to have Windows as a guest. However, it is possible to guest di�erent Linux

distributions.

It is important to observe that both of the virtualization techniques allow to migrate VMs from

one physical host to another physical host using live or o�-line migrations.

2.2 Cloud Computing

Cloud computing refers to both the applications delivered as services over the Internet and the

hardware and software in the data centers that provide those services. This technology heavily relies

on server virtualization.

There are many de�nitions for Cloud computing, often related to cloud and web services for mar-

keting reasons, however cloud computing is more than that. The most common adopted de�nition

is made by the National Institute of Standards and Technology (NIST) Mell e Grance (2011):

�Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of con�gurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management e�ort or service

provider interaction.�. The cloud model is composed of the following �ve essential characteristics:

• On-demand self-service. A consumer can provision automatically computing capabilities, such

as server time and storage. No human intervention is required.

• Broad network access. Capabilities are available over the network to promote use by hetero-

geneous thin or thick client platforms (mobile phones, tablets, laptops and workstations)

• Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases au-

tomatically, to scale rapidly in response to changes in the demand. To the consumer, the

capabilities available for provisioning often appear to be unlimited and can be appropriated

in any quantity at any time.

• Measured service. Cloud systems automatically control and optimize resource use by lever-

aging a metering capability at some level of abstraction appropriate to the type of service.

Resource usage can be monitored, controlled, and reported , providing transparency for both

the provider and consumer of the utilized service.

Cloud computing has many bene�ts, among them the most important to be highlighted are: costs

savings � organizations no longer have to invest money in their own IT infrastructure, as services are

8 CONCEPTS 2.3

available on demand paid as they are used, so there are decreasing investments and running costs;

e�ciency � cloud providers can operate better, faster and in a more cost-e�ciently way than own

IT infrastructure; improve availability � it is common to �nd load balancing, redundant connections

and state of the art infrastructure setup to meet business needs. It also improves scalability � services

can be scaled for business needs as resources can be allocated dynamically Brian et al. (2008).

Mell e Grance (2011) have also classi�ed the service models into three groups:

• Software as a Service (SaaS). The capability provided to the consumer is to use the provider's

applications running on a cloud infrastructure. The applications are accessible from various

client devices through either a thin client interface or a web browser. The consumer does not

manage or control the underlying cloud infrastructure including network, servers, operating

systems, storage, or even individual application capabilities, with the possible exception of

limited user-speci�c application settings. Examples of SaaS are: Google's Gmail and Facebook.

• Platform as a Service (PaaS). The capability provided to the consumer is to deploy, onto the

cloud infrastructure, consumer-created applications using programming languages, libraries,

services, and tools supported by the provider. The consumer does not manage or control the

underlying cloud infrastructure but has control over the deployed applications and possibly

settings for the application-hosting environment. Examples of PaaS are: Heroku and Google

Apps.

• Infrastructure as a Service (IaaS). The capability provided to the consumer is to provision

processing, storage, networks, and other fundamental computing resources where the consumer

is able to deploy and run arbitrary software (OSs and applications). The consumer does not

manage or control the underlying cloud infrastructure but has control over OSs, storage,

and deployed applications; and possibly limited control of select networking components like

�rewalls. Examples of IaaS are: Amazon Web Services and Rackspace.

Cloud computing has changed a large part of the IT industry. Innovative ideas for new Internet

services no longer require large investments to start. The companies no longer need to be concerned

about over-provisioning for a service nor under-provisioning since they can easily scale their infras-

tructure to meet the demands as they grow. It is also possible for companies with large tasks to get

results quickly by scaling their programs into more servers, since using 1000 servers for one hour

costs the same as using one server for 1000 hours. Soltesz et al. (2007)

2.3 Service Level Agreement

A Service Level Agreement (SLA) can be de�ned as a formal negotiated agreement between

two parties, by covering many aspects of the relationship between the service provider and the

consumer Trygar e Bain (2005). The most notable aspects are related to services performance,

customer support, service provisioning and billing.

The main objective of an SLA is to establish the Quality of Service (QoS) constraints, priori-

ties and responsibilities. Cloud computing SLAs can be described as minimum allowed throughput,

maximum response time, or latency delivered by the deployed system. One of the important require-

ments for a Cloud computing environment is providing reliable QoS, otherwise the Cloud provider

often refunds the consumer in case of SLA violation as a penalty.

2.4 ENERGY EFFICIENT COMPUTING SYSTEMS 9

When proposing energy-e�cient VMs allocation, one needs to be aware of the SLA to avoid

performance degradation of the consumer applications, including increased response times, time-

outs or even failures. This can happen because sometimes, when only the energy consumption is

considered, the best solution can be to consolidate all VMs into one physical machine, which can

cause SLA violations of performance limitation of this machine. Therefore, Cloud providers have to

establish QoS requirements to avoid SLA violations and deal with the energy-performance trade-o�

- meeting the QoS requirements while minimizing energy consumption Beloglazov et al. (2010).

2.4 Energy E�cient Computing Systems

In 2010 it was estimated that the energy consumption by IT infrastructures would be accounted

between 1.1% and 1.5% of the global electricity use as showed by Koomey (2008). This results in

substantial carbon dioxide (CO2) emissions, which were estimated to be 2% of the global emissions

according to Gartner, Inc. .

Along with hardware design, energy e�ciency is in�uenced on how the software manages the

resources. Energy-e�cient resource management techniques were �rst introduced on mobile devices,

where it has direct impact on battery lifetime Beloglazov et al. (2010). These techniques can be

adapted for servers and data centers.

According to Feng (2014), the infrastructure equipment related to power and cooling may be

responsible for about half of total annualized costs in a data center facility. This fraction is growing

over time as energy use increases and IT equipment costs decrease.

The author in Feng (2014) discusses how an aggregate parameter is a�ecting the cost of data

center. This parameter is the amount of direct power use (Watts) associated with $1000 of expendi-

ture on servers, which has been increasing rapidly over the last years. The fact has made cooling and

power infrastructure costs a challenge in the construction of data centers. If this trend continues,

the costs related to powering a data center will exceed the IT capital costs in under a decade.

For example, at 100 Watts per $1000 of server costs, the IT capital costs represent about 40%

of the total costs. At 200 Watts per $1000, they represent less than one third of total costs. This

means that for every $1 spent on IT equipment a company would be paying at least $2 for electricity

use, power cooling and other costs. This relationship allow to understand the underlying e�ect of

power per server cost in an unambiguous way.

After analyzing several server speci�cations from 2000 to 2009, Feng (2014) has concluded that

performance trends for server systems seemed to follow the popular Moore's law by doubling every

1.5 to 2 years in most cases. Performance per server cost increased more rapidly than performance

per Watt, which drives power use per server cost up over time.

2.4.1 Energy and Power Models

To understand power and energy management mechanisms it is necessary to introduce some

concepts. Electric current is the �ow of electric charge, measured in amperes (A). Amperes de�ne

the amount of electric charge transferred into a circuit per second. Power and energy can be de�ned

according to the work that a system performs. Power is the rate at which the system performs the

work, measured in watts (W). Energy on the other hand is the total amount of work performed on

a period of time, measured, for instance, in watt-hour (Wh). The potential di�erence is measured in

10 CONCEPTS 2.5

volts (V). The work is done at the rate of 1W when 1A is transferred through a potential di�erence

of 1V.

A reduction of power consumption does not always reduce the consumed energy. For example,

power consumption can be decreased by lowering the CPU performance. However, if a program

takes longer to complete its execution, it may consume the same amount of energy, or even more.

Decreased energy consumption reduces electricity bills since the power companies charge by the

energy consumption Beloglazov et al. (2010).

The lowering and the rise of the CPU performance can be performed by the Dynamic Voltage

and Frequency Scaling (DVFS) mechanism, a mechanism present in modern processors that consists

of the combined change of the supply voltage and clock frequency. The main idea is to decrease the

voltage and the frequency of the CPU by scaling it down when it is not fully utilized and do the

opposite actions when it is being entirely utilized.

2.4.2 Sources of Power Consumption

As a consequence of the increasing improvements of energy e�ciency on CPUs, with mechanisms

like DVFS, the CPU no longer dominates the power consumption on a server. While DVFS opti-

mizes the CPU consumption to consume less than 30% in their peak power in low-activity modes

Barroso e Holzle (2007), saving more than 70%, the dynamic ranges of power savings in other com-

ponents are much narrower: less than 50% for Dynamic Random Access Memory (DRAM), 25%

for disk drives and negligible for other components Fan et al. (2007).

With the growing amount of memory in modern servers, the power consumption by the memory

is becoming higher than the power consumed by the CPU. For instance, the power consumption by

a server with eight 1GB DIMMs is about 80W. Modern large servers currently use 32 or 64 DIMMs.

This fact makes memory one of the most important server components that has to be e�ciently

managed nowadays. However, most power management techniques are still focused on the CPU.

Power supplies also have signi�cant power losses due to the ine�ciency of the current technology.

They achieve the highest e�ciency at loads within the range of 50-75%. However, most data centers

normally have a load of 10-15%, wasting the majority of the consumed electricity and leading to

the average power losses of 60-80%.

2.5 Power Models

To be able to propose energy-e�cient VM allocation algorithms it is important to predict the

power consumption of the physical machines as a function of their utilization.Fan et al. (2007) have

proposed both a linear model based on a CPU utilization and a nonlinear model using a calibration

parameter that minimizes the square error obtained experimentally.

The linear model proposes that the power consumption by a server grows linearly related to

the growth of the CPU utilization, starting from the power consumption in the idle state up to the

power consumed when the server is fully utilized. This relationship can be expressed as shown in

Equation 2.1:

P (u) = Pidle + (Pbusy − Pidle)u, (2.1)

2.5 POWER MODELS 11

where u ∈ [0, 1] is the current CPU utilization, P is the estimated power consumption, Pidle is

the power consumed by an idle server (u = 0), and Pbusy is the power consumed by the server when

it is fully utilized (u = 1).

The empirical nonlinear model proposed is given in Equation 2.2:

P (u) = Pidle + (Pbusy − Pidle)(2u− ur), (2.2)

where r is an experimentally obtained parameter that must be calibrated for each class of

machines. The idea behind this model is to minimize the square error.

There are other models available on the literature like Jaiantilal et al. (2010). However, this

model is dependent on low level hardware details like processor cycles which makes it hard to use.

2.5.1 SPEC Power Benchmark

The Standard Performance Evaluation Corporation (SPEC)

Standard Performance Evaluation Corporation (a) was formed by computer industry participants

in 1988 to establish industry standards for measuring computing performance. SPEC has grown to

more than 60 member companies and it became one of the most successful performance standard-

ization references.

In response to the increasing demand of power and performance benchmarks on energy-e�cient

IT equipment, the SPEC community with the help of leading engineers and scientist in the �eld of

energy e�ciency created SPECpower, an initiative to standardize power benchmarks measurement.

SPECpower proposes useful metrics to analyze the newest generation of IT equipment. In

Standard Performance Evaluation Corporation (a) it is possible to �nd more than 20,000 peer-

reviewed performance reports.

In December of 2007, the SPECpower_ssj2008 Standard Performance Evaluation Corporation

(b) was released to measure and benchmark the performance characteristics of server-class compute

equipment by considering CPUs, caches, memory hierarchy and the scalability of shared memory

processors on multiple utilization levels. It uses a power analyzer and temperature sensor daemon,

also known as PTDaemon which presents a common TCP-IP based interface to hide the details of

di�erent power analyzer interface protocols Huppler et al. (2012).

Performance benchmarks heavily relies on a business model. For example, some environments

have application servers that require minimal memory and low networking capabilities, while others

may store large amounts of data on disk, requiring also large amounts of memory to process the

information. Some environments might need heavy load on all the processors, as well as other

resources.

It is not possible for a single benchmark to represent the power e�ciency for all the possible

combinations of an IT environment, nevertheless power characteristics of environments that are

very closely replicated by the con�guration of the benchmark can be accurately predicted. However

it is very possible for a single benchmark to give an indication of the relationship between power

and performance for the components that the benchmark stresses Lange et al. (2012).

It is important to measure at least the power used on maximum performance and the power used

during the active-idle period, where the system is ready to work, however without any workload

request for some period of time. These are the best and worst cases for work per unit of power. This

12 CONCEPTS 2.5

is the idea behind most linear models and the model proposed by Fan et al. (2007), where these

best and worst cases are used as high and low bounds to de�ne the power characteristics, and any

utilization threshold in between can be predicted linearly.

Several environmental consideration are also considered on the benchmarks like:

• Temperature, which substantially a�ects the power characteristics. Generally lower tempera-

ture from the air conditioning ensures lower power operations. Traditional air cooled equip-

ment is assumed, even with the authors of the benchmarks discussing that alternative cooling

systems, like liquid cooling, are more power-e�cient. They de�ne a minimum acceptable tem-

perature of 20 degrees Celsius.

• Air pressure and altitude, which can a�ect the density of the air used to cool the equipment.

They consider a safe maximum of 1050 mill bars as a reasonable natural atmospheric condition.

• Humidity, which they consider to have an almost negligible impact on the power characteris-

tics, and therefore no boundaries for relative humidity are setup.

• Air �ow, which generally does not a�ect unless in extreme conditions.

• Power source, which is the line voltage and other characteristics may a�ect the e�ciency. The

considered conditions speci�cations are:

� Frequency: (50Hz, 60Hz) ±1%

� Voltage: (100V, 110V, 120V, 208V, 220V, 230V or 400V) ±5%

The SPECpower benchmark is able to deliver a speci�c throughput result to adjust to a variety of

load levels. The proposed method is to measure the power consumption at 11 measurement intervals:

100%, 90%, 80%. . . 20%, 10% and active-idle, represented by a 0% throughput measurement.

An example of a result after running the SPECpower benchmark is shown on Figure 2.1. The red

bars represent the e�ciency (throughput per Watt) for each measurement interval. The measure-

ment is performed in terms of the server side Java operations (or ssj_ops) per second per watt. The

blue lines shows the average power requirement at each of the 11 measurement intervals. Active-idle

is also included without throughput. This benchmark is from a Fujitsu Server PRIMERGY RX1330

M1.

2.6 ENERGY EFFICIENT VIRTUAL MACHINES PLACEMENT 13

Figure 2.1: SPECpower measurement example of a Fujitsu PRIMERGY TX2540 M1 server
SPECPower Fujitsu PRIMERGY RX1330 Server

2.6 Energy E�cient Virtual Machines Placement

The problem of energy consumption minimization under constraints is too complex to be treated

analytically since it is an NP-hard problem Jung et al. (2010). Allocation of VMs can be divided

into two problems, the �rst one is the placement of a new VM on a host while the second one is

the optimization of the current VMs allocation.

Energy e�cient VM allocation takes advantage of the fact that idle hosts can be suspended to

low-power modes to reduce the overall energy consumption. Later, the hosts can be reactivated, for

example remotely over the network by using Wake-on-LAN

IBM Announces Universal Management - Wake on LAN when an increase of resources use is de-

tected. It is important to carefully evaluate where the consolidation of the VMs is going to take

place, to avoid the migration of VMs to an overloaded host and to fall into an SLA violation.

The process to allocate virtual machines considered in this work is based on the work proposed by

Beloglazov e Buyya (2012a). This process consists in performing periodical dynamic consolidation

of VMs by packing them on as fewer physical machines as possible to conserve energy in virtualized

data centers. The reason behind this idea is that several modern computers are more energy-e�cient

when they are operating nearly their full capacities Beloglazov e Buyya (2012a). This approach

can be divided into the following sub-problems.

• Information retrieval. Information gathering about the VMs resource consumption (CPU,

network, memory, I/O, etc)

• Underload detection. It's important to detect hosts that can be considered underloaded

because they will be operating with a bad e�ciency. In this case all the VMs from this host

14 CONCEPTS 2.7

should be migrated to another host (if possible) and later the �old host� should be switched

to a low-power mode.

• Overload detection. Similar to the above step, to ensure Quality of Service (QoS) require-

ments, if a host is considered overloaded, some VMs should be migrated to another host.

• VMs selection. Select which VMs to migrate from an overloaded host.

• VMs migration. Migrate the selected VMs on other hosts.

2.7 Optimization Techniques

Since the problem to solve is NP-hard, it is important to review some mathematical optimization

modeling concepts and approaches. They are used in the algorithms on Chapter 4.

2.7.1 Linear Programming

Linear Programming (LP) is a method to optimize (minimize or maximize) a linear function

while satisfying a set of linear equality and/or inequality constraints or restrictions.

The linear programming problem was �rst conceived by Leonid Kantorovich in 1939 during

the second World War as a way to plan expenditure, returns and to reduce costs of the army

Bazaraa et al. (2009). Kantorovich work remained unknown until the end of the war.

During and after World War II, it became evident that planning and coordinating the e�cient

utilization of resources were very important. Intensive work by the United States Air Force team

SCOOP (Scienti�c Computation of Optimum Programs) began in June 1947. As a result, the

simplex method was developed by George B. Dantzig by the end of the summer of 1947. In 1948

George B. Dantzig published a paper Bazaraa et al. (2009) where he addressed this method as

"Programming in a Linear Structure", hence the conception of linear programming problems is

usually credited to him. At that time he was working as a mathematical advisor of the United

States Air Force Comptroller at the Pentagon, developing a mechanized planning tool for a time-

staged deployment, training, and logistical supply program Bazaraa et al. (2009).

Later in 1949 Dantzig published the �simplex method" for solving linear programs. The simplex

method had wide acceptance because of (1) its ability to model important and complex management

decision problems, and (2) its capability for producing solutions in a reasonable amount of time.

A linear programming problem can be expressed with the following two parts:

1. A linear function to be maximized: f(x1, x2) = c1x1 + c2x2

2. And the problem constraints on the following form:

a11x1 + a12x2≤ b1

a21x1 + a22x2≤ b2

a31x1 + a32x2≤ b3

2.7 OPTIMIZATION TECHNIQUES 15

Or in its canonical form:

Maximize: cTx

Subject to: Ax ≤ b

and x ≥ 0

The solution will be the values of x that maximize the objective function.

One of the main advantages of LP problems is that if they are small enough they can be

represented graphically. For instance, the problem shown from Equation (2.3) to Equation (2.6)

represents a linear programming problem. The problem can be represented graphically as Figure

2.2, where the Equation (2.3) represents the objective function (thick black line). The Equation

(2.4) represents the �rst constraint of the problem (shown as the area de�ned below the red line).

The Equation (2.5) represents the second constraint of the problem (shown as the area de�ned

below the green line). The Equation (2.6) represents the third x1 ≥ 0 (shown as the area above the

purple line) and the fourth constraint x2 ≥ 0 (shown as the area on the right of the blue line).

Maximize: z = 4x1 + 3x2 (2.3)

Subject to: 2x1 + x2 ≤ 4 (2.4)

−3x1 + 2x2 ≤ 3 (2.5)

and x1, x2 ≥ 0 (2.6)

Figure 2.2: Linear programming example

The intersection of all the regions is known as the feasible region. The parallel dotted lines

represents an idea of how the objective function behaves. The intersection of the line within the

feasible region and the maximum possible objective function is the best solution. In this case x1 =
5
7

and x2 =
18
7 .

When the Simplex method was �rst introduced by Dantzig, the research community intuition

was that this algorithm would not be very e�cient. The idea behind the Simplex method is to travel

the edges of a polyhedron without making any attempt to skip through some of them. However,

16 CONCEPTS 2.7

researchers were pleasantly surprised when, in practice, this method performed very well. For most

practical problems, this method has an empirically complexity of roughly 3m/2 iterations, and

seldom more than 3m iterations, being m the number of unknown variables. This means that the

Simplex method has a polynomial-time average-case complexity. Nevertheless in 1971, Victor Klee

and George Minty produced a class of problems in which the Simplex method requires 2n − 1

iterations which lead to an exponential worst-case complexity Bazaraa et al. (2009).

2.7.2 The Bin Packing Problem

The one dimension Bin Packing Problem (BPP) is similar to the Knapsack Problem (KSP)

considering multiple knapsacks. The idea is to pack di�erent items into a �nite number of bins,

each of the bins has a size restriction. The objective is to minimize the number of bins used. Several

variations of the BPP can be found like 2D BPP and 3D BPP and they have applications for

instance in �lling containers or loading trucks with weight or volume constraints.

The BPP is an NP-complete problem. In fact, it is strong NP-complete as shown by Garey e Johnson

(1978). The one dimension BPP can be de�ned as follows:

Given a set of bins S of size V and a list of n items with sizes a1, . . . , an to pack, �nd an integer

number of bins B and a B-partition S1 ∪ · · · ∪ SB of the set {1, . . . , n} such that
∑

i∈Sk
ai ≤ V for

all k = 1, . . . , B. A solution is optimal if it has minimal B.

A possible Integer Linear Programming formulation of the problem is:

Minimize: B =
n∑

i=1

yi

Subject to:
n∑

j=1

ajxij ≤ V yi, ∀i ∈ {1, . . . , n}

n∑
i=1

xij = 1, ∀j ∈ {1, . . . , n}

yi ∈ {0, 1}, ∀i ∈ {1, . . . , n}

xij ∈ {0, 1}, ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n}

where yi = 1 if bin i is used and xij = 1 if item j is put into bin i Martello e Toth (1990).

It is possible to model the energy-e�cient VM placement as the problem known as VM packing.

In this case the items are the VMs to be packed on each bin, and each bin is a server that will host

a VM. Besides, the memory requirements of the VMs allocated into the same server can be reduced

by sharing some memory pages among the VMs as shown by Sindelar et al. (2011). This type of

BPP is even hard to approximate.

The energy-e�cient VM placement problem has been �rst modeled as an instance of the BPP

problem. Unfortunately the initial algorithm could not scale for a large number of VMs and hosts

for its natural complexity and therefore the need of heuristics to solve the problem. More details

about the algorithms are presented on Chapter 4.

2.7 OPTIMIZATION TECHNIQUES 17

2.7.3 Genetic Algorithms

In 1957 Alex Fraser started researching on simulations of arti�cial selection of organisms Fraser

(1960). Fraser's simulations included the essential elements of modern genetic algorithms. Never-

theless, Genetic Algorithms (GAs) became popular through the work of John Holland in the early

1970's with his book Adaptation in Natural and Arti�cial Systems. Holland's work, his colleagues

and his students at the University of Michigan Holland (1975) originated with the studies of cel-

lular automata. The goal of their research has been twofold: (1) to abstract and rigorously explain

the adaptive processes of natural systems, and (2) to design arti�cial systems software with the

mechanisms of natural systems Goldberg (1989).

Nowadays genetic algorithms have widespread applications in business, scienti�c and engineering

problems. The main reason is that they are not restricted to assumptions about the search space

like continuity or the existence of derivatives like gradient-based optimization methods.

Before continuing with this section it is important to review the common terms used in this

area. A detailed introduction to genetic algorithms, and other metaheuristics, can be found on the

book Essential of Metaheuristics Luke (2013).

• Individual: a candidate solution.

• Child and parent: a child is a modi�ed version of a candidate solution (parent).

• Population: a set of candidate solutions.

• Fitness: a quality quanti�cation of a solution.

• Fitness landscape: a quality function.

• Evaluation: computing the �tness of an individual.

• Selection: picking individuals based on their �tness.

• Mutation: a plain small, bounded but random modi�cation of a solution. This is often thought

as a �asexual� breeding.

• Crossover: a special modi�cation of a solution which takes two parents to swap sections of

them. This is often thought as a �sexual" breeding. Also might be referred as Variators.

• Breeding: to produce one or more children from a population of parents through an iterated

process of selection and introducing a small, bounded but random change (typically mutation

or recombination)

• Genome: an individual's data structure, as used during breeding.

• Chromosome: a genome in the form of a �xed length vector.

• Gene: a particular slot position in a chromosome.

• Allele: a particular setting of a gene.

• Phenotype: how the individual operates during �tness assessment.

18 CONCEPTS 2.7

• Generation: the population produced by each cycle (one cycle of �tness assessment, breeding,

and population reassembly).

A genetic algorithm iterates through �tness assessment, selection breeding and population re-

assembly. To breed, an empty population of children is taken at the beginning. Then two parents

from the original population are selected, and crossed and the results are mutated. This forms two

children, which are then added to the child population. The process is repeated until the child

population is entirely �lled. The genetic algorithms are classically operated over binary vectors of

�xed length.

To perform the breeding a crossover and mutation is required. The mutation on a boolean vector

can be achieved by using bit-�ip mutation, which is equivalent to �ip a coin with a certain proba-

bility, often 1/l where l is the length of the vector. Each time the coin comes heads, a �ip on the

bit is applied. While there are other types of mutation depending on how the information is repre-

sented, the focus will be on the binary representation which is the one used on the algorithms. The

objective of the mutation is to avoid local minimums by preventing the population of chromosomes

from becoming too similar to each other and thus slowing or even stopping the evolution.

The crossover involves mixing and matching parts of two parents to form a child. There are

many ways to perform a crossover operation, the most common are one-point, two-point, n-point

and uniform crossover.

Figure 2.3: Single-point crossover example (c = 6)

Figure 2.4: Two-point crossover example (c = 4 and d = 6)

The one-point crossover picks a number c ∈ {1, l} and swaps the indexes i ≤ c, as shown in

Figure 2.3. The two-point crossover is similar to the one point except that it de�nes two cut points

2.7 OPTIMIZATION TECHNIQUES 19

c and d, and it swaps the indexes between them, as shown in Figure 2.4.

Figure 2.5: N-point crossover example

Figure 2.6: Uniform crossover example

The n-point crossover might be seen as a generalization of the one-point and the two-point,

it chooses n random crossover points and it swaps parts alternating between parents as shown in

Figure 2.5. The uniform crossover threats each point independently from any other by swapping

individual indexes if a coin �ip comes up head with probability p, as shown in Figure 2.6.

Figure 2.7: Roulette selection example

The selection is based on the idea that better individuals (higher �tness function value) get

higher chances to produce a better solution. There are many selection methods, the most common

is the roulette selection which selects an individual in proportion to their �tness. The higher the

�tness, the higher the probability of that individual to get selected. Graphically is shown on Figure

2.7, where each part of the roulette represents the �tness of an individual. In this case the individual

with 50% of the roulette is more probable to be selected.

Sometimes, the �tness function of several individuals might be too similar between several

20 CONCEPTS 2.7

individuals, in this cases the roulette selection will be selecting individuals with nearly identical

probability which would behave as random selection. To �x this, the technique called tournament

selection could be used.

The tournament selection returns the individual with higher �tness function from some t in-

dividuals picked at random positions from the population. This method has become the primary

selection technique used for genetic algorithms according to Luke (2013).

Genetic algorithms are a metaheuristic and as such there is no general complexity analysis to

all of them. In general, the common terminology used is convergence time Rabinovich e Wigderson

(1999), which depends on the mutation and crossover probabilities and the population size. A small

mutation rate may lead to genetic drift while a high mutation rate may lead to loss of good solutions.

A crossover with high rates may lead to premature convergence of the genetic algorithm.

The generational process is repeated until the termination condition has been reached. The most

common terminations are: �nding a solution that satis�es a criteria, a �xed number of generations

and computation time reached.

Chapter 3

Literature Review

Most of the presented literature assumes that the consumption grows linearly in relation to the

CPU usage. With modern CPUs and multi-core processors this assumption might not be true all the

time. This can be observed on some recent SPEC Power Standard Performance Evaluation Corporation

(a) benchmarks.

Beloglazov e Buyya (2012b) have discussed several algorithms for o�ine and online determin-

istic VM consolidation problem. They have compared the performance of their algorithms using

competitive analysis with simulations. They have compared several algorithms:

• An adaptive utilization threshold: median absolute deviation, which sets upper and lower

utilization thresholds for hosts and keeps the total utilization of the CPU by all the VMs

between these thresholds. It migrates all the VMs of a host when the CPU utilization falls

below the lower threshold and it switches the host to a lower energy state to avoid idle power

consumption. When the CPU utilization reaches the upper threshold some VMs have to be

migrated to prevent SLA violations.

• An adaptive utilization threshold: interquartile range, which proposes a method for setting

an adaptive upper utilization threshold based on the interquartile range (IQR) statistical

dispersion.

• Local regression, which is based on the Loess method (or local regression (LR)) whose main

idea is �tting simple models to localized subsets of data to build up a curve that approximates

the original data.

• Robust local regression, which transforms Loess into an iterative method to avoid the LR

algorithm's vulnerability to outliers that can be caused by leptokurtic or heavy-tailed distri-

butions.

They have combined the algorithms with di�erent VM selection policies:

• The minimum migration time policy, which migrates a VM that requires the minimum time

to complete a migration estimated as the amount of RAM utilized by the VM divided by the

spare network bandwidth available for the host.

• The random selection policy, which selects a VM to be migrated according to a uniformly

distributed discrete random variable.

21

22 LITERATURE REVIEW 3.0

• The maximum correlation policy, which selects the VMs to be migrated that have the highest

correlation of the CPU utilization with other VMs, since the higher the correlation between the

resource usage by applications running on an oversubscribed server, the higher the probability

of the server overloading.

They have used a modi�cation of the Best Fit Decreasing (BFD) algorithm called Power Aware

BFD (PABFD), where they sort all the VMs in the decreasing order of their CPU utilization to

allocate the next VM to the most power e�cient node �rst (least increase of power consumption

caused by the allocation). They have focused on a single resource, the CPU, since it is the most

oversubscribed resource. Although it is important to consider the CPU resource, the algorithms

presented on this dissertation also consider other resources to place the VMs.

The proposal of Beloglazov e Buyya (2013) reduces energy consumption by maximizing the

Quality of Service (QoS). They �rst formulate the problem and showed that to improve the quality

of VM consolidation it is necessary to maximize the mean time between VM migrations. They

propose an optimal o�ine algorithm for host overload detection. Later they propose an online

algorithm by applying a Multisize Sliding Window workload estimation technique, which is an

extended Sliding Window approach by employing multiple windows with di�erent sizes, where a

window to be used is selected dynamically using the information about the previous system state

and variances of the estimates obtained from di�erent windows. In Beloglazov e Buyya (2013), the

only resource considered is CPU, while our algorithms consider other resources like RAM memory,

and I/O.

There is a relationship between the total power consumption by a server and its CPU utilization

as observed by Fan et al. (2007). Basically their model proposes that power consumption by a

server grows linearly in relation to the growth of the CPU utilization. Most literature available

tackles energy consumption primarily focusing on only one speci�c aspect, such as minimizing

network consumption or maximizing CPU usage, however some of the following studies consider

two resources simultaneously. Although this power model based on CPU was used for the proposed

algorithms, the SPECpower benchmarks were also used to simulate power models based on real

hardware.

Xu e Fortes (2010) approaches the VM placement problem as a multi-objective optimization

problem. A multi-objective fuzzy evaluation is proposed to search for solutions. They focus on CPU,

memory and power consumption. They have used a linear power model based on CPU using IBM's

advanced management module for an IBM BladeCenter. In our algorithms, power models can be

either based purely on CPU or they can be based on a server SPECpower benchmark pro�le, which

allows to use our algorithms on diverse hardware.

Ranjana e Raja (2013) have presented the available strategies of power aware VM placement

techniques on a survey. They have discussed the algorithms used, the optimizations included to

save power and some open issues on the �eld. They have classi�ed the energy saving techniques

in a data center into static and dynamic methods. They have included in the Static Power Man-

agement (SPM) class all the optimization methods applied at the design time at the circuit, logic,

architecture and system levels. They have included in the Dynamic Power Management (DPM)

the techniques, methods and strategies for run-time adaptation of the system behavior. They have

also discussed some of the network optimization techniques applied to save energy as the work of

McGeer et al. (2010) and Fang et al. (2013) among others and they have noticed that most of the

3.0 23

existing works are evaluated for the �at tree topology. They have proposed that the performance

variation over other network topologies needs to be addressed and it is still an open issue. They have

observed that the �rst �t placement algorithm is used for VM placement when network elements are

optimized. Ranjana e Raja (2013) have also categorized the process of choosing the right physical

machine to host a virtual machine (or VM placement) as constraint programming, whose goal is

to maximize a global utility function by composing SLA ful�llment and operating costs, stochastic

integer programming, which is useful in cases where actual demands are not known but the distri-

bution of demands is known or can be estimated, and bin packing algorithms, which can be used

to �nd the actual mapping of virtual machines to physical machines. While they focus on VMs

consolidation, the work in Ranjana e Raja (2013) assumes that minimizing the number of hosts

is the best strategy. On this dissertation, some heuristics that consume less power on non-linear

power models using even more hosts are presented.

Verma et al. (2008) have investigated the problem of dynamic placement of applications in vir-

tualized systems, while minimizing the power consumption and maintaining the SLA. The authors

have proposed the pMapper placement framework. They have implemented the pMapper architec-

ture with the �rst �t decreasing bin packing algorithm. The results have showed that the approach

saves about 25% of power. The major drawback of this work is that it only uses the bin packing

approach for the VM placement. While they focus on VMs consolidation, they consider a speci�c

HPC cluster and not an IaaS cloud. They consider CPU and RAM memory and the power model

based on the hardware they have used, nevertheless the authors do not mention how to run the

algorithms on other power models.

Feller et al. (2011) have presented an Ant Colony (ACO) power aware optimization technique

for VM placement. They claim to be the �rst of its kind to apply ACO in dynamic workload

placement to conserve energy. However, there is a high cost of computation time due to searching

for optimum placement. The impact of co-migration on the placement algorithm is not discussed

by the authors. Although their focus is to reduce the number of hosts to serve the VMs, they

maximize the number of VMs per host and therefore they do not consider non-linear power models.

Furthermore they do not provide details on the power models used.

Authors in Wei et al. (2011) propose an algorithm that calculates a �tness value for a VM,

Physical Machine (PM) pair based on available memory, network and disk resource of the PM and

the demand of migrating VM for these resources. The VMs are arranged in a decreasing order of their

�tness value for a given PM. If the �tness value is less than zero then the PM cannot accommodate

the VM on migration and the next PM is checked. They have compared their algorithm with a

random placement. We have done something similar, nevertheless we do not order the VMs in a

decreasing order, instead we choose the best �tting VM. To do so we have applied a modi�cation of

the knapsack problem. We also propose a binary coded genetic algorithm, in this case we reinforce

our �tness function taking into consideration other resources like CPU, RAM memory and I/O.

Wu et al. (2012) propose a di�erent optimizing strategy based on Simulated Annealing theory.

They have compared their algorithm and it provided a better performance when compared to the

First Fit Decreasing (FFD) algorithm by 25%. However, the problem observed is the time spent by

the computation during the algorithm's execution to get an optimum result when the number of

the VMs and hosts increase. The proposed solution works well with static VM placement but may

not perform well with dynamic VM consolidation due to frequent reshu�ing of VMs. Their work

24 LITERATURE REVIEW 3.0

di�ers from ours because they use a linear power model, while our algorithms can use both a linear

power model or a SPECpower benchmark power pro�le.

Al Shayeji e Samrajesh (2012) propose an algorithm where the least loaded host is selected to

be switched to a lower power mode. After the server selection, all the VMs are migrated to other

hosts. A power o� threshold value is calculated for each physical server. To avoid many migrations

a counter is maintained. The servers that are below a threshold and with the lowest counters are

selected as servers to be freed. The algorithm is evaluated for static and dynamic VM workloads.

The performance is compared to a dynamic round robin and a random choice migration algorithm.

The performance of the algorithm depends on the optimal choice of the threshold values, however

they have not discussed the details on how to calculate these values. While they consider CPU,

RAM memory and I/O, they do not specify which power model they use.

Most of the studies focus only on CPU observation. This makes sense since most of the Qual-

ity of Service (QoS) and availability are in terms of CPU. However with the growth of big data

phenomena and the proliferation of Solid State Disks (SSD) a tremendous performance increase in

terms of I/O can been observed. In a similar way the advancements on the �elds of networking and

�ber connections are delivering fast �ber network connections to the households. For these reasons

networking and I/O QoS parameters will probably start to increasingly gain momentum in the near

future. There are many research opportunities on the �eld since there can be many criteria to be

explored.

We have proposed several algorithms where the network resource was considered. However, due

to the lack of real IaaS VMs network traces we have decided not to include the networking resource

in this work, instead we have added new features to the framework to allow the use of the traces

from the Google Cluster Data project. These traces include data from CPU, RAM memory and

disk usage.

Furthermore, the available cloud simulators nowadays consider CPU as the decision factor, so

developing a simulation toolkit that allows to be easily extended with other metrics will ful�ll a gap

in the state of the art. CloudSim Calheiros et al. (2011) is probably the most popular simulation

tool for cloud computing environments. It is developed at the University of Melbourne, Australia.

CloudSim is made in Java on top of GridSim. Due to the lack of some important features, new

cloud simulators based on CloudSim have emerged like Work�owSim, CloudAnalyst. Despite of

the important features of CloudSim and being an event driven simulator, it only supports a single

resource: CPU.

CloudAnalyst CloudAnalyst is a cloud simulation tool developed at the University of Mel-

bourne, Australia. It is developed in Java and based on CloudSim. CloudAnalyst focuses on the

evaluation of performance and cost of large-scale geographically distributed cloud systems having

large user workloads.

GreenCloud GreenCloud is a cloud simulation tool developed at the University of Luxembourg.

It is built on top of NS-2. It focuses on energy-aware environments by considering energy on network

equipment such as computing servers, communication links, network switches, etc. GreenCloud is

made in C++. Since it has been developed on top of NS-2, it focus on monitoring and optimization

of communication protocols and network infrastructure.

iCanCloud iCanCloud is a cloud simulation tool developed at the University Carlos III in

Madrid, Spain. iCanCloud allows to customize the hypervisor class and it includes an Amazon

3.0 25

cloud model. It is developed on C++ and it focuses on predicting the trade-o�s between cost and

performance of a given set of applications to be executed.

26 LITERATURE REVIEW 3.0

Chapter 4

Energy E�cient Virtual Machines

Consolidation Algorithms

There is a relationship between the total power consumption by a server and its CPU utilization

as observed in Fan et al. (2007). Basically their model proposes that power consumption by a server

grows linearly with the growth of the CPU utilization.

CPU utilization based models are able to provide an accurate prediction for CPU-intensive

applications, however they tend to be inaccurate for other types of prediction like Network, I/O

and memory intensive applications, as concluded in Dhiman et al. (2010). For this reason, it is

important to include other resource usage indicators in the power consumption models to try to

increase the accuracy of the predictions.

This section presents the three proposed algorithms to allocate VMs considering the energy con-

sumption of physical machines modeled with network, CPU, I/O, RAM and virtual memory usage.

The �rst algorithm consolidates the VMs based in the knapsack problem. The second algorithm

consolidates the VMs using Evolutionary Computation (EC). The third algorithm consolidates the

VMs based in the knapsack problem while considering to double the virtual memory capacity.

We can de�ne the problem of energy e�cient virtual machines consolidation as follows. Given

sets of:

• Physical hosts H = {H1, . . . ,Hn} of size n

• Available resources ~C p = (Cp,1, . . . , Cp,d) of size d

• Virtual Machines V = {V1, . . . , Vm} of size m

• Used resources R = {R1, . . . , Rd} of size d

• VMj resource demands ~r j = (rj,1, . . . , rj,d) of size d

Each physical hostHi has a d-dimensional available resource capacity as a vector ~C i = (Ci,1, . . . Ci,d),

for example, Network, CPU, RAM, I/O, etc. All the virtual machines resources usage vmj ∈ V

are represented by a d-dimensional resource demand vector ~r j = (rj,1, . . . , rj,d) ∈ [0, 100]d. These

values represent a snapshot of resources usage, in percentage, by the VMj .

The objective is to minimize the physical hosts used, which can also be seen as maximize the

number of VMs per host constrained to the stochastic resources usage.

27

28 ENERGY EFFICIENT VIRTUAL MACHINES CONSOLIDATION ALGORITHMS 4.1

4.1 Knapsack Problem based Heuristic

In this �rst approach the VMs placement problem has been modeled as a Multidimensional Bin

Packing (MDBP) approach. In this approach the following decision variables need to be found: The

physical host allocation variable hp and the virtual machine allocation variable xi,p. hp is 1 if the

physical host p is used by some VM or 0, otherwise. xi,p is 1 if the virtual machine i is assigned to

the host p or 0, otherwise.

The goal is to minimize the number of physical hosts:

Minimize
n∑

p=1

hp (4.1)

Subject to the following constraints:

m∑
i=1

ri,k × xi,p ≤ Cp,k × hp,∀p ∈ {1, . . . , n},∀k ∈ R (4.2)

n∑
i=1

xi,p = 1, ∀i ∈ {1, . . . ,m} (4.3)

Where constraint (4.2) ensures that the capacity of each physical host is not exceeded and

constraint (4.3) guarantees that each virtual machine is assigned to exactly one host.

MDBP is a variation of the Multiple-Choice Multidimensional Knapsack Problem (MMKP)

which is an NP-Hard problem. The �rst proposed algorithm consists in solving the standard knap-

sack problem n-times (one per each host) using a list of VMs request. The name given to this

approach is: Iterated-KSP.

The Algorithm 1 shows the function that implements the Iterated-KSP. The algorithm �rst

prepares a list of constraints (line 2) for each resource. The summation of each resource used by the

VMs within a host must be less than 99%. The constraints also include assigning a weight on each

VM which will be the criteria to be maximized by the algorithm. In the simulation we used equal

weights for all the VMs. Nevertheless, according to di�erent strategies, this could be changed. Then,

a list of hosts (line 3) and unplaced VMs (line 4) are created. A loop iterates over the available

physical hosts to start placing the VMs (line 5). An instance of the KSP problem is de�ned (line

6) and solved (line 7) producing the VMs placement on that particular host. Finally the VMs are

placed (line 8) and removed from the unplaced VMs list (line 9). The resulting placement is returned

for that host (line 11).

The Iterated-KSP algorithm shown could be improved for speci�c needs, for instance, consider-

ing the use of virtual memory it is possible to modify the algorithm by doubling the RAM capacity.

In this case, it is possible to achieve a better placement on a data center that run VMs with high

RAM demand. This idea of considering the existence of virtual memory (double of the current

physical memory) is applied in the third algorithm proposed, which is called Iterated-KSP-Mem.

Algorithm 1 is also executed to �nd the allocation in this algorithm. The only di�erence to the

Iterated-KSP is that the amount of available memory considered is the double of the physical

memory.

4.2 EVOLUTIONARY COMPUTATION BASED HEURISTIC 29

Algorithm 1 Iterated-KSP Strategy

1: function Iterated-KSP(. . .)
2: constraints ← for every d-dimension to be ≤ 99
3: create a list of hosts
4: create an unplaced VMs list
5: for each host do
6: problem ← KSP(unplaced VMs list, constraints)
7: vms ← problem.solve()
8: place the VMs on the host
9: remove the placed VMs from unplaced VMs list
10: end for

11: return placement
12: end function

4.2 Evolutionary Computation based Heuristic

The Evolutionary Computation model separates problem-speci�c computation from algorithm-

speci�c computation. The algorithm-speci�c computation is related to bio-inspired algorithms while

the problem-speci�c computation is related on how solutions to the problem look like and how such

solutions are evaluated Garrett (2013). The name given to this algorithm is: Iterated-EC.

The Iterated-EC algorithm is presented on Algorithm 2. The algorithm starts by de�ning the

population and tournament size (lines: 2 and 3) and the number of evaluations (line 4). Then, a list

of hosts (line 5) and unplaced VMs (line 6) are created. A loop iterates over the available physical

hosts to start placing the VMs. All of these lines so far are problem-speci�c components. There are

algorithm-speci�c components that can be found on any evolutionary computation problem (lines: 8

to 20), which includes the terminator (T), observer (O) and variator (V). Finally after a placement

solution has been found, the VMs are placed (line 22) and removed from the unplaced VMs list

(line 23). The resulting placement is returned for that host (line 26). Similar to the Iterated-KSP

algorithm the objective is to maximize the number of VMs per physical host.

The generator function (G) generates possible solutions where each bit corresponds to includ-

ing/excluding the VM at that host, giving a 1% chance of each bit being one, since is desired that

the vast majority of the candidates to be zeroes.

The evaluation function (E) is used on every generation evaluation within the Algorithm 2

(line 16). This function �rst calculates the totals of the sums per resource of the VMs from the

candidate solution, then it calculates the maximum between zero and the per resource sum. A

�tness calculation is performed as the di�erence of number of VMs within the proposed candidate

solution and the sum of the constraints. The only scenario where �tness is positive is when the sum

of constraints is exactly zero (proposed VMs �t within the host). The generation which produces

the higher �tness value will be proposed as the VM placement solution for that currently evaluated

host.

The terminator function (T) de�nes the termination criteria used, in general when a number

of generations has been achieved. The observer function (O) is optionally called for monitoring on

each generation. The variator function (V) de�nes the mutations to be used as already described.

30 ENERGY EFFICIENT VIRTUAL MACHINES CONSOLIDATION ALGORITHMS 4.2

Algorithm 2 Iterated-EC Strategy

1: function Iterated-EC(. . .)
2: population size ← 50
3: tournament size ← 25
4: number of evaluations ← 2500
5: create a list of hosts
6: create an unplaced VMs list
7: for each host do
8: Create the initial population using G
9: Evaluate the initial population using E
10: Set the number of generations to 0
11: while the terminator T is not true Loop do
12: Choose parents via the selector S
13: Initialize o�spring to the parents
14: for each variator V loop do
15: Set o�spring
16: Evaluate o�spring using the evaluator E
17: Update the number of evaluations
18: Replace, Migrate and Archive population
19: Increment the number of generations
20: Call the observer O on the population
21: end for

22: place the VMs on the host
23: remove the placed VMs from unplaced list
24: end while

25: end for

26: return placement
27: end function

4.3 LINEAR AND NON LINEAR SPECPOWER MODELS HEURISTICS 31

4.3 Linear and Non Linear SPECpower Models Heuristics

The algorithms proposed on the previous subsections focus on maximizing the number of VMs

per hosts considering several aspects like CPU, RAM memory and disk. However, modern servers

are equipped with large amounts of memory, due to hardware evolution on multi-core CPUs and

the proliferation of virtualization. This fact has made the memory to begin dominating the power

consumption on some server models. This might lead some servers to have a non-linear power

consumption behavior.

(a) Sugon I840-G25 (linear)
SPECPower Sugon I840-G25 Server

(b) Fujitsu PRIMERGY RX1330 M1 (non-linear)
SPECPower Fujitsu PRIMERGY RX1330 Server

Figure 4.1: Linear and non-linear SPECpower models

Figure 4.1 shows a linear and a non-linear SPECpower models used on this work. In general,

the SPECpower benchmark uses a metric which is the Server Side Java Operations (ssj_ops) in

relation to the consumed watts. The Figure 4.1a is considered a linear model because the power

consumption grows as the ssj_ops/watt ratio grows. Therefore the optimum ratio is 100%. Lets

illustrate this with an example of a single resource comparison by observing the blue line (not to

be confused with the bars) of Figure 4.1a. Lets imagine two placements, the �rst placement (A)

places all the VMs in two servers, the �rst server has a 90% CPU load consuming 531 Watts and

the second server has a 10% CPU load consuming 279 Watts. This placement would have an overall

power consumption of 810 Watts. Now lets imagine a second placement (B), that places all the

VMs into a single server having a 100% CPU load consuming 567 Watts. On a linear model, the

second (B) placement would be more power e�cient than the �rst placement (A) due to the fact

that it consumes less power.

This is not the same behavior observed on the Figure 4.1b where there is an optimum ssj_ops/watt

ratio at 70% instead. Lets illustrate this also with an example of a single resource comparison. Lets

imagine two placements, the �rst placement (A) places all the VMs in two servers, the �rst server

having 60% CPU load consuming 36.2 Watts instead of targeting its load to the maximum CPU

capacity, and the second server with 50% CPU load consuming 32.6 Watts. This placement would

32 ENERGY EFFICIENT VIRTUAL MACHINES CONSOLIDATION ALGORITHMS 4.3

have an overall power consumption of 68.8 Watts. Now lets imagine a second placement (B), that

places all the VMs into the same two server as follows, having the �rst server with a 100% CPU

load consuming 63.7 Watts and the second server with a 10% CPU load consuming 20.8 Watts.

This placement would have an overall power consumption of 84.5 Watts. On a non-linear model the

�rst (A) placement would be more power e�cient than the second placement (B) due to the fact

that it consumes less power.

By modifying the previous algorithms to allow a variable maximum target load, it is possible

to select the optimum server ssj_ops/watt ratio. By repeating this process across each server on

the data center it is possible to produce a better VMs placement than with the linear heuristics.

While a non-linear placement is better on a non-linear model there is a local vs. global optimum

dilemma, this means that, it would be possible to have variations on the optimum ssj_ops/watt

ratio that would produce a global optimum placement even when all the servers do not use the

best ssj_ops/watt ratio. Therefore even when greedy approaches produce better placements than

a linear heuristic, they do not necessarily produce a global minimum power aware placement. This

idea is explained with more details on Section 5.2.2.

Chapter 5

Performance Evaluation

This chapter presents an overview of the pyCloudSim simulation framework on Section 5.1. The

linear and non-linear models are presented on Section 5.2. The experiments using the PlanetLab

traces are presented on Section 5.3, while the experiments using the Google traces are presented on

Section 5.4.

5.1 The pyCloudSim Simulation Framework and Methodology

The pyCloudSim simulation framework 1 has been developed to study power-e�cient VMs

machine allocation. pyCloudSim has been developed in Python, which is a high level programming

language widely used for scienti�c purposes. Some libraries have been used from the Python Package

Index (pypi). Among them the most important ones are:

• OpenOpt Kroshko (2013), which is a framework for numerical optimization developed by

the Optimization department of the Cybernetics Institute and sponsored by the National

Academy of Sciences of Ukraine. OpenOpt was originally developed in Matlab and afterwards

ported to Python using NumPy for numerical work. OpenOpt supports about 30 di�erent

solvers for optimization problems both free and commercial (like CPlex, Knitro and Matlab),

focusing on open source solvers. Some solvers are written in C or Fortran.

• FuncDesigner FuncDesigner , which is a Computer Algebra System (CAS) used from within

OpenOpt.

• Inspyred Garrett (2013) is a library of biologically-inspired algorithms including evolution-

ary computation, swarm intelligence, and neural networks. The Inspyred library grew out of

insights from Jong e Jong (2002). The goal of the library is to separate the problem-speci�c

computation from algorithm-speci�c computation in a clean way so as to make algorithms

as general as possible across a range of di�erent problems. Any bio-inspired algorithm has at

least two aspects that are entirely problem-speci�c: how solutions to the problem look like

and how such solutions are evaluated Garrett (2013).

• NumPy NumPy , which is a mathematical library written in Python, C and Fortran that al-

lows to perform powerful operations on n-dimensional array objects. It also include wrappers

1http://pycloudsim.albertdelafuente.com, Last access on March 15, 2015

33

http://pycloudsim.albertdelafuente.com

34 PERFORMANCE EVALUATION 5.1

around most Fortran functions included in the BLAS BLAS (Basic Linear Algebra Subpro-

grams) and LAPACK LAPACK (Linear Algebra PACKage) libraries.

• Matplotlib Matplotlib which is a plotting library for Python and Numpy. It allows to do line

plots, histograms, scatter plots, 3D plots and many others.

Graphically, pyCloudSim can be structured in the block diagram showed on Figure 5.1. The most

important parts are the Global Manager and the Simulation Manager. The simulation manager is

in charge of executing the strategies given the simulation parameters. The global manager also

communicates with the Physical Machine Manager and Virtual Machine Manager. These modules

are responsible for managing the physical hosts and virtual machines respectively.

The virtual machine manager is also responsible for mapping the VMs with traces either from the

PlanetLab project Planetlab Traces or from the Google Cluster workload data Google Cluster Data Traces .

This is performed on the initialization time, using the Trace Manager.

The Physical Machine Manager includes the power estimation routines which requires the

SPECpower data to estimate power consumption based on real server measurement as already

introduced on Section 2.5.1.

After the experiments are �nished, the data is summarized to calculate the best, worst and

average cases and the con�dence intervals. Finally the data is represented graphically on di�erent

type of plots representing several aspects of the placement.

Figure 5.1: pyCloudSim block diagram

The simulation framework is based on the Algorithm 3 that iterates over the available (unplaced)

physical hosts scenarios 〈PMS〉 (line 2) and later over the VMs scenarios 〈VMS〉 (line 3) to

determine a placement using a given strategy S for that scenario of physical hosts and VMs. The

strategies can be Energy Unaware, Iterated-KSP, Iterated-KSP-Mem and Iterated-EC.

5.1 THE PYCLOUDSIM SIMULATION FRAMEWORK AND METHODOLOGY 35

We employed a general heuristic architecture to perform the placement of the VMs on the hosts.

The heuristic works as follows: the placement will be performed by sequentially evaluating the next

suitable physical host that can handle the workload of a given VM, if any.

On the strategies that are energy aware, the hosts that are underloaded (without VMs workload)

are automatically suspended by an energy aware strategy with the consequent energy savings. Later,

they can be reactivated when required using mechanisms like Wake-on-Lan Zelkowitz (2011), which

allows a computer to be turned on.

To evaluate the gains of the strategies, they are compared with an energy unaware First Fit (FF)

algorithm, called Energy Unaware strategy. The aim was to evaluate if a single solution like a FF

would be better. The strategies were not compared against other existing on the literature because,

for the best of our knowledge, there is no solution that considers multiple resources and a power-

e�cient strategy simultaneously. The Energy-Unaware strategy evaluates the hosts sequentially

and chooses the next VM on the queue that can be allocated on that host. If the host has enough

resources to allocate that VM, then it is placed within that host, otherwise that VM is left on the

queue for later processing and another VM is selected from the queue until no more VMs or hosts

are left.

Algorithm 3 Virtual Machines placement framework

Input: A Strategy: S
Input: List of physical hosts scenarios: 〈PMS〉
Input: List of virtual machines scenarios: 〈VMS〉
Output: A placement solution

1: function Simulate-strategy(. . .)
2: for P ∈ 〈PMS〉 do
3: for V ∈ 〈VMS〉 do
4: Solution-scenario ← Simulate S with P, V
5: end for

6: end for

7: end function

The consumed power estimation is performed using two di�erent models. The �rst one imple-

mented was a linear model based on the CPU utilization, as proposed in Fan et al. (2007) without

loss of generality since the focus is to e�ciently place the VMs regarding their resources use. The

second power model used is based on a SPECpower system pro�le benchmark. pyCloudSim allows

to specify a di�erent SPECpower pro�le for each host on the cloud and the power consumption is

based on the CPU utilization.

It is important to conduct experiments using workload traces from real systems rather than

arti�cially generated ones. So, two approaches were used to de�ne the workloads.

The �rst approach was to use workloads from the Planetlab project Planetlab Traces , there-

fore we analyzed more than 11,776 24-hour long traces provided as part of the CoMon project

CoMon - A Monitoring Infrastructure for Planetlab , a monitoring infrastructure for PlanetLab. 10

days of workload traces collected during March and April 2011 have been randomly chosen as the

data set. The traces include data on the CPU utilization collected every 5 minutes from more than

a thousand VMs deployed on servers located in more than 500 places around the world.

36 PERFORMANCE EVALUATION 5.2

The second approach was to use workloads from the Google Cluster data Google Cluster Data Traces

repository 2. More than 40 Gigabytes of compressed text data have been analyzed and some of the

workloads were selected to be used as the VMs.

5.2 Linear and Non-linear SPECpower Benchmark Pro�les

The experiments have been performed using real SPECpower benchmark pro�les. We used the

only two available server pro�les available during the third quarter of 2014. The two next subsections

presents the pro�les.

5.2.1 Linear SPECpower Benchmark Pro�le

The �rst SPECpower pro�le used is from a Sugon I840-G25 server with 4 chips, 48 cores and

96 total threads. This server has 128GB of RAM memory, an average of 213 Watts of power

consumption at idle state, and an average of 567 Watts of power consumption at full-load (100%).

The server power consumption pro�le is shown on Figure 5.2

Figure 5.2: SPECpower with linear characteristics of a Sugon I840-G25 Server
SPECPower Sugon I840-G25 Server

While there is not a strict linear relationship between the target loads, there is a discrete linear

growing relationship. In other words, each target load consumption could be expressed as a constant

2https://code.google.com/p/googleclusterdata/, Last access on March 15, 2015

https://code.google.com/p/googleclusterdata/

5.2 LINEAR AND NON-LINEAR SPECPOWER BENCHMARK PROFILES 37

multiplied by the prior power consumption value, nevertheless those constants are not the same.

We will consider a linear model, any model that when the target load increases, the power

ssj_ops/watt ratio also increases even if it is not proportionally, as shown on Figure 5.2. In that

sense, this model will be referred as an example of a SPECpower model with a linear behavior.

Lets �rst analyze a simple example of 11 VM requests to be placed into 7 hosts. In this case it will

be assumed that all the hosts have a linear model power consumption. The resources utilization

of the VMs can be found on Table 5.1, please note that no virtualization overhead is assumed

therefore, the usage of these resources are based only on the workload requirements.

VM-id CPU RAM I/O

(%) (%) (%)

VM001 30.00 8.00 0.30

VM002 30.00 8.00 0.26

VM003 20.00 8.00 1.31

VM004 20.00 5.00 1.63

VM005 10.00 5.00 2.12

VM006 30.00 8.00 1.31

VM007 30.00 10.00 0.30

VM008 20.00 10.00 1.63

VM009 10.00 10.00 0.26

VM010 10.00 5.00 2.12

VM011 10.00 5.00 1.31

Table 5.1: Simple example of 11 VMs workload scenario

After applying the Energy Unaware heuristic, the proposed allocation will result on Table 5.2.

On the placement, the VM007, VM009, VM008 and VM001 have been placed on the �rst host. The

VM003, VM004, VM010, VM011 and VM002 have been placed on the second host. The VM005

and VM006 have been placed on the third host. The CPU, RAM and I/O columns represent the

resource percentage to be used by the VMs when placed. The Av. CPU, Av. RAM and Av. I/O

represents the available CPU, RAM and I/O resources respectively. The last column represents the

incremental power use per host in Watts after a VM is placed on that host, for instance on the

�rst host H001, after placing the VM007, the power consumption is 337 Watts. After placing the

VM009 the power consumption rises to 370 Watts and so forth. Note that the hosts H004, H005,

H006 and H007 are not hosting any VM nevertheless they do have an idle power consumption, and

therefore are shown on the table to illustrate the power consumption of each host. The last row

summarizes the power consumption of the seven hosts all together.

38 PERFORMANCE EVALUATION 5.2

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM007 30.00 10.00 0.30 70.00 90.00 99.70 337.00

VM009 10.00 10.00 0.26 60.00 80.00 99.44 370.00

VM008 20.00 10.00 1.63 40.00 70.00 97.81 439.00

VM001 30.00 8.00 0.30 10.00 62.00 97.51 531.00

H002 VM003 20.00 8.00 1.31 80.00 92.00 98.69 307.00

VM004 20.00 5.00 1.63 60.00 87.00 97.06 370.00

VM010 10.00 5.00 2.12 50.00 82.00 94.94 404.00

VM011 10.00 5.00 1.31 40.00 77.00 93.63 439.00

VM002 30.00 8.00 0.26 10.00 69.00 93.37 531.00

H003 VM005 10.00 5.00 2.12 90.00 95.00 97.88 279.00

VM006 30.00 8.00 1.31 60.00 87.00 96.57 370.00

H004 - 0.00 0.00 0.00 100.00 100.00 100.00 213.00

H005 - 0.00 0.00 0.00 100.00 100.00 100.00 213.00

H006 - 0.00 0.00 0.00 100.00 100.00 100.00 213.00

H007 - 0.00 0.00 0.00 100.00 100.00 100.00 213.00

2,284.00

Table 5.2: Simple example of 11 VMs placement using the Energy Unaware algorithm

Analogously, the same experiment was repeated on the same scenario using the Iterated-KSP

algorithm. The returned placement is shown on Table 5.3. Note that the hosts 4, 5, 6 and 7 have

been suspended to a lower state of power consumption by the algorithm and therefore they do

not appear on the table. The allocation returned by the Iterated-KSP lead to a lower overall power

consumption when compared to the allocation returned by the Energy Unaware (1,435 Watts versus

2,284 Watts)

5.2 LINEAR AND NON-LINEAR SPECPOWER BENCHMARK PROFILES 39

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM003 20.00 8.00 1.31 80.00 92.00 98.69 307.00

VM004 20.00 5.00 1.63 60.00 87.00 97.06 370.00

VM005 10.00 5.00 2.12 50.00 82.00 94.94 404.00

VM008 20.00 10.00 1.63 30.00 72.00 93.31 471.00

VM009 10.00 10.00 0.26 20.00 62.00 93.05 505.00

VM010 10.00 5.00 2.12 10.00 57.00 90.93 531.00

VM011 10.00 5.00 1.31 0.00 52.00 89.62 567.00

H002 VM001 30.00 8.00 0.30 70.00 92.00 99.70 337.00

VM006 30.00 8.00 1.31 40.00 84.00 98.39 439.00

VM007 30.00 10.00 0.30 10.00 74.00 98.09 531.00

H003 VM002 30.00 8.00 0.26 70.00 92.00 99.74 337.00

1,435.00

Table 5.3: Simple example of 11 VMs placement using the Iterated-KSP algorithm

Likewise using the Iterated-EC algorithm as shown Table 5.4. Note that analogously to the

Iterated-KSP algorithm, the hosts 4, 5, 6 and 7 have been suspended to a lower state of power

consumption by the algorithm and therefore they do not appear on the table. Also note that the

host H001 placement returned by both algorithms Iterated-KSP and Iterated-EC is the same, the

H002 and H003 placement di�ers.

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM003 20.00 8.00 1.31 80.00 92.00 98.69 307.00

VM004 20.00 5.00 1.63 60.00 87.00 97.06 370.00

VM005 10.00 5.00 2.12 50.00 82.00 94.94 404.00

VM008 20.00 10.00 1.63 30.00 72.00 93.31 471.00

VM009 10.00 10.00 0.26 20.00 62.00 93.05 505.00

VM010 10.00 5.00 2.12 10.00 57.00 90.93 531.00

VM011 10.00 5.00 1.31 0.00 52.00 89.62 567.00

H002 VM001 30.00 8.00 0.30 70.00 92.00 99.70 337.00

VM002 30.00 8.00 0.26 40.00 84.00 99.44 439.00

VM006 30.00 8.00 1.31 10.00 76.00 98.13 531.00

H003 VM007 30.00 10.00 0.30 70.00 90.00 99.70 337.00

1,435.00

Table 5.4: Simple example of 11 VMs placement using the Iterated-EC algorithm

The experiments with the linear model can be found on Section 5.3.2 for the PlanetLab traces

and on Section 5.4.2 for the Google Cluster traces.

40 PERFORMANCE EVALUATION 5.2

5.2.2 Non-Linear SPECpower Benchmark Pro�le

The second SPECpower pro�le used is from a Fujitsu PRIMERGY RX1330 M1 server with 1

chip, 4 cores and 8 total threads. This server has 16GB of RAM memory, an average of 13.8 Watts

of power consumption at idle state, and 63.7 Watts of power consumption at full load (100%). The

server power consumption pro�le is shown on Figure 5.3

Figure 5.3: SPECpower with non-linear characteristics of a Fujitsu PRIMERGY RX1330 M1 Server
SPECPower Fujitsu PRIMERGY RX1330 Server

We can observe that when the target load increases, the performance does not increases linearly,

in fact, it is better to have a 70% target load on this sever since it will have its optimal ssj_ops/watt

ratio. Therefore this server has a non-linear model power consumption.

Note that the server with a linear model power consumption presented on Section 5.2.1 has more

hardware capacity (number of chips, cores and RAM), therefore both servers might have di�erent

usage scopes within a data center depending on how the applications are distributed. For instance

the servers with a linear power consumption model could be dedicated to higher RAM demanding

tasks.

It is important to consider which optimization technique to use with non-linear models since

using a linear optimization (for example, maximizing the number of VMs) could lead to higher

power consumption rates. Lets show an example of this by analyzing the allocation of the same

example introduced on Section 5.2.1. In this case it is assumed that all the hosts have a non-linear

model power consumption. The resources utilization of the VMs can be found on Table 5.1, please

5.2 LINEAR AND NON-LINEAR SPECPOWER BENCHMARK PROFILES 41

note that no virtualization overhead is assumed therefore, the usage of this resources are based only

on the workload requirements.

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM003 20.00 8.00 1.31 80.00 92.00 98.69 23.90

VM004 20.00 5.00 1.63 60.00 87.00 97.06 29.10

VM005 10.00 5.00 2.12 50.00 82.00 94.94 32.60

VM008 20.00 10.00 1.63 30.00 72.00 93.31 42.00

VM009 10.00 10.00 0.26 20.00 62.00 93.05 48.60

VM010 10.00 5.00 2.12 10.00 57.00 90.93 55.90

VM011 10.00 5.00 1.31 0.00 52.00 89.62 63.70

H002 VM001 30.00 8.00 0.30 70.00 92.00 99.70 26.30

VM006 30.00 8.00 1.31 40.00 84.00 98.39 36.20

VM007 30.00 10.00 0.30 10.00 74.00 98.09 55.90

H003 VM002 30.00 8.00 0.26 70.00 92.00 99.74 26.30

145.90

Table 5.5: Simple example of 11 VMs placement using the Iterated-KSP algorithm with a linear heuristic

The Table 5.5 shows the placement resulted of applying the Iterated-KSP algorithm with a linear

heuristic aiming to minimize the number of hosts (equivalent to maximize the number of VMs per

host). The CPU, RAM and I/O columns show the resources required per VM. The Av. CPU, Av.

RAM and Av. I/O shows the available resources on that host, therefore it decreases after placing

new VMs on subsequent rows. The Inc. Power column represents the incremental power consumed

after placing a VM. Note that this placement requires 3 hosts and consumes 145.90 Watts.

42 PERFORMANCE EVALUATION 5.2

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM003 20.00 8.00 1.31 80.00 92.00 98.69 23.90

VM005 10.00 5.00 2.12 70.00 87.00 96.57 26.30

VM008 20.00 10.00 1.63 50.00 77.00 94.94 32.60

VM009 10.00 10.00 0.26 40.00 67.00 94.68 36.20

VM010 10.00 5.00 2.12 30.00 62.00 92.56 42.00

H002 VM002 30.00 8.00 0.26 70.00 92.00 99.74 26.30

VM004 20.00 5.00 1.63 50.00 87.00 98.11 32.60

VM011 10.00 5.00 1.31 40.00 82.00 96.80 36.20

H003 VM006 30.00 8.00 1.31 70.00 92.00 98.69 26.30

VM007 30.00 10.00 0.30 40.00 82.00 98.39 36.20

H004 VM001 30.00 8.00 0.30 70.00 92.00 99.70 26.30

140.70

Table 5.6: Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-linear heuris-
tic using the �rst local optimum (70% target load)

On Table 5.6 is shown the placement resulted of applying the Iterated-KSP algorithm with a

non-linear heuristic using the �rst optimum of the Fujitsu PRIMERGY RX1330 M1 Server, which

is targeting 70% of the load. Note that this placement requires 4 hosts and consumes 140.70 Watts,

which demonstrates to be a better placement than the one summarized on Table 5.5, since it

consumes less power even when it uses more hosts.

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM004 20.00 5.00 1.63 80.00 95.00 98.37 23.90

VM005 10.00 5.00 2.12 70.00 90.00 96.25 26.30

VM009 10.00 10.00 0.26 60.00 80.00 95.99 29.10

VM010 10.00 5.00 2.12 50.00 75.00 93.87 32.60

VM011 10.00 5.00 1.31 40.00 70.00 92.56 36.20

H002 VM007 30.00 10.00 0.30 70.00 90.00 99.70 26.30

VM008 20.00 10.00 1.63 50.00 80.00 98.07 32.60

H003 VM002 30.00 8.00 0.26 70.00 92.00 99.74 26.30

VM003 20.00 8.00 1.31 50.00 84.00 98.43 32.60

H004 VM001 30.00 8.00 0.30 70.00 92.00 99.70 26.30

VM006 30.00 8.00 1.31 40.00 84.00 98.39 36.20

137.60

Table 5.7: Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-linear heuris-
tic using the second local optimum (60% target load))

5.2 LINEAR AND NON-LINEAR SPECPOWER BENCHMARK PROFILES 43

Table 5.7 shows the placement after applying the Iterated-KSP algorithm with a non-linear

heuristic using the second optimum of the Fujitsu PRIMERGY RX1330 M1 Server, which is tar-

geting 60% of the load. Note that this placement also requires 4 hosts and consumes 137.60 Watts.

Therefore this placement is a better placement than the one summarized on Table 5.6, since it

consumes less power.

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM003 20.00 8.00 1.31 80.00 92.00 98.69 23.90

VM005 10.00 5.00 2.12 70.00 87.00 96.57 26.30

VM008 20.00 10.00 1.63 50.00 77.00 94.94 32.60

VM009 10.00 10.00 0.26 40.00 67.00 94.68 36.20

VM010 10.00 5.00 2.12 30.00 62.00 92.56 42.00

VM011 10.00 5.00 1.31 20.00 57.00 91.25 48.60

H002 VM004 20.00 5.00 1.63 80.00 95.00 98.37 23.90

VM006 30.00 8.00 1.31 50.00 87.00 97.06 32.60

VM007 30.00 10.00 0.30 20.00 77.00 96.76 48.60

H003 VM001 30.00 8.00 0.30 70.00 92.00 99.70 26.30

VM002 30.00 8.00 0.26 40.00 84.00 99.44 36.20

133.40

Table 5.8: Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-linear heuris-
tic using the third local optimum (80% target load)

Table 5.8 shows the placement resulted of applying the Iterated-KSP algorithm with a non-

linear heuristic using the third optimum state of the Fujitsu PRIMERGY RX1330 M1 Server,

which targets 80% of the load. Note that this placement requires 3 hosts and consumes 133.40

Watts, which demonstrates to be the best power-aware placement compared to the placements

shown on Tables 5.5, 5.6 and Table 5.7.

44 PERFORMANCE EVALUATION 5.3

Host-id VM-id CPU RAM I/O Av. CPU Av. RAM Av. I/O Inc. Power

(%) (%) (%) (%) (%) (%) (W)

H001 VM003 20.00 8.00 1.31 80.00 92.00 98.69 23.90

VM004 20.00 5.00 1.63 60.00 87.00 97.06 29.10

VM005 10.00 5.00 2.12 50.00 82.00 94.94 32.60

VM008 20.00 10.00 1.63 30.00 72.00 93.31 42.00

VM009 10.00 10.00 0.26 20.00 62.00 93.05 48.60

VM010 10.00 5.00 2.12 10.00 57.00 90.93 55.90

H002 VM002 30.00 8.00 0.26 70.00 92.00 99.74 26.30

VM006 30.00 8.00 1.31 40.00 84.00 98.43 36.20

VM011 10.00 5.00 1.31 30.00 79.00 97.12 42.00

H003 VM001 30.00 8.00 0.30 70.00 92.00 99.70 26.30

VM007 30.00 10.00 0.30 40.00 82.00 99.40 36.20

134.10

Table 5.9: Simple example of 11 VMs placement using the Iterated-KSP algorithm with a non-linear heuris-
tic using the fourth local optimum (90% of target load)

We might falsely think that a placement after applying the Iterated-KSP algorithm with a non-

linear heuristic using the fourth optimum, which targets 90% of the load would be better. This is

not true; as shown on Table 5.9, the placement consumes more than the placement of Table 5.8.

What happens here is a global-local optimum dilemma. Finding the best non-linear placement

depend on knowing the global Cloud workload. This is very hard to predict, especially on IaaS

Clouds since it heavily depends on the consumer behavior. It is true however that non-linear server

models generally perform better with non-linear heuristics.

Note that only the Iterated-KSP has been used on the example since it is the most deterministic

of the algorithms.

The non-linear experiments are detailed on Section 5.3.3 use the PlanetLab traces while Section

5.4.3 use the Google Cluster traces.

5.3 Experiments Using Workloads from the PlanetLab Project

The analyzed PlanetLab project workloads were more than 11,776 24-hour long traces provided

as part of the CoMon project, a monitoring infrastructure for PlanetLab. The workloads3 were

randomly collected between March and April 2011. The traces include data on the CPU utilization

collected every 5 minutes from more than a thousand VMs deployed on servers located in more

than 500 places around the world.

In the simulations we considered a scenario of a Cloud IaaS using 100 hosts with VMs allocation

requests varying from 16 to 128 VMs with 16 increments. Two types of hosts were considered. One

type of server was the Sugon I840-G25 server which has linear power consumption characteristics

as presented on Section 5.2.1. The Section 5.3.2 is dedicated to discuss the results of the exper-

3https://github.com/vonpupp/planetlab-workload-traces, Last access on March 15, 2015

https://github.com/vonpupp/planetlab-workload-traces

5.3 EXPERIMENTS USING WORKLOADS FROM THE PLANETLAB PROJECT 45

iments when all the hosts were simulated as being this server. The other type of server was the

Fujitsu PRIMERGY RX1330 M1 server which has non-linear power consumption characteristics as

presented on Section 5.2.2. The Section 5.3.3 is dedicated to discuss the results of the experiments

when all the hosts were simulated as being this server.

Each simulation was repeated 30 times to check if there was a clear tendency, and later the data

was reduced to three cases: best, worst and average case (mean). The simulations were executed in

a VM with four dedicated cores and 10 Gigabytes of RAM hosted by a physical machine with an

octo-core Intel(R) Core(TM) i7-2700K CPU @ 3.50GHz and 16 Gigabytes RAM.

To allow the reproduction of the experiments, all the code, data and documentation is publicly

available 4.

5.3.1 Assumptions

Ideally the traces should have a CPU consumption mean around 36% due to the fact that this

is the average mean of CPU usage on servers as shown by Barroso e Holzle (2007), however since

there are only a few loads with this characteristic on the Google traces, the traces used were those

with CPU load average between 15% and 20% to have the same traces selection criteria on both

Planetlab and Google traces.

Unfortunately only the CPU is available on the PlanetLab traces data used on this section. To

simulate the other resources, a mapping has been made against the CPU traces. Other resources

might have di�erent behavior, especially the network resource that tends to be bursty. Nevertheless,

since we are focusing on static allocation techniques, this does not a�ect the conclusions about the

proposed algorithms. This might be not true on dynamic analysis, but this case is out of the scope

of this work.

5.3.2 Linear Model Experiments

In this section the results of the experiments using the SPECpower data of a Sugon I840-G25

server are presented. This server has linear power consumption characteristics as presented on

Section 5.2.1.

Consumed Power

The Figure 5.4 shows the power consumption comparison using 100 Sugon servers with a linear

SPECpower model and PlanetLab workloads on the average case with VMs ranging from 16 to 128.

The highlighted blue area on Figure 5.4 represents the power savings comparing the Iterated-KSP

strategy (line with circles) with the Energy Unaware strategy (line with dots). The highlighted

green area represents the extra power savings from the Iterated-EC strategy (line with squares) in

relation to the Iterated-KSP strategy. The dashed line with circles shows the performance of the

Iterated-KSP-Mem. The lower the values, the better the strategy, hence the more power savings.

There are signi�cant power savings with the proposed placement strategies compared with the

Energy Unaware. The lower the overall cluster load (the less the VMs per physical host) the higher

the power savings and consequently the more physical suspended hosts. All the strategies except

for the Energy Unaware are able to consume less power due to the fact that they are able to place

4https://github.com/vonpupp/dissertation-2014-simulation, Last access on March 15, 2015

https://github.com/vonpupp/dissertation-2014-simulation

46 PERFORMANCE EVALUATION 5.3

Figure 5.4: Power consumption comparison using 100 Sugon servers with a linear SPECpower model and
PlanetLab workloads. Average case

more VMs per physical host. Power e�ciency resides in the fact that idle hosts are suspended which

leverages to an overall power consumption decrease.

In Table 5.10 shows the 95% con�dence interval comparison using 100 Sugon servers with a

linear SPECpower model and PlanetLab workloads on the average case with VMs ranging from 16

to 128 con�dence. The �rst column represents the number of VMs used for the experiment. Each

algorithm is represented by groups, the �rst group summarizes the Energy Unaware algorithm. In

this group is shown the consumed power by that algorithm (W), the standard deviation (SD), the

standard error (SE) and the con�dence interval (CI).

The second group summarizes the Iterated-KSP algorithm. In this group is only shown the

consumed power (W). The rest of the columns were not included since the algorithm is deterministic,

this means that for every repetition the algorithm returns the same placement, therefore the SD,

SE and CI are always zero.

In a similar way to the �rst group, the third group summarizes the Iterated-EC algorithm.

Finally the fourth group summarize the Iterated-KSP-Mem algorithm. Only the consumed power

(W) column was included due to the fact that the algorithm is also deterministic as Iterated-KSP.

5.3 EXPERIMENTS USING WORKLOADS FROM THE PLANETLAB PROJECT 47

Energy Unaware (W) Iterated-KSP (W) Iterated-EC (W) Iterated-KSP-Mem (W)

VMs W SD SE CI W W SD SE CI W

16 22,449.06 20.14 3.68 7.52 2,473.40 2,468.59 8.95 1.63 3.34 2,479.00

32 23,285.99 22.12 4.04 8.26 3,674.60 3,878.29 101.41 18.51 37.87 3,922.80

48 24,070.70 19.56 3.57 7.30 5,088.30 5,160.50 111.13 20.29 41.50 5,087.80

64 25,172.55 35.96 6.57 13.43 7,005.60 7,123.50 145.73 26.61 54.42 7,021.40

80 25,934.77 26.92 4.92 10.05 8,139.10 8,405.86 145.35 26.54 54.28 8,375.20

96 26,778.99 30.71 5.61 11.47 9,550.50 9,951.16 108.71 19.85 40.59 9,595.20

112 27,752.24 31.18 5.69 11.64 11,136.80 11,761.59 184.71 33.72 68.97 11,320.10

128 28,841.94 43.40 7.92 16.21 13,026.80 13,709.36 157.02 28.67 58.63 12,776.40

Table 5.10: Average power consumption and dispersion metrics comparison using 100 Sugon servers with
a linear SPECpower model and PlanetLab workloads. 30 repetitions

Used Hosts

The Table 5.11 shows used hosts comparison using 100 Sugon servers with a linear SPECpower

model and PlanetLab workloads on the average case with VMs ranging from 16 to 128. As it can

be observed the Iterated-KSP algorithm in general requires less hosts than the other algorithms.

The less hosts required to perform the allocation, the more power e�cient the algorithm is; which

leverages to a higher hardware utilization.

VMs Energy Unaware Iterated-KSP Iterated-EC Iterated-KSP-Mem

(Hosts) (Hosts) (Hosts) (Hosts)

16 4.50 4.00 4.00 4.00

32 8.07 6.00 6.80 7.00

48 11.90 9.00 9.37 9.00

64 17.00 13.00 13.70 13.00

80 19.77 15.00 16.33 16.00

96 23.73 18.00 19.70 18.00

112 28.17 21.00 23.80 22.00

128 33.83 25.00 28.03 24.00

Table 5.11: Used hosts comparison using 100 Sugon servers with a linear SPECpower model and PlanetLab
workloads. Average case

The Figure 5.5 shows the used hosts comparison using 100 Sugon servers with a linear SPECpower

model and PlanetLab workloads on the average case with VMs ranging from 16 to 128. The high-

lighted blue area represents the power savings comparing the Iterated-KSP algorithm (line with

circles) with the Energy Unaware algorithm (line with dots). The highlighted green area repre-

sents the extra power savings from the Iterated-EC algorithm (line with squares) in relation to the

Iterated-KSP algorithm.

We decided not to include the con�dence intervals of the used hosts since it is directly related to

the consumed power and therefore the con�dence intervals behavior is very similarly to the power

consumption related con�dence intervals.

48 PERFORMANCE EVALUATION 5.3

Figure 5.5: Used hosts comparison using 100 Sugon servers with a linear SPECpower model and PlanetLab
workloads. Average case

As it can be observed the di�erence of used hosts tend to increase with the increase of the number

of VMs. The Iterated-KSP algorithm uses 11.11% to 26.10% less hosts than the Energy Unaware

algorithm. As discussed before this is directly related to the power consumption. The Iterated-EC

algorithm uses 11.11% to 21.28% less hosts than the Energy Unaware algorithm, while the Iterated-

KSP-Mem algorithm uses 11.11% to 29.10%. The fact that the Iterated-KSP-Mem algorithm has

a broad range, which translates to less hosts used, is due to the nature of the VMs workloads.

VMs that consumes more RAM memory are more e�ciently placed using the Iterated-KSP-Mem

algorithm.

Idle Hosts

The Table 5.12 shows the idle hosts comparison using 100 Sugon servers with a linear SPECpower

model and PlanetLab workloads on the average case with VMs ranging from 16 to 128. As it can

be observed except for the Energy Unaware, the algorithms do not allow the hosts to be idle, this

means, not to have consumer workloads. All idle hosts are suspended to a lower state of power

consumption.

5.3 EXPERIMENTS USING WORKLOADS FROM THE PLANETLAB PROJECT 49

VMs Energy Unaware Iterated-KSP Iterated-EC Iterated-KSP-Mem

(Hosts) (Hosts) (Hosts) (Hosts)

16 95.50 0.00 0.00 0.00

32 91.93 0.00 0.00 0.00

48 88.10 0.00 0.00 0.00

64 83.00 0.00 0.00 0.00

80 80.23 0.00 0.00 0.00

96 76.27 0.00 0.00 0.00

112 71.83 0.00 0.00 0.00

128 66.17 0.00 0.00 0.00

Table 5.12: Idle hosts comparison using 100 Sugon servers with a linear SPECpower model and PlanetLab
workloads. Average case

The Figure 5.6 shows the idle hosts comparison using 100 Sugon servers with a linear SPECpower

model and PlanetLab workloads on the average case with VMs ranging from 16 to 128. Note

the considerable amount of hosts that are idle, which leads to a very ine�cient power utilization

placement.

Figure 5.6: Idle hosts comparison using 100 Sugon servers with a linear SPECpower model and PlanetLab
workloads. Average case

50 PERFORMANCE EVALUATION 5.3

Execution Time

The Table 5.13 shows the execution time comparison using 100 Sugon servers with a linear

SPECpower model and PlanetLab workloads on the average case with VMs ranging from 16 to 128.

VMs Energy Unaware Iterated-KSP Iterated-EC Iterated-KSP-Mem

(Hosts) (Hosts) (Hosts) (Hosts)

16 6.21 · 10−2 0.16 0.43 4.07 · 10−2

32 0.19 7.95 · 10−2 0.80 0.20

48 0.41 0.14 1.24 0.13

64 0.76 0.34 1.93 0.22

80 1.15 0.42 2.56 0.31

96 1.67 0.53 3.36 0.56

112 2.32 0.69 4.47 0.72

128 3.11 1.00 5.79 1.03

Table 5.13: Execution time comparison using 100 Sugon servers with a linear SPECpower model and
PlanetLab workloads. Average case

The Figure 5.7 shows the execution time of the algorithms. The Iterated-KSP and Iterated-

KSP-Mem are the fastest of the algorithms, this is due to the fact that the Simplex method has

been studied for a long time, furthermore, the implementation of the Simplex method use libraries

which are highly optimized for this type of calculations. The Energy Unaware algorithm is 52.29% to

268.60% slower than the Iterated-KSP-Mem. The Iterated-KSP algorithm is similar to the Iterated-

KSP-Mem in general.

The execution time of the Iterated-EC algorithm is notably higher than the others algorithms.

The Iterated-EC algorithm is 304.25% to 949.29% slower than the Iterated-KSP-Mem. This might

be due to the parameters used (number of generations and evaluations) which leads to a slower

convergence time of the algorithm. The execution time might be improved upon a trade-o� with the

quality of the solution, which would directly impact the power consumption. Among the experiments

performed these parameters were the ones who produced the best results. It is important to highlight

that evolutionary computation based algorithms are highly parallelizable by design, therefore it

would be possible to optimize execution times but this is out of the scope of this work.

Using non-linear Optimization with Linear SPECpower Models

Additionally it is possible to apply the algorithms using the non-linear heuristics. However,

on servers that have a linear SPECpower behavior, they tend to perform worst than the linear

optimization heuristics. To show this we are going to summarize only the power consumption

obtained results since all the other metrics are directly related to the power consumption.

The Table 5.14 shows the results of applying the Iterated-KSP algorithm comparing the linear

and non-linear heuristics using 100 Sugon servers with a linear SPECpower model and PlanetLab

workloads on the average case with VMs ranging from 16 to 128. The �rst column represents the

number of VMs used for the experiment. The second column represents the power consumed of

the data center with the linear heuristic. Since the SPECpower model used on this experiment

5.3 EXPERIMENTS USING WORKLOADS FROM THE PLANETLAB PROJECT 51

Figure 5.7: Execution time comparison using 100 Sugon servers with a linear SPECpower model and
PlanetLab workloads. Average case

is a linear model (as described on Section 5.2.1), our non-linear heuristic searches for the highest

ssj_ops/watt ratio, which in this case is a load of 100% on the third column; This highest value is

referred as the �rst optimum. The fourth column is the next higher best ssj_ops/watt ratio value,

in this case a load of 90%, or second optimum, and so forth with the other columns. All values are

expressed in Watts.

52 PERFORMANCE EVALUATION 5.3

VMs Linear 100% 90% 80% 70% 60% 50%

1stopt 2ndopt 3rdopt 4thopt 5thopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 2,473.40 2,473.40 2,448.50 2,710.90 2,702.90 2,937.50 3,398.20

32 3,674.60 3,674.60 3,906.00 4,165.20 4,386.90 4,627.80 5,304.60

48 5,088.30 5,088.30 5,046.40 5,556.70 5,778.50 6,250.90 7,156.70

64 7,005.60 7,005.60 6,960.20 7,478.30 7,937.00 8,404.60 9,763.10

80 8,139.10 8,139.10 8,077.20 8,852.40 9,316.40 10,022.40 11,608.80

96 9,550.50 9,550.50 9,753.20 10,073.00 10,766.90 11,710.10 13,055.70

112 11,136.80 11,136.80 11,338.30 11,889.30 12,803.50 13,753.10 15,550.60

128 13,026.80 13,026.80 13,192.60 14,017.40 14,920.70 16,101.80 18,828.20

Table 5.14: Iterated-KSP algorithm linear vs. non-linear heuristics comparison using 100 Sugon servers
with a linear SPECpower model and PlanetLab workloads

The Table 5.15 shows the di�erence in Watts based on the previous comparison (Table 5.14).

This table shows the di�erence of each column compared to the linear heuristic. Note that the

�rst optimum of the non-linear optimization behaves as the linear optimization, and therefore all

values are zeroes. This is due that in this linear SPECpower model the best ssj_ops/watt ratio is

always 100%. The other columns tend to consume more power and therefore the di�erence result

into negative values.

The reason why there are some positives values using 90% target load using 16, 48, 64 and 80

VMs is because this model is discretely linear, this means that it is linear on an interval even when

it might not be in general. This might cause some minor variations as observed. More details on

can be found on Section 5.2.1.

VMs Linear 100% 90% 80% 70% 60% 50%

1stopt 2ndopt 3rdopt 4thopt 5thopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 2,473.40 0.00 24.90 −237.50 −229.50 −464.10 −924.80
32 3,674.60 0.00 −231.40 −490.60 −712.30 −953.20 −1,630.00
48 5,088.30 0.00 41.90 −468.40 −690.20 −1,162.60 −2,068.40
64 7,005.60 0.00 45.40 −472.70 −931.40 −1,399.00 −2,757.50
80 8,139.10 0.00 61.90 −713.30 −1,177.30 −1,883.30 −3,469.70
96 9,550.50 0.00 −202.70 −522.50 −1,216.40 −2,159.60 −3,505.20

112 11,136.80 0.00 −201.50 −752.50 −1,666.70 −2,616.30 −4,413.80
128 13,026.80 0.00 −165.80 −990.60 −1,893.90 −3,075.00 −5,801.40

Table 5.15: Linear vs. non-linear heuristics di�erence using the Iterated-KSP algorithm comparison using
100 Sugon servers with a linear SPECpower model and PlanetLab workloads

Likewise, the Table 5.16 shows the results of applying the Iterated-EC algorithm comparing

the linear and non-linear heuristics using 100 Sugon servers with a linear SPECpower model and

5.3 EXPERIMENTS USING WORKLOADS FROM THE PLANETLAB PROJECT 53

PlanetLab workloads on the average case with VMs ranging from 16 to 128. In a similar way, the

�rst column represents the number of VMs used for the experiments. The second column represents

the linear heuristic. The third column shows a load of 100%, also referred to as the �rst optimum.

The fourth column is the next best ssj_ops/watt ratio value, in this case, a load of 90% of the load

and so forth with the other columns. All values are expressed in Watts.

VMs Linear 100% 90% 80% 70% 60% 50%

1stopt 2ndopt 3rdopt 4thopt 5thopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 2,468.59 2,467.71 2,460.89 2,701.16 2,742.83 2,992.00 3,202.17

32 3,878.29 3,886.09 3,906.37 4,086.25 4,349.83 4,673.39 5,207.59

48 5,160.50 5,181.83 5,191.31 5,396.31 5,772.11 6,277.42 6,982.65

64 7,123.50 7,114.16 7,126.82 7,422.28 7,852.24 8,453.10 9,452.76

80 8,405.86 8,465.77 8,471.75 8,749.01 9,304.13 10,039.20 11,163.70

96 9,951.16 9,953.95 10,009.93 10,319.12 10,909.23 11,791.26 13,095.94

112 11,761.59 11,791.73 11,883.30 12,230.27 12,884.48 13,960.06 15,616.57

128 13,709.36 13,674.12 13,953.76 14,406.83 15,309.00 16,544.62 18,262.87

Table 5.16: Linear vs. non-linear heuristics using the Iterated-EC algorithm comparison using 100 Sugon
servers with a linear SPECpower model and PlanetLab workloads

VMs Linear 100% 90% 80% 70% 60% 50%

1stopt 2ndopt 3rdopt 4thopt 5thopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 2,468.59 0.88 7.70 −232.57 −274.24 −523.41 −733.58
32 3,878.29 −7.80 −28.08 −207.96 −471.54 −795.10 −1,329.30
48 5,160.50 −21.33 −30.81 −235.81 −611.61 −1,116.92 −1,822.15
64 7,123.50 9.34 −3.33 −298.78 −728.75 −1,329.60 −2,329.26
80 8,405.86 −59.90 −65.89 −343.15 −898.26 −1,633.34 −2,757.84
96 9,951.16 −2.79 −58.76 −367.96 −958.06 −1,840.10 −3,144.78

112 11,761.59 −30.14 −121.71 −468.68 −1,122.89 −2,198.47 −3,854.98
128 13,709.36 35.24 −244.40 −697.47 −1,599.64 −2,835.26 −4,553.51

Table 5.17: Linear vs. non-linear heuristics di�erence using the Iterated-EC algorithm comparison using
100 Sugon servers with a linear SPECpower model and PlanetLab workloads

The Table 5.17 shows the di�erence in Watts based on the previous comparison (Table 5.16).

This table shows the di�erence of each column compared to the linear heuristic.

Note that the �rst optimum of the non-linear optimization behaves as the linear optimization.

This is due that in this linear SPECpower model the best ssj_ops/watt ratio is always 100%. The

other columns tend to consume more power and therefore the di�erence result into negative values.

In this case the �rst optimum of the non-linear optimization is similar to the linear optimization

54 PERFORMANCE EVALUATION 5.3

nevertheless they are not the same. This is due to the fact that the Iterated-EC algorithm relies on

an n-point crossover and therefore the solutions are not exactly the same on every repetition.

The reason why the 16VMs experiment has a positive values using 90% target load is because

this model is discretely linear. This means that it is linear on an interval even when it might not

be in general. This might cause some minor variations as observed. More details on can be found

on Section 5.2.1.

5.3.3 Non-Linear Model Experiments

As introduced before, it is possible to use non-linear heuristics to optimize the placement. This

section presents the results of the experiments using the SPECpower data of a Fujitsu PRIMERGY

RX1330 M1 server which has non-linear power consumption characteristics as introduced on Section

5.2.2.

In this subsection only the power consumption results are presented since all the other metrics

are directly related to the power consumption.

The Table 5.18 shows the results of applying the Iterated-KSP algorithm comparing the linear

and non-linear heuristics using 100 Fujitsu servers with a non-linear SPECpower model and Plan-

etLab workloads on the average case with VMs ranging from 16 to 128. The �rst column represents

the number of VMs used for the experiment. The second column represents the linear heuristic.

Since the SPECpower model used on this experiment is a non-linear model (as described on Section

5.2.2), the non-linear heuristic searches for the highest ssj_ops/watt ratio, which in this case is a

target load of 70%; we refer to this highest value as the �rst optimum, which is on the sixth column.

The next highest best ssj_ops/watt ratio value, in this case targeting 60%, or second optimum is

shown on the seventh column. The next highest best ssj_ops/watt ratio value, targeting 80% is

shown on the �fth column. The next highest best ssj_ops/watt ratio value, targeting 90% is shown

on the fourth column.

VMs Linear 100% 90% 80% 70% 60% 50%

5thopt 4thopt 3rdopt 1stopt 2ndopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 674.64 674.64 675.32 671.76 665.18 668.82 692.12

32 806.93 806.93 794.29 794.49 787.03 786.16 819.44

48 940.71 940.71 911.86 904.26 896.87 900.10 942.73

64 1,106.75 1,106.75 1,071.23 1,066.91 1,047.35 1,053.42 1,117.83

80 1,222.52 1,222.52 1,190.85 1,170.09 1,155.88 1,163.05 1,242.37

96 1,374.64 1,374.64 1,317.76 1,286.43 1,270.24 1,279.37 1,348.63

112 1,511.72 1,511.72 1,457.15 1,427.30 1,417.54 1,425.16 1,511.98

128 1,684.50 1,684.50 1,622.66 1,581.77 1,574.31 1,584.97 1,720.26

Table 5.18: Iterated-KSP algorithm linear vs. non-linear heuristics comparison using 100 Fujitsu servers
with a non-linear SPECpower model and PlanetLab workloads

The Table 5.19 shows the di�erence in Watts based on the previous comparison (Table 5.18).

This table shows the di�erence of each column compared to the linear heuristic. Note that the �fth

5.4 EXPERIMENTS USING WORKLOADS FROM GOOGLE 55

optimum of the non-linear optimization behaves as the linear optimization, and therefore all values

are zeroes (as shown on the third column). It is interesting to notice that positive values represents

power savings, therefore the column with the highest values is the best heuristic. In this case, the

best heuristic is the one targeting 70% load. The next best heuristic is the on targeting 60% load,

except for the 128 VMs scenario which is outperformed by the heuristic targeting 80% load. There

is an expected behavior on non-linear heuristics however there might be exceptions as this one. This

is because of the global optimum phenomena detailed on the Section 5.2.2.

VMs Linear 100% 90% 80% 70% 60% 50%

5thopt 4thopt 3rdopt 1stopt 2ndopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 674.64 0.00 −0.68 2.88 9.46 5.82 −17.48
32 806.93 0.00 12.64 12.44 19.90 20.77 −12.51
48 940.71 0.00 28.85 36.45 43.84 40.61 −2.02
64 1,106.75 0.00 35.52 39.84 59.40 53.33 −11.08
80 1,222.52 0.00 31.67 52.43 66.64 59.47 −19.85
96 1,374.64 0.00 56.88 88.21 104.40 95.27 26.01

112 1,511.72 0.00 54.57 84.42 94.18 86.56 −0.26
128 1,684.50 0.00 61.84 102.73 110.19 99.53 −35.76

Table 5.19: Linear vs. non-linear heuristics di�erence using the Iterated-KSP algorithm comparison using
100 Fujitsu servers with a non-linear SPECpower model and PlanetLab workloads

5.4 Experiments Using Workloads from Google

Google made publicly available some workloads from one of its computing clusters as part of

the Google Cluster Data project. These workloads represent 29 days of data from May 2011 on a

cluster of 11, 000 machines and they are divided in 500 parts, from 00000 to 00499. The workloads

are about 40GB of compressed text data in Comma Separated Value (CSV) format. The tasks are

executed during a variable units of time. Some tasks consume such a small amount of resources

that are not accounted as a whole unit of CPU, RAM, Disk I/O or Disk space Reiss et al. (2011)

while other tasks are really long, including tasks running for the whole period of time (29 days).

The workloads are composed by various jobs. Each job is created by an user, and it is comprised

of one or more tasks, including the requirements used for scheduling the tasks on physical machines.

There is no known distribution that �ts the data, nevertheless the resources appear to form a long-

tailed distribution Reiss et al. (2011).

In the simulations we considered a scenario of a Cloud IaaS using 130 hosts with VMs allocation

requests varying from 16 to 128 VMs with 16 increments. Two types of hosts were considered. One

type of server was the Sugon I840-G25 server which has linear power consumption characteristics

as presented on Section 5.2.1. The Section 5.4.2 is dedicated to discuss the results of the exper-

iments when all the hosts were simulated as being this server. The other type of server was the

Fujitsu PRIMERGY RX1330 M1 server which has non-linear power consumption characteristics as

presented on Section 5.2.2. The Section 5.4.3 is dedicated to discuss the results of the experiments

56 PERFORMANCE EVALUATION 5.4

when all the hosts were simulated as being this server.

Each simulation was repeated 30 times to check if there was a clear tendency, and later the data

was reduced to three cases: best, worst and average case (mean). The simulations were executed

using the same host where the PlanetLab experiment were executed.

5.4.1 Assumptions

Google does not provide data about their computing environment and the data itself is anonymized,

therefore it is not possible to know if the application is running on a VM, a container or even on the

real OS. Nevertheless after a public online discussion held with one of the researchers from Google,

a container based virtualization assumption can be made 5. Each job has a multitude of tasks, that

may or not run in the same machine. However, a task is a single Linux program, possibly consist-

ing of multiple processes, to be run on a single machine Reiss et al. (2011). So it is reasonable to

consider each task as a single VM instance or a container.

Another assumption is about machine resources. Each resource (including CPU, memory, disk

space and I/O time) is normalized, relative to the largest capacity of the resource on any machine

in the trace Reiss et al. (2011).

The whole workload including the 500 parts resulted in a database of almost 190GB with

24, 281, 242 unique tasks. Unfortunately the disk time measurement is only included in the �rst 14

days, because of a change in the monitoring system. Therefore only the �rst 50 parts, from 00000 to

00049 has been considered, to be able to have disk I/O time data. This is equivalent to 2, 713, 386

unique tasks. About 1% of the jobs in the trace have missing values (Not A Number, or NAN),

therefore these records have been excluded from the analysis. Another omission from the trace is

any information about network activity.

The traces used for the experiments had a CPU load average between 15% to 20%, to get only

tasks that had relevant CPU usage. This is equivalent to 2, 762 unique tasks. A selection of the

�rst 128 tasks has been made to represent the VMs for the simulations, to maintain consistency

with the prior experiments with PlanetLab traces. It worth noticing that according to Reiss et al.

(2012) there is no known distribution that seems to approximate properly the Google workloads.

This might be due to the unpredictability on consumer applications due to human behavior, and

the large quantity of heterogeneous data.

The characteristics of the CPU usage for the selected tasks are shown in Figure 5.8. The majority

of the tasks, approximately 74.22% of the selected tasks or about 2350 tasks, are between 15%-18%

range of average CPU usage. The rest of tasks, or approximately 25.78% of selected tasks, are above

18% of average CPU usage. Note that there is no known distribution that seems to approximate

properly, and the more tasks included, the more it behaves as a long-tail distribution.

The characteristics of the RAM memory usage for the selected tasks are shown in Figure 5.9.

The majority of the tasks, about 94.13% of the selected tasks or approximately 2600 tasks, are

in the 0%-20% range of average memory usage. The rest of the tasks, or approximately 5.87% or

about 162 tasks, are above 20%. These characteristics are similar to a long-tail distribution.

The characteristics of the disk I/O time for the selected tasks are shown in Figure 5.10. The

majority of the tasks, about 65.17% of the selected tasks or approximately 1800 tasks, are in the

0%-0.5% range of average disk time. The rest of the tasks, or approximately 34.84% or about 962

5https://groups.google.com/d/msg/googleclusterdata-discuss/ojH3KEx0Pe4/Rogl7sf6Lg0J

https://groups.google.com/d/msg/googleclusterdata-discuss/ojH3KEx0Pe4/Rogl7sf6Lg0J

5.4 EXPERIMENTS USING WORKLOADS FROM GOOGLE 57

(a) Bar plot of cpu-usage (b) Plot of cpu-usage

(c) Histogram of cpu-usage (d) Density of cpu-usage

Figure 5.8: Statistical plots of cpu-usage

tasks, are above 0.5%. These characteristics are similar to a long-tail distribution. Note that it

seems to exist another group of tasks that consumes more disk-time, around 0.15%, perhaps these

are I/O intensive tasks, nevertheless the I/O time is in general always less than 0.20%.

The characteristics of the disk usage for the selected tasks are shown in Figure 5.11. The majority

of the tasks, about 85.80% of the selected tasks or approximately 2370 tasks, are in the 0%-0.05%

range of average disk usage. The rest of the tasks, or approximately 14.20% or about 392 tasks, are

above 0.05%. These characteristics are similar to a long-tail distribution.

58 PERFORMANCE EVALUATION 5.4

(a) Bar plot of mem-usage (b) Plot of mem-usage

(c) Histogram of mem-usage (d) Density of mem-usage

Figure 5.9: Statistical plots of mem-usage

5.4.2 Linear Model Experiments

In this section the results of the experiments using the SPECpower data of a Sugon I840-

G25 server are discussed. This server has linear power consumption characteristics as presented on

Section 5.2.1. The power consumption comparisons will be the only results discussed in this section.

The rest of the metrics will not be included due to the similarity with the Section 5.3.2.

Consumed Power

The Figure 5.12 shows the power consumption comparison using 130 Sugon servers with a linear

SPECpower model and Google workloads on the average case with VMs ranging from 16 to 128.

5.4 EXPERIMENTS USING WORKLOADS FROM GOOGLE 59

(a) Bar plot of disk-time (b) Plot of disk-time

(c) Histogram of disk-time (d) Density of disk-time

Figure 5.10: Statistical plots of disk-time

The highlighted blue area on Figure 5.12 represents the power savings comparing the Iterated-KSP

strategy (line with circles) with the Energy Unaware strategy (line with dots). The highlighted

green area represents the extra power savings from the Iterated-EC strategy (line with squares) in

relation to the Iterated-KSP strategy. The dashed line with circles shows the performance of the

Iterated-KSP-Mem. The lower the values, the better the strategy, hence the more power savings.

60 PERFORMANCE EVALUATION 5.4

(a) Bar plot of disk-usage (b) Plot of disk-usage

(c) Histogram of disk-usage (d) Density of disk-usage

Figure 5.11: Statistical plots of disk-usage

VMs Energy Unaware Iterated-KSP Iterated-EC Iterated-KSP-Mem

(W) (W) (W) (W)

16 29,210.57 3,214.54 3,210.32 3,214.54

32 30,811.95 5,853.38 5,870.51 5,853.38

48 32,428.60 8,725.52 8,718.53 8,725.52

64 34,032.80 11,374.40 11,361.22 11,374.40

80 35,630.50 14,010.70 14,018.38 14,010.70

96 37,237.02 16,866.58 16,860.19 16,866.58

112 38,853.96 19,536.25 19,516.15 19,536.25

128 40,488.08 22,210.13 22,284.08 22,210.13

Table 5.20: Power consumption comparison using 130 Sugon servers with a linear SPECpower model and
Google workloads. Average case

5.4 EXPERIMENTS USING WORKLOADS FROM GOOGLE 61

Figure 5.12: Power consumption comparison using 130 Sugon servers with a linear SPECpower model and
Google workloads. Average case

As it can be seen there are signi�cant power savings with the proposed placement strategies

compared with the Energy Unaware. The lower the overall cluster load (the less the VMs per

physical host) the higher the power savings and consequently the more physical suspended hosts.

All the strategies except for the Energy Unaware are able to consume less power due to the fact

that they are able to place more VMs per physical host. Power e�ciency resides in the fact that

idle hosts are suspended which leverages to an overall power consumption decrease.

The Table 5.21 shows the 95% con�dence interval comparison using 130 Sugon servers with a

linear SPECpower model and Google workloads on the average case with VMs ranging from 16

to 128 con�dence. The �rst column represents the number of VMs used for the experiment. Each

algorithm is represented by groups, the �rst group summarizes the Energy Unaware algorithm. In

this group is shown the consumed power by that algorithm (W), the standard deviation (SD), the

standard error (SE) and the con�dence interval (CI).

The second group summarizes the Iterated-KSP algorithm. In this group is only shown the

consumed power (W). The rest of the columns were not included since the algorithm is deterministic,

this means that for every repetition the algorithm returns the same placement, therefore SD, SE

and CI are always zero.

In a similar way to the �rst group, the third group summarizes the Iterated-EC algorithm.

Finally the fourth group summarize the Iterated-KSP-Mem algorithm. Only the consumed power

(W) column has been included due to the fact that the algorithm is also deterministic as Iterated-

62 PERFORMANCE EVALUATION 5.4

KSP.

Energy Unaware (W) Iterated-KSP (W) Iterated-EC (W) Iterated-KSP-Mem (W)

VMs W SD SE CI W W SD SE CI W

16 29,210.57 8.06 1.47 3.01 3,214.54 3,210.32 7.19 1.31 2.68 3,214.54

32 30,811.95 8.76 1.60 3.27 5,853.38 5,870.51 68.57 12.52 25.60 5,853.38

48 32,428.60 5.85 1.07 2.18 8,725.52 8,718.53 4.12 0.75 1.54 8,725.52

64 34,032.80 7.96 1.45 2.97 11,374.40 11,361.22 6.28 1.15 2.35 11,374.40

80 35,630.50 11.35 2.07 4.24 14,010.70 14,018.38 69.16 12.63 25.82 14,010.70

96 37,237.02 7.57 1.38 2.83 16,866.58 16,860.19 43.54 7.95 16.26 16,866.58

112 38,853.96 10.55 1.93 3.94 19,536.25 19,516.15 39.40 7.19 14.71 19,536.25

128 40,488.08 12.54 2.29 4.68 22,210.13 22,284.08 114.19 20.85 42.64 22,210.13

Table 5.21: Average power consumption and dispersion metrics comparison using 130 Sugon servers with
a linear SPECpower model and Google workloads. 30 repetitions

5.4.3 Non-Linear Model Experiments

As introduced before, it is possible to use non-linear heuristics to optimize the placement. This

section presents the results of the experiments using the SPECpower data of a Fujitsu PRIMERGY

RX1330 M1 server which has non-linear power consumption characteristics as introduced on Section

5.2.2.

In non-linear scenarios, the non-linear heuristics tend to perform better than the linear opti-

mization heuristics. To show this only the power consumption �gures are summarized since all the

other metrics are directly related to the power consumption.

The Table 5.22 shows the results of applying the Iterated-KSP algorithm comparing the linear

and non-linear heuristics using 130 Sugon servers with a linear SPECpower model and Google

workloads on the average case with VMs ranging from 16 to 128. The �rst column represents the

number of VMs used for the experiment. The second column represents the linear heuristic. Since

the SPECpower model used on this experiment is a non-linear model (as described on Section 5.2.2),

the non-linear heuristic searches for the highest ssj_ops/watt ratio, which in this case is a target

load of 70%; we refer to this highest value as the �rst optimum, which is on the sixth column. The

next highest best ssj_ops/watt ratio value, in this case targeting 60%, or second optimum is shown

on the seventh column. The next highest best ssj_ops/watt ratio value, targeting 80% is shown on

the �fth column. The next highest best ssj_ops/watt ratio value, targeting 90% is shown on the

fourth column.

Note that on this speci�c SPECpower model the next ssj_ops/watt ratio value, targets 100%,

which is equivalent to apply the linear optimization heuristics, which maximizes the number of VMs

per hosts and minimizes the number of hosts used. This value is shown on the third column. The

next highest best ssj_ops/watt ratio value, targeting 50% is shown on the eight column. All values

are expressed in Watts.

5.4 EXPERIMENTS USING WORKLOADS FROM GOOGLE 63

VMs Linear 100% 90% 80% 70% 60% 50%

5thopt 4thopt 3rdopt 1stopt 2ndopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 890.97 890.97 881.51 869.04 867.85 874.82 948.21

32 1,138.49 1,138.49 1,134.16 1,099.52 1,105.37 1,105.37 1,280.00

48 1,391.22 1,391.22 1,375.30 1,329.53 1,334.59 1,334.59 1,611.34

64 1,633.39 1,633.39 1,624.71 1,560.80 1,566.08 1,566.86 1,943.39

80 1,880.26 1,880.26 1,876.40 1,790.06 1,796.69 1,796.69 2,274.37

96 2,127.50 2,127.50 2,111.83 2,017.87 2,021.56 2,021.56 2,603.89

112 2,376.44 2,376.44 2,367.78 2,254.51 2,258.21 2,258.21 2,938.46

128 2,637.31 2,637.31 2,633.71 2,496.34 2,499.98 2,499.98 3,275.50

Table 5.22: Iterated-KSP algorithm linear vs. non-linear heuristics comparison using 130 Fujitsu servers
with a non-linear SPECpower model and PlanetLab workloads

The Table 5.23 shows the di�erence in Watts based on the previous comparison (Table 5.22).

This table shows the di�erence of each column compared to the linear heuristic. Note that the �fth

optimum of the non-linear optimization behaves as the linear optimization, and therefore all values

are zeroes (as shown on the third column). It is interesting to notice that positive values represents

power savings, therefore the column with the highest values is the best heuristic. In this case, the

best heuristic is the one targeting 80% load. The next best heuristic is the one targeting 70% load.

VMs Linear 100% 90% 80% 70% 60% 50%

5thopt 4thopt 3rdopt 1stopt 2ndopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 890.97 0.00 9.46 21.93 23.13 16.16 −57.24
32 1,138.49 0.00 4.33 38.96 33.11 33.11 −141.51
48 1,391.22 0.00 15.92 61.69 56.63 56.63 −220.12
64 1,633.39 0.00 8.69 72.59 67.32 66.53 −310.00
80 1,880.26 0.00 3.86 90.20 83.57 83.57 −394.11
96 2,127.50 0.00 15.68 109.64 105.95 105.95 −476.38
112 2,376.44 0.00 8.66 121.93 118.23 118.23 −562.02
128 2,637.31 0.00 3.59 140.96 137.33 137.33 −638.20

Table 5.23: Linear vs. non-linear heuristics di�erence using the Iterated-KSP algorithm comparison using
130 Fujitsu servers with a non-linear SPECpower model and PlanetLab workloads

The Table 5.24 shows the results of applying the Iterated-EC algorithm comparing the linear

and non-linear heuristics using 130 Sugon servers with a linear SPECpower model and Google

workloads on the average case with VMs ranging from 16 to 128. The �rst column represents the

number of VMs used for the experiment. The second column represents the linear heuristic. Since

the SPECpower model used on this experiment is a non-linear model (as described on Section 5.2.2),

the non-linear heuristic searches for the highest ssj_ops/watt ratio, which in this case is a target

64 PERFORMANCE EVALUATION 5.4

load of 70%; we refer to this highest value as the �rst optimum, which is on the sixth column. The

next highest best ssj_ops/watt ratio value, in this case targeting 60%, or second optimum is shown

on the seventh column. The next highest best ssj_ops/watt ratio value, targeting 80% is shown on

the �fth column. The next highest best ssj_ops/watt ratio value, targeting 90% is shown on the

fourth column.

Note that on this speci�c SPECpower model the next ssj_ops/watt ratio value, targets 100%,

which is equivalent to apply the linear optimization heuristics, which maximizes the number of VMs

per hosts and minimizes the number of hosts used. This value is shown on the third column. The

next highest best ssj_ops/watt ratio value, targeting 50% is shown on the eight column. All values

are expressed in Watts.

VMs Linear 100% 90% 80% 70% 60% 50%

5thopt 4thopt 3rdopt 1stopt 2ndopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 888.47 888.10 881.87 869.84 868.72 874.20 948.21

32 1,138.73 1,137.80 1,134.07 1,101.94 1,102.07 1,107.28 1,279.77

48 1,390.87 1,390.66 1,373.61 1,332.97 1,332.79 1,338.57 1,611.07

64 1,631.14 1,631.20 1,624.78 1,565.54 1,565.24 1,571.12 1,943.51

80 1,879.41 1,879.41 1,870.06 1,797.90 1,798.09 1,801.64 2,274.95

96 2,124.67 2,125.30 2,109.46 2,029.43 2,028.66 2,032.93 2,604.02

112 2,373.59 2,372.84 2,366.22 2,265.30 2,264.83 2,267.95 2,940.74

128 2,634.69 2,633.48 2,623.24 2,506.05 2,507.09 2,507.94 3,276.05

Table 5.24: Iterated-EC algorithm linear vs. non-linear heuristics comparison using 130 Fujitsu servers
with a non-linear SPECpower model and PlanetLab workloads

The Table 5.25 shows the di�erence in Watts based on the previous comparison (Table 5.24).

This table shows the di�erence of each column compared to the linear heuristic. Note that the �fth

optimum of the non-linear optimization behaves as the linear optimization. In this case the values

are not always zeroes as in the Iterated-KSP, nevertheless they are near to zero in most of the cases

(as shown on the third column). It is interesting to notice that positive values represents power

savings, therefore the column with the highest values is the best heuristic. In this case, the best

heuristic is between 70% and 80% load depending on the quantity of VMs. This might be due to

the evaluation function used that directly relates to the convergence of the heuristics.

5.4 EXPERIMENTS USING WORKLOADS FROM GOOGLE 65

VMs Linear 100% 90% 80% 70% 60% 50%

5thopt 4thopt 3rdopt 1stopt 2ndopt 6thopt

(W) (W) (W) (W) (W) (W) (W)

16 888.47 0.37 6.60 18.63 19.75 14.27 −59.74
32 1,138.73 0.92 4.66 36.79 36.66 31.45 −141.04
48 1,390.87 0.21 17.26 57.90 58.08 52.30 −220.20
64 1,631.14 −6.31 · 10−2 6.37 65.60 65.90 60.02 −312.37
80 1,879.41 −9.87 · 10−4 9.35 81.52 81.32 77.77 −395.54
96 2,124.67 −0.63 15.21 95.24 96.01 91.74 −479.35
112 2,373.59 0.75 7.37 108.29 108.76 105.64 −567.15
128 2,634.69 1.21 11.46 128.65 127.60 126.75 −641.36

Table 5.25: Linear vs. non-linear heuristics di�erence using the Iterated-EC algorithm comparison using
130 Fujitsu servers with a non-linear SPECpower model and PlanetLab workloads

66 PERFORMANCE EVALUATION 5.4

Chapter 6

Conclusions

Cloud computing made utility computing common nowadays. With such a vital resource it is

reasonable to think that data centers will continue to proliferate in the future and accumulate a

large fraction of the world's computing resources. For this reason, energy-e�cient management of

data center resources is an important problem for environmental (CO2 emissions) and �nancial

reasons.

This work has proposed three algorithms for implementing VMs consolidation. The proposed

algorithms improve utilization while reducing the power consumption. A forecast made by

Navigant Research indicates that research as the presented could facilitate the reduction of data

center power expenditures from $23.3 billion in 2010 to $16.0 billion in 2020, as well as a 28% reduc-

tion in greenhouse gas emissions from the 2010 levels by adopting the Cloud computing paradigm

for IT services delivery. Moreover, during the United Nations Climate Summit, the European Union

announced their ambitious plans to reduce emissions as 40% by 2030, by being target of a broader

objective of cutting emissions by 80-95% by 2050 U.N. Climate Summit 2014 .

To address the formulated research topics, this work has achieved each of the objectives pre-

sented in Chapter 1. In particular, in Chapter 2 a review of the concepts used on this work has

been made. An overview on server virtualization, Cloud Computing, Service Level Agreement,

an introduction to energy-e�ciency on computing systems as well as the power models from the

SPECpower were introduced. Finally an in-depth review of the optimization techniques used on

this work was presented. Chapter 3 presented a review of the current state of the art on VMs

consolidation techniques addressing power-e�cient VMs placements.

Chapter 4 has proposed several approaches to consolidate VMs to achieve a power-e�cient

placement. The �rst is based on the knapsack problem, the second is based on a Evolutionary Com-

putation approach, while the third considers doubling the virtual memory. Later those algorithm

were modi�ed to consider the use of virtual memory and also heuristics for linear and non-linear

power models were proposed. An in-depth analysis of the proposed algorithms has been presented in

Chapter 5. The experiments have been performed with two di�erent traces, �rst using the PlanetLab

project traces and later using the Google Cluster Data project traces.

Apart from the theoretical exploration, the presented work resulted in an open source implemen-

tation of pyCloudSim, a software framework for simulation of VMs consolidation in IaaS Clouds.

67

68 CONCLUSIONS 6.2

6.1 Future Research Directions

There are other methods that are likely candidates to solve the problem of VMs placement

that would be interesting to explore, among them: Particle Swarm Optimization, Ant Colonies

Optimization, Simulated Annealing, Tabu Search or Multi-commodity �ow.

A speci�c approach has been proposed for the generation and evaluation functions on the

Iterated-EC algorithm. There might be other alternatives that could even outperform the pro-

posed ones. Also it would be possible to �ne tune the parameters of the Iterated-EC algorithm to

optimize the consumed time on computations. Another proposal is to run in parallel the algorithms,

especially the Iterated-EC algorithm, due to the parallel nature of genetic algorithms.

Regarding the simulation framework, multi-threading improvements can be done to the simula-

tor so simulations can be delegated to di�erent cores. It is important to only delegate full simulation

scenarios which are thread-save.

It worth researching about making decisions on the distribution of resources among the physical

hosts based on policies, for example, it would be possible to have a physical servers pool for CPU

intensive VMs, another one for I/O intensive, etc. Another approach would be the opposite, try to

distribute equally the resources fairly across the physical hosts to optimize their use.

Even when pyCloudSim supports to specify a SPECpower model for each server individually,

the experiments were performed with the same SPECpower model for all the servers, either linear or

non-linear heuristics depending on the case. It would be possible possible to adapt the algorithms

to consider heterogeneous data centers. Furthermore, it might be possible to create an adaptive

non-linear heuristic to try to determine a global power e�cient optimum placement.

Including dynamic behavior into the VMs and take Service Level Agreements into account it is

an important feature in e�ciently allocation VMs. It would be possible to even divide the processing

of the solution to the servers of the cloud themselves. Likewise it would be possible to forecast and

estimate economic savings during a period of time.

6.2 Final Remarks

Cloud computing has dramatically changed the landscape of application hosting in science,

business, social networking as many other areas. Energy-e�cient management of the resources

within the Cloud infrastructure will enable Cloud providers to o�er a scalable service while lowering

the power requirements and CO2 emissions. Research such as presented on this work could help

with innovation in Cloud computing while help to preserve the environment.

Bibliography

Al Shayeji e Samrajesh (2012) M.H. Al Shayeji e M.D. Samrajesh. An energy-aware virtual
machine migration algorithm. Em 2012 International Conference on Advances in Computing and
Communications (ICACC), páginas 242�246. doi: 10.1109/ICACC.2012.55. Cited on page 24

AMD-V () AMD-V. AMD-V, 2015. URL http://www.amd.com/en-us/solutions/servers/
virtualization. Accessed: 2015-01-18. Cited on page 5, 6

Barroso e Holzle (2007) L.A. Barroso e U. Holzle. The case for energy-proportional computing.
Computer, 40(12):33�37. ISSN 0018-9162. doi: 10.1109/MC.2007.443. bibtex: 4404806. Cited on

page 10, 45

Bazaraa et al. (2009)Mokhtar S. Bazaraa, John J. Jarvis e Hanif D. Sherali. Linear Programming
and Network Flows. Wiley, Hoboken, N.J, 4 edition ed. ISBN 9780470462720. Cited on page 14, 16

Beloglazov e Buyya (2013) A. Beloglazov e R. Buyya. Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE
Transactions on Parallel and Distributed Systems, 24(7):1366�1379. ISSN 1045-9219. doi: 10.
1109/TPDS.2012.240. Cited on page 2, 22

Beloglazov e Buyya (2012a) Anton Beloglazov e Rajkumar Buyya. OpenStack meat: A
framework for dynamic consolidation of virtual machines in OpenStack clouds�a blueprint.
Relatório técnico, Technical Report CLOUDS-TR-2012-4, Cloud Computing and Distributed
Systems Laboratory, The University of Melbourne. URL http://www.cloudbus.org/reports/
OpenStack-neat-Blueprint-Aug2012.pdf. Accessed: 2013-11-13. Cited on page 13

Beloglazov e Buyya (2012b) Anton Beloglazov e Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance e�cient dynamic consolidation of
virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience,
24(13):1397�1420. ISSN 1532-0634. doi: 10.1002/cpe.1867. URL http://onlinelibrary.wiley.com/
doi/10.1002/cpe.1867/abstract. Cited on page 2, 21

Beloglazov et al. (2010) Anton Beloglazov, Rajkumar Buyya, Young Choon Lee e Albert
Zomaya. A taxonomy and survey of energy-e�cient data centers and cloud computing
systems. arXiv e-print 1007.0066. URL http://arxiv.org/abs/1007.0066. bibtex: Bel-
oglazov_ATaxonomyandSurveyofEnergyE�cientDataCentersandCloudComputingSystems_2010.
Cited on page 1, 5, 6, 9, 10

BLAS (Basic Linear Algebra Subprograms) () BLAS (Basic Linear Algebra Subprograms).
BLAS (Basic Linear Algebra Subprograms), 2015. URL http://www.netlib.org/blas/. Accessed:
2015-03-16. Cited on page 34

Brian et al. (2008) HAYES Brian, Thomas Brunschwiler, Heinz Dill, Hanspeter Christ,
Babak Falsa�, Markus Fischer, Stella Gatziu Grivas, Claudio Giovanoli, Roger Eric
Gisi e Reto Gutmann. Cloud computing. Communications of the ACM, 51(7):9�11.
URL https://www.satw.ethz.ch/organisation/tpf/tpf_ict/box_feeder/2012-11-06_2_SATW_
White_Paper_Cloud_Computing_EN.pdf. Cited on page 8

69

http://www.amd.com/en-us/solutions/servers/virtualization
http://www.amd.com/en-us/solutions/servers/virtualization
http://www.cloudbus.org/reports/OpenStack-neat-Blueprint-Aug2012.pdf
http://www.cloudbus.org/reports/OpenStack-neat-Blueprint-Aug2012.pdf
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1867/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1867/abstract
http://arxiv.org/abs/1007.0066
http://www.netlib.org/blas/
https://www.satw.ethz.ch/organisation/tpf/tpf_ict/box_feeder/2012-11-06_2_SATW_White_Paper_Cloud_Computing_EN.pdf
https://www.satw.ethz.ch/organisation/tpf/tpf_ict/box_feeder/2012-11-06_2_SATW_White_Paper_Cloud_Computing_EN.pdf

70 BIBLIOGRAPHY 6.2

Calheiros et al. (2011) Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F.
De Rose e Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software: Practice and
Experience, 41(1):23�50. ISSN 1097-024X. doi: 10.1002/spe.995. URL http://onlinelibrary.wiley.
com/doi/10.1002/spe.995/abstract. Cited on page 24

Chen et al. (2011) Ming Chen, Hui Zhang, Ya-Yunn Su, Xiaorui Wang, Guofei Jiang e K. Yoshi-
hira. E�ective VM sizing in virtualized data centers. Em 2011 IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM), páginas 594�601. doi: 10.1109/INM.2011.5990564.
bibtex: 5990564. Cited on page 2

CloudAnalyst () CloudAnalyst. CloudAnalyst, 2014. URL http://cloudbus.org/students/
MEDC_Project_Report_Bhathiya_318282.pdf. Accessed: 2014-01-17. Cited on page 24

CoMon - A Monitoring Infrastructure for Planetlab () CoMon - A Monitoring Infrastructure
for Planetlab. CoMon - A Monitoring Infrastructure for Planetlab, 2015. URL http://comon.cs.
princeton.edu/. Accessed: 2015-03-15. Cited on page 35

Creasy (1981) R.J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of
Research and Development, 25(5):483�490. ISSN 0018-8646. doi: 10.1147/rd.255.0483. Cited on

page 5

De La Fuente Vigliotti e Batista (2014) Albert De La Fuente Vigliotti e Daniel M. Batista. A
green Network-Aware VMs placement mechanism. Em Globecom 2014 - Symposium on Selected
Areas in Communications: GC14 SAC Green Communication Systems and Networks (GC14 SAC
Green Communication Systems and Networks), Austin, USA. Cited on page 3

Dhiman et al. (2010) G. Dhiman, K. Mihic e T. Rosing. A system for online power prediction
in virtualized environments using gaussian mixture models. Em 2010 47th ACM/IEEE Design
Automation Conference (DAC), páginas 807�812. bibtex: 5523620. Cited on page 2, 27

Fan et al. (2007) Xiaobo Fan, Wolf-Dietrich Weber e Luiz Andre Barroso. Power provisioning
for a warehouse-sized computer. Em Proceedings of the 34th annual international symposium
on Computer architecture, ISCA '07, páginas 13�23, New York, NY, USA. ACM. ISBN 978-1-
59593-706-3. doi: 10.1145/1250662.1250665. URL http://doi.acm.org/10.1145/1250662.1250665.
bibtex: Fan:2007:PPW:1250662.1250665. Cited on page 10, 12, 22, 27, 35

Fang et al. (2013) Weiwei Fang, Xiangmin Liang, Shengxin Li, Luca Chiaraviglio e Naixue
Xiong. VMPlanner: Optimizing virtual machine placement and tra�c �ow routing to reduce
network power costs in cloud data centers. Computer Networks, 57(1):179�196. ISSN 1389-
1286. doi: 10.1016/j.comnet.2012.09.008. URL http://www.sciencedirect.com/science/article/
pii/S1389128612003301. Cited on page 22

Feller et al. (2011) Eugen Feller, Louis Rilling e Christine Morin. Energy-aware ant colony
based workload placement in clouds. Em Proceedings of the 2011 IEEE/ACM 12th Inter-
national Conference on Grid Computing, GRID '11, páginas 26�33, Washington, DC, USA.
IEEE Computer Society. ISBN 978-0-7695-4572-1. doi: 10.1109/Grid.2011.13. URL http:
//dx.doi.org/10.1109/Grid.2011.13. bibtex: Feller:2011:EAC:2082076.2082086. Cited on page 23

Feng (2014) Wu-chun Feng. The Green Computing Book: Tackling Energy E�ciency at Large
Scale. CRC Press. ISBN 9781439819876. Cited on page 9

Fettweis e Zimmermann (2008) Gerhard Fettweis e Ernesto Zimmermann. ICT energy
consumption-trends and challenges. Em Proceedings of the 11th International Symposium on
Wireless Personal Multimedia Communications, volume 2, página 6. URL https://mns.ifn.et.
tu-dresden.de/Lists/nPublications/Attachments/559/Fettweis_G_WPMC_08.pdf. Cited on page

1

http://onlinelibrary.wiley.com/doi/10.1002/spe.995/abstract
http://onlinelibrary.wiley.com/doi/10.1002/spe.995/abstract
http://cloudbus.org/students/MEDC_Project_Report_Bhathiya_318282.pdf
http://cloudbus.org/students/MEDC_Project_Report_Bhathiya_318282.pdf
http://comon.cs.princeton.edu/
http://comon.cs.princeton.edu/
http://doi.acm.org/10.1145/1250662.1250665
http://www.sciencedirect.com/science/article/pii/S1389128612003301
http://www.sciencedirect.com/science/article/pii/S1389128612003301
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1109/Grid.2011.13
https://mns.ifn.et.tu-dresden.de/Lists/nPublications/Attachments/559/Fettweis_G_WPMC_08.pdf
https://mns.ifn.et.tu-dresden.de/Lists/nPublications/Attachments/559/Fettweis_G_WPMC_08.pdf

6.2 BIBLIOGRAPHY 71

Fraser (1960) Alex S Fraser. Simulation of genetic systems by automatic digital computers vi.
epistasis. Australian Journal of Biological Sciences, 13(2):150�162. Cited on page 17

FuncDesigner () FuncDesigner. FuncDesigner, 2015. URL http://openopt.org/FuncDesigner.
Accessed: 2015-03-16. Cited on page 33

Garey e Johnson (1978) M. R. Garey e D. S. Johnson. � strong � NP-completeness results:
Motivation, examples, and implications. J. ACM, 25(3):499�508. ISSN 0004-5411. doi: 10.1145/
322077.322090. URL http://doi.acm.org/10.1145/322077.322090. Cited on page 16

Garrett (2013) Aaron Garrett. Inspyred inspired intelligence initiative, 2013. URL http:
//inspyred.github.com. Accessed: 2013-11-13. Cited on page 29, 33

Gartner, Inc. () Gartner, Inc. Gartner estimates ICT industry accounts for 2 percent of global
CO2 emissions, 2007. URL http://www.gartner.com/it/page.jsp?id=503867. Accessed: 2014-06-
13. Cited on page 9

Goldberg (1989) David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, Reading, Mass, 1 edition ed. ISBN 9780201157673. Cited
on page 17

Google Cluster Data Traces () Google Cluster Data Traces. Google Cluster Data Traces, 2015.
URL http://code.google.com/p/googleclusterdata/. Accessed: 2015-03-15. Cited on page 34, 36

GreenCloud () GreenCloud. GreenCloud, 2014. URL http://greencloud.gforge.uni.lu/. Accessed:
2014-01-17. Cited on page 24

GridSim () GridSim. GridSim, 2015. URL http://sourceforge.net/projects/gridsim. Accessed:
2014-01-22. Cited on page 2

Holland (1975) John H Holland. Adaptation in natural and arti�cial systems: An introductory
analysis with applications to biology, control, and arti�cial intelligence. U Michigan Press. Cited

on page 17

Huppler et al. (2012) Karl Huppler, Klaus-Dieter Lange e John Beckett. SPEC: Enabling e�-
ciency measurement. Em Proceedings of the 3rd ACM/SPEC International Conference on Per-
formance Engineering, ICPE '12, páginas 257�258, New York, NY, USA. ACM. ISBN 978-1-
4503-1202-8. doi: 10.1145/2188286.2188331. URL http://doi.acm.org/10.1145/2188286.2188331.
bibtex: Huppler2012. Cited on page 11

IBM Announces Universal Management - Wake on LAN () IBM Announces Universal
Management - Wake on LAN. IBM Announces Universal Management - Wake on LAN, 1998.
URL https://www-03.ibm.com/press/us/en/pressrelease/2705.wss. Accessed: 2015-01-19. Cited on

page 13

iCanCloud () iCanCloud. iCanCloud, 2014. URL http://www.arcos.inf.uc3m.es/~icancloud/
Home.html. Accessed: 2014-01-17. Cited on page 24

Intel-VT () Intel-VT. Intel-VT, 2015. URL http://www.intel.com/content/www/us/en/
virtualization/virtualization-technology/intel-virtualization-technology.html. Accessed: 2015-01-
18. Cited on page 5, 6

Jackson e Lameter (2013) Paul Jackson e Christoph Lameter. CGROUPS kernel website, 2013.
URL https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt. Accessed: 2013-08-08.
Cited on page 6

http://openopt.org/FuncDesigner
http://doi.acm.org/10.1145/322077.322090
http://inspyred.github.com
http://inspyred.github.com
http://www.gartner.com/it/page.jsp?id=503867
http://code.google.com/p/googleclusterdata/
http://greencloud.gforge.uni.lu/
http://sourceforge.net/projects/gridsim
http://doi.acm.org/10.1145/2188286.2188331
https://www-03.ibm.com/press/us/en/pressrelease/2705.wss
http://www.arcos.inf.uc3m.es/~icancloud/Home.html
http://www.arcos.inf.uc3m.es/~icancloud/Home.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

72 BIBLIOGRAPHY 6.2

Jaiantilal et al. (2010) Abhishek Jaiantilal, Yifei Jiang e Shivakant Mishra. Modeling CPU
energy consumption for energy e�cient scheduling. Em Proceedings of the 1st Workshop on
Green Computing, GCM '10, páginas 10�15, New York, NY, USA. ACM. ISBN 978-1-4503-0450-
4. doi: 10.1145/1925013.1925015. URL http://doi.acm.org/10.1145/1925013.1925015. Cited on page

11

Jong e Jong (2002) Kenneth A. de De Jong e Kenneth A. De Jong. Evolutionary Computation.
A Bradford Book, Cambridge, Mass, 1st edition ed. ISBN 9780262041942. Cited on page 33

Jung et al. (2010) Gueyoung Jung, M.A Hiltunen, K.R. Joshi, R.D. Schlichting e C. Pu. Mistral:
Dynamically managing power, performance, and adaptation cost in cloud infrastructures. Em
2010 IEEE 30th International Conference on Distributed Computing Systems (ICDCS), páginas
62�73. doi: 10.1109/ICDCS.2010.88. Cited on page 13

Kernel Based Virtual Machine ()Kernel Based Virtual Machine. KVM (for kernel-based virtual
machine) - main page, 2013. URL http://www.linux-kvm.org/page/Main_Page. Accessed: 2013-
09-04. Cited on page 5, 6

Koomey (2011) Jonathan Koomey. Growth in data center electricity use 2005 to 2010. Relatório
técnico, Oakland, CA: Analytics Press. URL http://www.analyticspress.com/datacenters.html.
Cited on page 1

Koomey (2008) Jonathan G. Koomey. Worldwide electricity used in data centers. Environmental
Research Letters, 3(3):034008. ISSN 1748-9326. doi: 10.1088/1748-9326/3/3/034008. URL http:
//iopscience.iop.org/1748-9326/3/3/034008. bibtex: Koomey2008. Cited on page 9

Kroshko (2013) Dmitrey L. Kroshko. OpenOpt website, 2013. URL http://openopt.org. Accessed:
2013-11-13. Cited on page 33

Lange et al. (2012) Klaus-Dieter Lange, David Schmidt, Andrew Bond e Lisa Roderick.
SPECvirt_sc2010 - driving virtualization innovation. Em Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, ICPE '12, páginas 251�252, New York,
NY, USA. ACM. ISBN 978-1-4503-1202-8. doi: 10.1145/2188286.2188328. URL http://doi.acm.
org/10.1145/2188286.2188328. Cited on page 11

LAPACK (Linear Algebra PACKage) () LAPACK (Linear Algebra PACKage). LAPACK
(Linear Algebra PACKage), 2015. URL http://www.netlib.org/lapack/. Accessed: 2015-03-16.
Cited on page 34

Linux-VServer Development Group () Linux-VServer Development Group. Linux-VServer,
2013. URL http://linux-vserver.org/Welcome_to_Linux-VServer.org. Accessed: 2013-09-05.
Cited on page 6

Luke (2013) Sean Luke. Essentials of Metaheuristics. Lulu, second ed. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/. Cited on page 17, 20

LXC Development Group () LXC Development Group. LXC linux containers website, 2013.
URL http://lxc.sourceforge.net/. Accessed: 2013-09-02. Cited on page 6

Martello e Toth (1990) Silvano Martello e Paolo Toth. Knapsack Problems: Algorithms and
Computer Implementations. Wiley, Chichester ; New York, 1 edition ed. ISBN 9780471924203.
Cited on page 16

Matplotlib () Matplotlib. Matplotlib, 2015. URL http://matplotlib.org/. Accessed: 2015-03-16.
Cited on page 34

http://doi.acm.org/10.1145/1925013.1925015
http://www.linux-kvm.org/page/Main_Page
http://www.analyticspress.com/datacenters.html
http://iopscience.iop.org/1748-9326/3/3/034008
http://iopscience.iop.org/1748-9326/3/3/034008
http://openopt.org
http://doi.acm.org/10.1145/2188286.2188328
http://doi.acm.org/10.1145/2188286.2188328
http://www.netlib.org/lapack/
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://lxc.sourceforge.net/
http://matplotlib.org/

6.2 BIBLIOGRAPHY 73

McGeer et al. (2010) R. McGeer, P. Mahadevan e S. Banerjee. On the complexity of power mini-
mization schemes in data center networks. Em 2010 IEEE Global Telecommunications Conference
(GLOBECOM 2010), páginas 1�5. doi: 10.1109/GLOCOM.2010.5683128. Cited on page 22

Mell e Grance (2011) Peter Mell e Timothy Grance. The NIST de�nition of cloud computing
(draft). NIST special publication, 800(145):7. URL http://pre-developer.att.com/home/learn/
enablingtechnologies/The_NIST_De�nition_of_Cloud_Computing.pdf. Accessed: 2013-11-13.
Cited on page 7, 8

Meng et al. (2010) Xiaoqiao Meng, Vasileios Pappas e Li Zhang. Improving the scalability of
data center networks with tra�c-aware virtual machine placement. Em 2010 Proceedings IEEE
INFOCOM, páginas 1�9. doi: 10.1109/INFCOM.2010.5461930. bibtex: 5461930. Cited on page 2

Navigant Research () Navigant Research. Cloud Computing to Reduce Global Data Center En-
ergy Expenditures by 38% in 2020, 2014. URL http://www.navigantresearch.com/newsroom/
cloud-computing-to-reduce-global-data-center-energy-expenditures-by-38-in-2020. Accessed:
2014-12-10. Cited on page 67

NumPy () NumPy. NumPy, 2015. URL http://www.numpy.org/. Accessed: 2015-03-16. Cited on

page 33

OpenStack Manual - Chapter 5 - Scaling () OpenStack Manual - Chapter 5 - Scaling.
OpenStack Manual - Chapter 5 - Scaling, 2015. URL http://docs.openstack.org/openstack-ops/
content/scaling.html. Accessed: 2015-01-16. Cited on page 1

OpenVZ project () OpenVZ project. OpenVZ linux containers wiki, 2013. URL http://openvz.
org/Main_Page. Accessed: 2013-09-05. Cited on page 5, 6

Oracle VM VirtualBox () Oracle VM VirtualBox. VirtualBox, 2013. URL http://www.
virtualbox.org/. Accessed: 2014-11-04. Cited on page 5

Planetlab Traces () Planetlab Traces. Planetlab Traces, 2015. URL https://github.com/
vonpupp/planetlab-workload-traces. Accessed: 2015-03-15. Cited on page 34, 35

Rabinovich e Wigderson (1999) Yuri Rabinovich e Avi Wigderson. Techniques for bound-
ing the convergence rate of genetic algorithms. Random Structures & Algorithms, 14(2):
111�138. ISSN 1098-2418. doi: 10.1002/(SICI)1098-2418(199903)14:2<111::AID-RSA1>3.0.
CO;2-6. URL http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199903)14:2<111::
AID-RSA1>3.0.CO;2-6/abstract. Cited on page 20

Rajkumar Buyya (2013) Nikolay Grozev Rajkumar Buyya, Rodrigo N. Calheiros. CloudSim
website, 2013. URL www.cloudbus.org/cloudsim. Accessed: 2013-12-04. Cited on page 2

Ranjana e Raja (2013) R. Ranjana e J. Raja. A survey on power aware virtual machine
placement strategies in a cloud data center. Em 2013 International Conference on Green
Computing, Communication and Conservation of Energy (ICGCE), páginas 747�752. doi:
10.1109/ICGCE.2013.6823533. Cited on page 22, 23

Reiss et al. (2011) Charles Reiss, John Wilkes e Joseph L. Hellerstein. Google cluster-usage traces:
format + schema. Technical report, Google Inc., Mountain View, CA, USA. Revised 2012.03.20.
Posted at URL http://code.google.com/p/googleclusterdata/wiki/TraceVersion2. Cited on page 55,
56

Reiss et al. (2012) Charles Reiss, John Wilkes e Joseph L. Hellerstein. Obfuscatory obscanturism:
making workload traces of commercially-sensitive systems safe to release. Em 3rd International
Workshop on Cloud Management (CLOUDMAN), páginas 1279�1286, Maui, HI, USA. IEEE.
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6212064. Cited on page 56

http://pre-developer.att.com/home/learn/enablingtechnologies/The_NIST_Definition_of_Cloud_Computing.pdf
http://pre-developer.att.com/home/learn/enablingtechnologies/The_NIST_Definition_of_Cloud_Computing.pdf
http://www.navigantresearch.com/newsroom/cloud-computing-to-reduce-global-data-center-energy-expenditures-by-38-in-2020
http://www.navigantresearch.com/newsroom/cloud-computing-to-reduce-global-data-center-energy-expenditures-by-38-in-2020
http://www.numpy.org/
http://docs.openstack.org/openstack-ops/content/scaling.html
http://docs.openstack.org/openstack-ops/content/scaling.html
http://openvz.org/Main_Page
http://openvz.org/Main_Page
http://www.virtualbox.org/
http://www.virtualbox.org/
https://github.com/vonpupp/planetlab-workload-traces
https://github.com/vonpupp/planetlab-workload-traces
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199903)14:2<111::AID-RSA1>3.0.CO;2-6/abstract
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1098-2418(199903)14:2<111::AID-RSA1>3.0.CO;2-6/abstract
www.cloudbus.org/cloudsim
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6212064

74 BIBLIOGRAPHY 6.2

Sindelar et al. (2011) Michael Sindelar, Ramesh K. Sitaraman e Prashant Shenoy. Sharing-
aware algorithms for virtual machine colocation. Em Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '11, páginas 367�378,
New York, NY, USA. ACM. ISBN 978-1-4503-0743-7. doi: 10.1145/1989493.1989554. URL
http://doi.acm.org/10.1145/1989493.1989554. Cited on page 16

Soltesz et al. (2007) Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier e Larry
Peterson. Container-based operating system virtualization: a scalable, high-performance alterna-
tive to hypervisors. Em ACM SIGOPS Operating Systems Review, volume 41, páginas 275�287.
URL http://dl.acm.org/citation.cfm?id=1273025. Cited on page 8

SPECPower Fujitsu PRIMERGY RX1330 Server () SPECPower Fujitsu PRIMERGY
RX1330 Server. SPEC power_ssj2008 Benchmark of a Fujitsu PRIMERGY RX1330
M1 Server, 2007. URL https://www.spec.org/power_ssj2008/results/res2014q3/power_
ssj2008-20140804-00662.html. Accessed: 2015-01-19. Cited on page xi, 13, 31, 40

SPECPower Sugon I840-G25 Server () SPECPower Sugon I840-G25 Server. SPEC
power_ssj2008 Benchmark of a Sugon I840-G25 Server, 2007. URL https://www.spec.org/
power_ssj2008/results/res2014q3/power_ssj2008-20140615-00658.html. Accessed: 2015-01-19.
Cited on page xi, 31, 36

Standard Performance Evaluation Corporation (a) Standard Performance Evaluation Cor-
poration. Standard Performance Evaluation Corporation, 2014a. URL http://www.spec.org/.
Accessed: 2014-08-11. Cited on page 11, 21

Standard Performance Evaluation Corporation (b) Standard Performance Evaluation Cor-
poration. SPEC power_ssj2008 Benchmark, 2007b. URL https://www.spec.org/power_ssj2008/.
Accessed: 2015-01-19. Cited on page 11

Trygar e Bain (2005) T. Trygar e G. Bain. A framework for service level agreement management.
Em IEEE Military Communications Conference, 2005. MILCOM 2005, páginas 331�337 Vol. 1.
doi: 10.1109/MILCOM.2005.1605706. Cited on page 8

Uhlig et al. (2005) R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson,
S.M. Bennett, A. Kagi, F.H. Leung e L. Smith. Intel virtualization technology. Computer, 38(5):
48�56. ISSN 0018-9162. doi: 10.1109/MC.2005.163. Cited on page 6

U.N. Climate Summit 2014 () U.N. Climate Summit 2014. Speech by EU Commission President
Barroso at UN Climate Summit 2014, 2014. URL http://eu-un.europa.eu/articles/fr/article_
15491_fr.htm. Accessed: 2014-12-10. Cited on page 67

Verma et al. (2008) Akshat Verma, Puneet Ahuja e Anindya Neogi. pMapper: Power and mi-
gration cost aware application placement in virtualized systems. Em Valérie Issarny e Richard
Schantz, editors, Middleware 2008, number 5346 in Lecture Notes in Computer Science, pági-
nas 243�264. Springer Berlin Heidelberg. ISBN 978-3-540-89855-9, 978-3-540-89856-6. URL
http://link.springer.com/chapter/10.1007/978-3-540-89856-6_13. Cited on page 23

Vigliotti e Batista (2014) Albert P.M.de la Fuente Vigliotti e Daniel Macedo Batista. Energy-
e�cient virtual machines placement. Em 2014 Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC), páginas 1�8. doi: 10.1109/SBRC.2014.1. Cited on page 3

VMware Inc. () VMware Inc. VMware Inc., 2013. URL http://www.vmware.com/. Accessed:
2013-09-04. Cited on page 5, 6

Wei et al. (2011) Bing Wei, Chuang Lin e Xiangzhen Kong. Energy optimized modeling for
live migration in virtual data center. Em 2011 International Conference on Computer Science
and Network Technology (ICCSNT), volume 4, páginas 2311�2315. doi: 10.1109/ICCSNT.2011.
6182436. Cited on page 23

http://doi.acm.org/10.1145/1989493.1989554
http://dl.acm.org/citation.cfm?id=1273025
https://www.spec.org/power_ssj2008/results/res2014q3/power_ssj2008-20140804-00662.html
https://www.spec.org/power_ssj2008/results/res2014q3/power_ssj2008-20140804-00662.html
https://www.spec.org/power_ssj2008/results/res2014q3/power_ssj2008-20140615-00658.html
https://www.spec.org/power_ssj2008/results/res2014q3/power_ssj2008-20140615-00658.html
http://www.spec.org/
https://www.spec.org/power_ssj2008/
http://eu-un.europa.eu/articles/fr/article_15491_fr.htm
http://eu-un.europa.eu/articles/fr/article_15491_fr.htm
http://link.springer.com/chapter/10.1007/978-3-540-89856-6_13
http://www.vmware.com/

6.2 BIBLIOGRAPHY 75

Wu et al. (2012) Yongqiang Wu, Maolin Tang e W. Fraser. A simulated annealing algorithm for
energy e�cient virtual machine placement. Em 2012 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), páginas 1245�1250. doi: 10.1109/ICSMC.2012.6377903. Cited on

page 23

Xavier et al. (2013) M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange e C.A.F.
De Rose. Performance evaluation of container-based virtualization for high performance com-
puting environments. Em 2013 21st Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), páginas 233�240. doi: 10.1109/PDP.2013.41. Cited on page

6

Xen Project () Xen Project. The xen project, the powerful open source industry standard for
virtualization., 2013. URL http://www.xenproject.org/. Accessed: 2013-09-04. Cited on page 6

Xu e Fortes (2010) Jing Xu e J. A B Fortes. Multi-objective virtual machine placement in
virtualized data center environments. Em Green Computing and Communications (GreenCom),
2010 IEEE/ACM Int'l Conference on Cyber, Physical and Social Computing (CPSCom), páginas
179�188. doi: 10.1109/GreenCom-CPSCom.2010.137. bibtex: Xu2010. Cited on page 22

Zelkowitz (2011) Marvin Zelkowitz. Advances in Computers. Academic Press. ISBN
9780123855138. bibtex: Zelkowitz2011. Cited on page 35

http://www.xenproject.org/

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Objectives
	Contributions
	Organization

	Concepts
	Virtualization
	Hypervisor based Virtualization
	Operating System based Virtualization

	Cloud Computing
	Service Level Agreement
	Energy Efficient Computing Systems
	Energy and Power Models
	Sources of Power Consumption

	Power Models
	SPEC Power Benchmark

	Energy Efficient Virtual Machines Placement
	Optimization Techniques
	Linear Programming
	The Bin Packing Problem
	Genetic Algorithms

	Literature Review
	Energy Efficient Virtual Machines Consolidation Algorithms
	Knapsack Problem based Heuristic
	Evolutionary Computation based Heuristic
	Linear and Non Linear SPECpower Models Heuristics

	Performance Evaluation
	The pyCloudSim Simulation Framework and Methodology
	Linear and Non-linear SPECpower Benchmark Profiles
	Linear SPECpower Benchmark Profile
	Non-Linear SPECpower Benchmark Profile

	Experiments Using Workloads from the PlanetLab Project
	Assumptions
	Linear Model Experiments
	Non-Linear Model Experiments

	Experiments Using Workloads from Google
	Assumptions
	Linear Model Experiments
	Non-Linear Model Experiments

	Conclusions
	Future Research Directions
	Final Remarks

	Bibliography

