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Abstract

NARANJO POMALAYA, D. E. Directional multipole light transport models for render-
ing translucent materials. 2015. 43 p. Thesis (Master) - Instituto de Matemética e Estatistica,
Universidade de Sdo Paulo, Sao Paulo, 2015.

Translucent materials, such as milk or marble, are characterized by their soft and smooth appear-
ance, as well as their bleed through effect when illuminated from behind. Diffusion based models
are currently the best approximation of the real physical process that takes place underneath the
surface of this kind of material. This process, dubbed subsurface scattering, is the one one respon-
sible for the blurring effect that generates that soft appearance. The success of these models is due
to the similarity between energy and light propagation. Since diffusion theory solves the problem
of energy propagation, its use returns a good approximation of subsurface scattering. Aiming to
produce a better approximation for translucent materials we developed an extension of a diffu-
sion based subsurface scattering model called directional multipole. In our model we extend the
directional dipole to achieve a better solution for thin slabs, i.e. shallow depths. The directional
dipole is a model that uses a diffusion theory solution for a ray in an infinite medium, which comes
closer to the representation of light rays since they have a magnitude and a direction. This is what
differentiates it from the other diffusion based models, which are based on a solution for a point
in an infinite medium. This model, however, fails to represent thin slabs because it assumes light
steps are infinitely smaller than the depth of the object. Our model solves this problem by merging
the directional dipole model with the multipole model, which was the first and only model that
addresses this issue. By doing this, we created a model that achieves a closer approximation to the
real for thin slabs than those of the multipole.

Keywords: Subsurface scattering, BSSRDF, light transport, diffusion theory, diffusion dipole, dif-

fusion multipole, directional dipole
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Chapter 1

Introduction

Physically-based rendering is an approach of computer graphics that aims to generate photore-
alistic images. This term means the goal is to make the generated images indistinguishable from
real photographs. To achieve this, one may use models that emulate their real-world counterparts
and the physical processes that takes place when an image is generated using a camera in the real
world.

When an image is captured, what happens is that the light that originates from a source interacts
with the objects until it reaches the camera. The final image is the result of the amount of light
that arrived [PH10]. Light originates from sources such as lamps, smart-phone’s screens and the
sun; then, it propagates and interacts with all the objects within the scene. These interactions may
change the path and the amount of light that will continue. These changes depend on the object’s
material properties. Finally, the image recorded is composed by the light that reaches the camera,
which is equal to the amount that originated from a source, interacted with n objects in the scene
and completed its path towards the camera.

*&
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(a) Milk splash (b) Marble statue of Cleopatra

Figure 1.1: Two translucent materials: (a) Milk splash [Pla08] and (b) a marble statue of Cleopatra {Rus0Gf

In this project we will focus on the photo-realistic renderization of translucent materials, such
as marble and milk. These kind of materials are characterized by their soft appearance and a sort
of blur-effect on the small geometries of the surface, as shown in Figure 1.1. This figure depicts
the photographs of a splash of milk and a marble statue of Cleopatra in the National Portrait
Gallery (Washington, DC)!. Another important phenomenon of this kind of materials can be seen
in Figure 1.1a, when thin objects with this composition are illuminated from behind: light seems
to bleed through.

All these characteristics are produced by the light’s path underneath the surface (subsurface
scattering), as shown in Figure 1.2. Once light enters at some point z, it interacts with small

1Both of themn were obtained from the Flickr website.
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elements that compose the material [Ray71], and which affect light’s path, before exiting at some
other point y. These elements modify the amount of light that finally exits in different ways: some
of the cuergy is lost because light is absorbed, or its path is changed into a different. direction
(out-scattering); and some energy is gained because other paths change direction into the one being
accounted for (in-scattering). If we were to simulate this process, we would need to track each light
path; each change of direction or steps; and for each step we would need to check all other paths that
might change direction into the one of interest. Because of all these possibilities, the computation
becomes too expensive. Therefore, to generate an image that approximates objects with this kind
of material a number of simplifications were generated.

Wy

Wo

Figure 1.2: Scattering of light in a BSSRDF model [INNO7|

The first simplification assumed that light exited at the same point it entered, as shown in
Figure 1.3a. The function that represents this behaviour is called Bidirectional Scattering Reflec-
tion Distribution, and it offers a great approximation for materials like matte paint. However, its
emulation of transhicent materials is poor (Figure 1.3h). Therefore, new models arose and the most
successful ones were based on the diffusion theory.

Diffusion theory was developed in order to solve the propagation of neutrons in a nuclear fusion
reaction [GS55]. The solutions to these problem can also be employed to account for part of the
amount of light that exists translucent materials, because of the duality between energy’s and light’s
propagation. The portion that is computed by the diffusion theory solutions represent the light paths
that have multiple interactions before exiting, called multiple scattering. We still have to compute
the contribution of light that does not change direction, reduced-radiance, or changes it only once,
known as single scattering. These last, however, can be computed without much computational cost.
As a visunal aid, multiple and single scattering can be seen in Figure 1.4. It is important to mention,
as well, that the energy propagation has multiple solutions and therefore different approximations
can be implemented.

One famous model that uses one of these diffusion theory solutions is known as dipole diffu-
sion [JMLHO1], developed by Jensen. This was the first model to present a function that relates
the amount of light that exits at some point to the one that enters from all different directions in
all the points of the surface. This function is known as Bidirectional Surface Scattering Reflection
Distribution Function. As can be seen in Figure 1.5, especially in the area around the nose, the
resulting skin simulation already has a softer look. Though this model achieves the soft appear-
ance of translucent materials it fails to simulate the bleed through of light on thin slabs. This
phenomenon occurs because a great part of the rays of light that enter the object from one face
exist through the opposite one. The limitation to reproduce this behaviour is due to the dipole
model’s assumption that the object is semi-infinite. Working with this assumption means that a
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Figure 1.3: BRDF model: (a) Scattering of light in a BRDF [INN07| and (b) Face rendered with a BRDF
model [INN07|
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Figure 1.4: Scaltering paths segmentation: (a) Single scattering [RRBGO0G6] and (b) Muliiple scotter-
ing [RRBGUG]

good approximation will only occur when the object’s depth is immensely bigger than the light’s
step within it. Since the light’s step is directly proportional to the scattering properties of the ma-
terial, this limitation varies between one material to the other. As an example, let’s say this step
is around 4mm in milk, any volume with a depth of approximately 8mm to 24dmm will suffer a
poor approximation. In order to surpass this limitation, a new model known as the multipole was
developed by Donner and Jensen [DJ05].

Both of the previously described models were based on the same solution to the diffusion the-
ory problem. This solution assumes that only one energy point-source exists in an infinite media.
Mauipulations of this solution made it possible to represent finite, and even thin, volumes. More
recently, a new diffusion based model appeared, the directional dipole, proposed by Frisvad et al..
This model was based on a different solution to the diffusion theory problem: a solution for a
ray [MSGO05D] in an infinite medium. It introduced a BSSRDF which comes closer to path traced
references because it takes into account the direction of incoming light, improving the accuracy
of the analytic model [FHIK14]. It, however, maintains the same semi-infinite limitation the dipole
model suffered. We aimed to remove this limitation by extending the directional dipole solution
for thin geometries. To achieve this, we developed a new model that produces a more accurate
approximation of thin slabs based on the directional dipole and the multipole, dubbed directional
multipole. We obtain a more accurate result in shallow depths because the new model takes this
depth as a parameter of its calculations. It takes into consideration that part of the rays that hit
the object might get transmitted through it and exit at the other surface.
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Figure 1.5: Face rendered with a BSSRDF model [INN07|

1.1 Objectives

¢ Create a new model for the realistic simulation of translucent materials in thin georetries, such
as narrow slabs, by combining the dirpole model, which takes into consideration the direction
of incident light; and the multipole model, which improves simulation of thin materials.

o Implement the new model in a rendering system which allows the visualization of the re-
flectance profile.

o Render a visualization of the reflectance profile of objects composed of shallow depths and
translucent materials using this implementation.

o Compare numerical results obtained with other diffusion based models, such as the photon-
beam, directional dipole and multipole.

o Compare the reflectance profile visualizations rendered using the new model with those ren-
dered using other diffusion based models, such as the photon-beam, directional dipole and
multipole.

1.2 Contributions

The main contributions of this work are:

» Comparison of current diffusion based models and evaluation of their advantages and limita-
tions.

e Development of a new analytic shading model to accomplish realistic renderizations of thin
slabs and translucent materials.

o Implementation of an algorithm that uses this new model to obtain a more accurate simulation
of the reflectance profile given its thin geometry in the open-source renderer PBRT-v3.

1.3 Work organization

The remainder of this dissertation is organized as follows: Chapter 2 introduces the background
concepts necessary to understand the proposed models. These concepts include the renderization
process and the models used for the simulation of surface and volume scattering. Next, Chapter 3
introduces the concepts of diffusion theory as an approximation to solve the light transport problem
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and the derivation of the standard dipole diffusion model. Followed by Chapter 4, which reviews
the models based on diffusion approximation that succeeded the standard dipole model. The op-
timizations made by each one and their limitations are also included. Chapter 5 then presents an
overview of the new model for translucent material renderization, based on the directional dipole
and multipole models. This model generates accurate renderizations of shallow depths and translu-
cent materials, evaluated in Chapter 6. Finally, Chapter 7 contains the conclusions of the tasks
unfolded as well as ideas for future research.
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Chapter 2

Background

To generate digital images, a process also known as rendering, based on the physical processes
that happens in the real world, we need to use models that will represent those physical counterparts.
As we previously mentioned, we need to determine the amount of light that reaches the camera
from all points on the scene. This computation can be solved by the rendering equation. When
dealing with translucent materials this equation gets a little more complicated and is known as
the volume rendering equation. We will start by describing the process without any translucent
materials, afterwards we will add them to finally obtain the complete process.

As an aid we have listed the most important symbols that we will use in Table 2.1.

2.1 Global illumination

When rendering an image our goal is to simulate all light interactions. We want to be able to
calculate the amount of light that reaches the camera from any point in the scene. The algorithm
responsible for this computation is called global illumination. To begin the description of this process
we need to define the basic terminology of lightning.

2.1.1 Radiometry

The terminology used to describe light is called raediometry. The most basic quantity is called
the photon, which determines the amount of energy in a specific wavelength!. The collection of
photons is called radiant energy, @, and is computed by integrating the energy of all the photons
over all possible wavelengths. When we compute the time rate flow of radiant cnergy we get the
Fluz, ® = 49

When we refer to the differential flux leaving a surface per differential area we are talking about
radiant emittance, M = g% Meanwhile, the irradiance, E refers to the differential flux arriving at
a surface location.

Finally, radiance, L, is equal to the flux per unit solid angle per unit project area.

d*®

L= Godar

where dA+ is the projected area of dA on a hypothetical surface perpendicular to w, as seen in
Figure 2.1. The unit solid angle, dw, represents the direction of the ray and also a differential area
of a unit sphere. They are the 3D analog of 2D angles.

Radiance is the concept that most closely represents the color of an object. It can be thought of
as the number of photons arriving/leaving a small area per time. When it is arriving at the point
we call it incident radiance; otherwise, we call it ezitant radiance. Radiance describes the intensity
of light at a given point in a given direction [Jen0l]. We generally assume that radiance remains

'As we know, light has many wavelengths and humans are only able to distinguish those within the visible
spectrum (390 — 700nm).
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[ Symbol | Description
[ z Position

~

z Position of incoming light

! Normal at & (always normalized: || = 1)

] Direction (always away from surface)

W Direction of incoming radiance (always away from surface)

di Differential solid angle
L(z,w) | Radiance at z in direction w

L, Emitted radiance

L, Reflected radiance

L; [ncident radiance

P Flux

E Irradiance

fs Bidirectional Scattering Distribution Function
fr Bidirectioual Reflectance Distribution Fuuction
Q Hemisphere of directions
QUn Sphere of directions

p Phase function

n Index of refraction

o Albedo

Oq Absorption cocfficicnt

Oy Scattering coefficient

oy Extinction coefficient

Table 2.1: Frequently used symbols [Jen01f

'\

Figure 2.1: Radiance in a surface [P1110f

unaltered during its path; however, this assumption offers a poor approximation in participating
media, such as the one found within translucent materials.

2.1.2 Light sources

Light originates from light sources such as fire, the sun, or even a smart-phone’s screen. The
intensity of these light sources is described by their power, ®;. For example, given a diffcrentially
small sphere light source (point) that emits energy uniformly in all directions, we can compute the
irradiance, E, that reaches a position z on a surface using Equation 2.1.

®,cosd
E(HJ) = ﬁ

where r is the distance from z to the light source and # is the angle between the surface’s

2.1)
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normal at position z and the direction to the light source. To explain this equation, imagine a
sphere surrounding the source, as shown in Figure 2.2. The amount of power that will arrive at any
point in the sphere (differential area surrounding it) will be ®/(47r2). This is because all the power
is being equally distributed onto the surface of the sphere. Meanwhile, the cosine term takes into
consideration the surface’s orientation. A surface that is directly facing the source will receive more
photons per area that a surface oriented differently [Jen01]. The Lambert cosine law states that if
the surface’s normal 71 is tilted by an angle § away from the light ray that arrives at that point,
then the amount of energy deposited will be factored by cos@ [LamG0].

Figure 2.2: Sphere centered al the light point source [PH10, Clif

2.1.3 Light scattering

As light travels trough the scene it might encounter some obstacle, such as a surface, a different
medium or even a small particle (participating media). When this interaction takes place light may
be scattered or absorbed.

BSSRDF

When a scattering event takes place between a surface and a ray of light, what really happens is
that the ray enters the material, it scatters within and then cxits at a different point on the surface.
This process is presented in Figure 2.3. This behaviour is best appreciated in translucent materials,
and is described by the Bidirectional Scattering Surface Reflectance Distribution or BSSRDF.

The BSSRDF, S, describes the ratio of differential exitant radiance, dLr, at point z in dlrectlon
& with respect to the differential incident flux d®; at z’ from direction «, where & and «’ always
point away from the surface. This relationship is described in Equation 2.2

-~ dL(z,d)

S(z, @, ', w') =
dDy(z, )

This is the most general description of light transport and is the only one that solves the
subsurface scattering problem present in translucent materials. However, it is costly to evaluate
since it has eight dimensions to take into account.

(2.2)
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Figure 2.3: BSSRDF model [PH10]

BRDF

The BRDF or Bidirectional Reflectance Distribution Function is a simplification of the BSSRDF,
it describes the reflection behavior on a surface at a single point. In Figure 2.4, we can see a visual
relationship between the radiance leaving the surface, L, in the direction &, as a result of incident
radiance, L;, from direction W,

Figure 2.4: BRDF model [PH10]

The BRDF, f,. is defined as the proportionality between the differential exitant radiance and

-

the differential irradiance dFE(z,w’). As shown in Equation 2.3.

f(z, @) = @) dli(@d) (2.3)
dE(z,o)  Li(z,w) (')’

where 71 is the normal at z.
To compute Lhe reflected radiance al a point we need lo integrate the incident radiance, as
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shown in Equation
L (z,d) = / fr(z, @, veew') Li(z, ') (7' ), (2.4)
Q
where (ﬁZu') is equal to cos#’, and Q is the hemisphere of incoming directions at z.

2.1.4 Rendering equation

The rendering equation is the mathematical description of global illumination. This equation
describes the necessary conditions for equilibrium of light transport in scenes with no participating
media. It can be used to compute the exitant radiance at any point in the model.

The exitant radiance is equivalent, to the emitted radiance plus the reflected radiance:

Ly(z,&) = Le(z, @) + Ly (2, @),

by using Equation 2.4 to compute the reflected radiance we get Equation

Lo(z,@) = Le(z, ) + / fr(z, &, veaw') Li(z, ') () dw . (2.5)
Q

2.2 Participating media

The rendering equation only works in models that do not have participating media. This is not
the case when rendering a scene with translucent materials. After light rays enter a translucent
material, the rays behave as in a participating medium. We will review the processes that occurs
in this kind of environment.

2.2.1 Light scattering

When light enters a medium it can either continue its path unaltered or it can interact with
the particles that compose it. When a photon interacts with the medium it is either scattered
or absorbed. The parameters that determine which of these processes occur are the scattering
coefficient, s, and the absorption coefficient, oq. As a beam of light makes its path through the
medium these interactions can be perceived as changes in the radiance of the ray [Jen01].

The change due to absorption interactions result in a reduction of radiance, as defined in Equa-
tion 2.6

(@-V)L(z,&) = —g4(z)L(z,d). (2.6)

The changes in light’s direction due to the collision with particles result in out-scattering and in-
scattering. The change due to out-scattering also results in the reduction in the radiance because
some of the rays are deflected in different directions, as depicted in Figure 2.5 and defined in
Equation 2.7.

Figure 2.5: Differential cylinder filled with oul-scallering particles [PH10/

(@ - V)L(z,@) = —0s(z)L(z,@). (2.7)
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When the reduction due to absorption and out-scattering are grouped together, we obtain the total
reduction in radiance, defined in Equation

(@ V)L(z,@) = —0u(z) L(z, ), (2.8)

where g; = g, + 0.
As the ray moves through the media, the radiance of other rays that may be scattered into the
ray’s path, as depicted in Figure 2.6.

Figure 2.6: Differential cylinder filled with in-scallering particles [PH10]

The change in radiance due to in-scattering is defined by Equation 2.9

(& V)L(z,d) = 04(z) / plz, &, w)Li(z, '), (2.9)

Q‘hr

which is the product of the scattering coefficient, o5, and the integral, over the sphere 4, sur-
rounding z, of the incident radiance and the phase function. The phase function, p(z, &, ), defines
the probability distributions for scattering in a particular direction.

Finally, some participating media also presents an increment in radiance due to emission,

(@ - V)L(z,&) = 0q(z)Le(x, ).

Combining Equations 2.8 and 2.9 plus the changes due to emission, the total change in radiance
per unit distance is Equation 2.10:

(@ - V)L(z,3) = 04(x)Le(z, @) — o4(2)L(z, &) + 04(z) /Q p(z,@,w) Li(z, o' )dw'. (2.10)

2.2.2 Volume rendering equation

By integrating Equation 2.10 on both sides for a segment of length s, and adding incoming
radiance from the other side of the medium we get Equation 2.11.

L(z,&) = /0 : e~ T@ ) g, (2 ) Le(z', w')da
+ /08 e~ 7@ g (z') /4 p(z, @, ") Li(z', ) dw' dz’ (211)
+ e @D (g sGJ':rcI;')

z’ o¢(t)dt or (' — z)o; when the medium is homogeneous. This is known as the

volume rendering equation and is more complex than the rendering equation. To accurately render
translucent materials it is necessary to simulate this process within the object.

where —7(z,2') = [7



Chapter 3

Diffusion theory

The volume rendering equation accurately captures the subsurface scattering phenomenon that
happens within translucent materials [DL76]. For the simulation of light transport, Harrahan and
Krueger proposed a division of the scattering events into reduced-radiance, single and multiple
scattering [HK93]. Reduced-radiance follows the original path of the light until it extinguishes;
single scattering represents all the paths with only one scattering event within the medium before
their exit; and, finally, multiple scattering represents all those with more than one scattering event
before exiting.

Reduced-radiance and single scattering can be handled with simple approaches; multiple scat-
tering, however, is almost as complicated as the original problem. To solve multiple scattering, Har-
rahan and Krueger proposed an algorithm that follows light paths recursively (path tracing) [HK93).
However, this algorithm can become really expensive. To improve upon this shortcoming, a different
approach was proposed by Jensen [JMLHO1], based on diffusion approzimation. Diffusion theory
aims to solve the propagation of energy. It was originally developed to solve the propagation of
neutrons in a nuclear fusion reaction [GS55], but can also be used in the light propagation problem.

For the following sections, we will describe how the diffusion theory relates to the volume
rendering equation and how the first model based on diffusion was created. To this end we have
used Donner’s thesis [Don06], Jensen’s dipole model article [JMLHO1] and PBRT’s implementation
of the same [PH10| as a basis.

3.1 Deriving the diffusion equation

We will start with the gradient version of the volume rendering equation, Equation 2.10, assum-
ing that materials are homogeneous. Homogeneity means their scattering and absorption coefficients,
as well as their phase function, will be constant throughout the medium. Renaming the emission
term as @, or volumetric source gives the Radiance Transfer Equation or RTE, Equation 3.1, for
translucent materials.

@ 9)Le,@) = ~o@)L(@.8) + 0:(2) [ @8, Liw, T + Qd), ()
4w
The phase function p describes the anisotropic behavior of the material. Anisotropic materials
present a varying appearance that changes according to the illumination direction, for example CDs
are anisotropic, meanwhile a matte painted wall is isotropic because it looks the same regardless of
the illumination setting. Since isotropic materials are much easier to model, the first simplification
aims to reproduce the original anisotropic material as a new isotropic one.

3.1.1 Principle of similarity

The principle of similarity states that anisotropic media with a high albedo, i.e. materials whose
particles will reflect most incident illumination (os > o,), can be approximated using isotropic

13



14 DIFFUSION THEORY 3.1

models with modified scattering and attenuation coeflicients [PH10]. This approximation leads to a
simplified solution thanks to the removal of anisotropy while maintaining a good relationship with
the original model.

The principle of similarity derives from the observation that after a series of scattering events, the
distribution of light in anisotropic, high albedo media, resembles a uniform directional distribution.
This behavior can be appreciated in Figure 3.1, that shows the distribution of light that has been
scattered 10, 100 and 1000 times respectively. This distribution is given by:

1- 92n
4m(1+ g2 — 2g]g™~1|(—& - )3/2)

/’n(dja‘;,) =

where g is the anisotropy parameter, generated by computing the average cosine of the scattered
direction. Its values vary between —1 and 1. As n grows large, this converges to the isotropic phase
function, 1/4m.

{w-u') {w o
[Ty
1)
i o

o 2 ' (wewt’) sat4

-
O

ulw.w’)

(a) (b)
(w-o’)

Pulw, ')

(¢)

Figure 3.1: Principle of similarity: (a) Directional distribution of e single incident ray of light after 10
scattering events in a highly anisotropic medium with the anisotropy parameter g egqual to 0.9, (b) 100
scattering events, (c) 1000 scattering events [PH1()f

The new modified scattering and attenuation coefficients are called reduced scattering coefficient,
og, and reduced attenuation coefficient, of. Their corresponding definitions are:

!

s = 0s(1 - g),

! !
g, = 0q + 0.

The reduced coefficients are modified by the anisotropic parameter, which indicates the behaviour
of the phase function. When g = 0 the phase function is constant and represents an isotropic scat-
tering, when g < 0 the phase function is predominantly backward scattering, and correspondingly
g > 0 indicates forward scattering dominance [JMLHO1]. Translucent materials are mostly forward
scattering with g > 0.7, e.g. skin 0.7 < g < 0.9 [VGJSS89|.

The anisotropic parameter helps the coefficients reach the isotropic behaviour. As an example,
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consider a strongly forward scattering phase function with g — 1. At every scattering event, the
light is most likely to continue along the same path. In this situation, the value of ol will be much
smaller than the original g5, which means that there is less probability of a scattering cvent, leading
to light traveling a larger distance in the medium before scattering [Don06].

3.1.2 Spherical harmonic expansion

Radiance is decomposed into reduced-radiance, L,;, also known as reduced intensity, which ac-
counts for the light rays that are parallel to each other, single-scattering, Lg, which accounts for
rays that scatter once, and multiple-scattering, L,,, which accounts for those rays that scatter con-
siderably and is, therefore, independent of direction. To solve multiple-scattering a truncated series
of spherical harmonics is used to approximate the radiance [JMLHOL]. Using the first four terms,
we get a scalar ¢ and a vector terms E, shown in Equation 3.2.

- 1 3
Ly (r, @) ~ Gd}(r) + 4—7TE(7') ‘w (3.2)
where 7 represents the distance between the incident point z’ and the exitant one z, ¢, called
[fluence, represents the average amount of light that enters a volume differential, it is related to fluz,
®; and E, called irradiance vector, represents the current of light particles at a point in the medium,

related to the irradiance, E, the scalar defined in Section 2.1. These parameters are defined as:
(1) = / L (7, &) dvecw,
Qflr
E(r) = / L (r, &)did.
- Q41\'

3.1.3 Gradient substitution

When the spherical harmonics approximation is substituted in the Radiance Transfer Equation,
Equation 3.1; and we perform an integration over all directions, & (details in [Ish78]), the result is
Equation 3.3.

Ve(r) = —30E(r) + Qu(r), (3.3)

where Q;(r) is the 1st-order source term, Q1 (r) = . s2 Q(r,d)&da, where Q is the source function
(emission term). In the casc of no sources, or when the sources are isotropic, ; becomes zero, and,
therefore, the irradiance vector equals the gradient of the fluence, as shown in Equation 3.4. This
equation is known as Fick’s Law |Fic55].

B(r) = ~3,; V4(r) = ~DV4(r), (3.4)

where D = 3—:/ is dubbed the diffusion constant.
t

3.1.4 The classic diffusion equation

Substituting Equation 3.4 into the Radiance Transfer Equation,Equation 3.1, and integrating
over all directions & gives the classic diffusion equation, defined in Equation 3.5.

—DV2(r) = 3a(r) — Qo(r) + 3DV - Qu(r), (3.5)

where Qg represents the Oth-order source term, Qo(r) = [, g2 Q(r,w)dw.
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3.1.5 BSSRDF and the radiant exitance

The reformulation of the general RTE to the local surface reflection integral gives the subsurface
scattering equation.

L(z,@) = / / S, @ o', ') La(a ) (7, o )duot dA
AJD

A BSSRDF accounting only for multiple-scattering is termed Sy, which is simplified as a product
of a diffuse reflectance profile Ry and a directional Fresnel term [JMLHO1, dI11].

Ft (:le “ja l’))
4Cy(1/m)
where F} represents the Fresnel transmittance that affects light at the entry and exit point, 4Cy is

a constant needed for normalization, and 7 is the relative index of refraction!. Ry is equal to the
radiant exitance divided by the incident flux:

I S
Sd(:v,w,a:’,w’) = ;Ff,(l",w/,‘l))Rd(ll' - :l”l) (36)

Ry(r) = dE(r) - 1i/dd. (3.7

3.2 The dipole diffusion model

From the classic diffusion equation we proceed to explain how we can use the solutions to the
diffusion equation to obtain a functional BSSRDF.

3.2.1 Diffusion equation solution

The diffusion equation, Equation 3.5, has a simple solution for a single point light source in an
infinite medium [GS55]. The medium is assumed to be highly scattering and isotropic, which means
no @; term will be present, resulting in Equation 3.8:

d et

¢(T) = m T )

(3.8)
known as Green’s function, where oy, = /30,0, is dubbed the effective transport coefficient.

3.2.2 Boundary Condition

Since Equation 3.8 is a solution for an infinite setting, it needs to be modified for a finite volume.
To this end, a semi-infinite setting is adopted, where the 2 = 0 plane is located at the material’s
surface and the positive z axis, £, points into the medium, opposite to the surface’s normal, 7 = —3.
This arrangement is depicted in Figure 3.2.

The diffusion equation needs to be solved subject to a boundary condition to achieve this setting.
When the two interacting layers do not share the same index of refraction, light is internally reflected
at the surface. The boundary condition in this case is defined such that the diffuse incident radiance
reflected down at the surface in the @ direction must be equal to the diffuse radiance in the —7
axis [GFTB83|. This is depicted in Equation 3.9.

/Q @)@ D5 = [ Falar@)(@ s sz=0 (3.9)

where Fy, is the average diffuse Fresnel reflectance, which describes the amount of light reflected
from a surface. This term is generally approximated with a simple polynomial expansion [GFTB83,

!The index of refraction describes how light propagates within a medium
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L\

Figure 3.2: Semi-infinite configuration with the positive z axis in the opposite direction to the surface’s
normal

Rei73).

(3.10)

ik e v SRR

1
~1439 4 0-7,?93 +0.6681 + 0.06367, 7> 1

where 7 is the relative index of refraction, i.e. the ratio between the two indices of refraction.
Using the spherical harmonics approximation, Equation 3.2, in Equation 3.9 gives the outward
fluz:
de(r)
dz
where ¢p is the flux at the boundary and the A term is responsible for taking into account the
effects of internal diffuse reflection and is defined as:

_ 1+ Fyr
- l_Fdr.

o + 2AD =0 (3.11)

A

(3.12)

Assuming that the flux decreases linearly outside the diffusing material, then the gradient of
the function is d¢(r)/dz = —¢o/(2AD). This assumption leads to flux vanishing at a distance
2AD beyond the boundary [GS55, FPB92|. Thus, the approximated surface boundary condition is:
®(2AD) = 0. This distance above the surface is often called the. extrapolated boundary |GS55|.

3.2.3 Final BSSRDF

Equation 3.11 establishes that fluence goes to zero at a distance 2AD above the surface; which
mirrors the falloff of fluence inside the medium as the boundary is approached. This boundary
condition can be satisfied employing the method of images, which consists of a positive real source
and a negative virtual source mirrored about the extrapolated boundary.

According to the assumptions so far established, the medium where the propagation takes place
is a semi-infinite, highly isotropically scattering material. As light propagates through the material,
the beam has a reduced intensity L.;(z) = L;e~°t®_ This beam can be represented as an infinite set
of point sources with decaying intensity. The average intensity scattered out of the beam is:

o0
!
/ olLie""%dz = o/ L,
0

where o = o) /o is known as reduced albedo.
To simulate an incident ray of illumination, a point source is placed at a representative depth.
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The distance light travels before interacting with a particle is described by the PDF aie“”i““. The
average distance light travels is the expected value of this PDF:

o : 1
/ roje”’tdr = =,
0 oy

known as mean-free-path (MFP) [PSW80, FPB92]. The point source is then placed at 1 MFP
beneath the surface with its intensity equal to o' L;.

To satisfy the boundary condition, a virtual source is placed above the real source mirrored
about the extrapolated boundary. Its height is 2, = 2 + 4AD above the surface, as depicted in

Figure 3.3. The resulting fluence is equal to the sum of the individual contributions from the two
sources: , p g
o @ eUtr r ea'tr v

T)= — , 3.13

o) = o2 (S - ) (313)

where dr = /(r? + 2%) and d, = /(7% + 22) are the distances from p; to the real and mirrored
source respectively, as seen in Figure

Figure 3.3: Real and virtual source lights, representing an incident ray of light [Don06]

Finally, these definitions allow the computation of the diffuse BSSRDF, S, dependent of the
diffuse reflectance profile Ry, as stated in Equation 3.6. Since Ry(r) = d(E(r) -n)/d®, according to
Equation 3.7 and E(r) = —DV¢(r) following Fick’s Law, Equation 3.4, we have:

D (n-Vo)(r)

Ra(r) = - 3.14
a(r) ET) (3.14)
where 7 = |z — /.
Using the solution for fluence due to the dipole configuration, Equation 3.13, gives:
a zr(l + Utrdr)e_a"dr Zv(l + atrd,,)e""fd"
Ralr) =12 : 3.15
a(r) 4w d3 + d3 (3.15)

A more graphical representation of the diffuse reflectance profile is depicted in Figure 3.4. In
this plot, we see the values of Ry(r) for a range of r.



3.2 'THE DIPOLE DIFFUSION MODEL 19

Reflecfince

10° ’ v : ; . 5 - v -
Monte Carlo ——+-

\ Dipole

1071
102

107

Radiant emittance

10

10°°
0O 2 4 & 8 10 12 14 16 18 20

Radial distance (mm)

Figure 3.4: Diffusion profile [Don06]

3.2.4 Limitations

The dipole model is well suited for the approximation of optically thick, highly scattering,
homogeneous materials [Don06]. The problem originates from the semi-infinite assumption. In the
case of thin slabs 2, light may exit at the bottom (transmittance) instead of scattering back to the
top surface. The dipole model is unable to simulate this situation.

It is also important to note that inaccuracies increase when the albedo decreases, as depicted
in Figure 3.4. This error increases because light does not scatter very far from the incident point.
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%, Monte Carlo, =081 X
Monte Carlo, u = 0.87 %
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Dipole, (¢=0.88 —— |
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Dipole, «=0.5 ++-«--
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Figure 3.5: Diffusion profiles compared with MC packet tracing for different albedo values [Don06]

2Thickness of only a few MFP, IMFP =~ lmm
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Chapter 4

Evolution of the diffusion based models

4.1 Introduction

Since the development of the standard diffusion model in 2001 [JMLHO1], a series of new
diffusion-based approximations were presented in the search for optimization and expansion of the
limits held so far. Figure shows a timeline with the publication dates of some of these models.
We have chosen to display only these because they made significant modifications to the BSSRDF
model, not just optimizations in the implementation.

Standard dipole ‘
diffusion model 2001

Multipole 2005 Sum-of-Gaussians
diffusion model approximation of
| I dipole and

multipole profiles

‘ 2007 | |

Photon diffusion
model

Quantized 5419
diffusion model

DI

2013 Photon-beam
diffusion model
Directional dipole
diffusion model 2014 fricis)

[FHK14]

Figure 4.1: Diffusion approximation models for translucent material renderization timeline

The multipole diffusion approximation, developed by Donner and Jensen in 2005 |DJ05] enabled

21
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the correct renderization of thin slabs and layered materials. When rendering slim volumes, the
dipole model produced an overestimation of the reflected amount of light, because part of it is
actually transmitted through the slab.

Later on, in 2007, Donner and Jensen developed the photon diffusion model [DJ08| aiming
to cover more geometrically complex volumes and effects such as caustics, among others. Photon
diffusion used photon tracing to calculate the diffusion of the photons’ first interaction (scatter
event) with the medium.

In 2011, d’Eon and Irving presented the quantized-diffusion model [dI11]. Their goal was to
obtain a more realistic simulation of light’s propagation. For this, they used the extended source,
which computes the multiple scattering cvents for a beam as it passes through the medium, this leads
to a model with multiple positive real sources. It, however, did not have an analytical solution and,
therefore, a sum-of-Gaussians approximation was employed. Even though this approach provides a
more accurate result, the methods used are complex, prone to errors, and require a considerable
amount of storage. Aiming to solve these problems, the photon-beam diffusion model was developed
by Habel et al. [HCJ13] in 2013. This model uses the Monte Carlo (MC) techniques instead of the
sum-of-Gaussians approximation. By doing this, they reduced the computational complexity of the
previous model.

Finally, in 2014, Frisvad et al. developed the direction dipole model [FHK14], also known as
dirpole. This model is based on the solution of the diffusion equation for a ray of light in an infinite
medium [MSGO5b], meaning they already take into account the extended source in the diffusion
cquation solution so only one positive source is required. Its main limitation, however, is the same
as that of the standard dipole model: it lacks support for geometrically complex volumes such as
thin slabs.

In the following sections we will detail the modecls that served as basis for our new directional
multipole model. These are the multipole model and the directional dipole. For our implementation
we also used photon tracing, but we will leave these details for the next chapter.

4.2 The multipole diffusion model

The multipole model removes the semi-infinite restriction by extending the dipole model using
multiple dipoles to account for thin geometries.

4.2.1 New boundary condition

The dipole approximation assumes that any light ray entering the material will be absorbed or
returned to the surface (after some scattering events). In the case of thin slabs, light rays might
get transmitted through them. This phenomenon reduces the amount of light diffusing back to the
surface, which is why the dipole overcstimates the reflectance.

A ncew boundary condition is constructed for the bottom surface to overpass this problem, as
shown in Figure 4.2, As with the top surface, the outward diffuse radiance is equal to the inward
radiance reflected at the bottom surface:

/ La(r, @)@ - A)did = Fyr / Ly(r@)(@ - -n)dd atz=d
Q- Q+
resulting into:
¢(r) +2AD(R - V)g(r) =0 at z=d, (4.1)

which means that flux vanishes at depth d + z,, which is 2, below the bottom surface of the slab,
as seen in Figure 4.2b. This boundary is called the bottom extrapolation boundary.
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Figure 4.2: Point source configuration: (a) Dipole configuration for semi-infinite slab and (b) multipole
configuration for thin slabs [Don06f

4.2.2 Multipole BSSRDF

To satisfy Equation 4.1, the top dipole is mirrored about z = d + 25, which makes the net
fluence from both dipoles result in zero at the bottom extrapolation boundary (lower dotted line in
Figure 4.2). To maintain the correction of the condition at the top condition boundary, 2 = -z,
(top dotted line in Figure 4.2h), the bottom dipole needs to be mirrored about the top line. This
process needs to be repeated infinitely in order to have both boundary conditions satisfied [DFG97,
Wan98|.

When the indices of refraction of the mediums above and below the slab are the same, the

extrapolation distances will be the same, and the z-coordinates of the dipole sources will be given
by:

zri = 2i(d + 225) + 210
Zyi = 2i(d + 2z) — Zr0 — 2z

fori=—-n,..,n

where d is the slab thickness, 2, is the position of the original source at one MFP of depth !, and
2, = 2AD is the extrapolation distance. The even 7 variables try to satisfy the top condition, while
odd i ones do the same for the bottom one. Finally, the diffuse reflectance profile due to 2n + 1
dipoles is equal to the sum of their individual contributions.

Ry(r) = i o' zri(1 + Utrdr,i)e_g"dr" _ o zy,5(1 + Utrdv.i)e—g"d""

4.2
47rd§’i 47rd3,i (4.2)

i=-n

where dr; = /72 + 22, and dy; = \/ r2 + zﬁli are the distances to the dipole sources. Due to the

YUMFP=1/0}
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fact that the contribution of each dipole decreases as the distance increases, the actual number of
dipoles required depends on the slab thickness and the optical properties of the material.

4.2.3 Optimizations and limitations

The primary optimization brought by the multipole model is the capacity to support thin slabs.
Figure 4.3 presents a piece of parchment illuminated from behind using Monte Carlo photon tracing,
the dipole model and finally the multipole model. When evaluating the results of the dipole model
one can perceive that it underestimates the amount of transmitted light while the multipole model
matches the reference image, which was computed using Monte Carlo photon tracing.

L T -
= nANS
A Pl

B w1 pinenia e

(b) (c)

Figure 4.3: Piece of parchment illuminated from behind using (a) Monte Carlo photon tracing as a reference,
(b) the standard dipole model and (c) the multipole model [D.J05)

The multipole model is also able to generate profiles for layered materials. Figure 4.4 presents
the renderization of a human face using the dipole model with Jensen’s parameters [JMLHO1],
using the multipole model with Tuchin’s parameters [ToPolEQ7], and, finally, an ear illuminated
from behind using the multipole model.

(b) | (©)

Figure 4.4: Human face rendered using the: (a) dipole model, (b) multipole model and (c) an ear illuminated
from behind rendered using the multipole model [D.J05]

Even though far-source reflectance and transmittance computation improved, near-source com-
putation still presents a high error. Mainly because single scattering dominates radiant emittance
in this area, and the dipole or multipole method fail to capture this.
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4.3 The directional dipole diffusion model

The directional dipole model presents the first BSSRDF that takes into consideration the direc-
tion of incident illumination [FHI(14]. Based on the solution of the diffusion equation for a ray of
light in a highly scattering infinite mediwn [MSG05a, MSGO05b].

Typically, radiance is split into three terms: reduced intensity, single scattering, and multiple
scattering [HIK93, JMLHO1]. Instead, the directional dipole model uses the delta-Eddington (6E)
approximation |[JWW?76]. Including the part of the single scattering that continues along the re-
fracted ray in the reduced intensity term, Lsg, and the remaining single scattering in the diffusive
part of the BSSRDF Ly [FHIC14].

The modified reduced intensity term Lsg maintains the definition of the original reduced inten-
sity term, Lyi(z) = L;e~%%, but uses a different set of scattering properties [JWW76}:

Ot =05+ 0q, Os =0's(1_g2)u :j:g/(g-{-l)

4.3.1 Diffusion theory for a ray of light

The solution to the diffusion equation used in the directional dipole model works for a ray of
light in an infinite medium. Solving the diffusion equation for this configuration gives:

D e 1+ oper
é(r.0) = D r <1+3D " cosG) (4.3)

where @ is the angle with the ray direction, as depicted in Figure (cos® = ((z — 2') - £)/r)
[MSGO05a, MSGO5D).

I

Figure 4.5: Directional dipole configuration [HCJ13/

4.3.2 Directional dipole BSSRDF

The radiant exitance is calculated using Kienle and Patterson’s [[{P97] approach, which com-
bines the fluence and its derivative. The gradient of the fluence from the directional solution for a
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monopole in an infinite medium is:

O eo"

VoS = —
£ arD 13

(wr 3D(1 +oyyr) — (z —20) (1 + 0prr)—

2
3(1 + 0'1,,4‘3 + (O't,-T‘) cos 0) ,

(z - 2,) 3D

where z, is the location of the monopole and u; is the direction of the incident ray after refraction.
The diffuse radiant exitance for a monopole in an infinite medium is :

Rmonopole((w _ 1'1-), W, 'I') —

1 e%r T

dr 13 {Cd’(n) ( +3(1 + opr)(z — z1) -wr> —

Ce(n) <3D(1 +oyr)dy 7 — (4.4)

(14 o) — ) - 7) +
3(1 + 0'1:,-7") + (0’177‘)2

(3D i (@ —an)-)a —an) 7).

where 7 is the surface’s normal at the exitant point, and Cy = (1 — 2C1(n)) and Cg = 11—
3Ca(n)). C; are hemispherical integrals of the Fresnel reflectance F,.. The approximations of C; are
in appendix A.l.

For the dipole configuration, some changes were made. The extrapolated distance z, generally
defined as 2AD, changed to a new approximation, which is closer to the right z, for weakly absorbing
media with non-refractive boundary [Dav58]:

z, = 2.131AD/Veo!

where o is the reduced scattering albedo. When the real source is mirrored in the extrapolated
boundary, the displacement of the virtual source becomes 2Azy.

Since the source is directional, it is also necessary to mirror the direction as well as the origin.
Instead of using the tangent plane, defined by 7', which is inaccurate when flat boundary assumption
is violated, a modified tangent plane is used. The normal of this new planc is defined as:

il Jorz =12
iy . )
z—xz' n'x(z—-z') .
L otherwise
[EREd In'x(z-=z')] '

The use of this plane eliminates the exaggerated directional cffects caused by the assumption of a
semi-infinite medium.

Other models use the average scattering displacement of the beam source as the representative
location of the positive source (z» = 1/a}). Since the directional dipole aims to represent the actual
light ray, no displacement is performed. This choice introduces a singularity in the model for r =0
and creates an overestimation in the region close to the singularity. A correction is used to overpass
this difficulty:

r2 + Duo(Dpo — 2zpcos B) |, for po > 0 (front-lid)
dz ==

2 +1/(30,)? ,otherwise {back-lid)
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where yg = —n - ., and the other cosine term is

|2 _ _ AT
cosf = — sinf——t = — [P (&= 2r) )
\f T+ zy

,/1'2+z§

Using all these definitions, the final diffuse radiance profile of the directional dipole is:

Ry(z',w',z) = R;"O""p"le(z - Zp Wy, dy) — R;"O"O”Ole(a: = Ty, Wy, dy) (4.5)
where 7, = o', ©y, = 2’ + 2Ad,n’, d, = |z — zo|, and Wy = Wy — 2(w} - nT*)n7* (see Figure 4.5).

Single scattering BSSRDF

The modified reduced intensity/single scattering term of the BSSRDF Ssg can be indirectly
defined by the radiance due to delta-Eddington’s reduced intensity, and the transmitted radiance,
Lti

Li(z' @) = n 2 FaLi(a, o) (4.6)

where 7 is the relative refractive index and w, is the direction of the refracted ray given by the law
of refraction applied to w'. Then, the § E modified direct transmission emerging from the medium
is:

Ly s5(%,@) = n*Fa1e™% Ly(w s, w2r) (4.7)

where z,; = £ — swZ, is the only point on the surface that can contribute to this reduced intensity
term, s is the distance from 7 to this point, and w”, is the direction of the ray from inside the
medium refracting to the direction @ according to the law of refraction. This term is easily evaluated
using traditional ray-tracing [FHK14].

4.3.3 Optimizations and Limitations

The directional dipole model takes into consideration the direction of the incident ray that hits
the surface of a translucent object, which provides a better simulation of light.

Figures 4.6 and 4.7 present a bunny made of white grapefruit juice and marble respectively.
The bunnies are rendered using the standard dipole (left) and quantized-diffusion (second from
left), with single scattering added using unbiased path tracing. There are also renderizations of the
bunny using the directional dipole model (third from left) and using full path-tracing renderization
(right), this last one is assumed to be the ground truth. The renderization of the bunny using the
directional dipole model captures translucency effects that are present in the reference renderization.
Though the inclusion of directional effects adds some costs in a rendering, the addition of single
scattering balances these additional expenses, and outweighs them when light sources are small (or
singular) [FHIC14].

Figure 4.8 presents the squared differences (root-mean-square-error (RMSE) and structural sim-
ilarity (SSIM)) of the renderizations of each model versus the path-tracing references.

The limitations of this model originate from the assumption of a planar semi-infinite medium.
This assumption makes it difficult to represent objects that present thin features, or other complex
geometries, accurately. This limitation is the reason to generate new models that extend the dirpole
to lift these restrictions.
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(a) (b)

Figure 4.6: Bunny made of white grapefruit juice rendered with (a) full path-tracing renderization (b) the
standard dipole model, (c) the guantized-diffusion model and, finally, (c) the directional dipole model. Both the
dipole and the quantized-diffusion model incorporating single-scullering calculated using path-tracing [FHIC1]

(a) (b) (c) (d)
Figure 4.7: Bunny made of marble rendered with (a) full path-tracing renderization (b) the standard dipole

model, (c) the quentized-diffusion model and, finally, (c) the directional dipole model. Both the dipole and
the quantized-diffusion model incorporating single-scattering calculated using path-tracing JFHK14]

standard dipole quantized-diffusion directional dipole

white
grapefruit juice

marble

i

0.0 0.6 1.0

Figure 4.8: Squared differences (root-mean-square-error (RMSE) and structural similarity (SSIM)) of the
renderizations of each model versus the path-tracing references. [FHK 14



Chapter 5

The directional multipole model

We have developed a new model that achieves a realistic simulation of light in translucent
materials with geometrically thin volumes taking into account the direction of the incident ray. -
This new model is an extension of the directional model, which takes into account the direction,
position and normals of the incidence illumination ray as well as the normal of the exitant plane.
This model achieves a great approximation using an analytic solution. We wanted to obtain this
level of accuracy for thin volumes as well.

The principal limitation of the directional dipole model is the assumption that materials are
semi-infinite. This means that the model assumes the rays of light that enter the surface will most
likely be absorbed or they might return from the same face they entered. This assumption works
well in thick geometries, with depth values around the centimeters or meters; however, the results
when trying to model a thin slab, with depth values around the millimeters, are not as accurate.
This restriction needs to be lifted to obtain a model that is able to represent complex volumes made
of translucent materials.

Just like the multipole lifts this restriction from the dipole model, an extension of the directional
dipole into a directional multipole would enable a better simulation of thin volumes.

5.1 Directional dipole kappa

Before creating a new model based on the directional dipole, we decided to compare it against
the other models and improve its results. We realized the directional dipole model could be improved
in the same way the dipole model was. With the help of an heuristic factor named kappa.

Rd(:z:', L:).', :E) — R:iuonnpole(x -z, dr) _ R:inonapOIE(l_ — Ty, T, du)

was defined as:

where sznopol e

R:inonopole((z _ x,—),lﬁ;,’l") —

1 eUtrT

P [Cqb(??) (g +3(1 + oprr)(z — 21) ‘J'r) -

C'E(T)) <3D(1 + UtrT)‘JT M=
(1 +oer)((z —z) - 1) +
OrT trT 2 = 1
(3D3(1+ 7-)2+ (91r7) (w_g;r)-wr)(w—wr)-n)}.

Adding a factor to modulate the overestimation around the surface, where single scattering
dominates, a better result was obtained.

—Ot*T

k(r) =1—exp

29
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The kappa modulation factor is equal to the probability that light is not scattered before exiting
the surface. This is why it works so well.

The results of adding the kappa factor can be seen in Figure 5.1. The original directional model is
represented by the purple line and is the farthest away from the Monte Carlo simulation (assumed as
the ground truth) represented by the black line, both when not taking into account single scattering
(first column) and when it is taken into account (second column). Meanwhile, when the kappa factor
is used, represented by the yellow line, to modulate the directional model, the results are the best
analytic approximation. The photon-beam model, represented by the green line, uses Monte Carlo

techniques that require an expensive integration of the solution along the refracted ray|FHIC14]|.
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Figure 5.1: Radiance profile for different diffusion based models with 0, =1, 0, = 0.1 and g =0.

5.2 Directional multipole

To improve the directional dipole model, we added a new boundary condition to the bottom
surface. Some of the light that enters the material gets transmitted, reducing the amount of light
diffusing back to the surface, ignoring this situation overestimates the reflectance.

An important assumption is that diffuse light transmitted through the slab does no return, as
was assumed in the multipole model. This means that the upward diffuse radiance is equal to the
reflected downward one at the bottom surface:

/ Ly(r,&){( - @)did = Fdr/ Ly(r,@)(-n-&)d& atz=d

Establishing that the flux vanishes at depth d + 2ppottom, Which is equal to the top boundary
distance, except the refraction parameter, A, is calculated using the refractive index of the media
underneath the bottom surface of the slab,

_ 1- CE(nbottom)

Apo
tom C¢(77bottom)
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where Cg and Cy depend upon the hemispherical integrals of the Fresnel reflectance C; previously
mentioned.

4

2= -2z, — - Extrapolated
Extrapolated 2= -2 Boundary
_____________Eo_undary -----------------------

d

z2=0 0 ‘ 'I
2
z2=d+ z

(a) -

(b)

Figure 5.2: Directional dipole configuration for semi-infinite slab (a) and directional multipole configuration
for thin slabs(b) [Don06]

Because of the method of images, the sources are mirrored about the top and bottom bound-
aries; both boundary conditions are simultaneously satisfied when there is an infinite array of
dipoles [DFG97, Wan98], as depicted in Figure 5.2h. However, since the contribution of each source
diminishes as the distance to the point of interest grows, an approximation of a finite number of
sources achieves a good result. Assuming the surface is at the z = 0 plane, the n™ = —% and that
2,0 = 7/, the positions of each dipole are, therefore:

Prk = 210 — 2i(d + 2btop + Zb,bottom) * 7
Puk = 20 — 2i(d + 2b,t0p + Zbbottom) * ™* + 22p top * N
for k= —n,...,7

where each z, is computed using the appropriate A. The reason why the 2i term is negated is
because the n’* is pointing in the opposite direction to the Z, as was previously stated. Negating
these terms make the location of the sources correct according to the Z axis.

When mirrored by the boundaries, the direction for each positive source light remains as w, and
for each negative one as wy.

Wr i = Wr
Wyi = Wy

fori=—-n,..,7
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5.2.1 Directional multipole BSSRDF

The reflectance due to 2n + 1 dipoles used to satisfy both boundary conditions is equal to the
summation of their individual contributions due to the linearity of illumination, giving us:

n
Ri(z',w',z) = Y Rz = ppj, i, dr) — RO (3 = Dy, W, ) (5.1)

k=-n

where d,/, i are the distances to the dipole sources from a given point of interest x, and p,/y . is
the position of each source.

It is important to mention that when n = 0, the result of the directional multipole equation is
the same as the directional dipole.



Chapter 6

Evaluation of the directional multipole
model

We tested our new method by computing the radiance profiles values obtained for different
optical parameters and a range of radial distances. These results were compared to those achieved
by the improved dipole, the multipole, the photon-beam, and the directional dipole diffusion models.

The Monte Carlo implementation used as the ground truth was the Monte Carlo for Multiple
Layer media of Lihong Wang et al[LL07]. The values of the absorption and scattering coefficients of
the materials tested were the ones previously calculated by Jensen [JMLHO1] and those calculated
by Narasimhan et al. [NGD*06]. They are listed in Table 6.1. We chose these materials because
they exemplify the different configurations of scattering properties. The apple and marble have
significantly bigger scattering values compared to their absorption counterparts. Meanwhile, ketchup
has higher values in absorption than scattering. It is important to test our model in the different
ranges of scattering properties; however, it is important to consider that multiple scattering is most
significant in materials with an albedo close to one. In materials with lower albedos, the illumination
is mostly characterized by single scattering.

R G B
os = 2.29 os = 2.39 o, = 1.97
o, =0.003 | 0o=0.0034 |o,=0.046
Apple | " .99 o =0.99 o = 0.98
mfp=0.436 | mfp= 0418 | mfp = 0.496
os = 0.18 os = 0.07 os = 0.03
g, = 0.061 o, = 0.97 og =145
Ketchup | ' .75 a = 0.07 a = 0.02
mfp=4.149 | mfp=0.962 | mfp = 0.725
o, = 2.55 o, = 3.21 o, = 3.77
| o, =00011 | 0o =00024 |0, =0.014
Whole-milk | " g o =0.99 o = 0.99
mfp=0.392 | mfp=0311 | mfp=0.264

Table 6.1: Scattering properties of translucent materials: scattering and absorption coefficients in mm~™1
(04,04), their albedo (a), and their mean free path mm (mfp)

The results of these tests can be appreciated in Figures 6.1, 6.2 and 6.3, which shows the results
for apple, ketchup and whole-milk materials. The closeup to head of the function in the apple and
whole-milk materials can be appreciated in each of these figures.

33



34 EVALUATION OF THE DIRECTIONAL MULTIPOLE MODEL 6.0

8
1o — Moty Cats 10‘
Impreved Dols
10° 1 - raten Basr Do
— Darachansl Dpeie
— Dractional Hottpels
104 1 107 4
10?
i 109 RS E 10?
v L
10-1 4
1074 1 i 10! 4
1076 4
0-* T v T - 10° T T T v N r N
0.000 0.002 0,004 0.006 0,008 0010 0.00000 000025 0.00050 0,00075 0,00100 0,00125 0.00150 0,00175 0.00200
r r
(a) Multi+single scattering, channel R (b) Multi+single scattering closeup, channel R
10* 10¢
105 4
104 10% 4
107
€ 10 Z 107
L »
10-7 4
10~ 10 4
1074 1
10-* T g v v 10° r v v T v :
0.000 0.002 0.004 0.006 0.008 0.010 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 0.00200
r r
(c) Multi+single scattering, channel G (d) Multi+single scattering closeup, channel G
(]
10 p——r—— 104
Irgroved Dpols
e Ptpole
106 4 o Praton Boem Drthimon
— Ouwctens Dpeie
— Owrachonal
104 1 103
107 4
i 10° - i 107
10"7
10-4 4 10! 4
2076
-3 v v T v 100 v T T T
0.000 0.002 0.004 0.006 0.008 0.010 0,00000 0,00025 0.00050 0.00075 0.00100 0.00125 0,00150 000175 0.00200
r r
(e) Multi+single scattering, channel B (f) Multi+single scattering closeup, channel B

Figure 6.1: Diffusion profile comparisons for an apple’s RGB channels. (a) and (b) correspond to the R
channel with o, = 2.29, o, = 0.003; (c) and (d) correspond to the R channel with o, = 2.39, 0, = 0.0034;
finally, (e) and (f) correspond to the R channel with o5 = 1.97, 0, = 0.046
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Figure 6.2: Diffusion profile comparisons for an ketchup’s RGB channels. (a) and (b) correspond to the R
channel with o, = 0.18, g, = 0.061; (c) and (d) correspond to the R channel with o5 = 0.07, 0, = 0.97;
finally, (e) and (f) correspond to the R channel with o; = 0.03, 0, = 1.45
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Figure 6.3: Diffusion profile comparisons for whole-milk’s RGB channels. (a) and (b) correspond to the R
channel with o, = 2.55, g, = 0.0011; (c) and (d) correspond to the R channel with o5 = 3.21, g, = 0.0024;
finally, (e) and (f) corvespond to the R channel with 05 = 3.77, 0, = 0.014

In these graphs the dipole based models: Dipole, Photon-Beam and the dirpole, represented by
the yellow, green and purple, fail to represent the diffusion reflectance profile. They overestimate
it because they assume the rays that penetrate the surface are absorbed or exit from the same
face they entered. This, however, is not the case with the multipole based models: Multipole and
directional multipole. As can be seen, the directional multipole model, represented by the blue line,
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presents an overestimation when r is small. After this region its values improve to the point where
it is the best fit.

In order to improve the result of our model we decided to apply a modified kappa factor to
modulate the overestimation around the incident point. Our modified factor is defined as:

—agxr=0.5

k(r) =1—exp

When the modulating factor is used, the results improve significantly. The results of adding the
kappa factor can be seen in Figures 6.4, 6.5 and 6.6.
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Figure 6.4: Diffusion profile comparisons for an apple’s RGB channels with factored model (x(r)). (a) and
(b) correspond to the R channel with 5 = 2.29, 0, = 0.003; (c) and (d) correspond to the R channel with
0s = 2.39, 0, = 0.0034; finally, (e) and (f) correspond to the R channel with 05 = 1.97, 0o = 0.046
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Figure 6.5: Diffusion profile comparisons for ketchup’s RGB channels with factored model (k(r)). (a) and
(b) correspond to the R channel with o, = 0.18, 0, = 0.061; (c) and (d) correspond to the R channel with
os = 0.07, 0, = 0.97; finally, () and (f) correspond to the R channel with o, = 0.03, 0, = 1.45
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Figure 6.6: Diffusion profile comparisons for whole-milk’s RGB channels with factored model (k(r)). (a)
and (b) correspond to the R channel with o, = 2.55, 0o = 0.0011; (¢) and (d) correspond to the R channel
with o5 = 3.21, 0, = 0.0024; finally, (e) and (f) correspond to the R channel with o5 = 3.77, g, = 0.014

Carlo simulation, represented by the black line.

The kappa factor is a scale of the pdf that light is not scattered before exiting the surface.
Adding this factor increases the accuracy of our model, making it the closest one to the Monte

Until now we used the distance between the real source to the output point as part of our
calculation. However, the directional dipole model uses a correction to control a singularity present
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when r = 0.
72 + Dpo(Dpg — 22y cos B) , for pip > 0 (front-lid)

2 +1/(30¢)? , otherwise (back-lid)

We use this approximation when the distance between the input and output point is less than
2/o¢. This generates a small step in the values obtained around 2/c;, but the magnitude of this
step does not affect the final result, it also could be smoothed by the meauns of another factor, but it
was not valued as important. The range of application of this correction was found through a series
of tests with different materials. The results of using this correction can be seen in Figures 6.7, 6.8
and 6.9.
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Figure 6.7: Diffusion profile comparisons for an apple’s RGB channels with factored model (k(r)) and
corrected d(r). (a) and (b) correspond to the R channel with o, = 2.29, o, = 0.003; (c) and (d) correspond
to the R channel with o, = 2.39, ¢, = 0.0034; finally, (e) and (f) correspond to the R channel with o4 = 1.97,
o, = 0.046
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Figure 6.8: Diffusion profile comparisons for ketchup’s RGB channels with factored model (k(r)) and
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Figure 6.9: Diffusion profile comparisons for whole-milk’s RGB channels with factored model (k(r)) and
corrected d(r). (a) and (b) correspond to the R channel wilh o5 = 2.55, 6o = 0.0011; (c) end (d) correspond
to the R channel with o, = 3.21, 0, = 0.0024; finally, (¢) und (f) correspond to the R channel with g = 3.77,

o, = 0.014
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6.1 Rendered image evaluation

The following images were rendered using the photo-beam model, the directional dipole model,
the multipole model and our directional multipole. They are visual representations of the reflectance
diffusion profile. We are using the results of the multipole model as the ground truth since this is
the model that best represented thin slabs. For our tests, we used homogeneous materials such as
grapefruit juice, ketchup and marble, using the optical parameters previously detailed in Table G.1.
The methods used for analysis are Mean squared error (MSE), Structural similarity (SSIM)
and finally the Visual Difference Predictor for HDR images standard (HDR-VDP-2). The
MSE gives a numerical punctuation of dissimilarity between two images, the smaller this value
is, the more similar they are. This values is equal to the average of the squares of the deviations
between these images. The SSIM indicator produces an image that shows darker color in the regions
with values more distant to each other. Meanwhile, the HDR-VDP-2 allows us to compare a pair of
images and measure the probability that the differcnces between the images is visible for an average
observer; red denotes great probability and blue less.

Figure 6.10: Directional multidirpole grapefruit
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Figure 6.11: Multipole grapefruit

As we can see the results from the directional multipole model come closer to the results from the
multipole model. The directional dipole and photon-beam and directional dipole are more closely
related to each other since they share the same assumptions.
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Mean Squared Error Structural Similarity HDR-VDP-2

(b) SSIM:0.98979

(d) MSE:103.94792 (e) SSIM:0.98707

- -

(g) MSE:63.37565 (h) SSIM:0.99001 (i)

Table 6.2: Comparing reflection profile resulls for grapefruil Lo the resulls oblained by the multipole model;
first line corresponds to the diffusion beam, second line is the directional dipole, finally, the third one corre-
sponds lo the directional multipole. The first column shows the resulls for each model and their Mean Square
Error, the second column the Structural Similarity resulls, and, finally, the third one the Visual Difference
Predictor
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Figure 6.12: Directional multidirpole ketchup

6.1
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Figure 6.13: Multipole ketchup

As we can see the results from the ketchup material do not differ much from one another. This
is because the resulting profile from the diffuse reflectance is mostly influenced by single scattering.
Since single scattering is computed in the same way for all models, the resulting values are closely
related.
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Mean Squared Error Structural Similarity HDR-VDP-2

(b) SSIM:0.99897

(d) MSE:10.65553 (e) SSIM:0.99779

(g) MSE:7.28456 (h) SSIM:0.98923 (i)

Table 6.3: Comparing reflection profile results for ketchup to the results obtained by the multipole model; first
line corresponds to the diffusion beam, second line is the directional dipole, finally, the third one corresponds
to the directional multipole. The first column shows he results for each model end their Mean Square Error,
the second column the Structural Similarity results, and, finally, the third one the Visual Difference Predicior



Chapter 7

Conclusions

This dissertation evaluates further expansions in the image synthesis of subsurface scattering
materials using the diffusion based approximation. It has introduced a new diffusion based model
of light transport in thin scattering materials, we've dubbed it the directional multipole because it
is a mixture of the dirpole diffusion model and the multipole model. We have shown that this new
model achieves a better approximation of the reflectance profile as the distance from the incident
point increases. We are not discouraged by the overestimation near the incident point because this
issue can be fixed using a step function with different kappa factors according to the distance to the
incident point. We found that this approximation is of most importance in materials with albedo’s
close to one, where multiple scattering plays an important part in illumination.

We have also given a clear and detailed introduction to diffusion theory and a full derivation
of multiple diffusion based models, starting from the dipole model until the directional dipole.
This enabled us to analyze the limitations and improvements each of these models brought to
the synthesis of translucent materials. Without this we would not have been able to notice where
they could be extended and improved upon. Specifically, we found that the directional dipole is
limited by its assumptions of semi-infinite geometry, in thin slabs rays may exit at the other surface
and therefore this approximation leads the result to an overestimation. Meanwhile the multipole is
still a basic representation of the incident light, it represents the diffuse illumination with a point
underneath the surface. The directional multipole method brings together the best of the directional
dipole and the multipole, which allows the improved representation of translucent material objects
with shallow depths. The directional multipole uses the same diffusion solution that the directional
dipole does, i.e. the solution for a ray of light, which is a better representation of the rays of light
when compared to the point representation used by older models. When we extend this solution to
control thin slabs while maintaining the gained accuracy for non-normal incident rays, we obtain a
model that is able to provide a better result than those models previously used.

We have compared the results of the directional multipole method with Monte Carlo simulations
using parameters previously published as examples of its performance, and have obtained uplifting
results. Our model presents the best fit analytically. We have also given several examples of rendered
images to improve the visualization of the reflectance profile.

As we showed in Chapter 4, the diffusion approximation based models have evolved in order to
provide more accurate solutions to the representation of translucent materials. We combined the
best qualities of two of these methods in Chapter 5, but there are still limitations that the new
directional multipole method cannot overcome.

Just like the multipole model, there is a restriction on the minimum thickness of the slab, it
should be at least two mean free paths thick because the positive source of the Oth order dipole pair
must be contained within it. The restriction due to the assumption of high albedo is also present
in our model. This restriction is present in all diffusion based models since it is intrinsic to the
approximation. However, in the cases where a low albedo is present, single scattering predominates
and an approximation ignoring multiple scattering can be more than enough.

51
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The most obvious solution to overcome these limitations is the real path tracing of the inter-
actions beneath the surface. Currently, the improvements in GPU and CPU make this approach a
possible option. However, in some environments like the gaming industry it might be an overkill to
perform such an expensive computation. This is why creating even better approximations is still a
valid and important research.

It would also be interesting to explore whether we can create a deep learning model that is able
to predict with increased accuracy and efficiency the diffuse radiance profile. In recent years a lot of
complex functions have been approximated using deep learning models. It might be interesting to
test whether the Radiance Transfer Equation can be solved using this approach. Though diffusion
theory is a great approximation it might be possible that it has reached its limit for translucent
material representation.



Appendix A

Appendix

A.1 Hemispherical integrals of the Fresnel reflectance

0.919317 — 3.4793n + 6.753357% — 7.80989n° +
4.985547* — 1.368817°
201 [ (A].)
—9.23372 + 22.2272n — 20.92927% + 10.229173—
2.54396n* + 0.25491375 o m21

n<l

0.828421 — 2.620517 + 3.3623192 — 1.9528473 +
0.2364947n* + 0.1457877°
3Cy =~ 5o . (A.2)
_ .926 _ 656.175 | 1376.53 _
1641.1 + 1303 712 083 4 1213.67n 0>
568.5567m2 + 164.7987° — 27.0181n* + 1.91826n° ’ =

n<l

A.2 TImportance sampling techniques

¢ Exponential Sampling. An exponentially decreasing sampling with a PDF proportional to the
source term Q(t). Generally used in path tracing, photon mapping, and photon diffusion for
choosing propagation distances in homogeneous media.
log(1 — &)

t; = = with  pdfe,,(4) = gle ot (A.3)
t

where & € [0,1) is a uniform random number. This PDF only depends on ¢. This means
the dipole sources are placed at different depths and are weighted according to the inverse
exponential PDF, canceling out the exponential variation in Q(t).

e Equiangular Sampling. At each p, it distributes the samples uniformly in the angular domain
subtended by the incident beam. This method was proposed by Kulla and Fajardo [KF12].

h
(86 — 6a)(h® + ¢])

t; = —htan6; with pdfequ(tilp,w) = (A4)
where h is the distance between p and the beam w, 0, and 6, are the start and end angles of
the integration in the angular domain, and 6; = lerp(fa, 01, &)

Multiple importance sampling (MIS) [VG95] is employed since there are two sampling strategies
that perform well in different situations. The exponential sampling represents well the tail of the
profile with as little as 1 sample; while the equiangular sampling represents the peak well even with
just 1 sample. Since the region for which each strategy works better (tail vs. peak) is known, a
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modified MIS weighting heuristic is tailored:

N
Rd z_}_ Z f(p,W,ti)'erxp(ti,p)
N i=1 wexp(ti’p)pdfexp(ti) + wexp(tivp)pdfequ(tilpaw)

N
+ l Z f(pawatj)wequ(tjap)
N =1 wexp(tjap)pdfexp(tj) + wexp(tj:p)l:’dfequ(tj |p, w)

where Wexp(ti, p) = clamp((p — a)/(b — a),0,1) and wequ(ti, p) = 1 — Wexp(ti, p). The weighting
strategy dedicates samples entirely to the superior PDF except in a small transition zone (p € [a, b])
where it smoothly weights the two strategies. The transition zone is centered around one diffuse
mean free path, with a = 0.9/0] and b = 1.1/0;.
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