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Abstract 

NARANJO POMALAYA, D. E. Directional multipole light transport models for render­

ing translucent materials. 2015. 43 p. Thesis (Master) - Instituto de Matematica e Estatistica, 

Universidade de Sao Paulo, Sao Paulo, 2015. 

Translucent materials, such as milk or marble, are characterized by their soft and smooth appear­

ance, as well as their bleed through effect when illuminated from behind. Diffusion based models 

are currently the best approximation of the real physical process that takes place underneath the 

surface of this kind of material. This process, dubbed subsurface scattering, is the one one respon­

sible for the blurring effect that generates that soft appearance. The success of these models is due 

to the similarity between energy and light propagation. Since diffusion theory solves the problem 

of energy propagation, its use returns a good approximation of subsurface scattering. Aiming to 

produce a better approximation for translucent materials we developed an extension of a diffu­

sion based subsurface scattering model called directional multipole. In our model we extend the 

directional dipole to achieve a better solution for thin slabs, i.e. shallow depths. The directional 

dipole is a model that uses a diffusion theory solution for a ray in an infinite medium, which comes 

closer to the representation of light rays since they have a magnitude and a direction. This is what 

differentiates it from the other diffusion based models, which are based on a solution for a point 

in an infinite medium. This model, however, fails to represent thin slabs because it assumes light 

steps are infinitely smaller than the depth of the object. Our model solves this problem by merging 

the directional dipole model with the multipole model, which was the first and only model that 

addresses this issue. By doing this, we created a model that achieves a closer approximation to the 

real for thin slabs than those of the multipole. 

Keywords: Subsurface scattering, BSSRDF, light transport, diffusion theory, diffusion dipole, dif­

fusion multipole, directional dipole 
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Chapter 1 

Introduction 

Physically-based rendering is an approach of computer graphics that aims to generate photore­
alistic images. This term means the goal is to make the generated images indistinguishable from 
real photographs. To achieve this, one may use models that emulate their real-world counterparts 
and the physical processes that takes place when an image is generated using a camera in the real 
world. 

When an image is captured, what happens is that the light that originates from a source interacts 
with the objects until it reaches the camera. The final image is the result of the amount of light 
that arrived [PHlO]. Light originates from sources such as lamps, smart-phone's screens and the 
sun; then, it propagates and interacts with all the objects within the scene. These interactions may 
change the path and the amount of light that will continue. These changes depend on the object's 
material properties. Finally, the image recorded is composed by the light that reaches the camera, 
which is equal to the amount that originated from a source, interacted with n objects in the scene 
and completed its path towards the camera. 

(a) Milk splash (b) Marble statue of Cleopatra 

Figure 1.1: Two translucent materials: (a) Milk splash /PlaOB/ and {b) a marble statue of Cleopatra /RusOfi/ 

In this project we will focus on the photo-realistic renderization of translucent materials, such 
as marble and milk. These kind of materials are characterized by their soft appearance and a sort 
of blur-effect on the small geometries of the surface, as shown in Figure 1.1. This figure depicts 
the photographs of a splash of milk and a marble statue of Cleopatra in the National Portrait 
Gallery (Washington, DC)1. Another important phenomenon of this kind of materials can be seen 
in Figure l.la, when thin objects with this composition are illuminated from behind: light seems 
to bleed through. 

All these characteristics are produced by the light's path underneath the surface (subsurface 
scattering), as shown in Figure 1.2. Once light enters at some point x, it interacts with small 

1 Both of them were obtained from the Flickr website. 
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2 INTRODUCTION 1.0 

elements that compose the material [Ray71], and which affect light's path, before exiting at some 
other pointy. These elements modify the amount of light that finally exits in different ways: some 
of Lhe energy is lost, because light is absorbed, or it.s path is changed int.o a different. direct.ion 
(out-scattering); and some energy is gained because other paths change direction into the one being 
accounted for (in-scattering). If we were to simulate this process, we would need to track each light 
path; each change of direction or steps; and for each step we would need to check all other paths that 
might change direction into the one of interest. Because of all these possibilities, the computation 
becomes too expensive. Therefore, to generate an image that approximates objects with this kind 
of material a number of simplifications were generated. 

Figure 1.2: Scattering of light in a BSSRDF model /JNNO'lj 

The first simplification assumed that light exited at the same point it entered, as shown in 
Figure 1.3a. The function that represents this behaviour is called Bidirectional Scattering Reflec­
tion Distribution, and it offers a great approximation for materials like matte paint. However, its 
emulation of translucent materials is poor (Figure 1.3b). Therefore, new models arose and the most 
successful ones were based on the diffusion theory. 

Diffusion theory was developed in order to solve the propagation of neutrons in a nuclear fusion 
reaction [GS55]. The solutions to these problem can also be employed to account for part of the 
amount of light that exists translucent materials, because of the duality between energy's and light's 
propagation. The portion that is computed by the diffusion theory solutions represent the light paths 
that have multiple interactions before exiting, called multiple scattering. We still have to compute 
the contribution of light that does not change direction, reduced-radiance, or changes it only once, 
known as single scattering. These last, however, can be computed without much computational cost. 
As a visual aid, multiple and single scattering can be seen in Figure 1.4. It is important to mention, 
as well, that the energy propagation has multiple solutions and therefore different approximations 
can be implemented. 

One famous model that uses one of these diffusion theory solutions is known as dipole diffu­
sion [J MLHOl ], developed by Jensen. This was the first model to present a function that relates 
the amount of light that exits at some point to the one that enters from all different directiom, in 
all the points of the surface. This function is known as Bidirectional Surface Scattering Reflection 
Distribution Function. As can be seen in Figure 1.5, especially in the area around the nose, the 
resulting skin simulation already has a softer look. Though this model achieves the soft appear­
ance of translucent materials it fails to simulate the bleed through of light on thin slabs. This 
phenomenon occurs because a great part of the rays of light that enter the object from one face 
exist through the opposite one. The limitation to reproduce this behaviour is due to the dipole 
model's assumption that the object is semi-infinite. Working with this assumption means that a 
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(a) (b) 

Figure 1.3: BRDF model: {a) Scattering of light in a BRDF /INN07j and {b) Face rendered with a BRDF 
model /INN07j 

(a) (b) 

0 
O O O 

0 0 0 
O o 0 

Figure 1.4: Scattering paths segmentation: (a) Single scattering /RRBG06j and {b} Multiple scatter­
ing /RRBG06j 

good approximation will only occur when the object's depth is immensely bigger than the light's 
step within it. Since the light's step is directly proportional to the scattering properties of the ma­
terial, this limitation varies between one material to the other. As an example, let's say this step 
is around 4mm in milk, any volume with a depth of approximately 8mm to 24mm will suffer a 
poor approximation. In order to surpass this limitation, a new model known as the multipole was 
developed by Donner and Jensen IDJ05]. 

Both of the previously described models were based on the same solution to the diffusion the­
ory problem. This solution assumes that only one energy point-source exists in an infinite media. 
Manipulations of this solution made it possible to represent finite, and even thin, volumes. More 
recently, a new diffusion based model appeared, the directional dipole, proposed by Frisvad et al.. 
This model was based on a different solution to the diffusion theory problem: a solution for a 
ray [MSG05bj in an infinite medium. It introduced a BSSRDF which comes closer to path traced 
references because it takes into account the direction of incoming light, improving the accuracy 
of the analytic model IFHK14]. It, however, maintains the same semi-infinite limitation the dipole 
model suffered. We aimed to remove this limitation by extending the directional dipole solution 
for thin geometries. To achieve this, we developed a new model that produces a more accurate 
approximation of thin slabs based on the directional dipole and the multipole, dubbed directional 
multipole. We obtain a more accurate result in shallow depths because the new model takes this 
depth as a parameter of its calculations. It takes into consideration that part of the rays that hit 
the object might get transmitted through it and exit at the other surface. 
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Figure 1.5: Face rendered with a BSSRDF model /JNN07/ 

1.1 Objectives 

• Create a new model for the realistic simulation of translucent materials in thin geometries, such 
as narrow slabs, by combining the dirpole model, which takes into consideration the direction 
of incident light; and the multipole model, which improves simulation of thin materials. 

• Implement the new model in a rendering system which allows the visualization of the re­
flectance profile. 

• Render a visualization of the reflectance profile of objects composed of shallow depths and 
translucent materials using this implementation. 

• Compare numerical results obtained with other diffusion based models, such as the photon­
beam, directional dipole and multipole. 

• Compare the reflectance profile visualizations rendered using the new model with those ren­
dered using other diffusion based models, such as the photon-beam, directional dipole and 
multi pole. 

1.2 Contributions 

The main contributions of this work are: 

• Comparison of current diffusion based models and evaluation of their advantages and limita­
tions. 

• Development of a new analytic shading model to accomplish realistic renderizations of thin 
slabs and translucent materials. 

• Implementation of an algorithm that uses this new model to obtain a more accurate simulation 
of the reflectance profile given its thin geometry in the open-source renderer PBRT-v3. 

1.3 Work organization 

The remainder of this dissertation is organized as follows: Chapter 2 introduces the background 
concepts necessary to understand the proposed models. These concepts include the renderization 
process and the models used for the simulation of surface and volume scattering. Next, Chapter 3 
introduces the concepts of diffusion theory as an approximation to solve the light transport problem 
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and the derivation of the standard dipole diffusion model. Followed by Chapter 4, which reviews 
the models based on diffusion approximation that succeeded the standard dipole model. The op­
timizations made by each one and their limitations are also included. Chapter 5 then presents an 
overview of the new model for translucent material renderization, based on the directional dipole 
and multipole models. This model generates accurate renderizations of shallow depths and translu­
cent materials, evaluated in Chapter 6. Finally, Chapter 7 contains the conclusions of the tasks 
unfolded as well as ideas for future research. 
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Chapter 2 

Background 

To generate digital images, a process also known as rendering, based on the physical processes 
that happens in the real world, we need to use models that will represent those physical counterparts. 
As we previously mentioned, we need to determine the amount of light that reaches the camera 
from all points on the scene. This computation can be solved by the rendering equation. When 
dealing with translucent materials this equation gets a little more complicated and is known as 
the volume rendering equation. We will start by describing the process without any translucent 
materials, afterwards we will add them to finally obtain the complete process. 

As an aid we have listed the most important symbols that we will use in Table 2.1. 

2.1 Global illumination 

When rendering an image our goal is to simulate all light interactions. We want to be able to 
calculate the amount of light that reaches the camera from any point in the scene. The algorithm 
responsible for this computation is called global illumination. To begin the description of this process 
we need to define the basic terminology of lightning. 

2.1.1 Radiometry 

The terminology used to describe light is called radiometry. The most basic quantity is called 
the photon, which determines the amount of energy in a specific wavelength 1 . The collection of 
photons is called radiant energy, Q, and is computed by integrating the energy of all the photons 
over all possible wavelengths. When we compute the time rate flow of radiant energy we get the 
Flu:r:, <I> = ~ . 

When we refer to the differential flux leaving a surface per differential area we arc talking about 
radiant emittance, /11 = ~ . Meanwhile, the irradiance, E refers to the differential flux arriving at 
a surface location. 

Finally, mdia.nce, L, is equal to the flux per unit solid angle per unit project area. 

where dA.L is the projected area of dA on a hypothetical surface perpendicular to w, as seen in 
Figure 2.1. The unit solid angle, dw, represents the direction of the ray and also a differential area 
of a unit sphere. They are the 3D analog of 2D angles. 

Radiance is the concept that most closely represents the color of an object. It can be thought of 
as the number of photons arriving/ leaving a small area per time. When it is arriving at the point 
we call it incident radiance; otherwise, we call it exitant radiance. Radiance describes the intensity 
of light at a given point in a given direction I.JenOlJ. vVe generally assume that radiance remains 

1 As we know, light has many wavelengths and humans are only able to Jistinguish those within the visible 
spectrum (390 - 700nm). 
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8 BACKGROUND 2.1 

Symbol Description 
X Position 
x' Position of incoming light 
ii Normal at x (always normalized: liil = 1) 
w Direction (always away from surface) 
w' Direction of incoming radiance (always away from surface) 
dw Differential soli<l angle 

L(x,w) Radiance at x in direction w 
Le Emitted radiance 
Lr Reflected radiance 
£; Incident radiance 
~ Flux 
E Irradiance 

J. Bidirectional Scattering Distribution Function 
fr Bidirectioual Rcflectauce Distrilmt.io11 F1111ctio11 
n Hemisphere of directions 

r14,r Sphere of directions 
p Phase function 

1/ Index of refraction 
a, Albedo 

Ua Absorption coefficient 
(16 Scattering codlicie11t 
<It Extinction coefficient 

Table 2.1: Frequently used symbols /JenOlj 

Figure 2.1: Radiance in a surface /PlllO} 

unaltered during its path; however, this assumption offers a poor approximation in participating 
media, such as the one found within translucent materials. 

2.1.2 Light sources 

Light originates from light sources such as fire , the sun, or even a smart-phone's screen. The 
intensity of these light sources is described by their power, <1>5 • For example, given a differentially 
small sphere light source (point) that emits energy uniformly in all directions, we can compute the 
irradiance, E, that reaches a position x on a surface using Equation 2.1. 

E( ) = <I> 8 cos0 
X 4 2 , 

7fT 
(2.1) 

where r is the distance from x to the light source and 0 is the angle between the surface's 



2.1 GLOBAL ILLUMINATION 9 

normal at position x and the direction to the light source. To explain this equation, imagine a 
sphere surrounding the source, as shown in Figure 2.2. The amount of power that will arrive at any 
point. in I.he sphere (differential area surrounding it) will be <I>/(41rr2). This is because all the power 
is being equally distributed onto the surface of the sphere. Meanwhile, the cosine term takes into 
consideration the surface's orientation. A surface that is directly facing the source will receive more 
photons per area that a surface oriented differently [JenO l j. The Lambert cosine law states that if 
the surface's normal ii, is tilted by an angle 0 away from the light ray that arrives at that point, 
then the amount of energy deposited will be factored by cos0 [Lam6O]. 

I , 
' 

I 

I 
I 

, ; 
, , , 

_ ... ----- ... 

, 

' ' ' ' \ 

I , , 
I 

I 

I 

I 

I 
I 

, 
I 

I 

Figure 2.2: Sphere centered al the light point source /PHJO, Clij 

2.1.3 Light scattering 

As light travels trough the scene it might encounter some obstacle, such as a surface, a different 
medium or even a small particle (participating media). When this interaction takes place light may 
be scattered or absorbed. 

BSSRDF 

When a scattering event takes place between a surface and a ray of light, what really happens is 
that the ray enters the material, it scatters within and then exits at a different point on the surface. 
This process is presented in Figure 2.3. This behaviour is best appreciated in translucent materials, 
and is described by the Bidirectional Scattering Surface Reflectance Distribution or BSSRDF. 

The BSSRDF, S, describes the ratio of differential exitant radiance, dLr, at point x in direction 
w with respect to the differential incident flux d<I>i at x' from direction ;, , where w and ;, always 
point away from the surface. This relationship is described in Equation 2.2 

S( - I -,) dLr(x, w) 
x,w,x ,w = -

d<I>i(x',w') 
(2.2) 

This is the most general description of light transport and is the only one that solves the 
subsurface scattering problem present in translucent materials. However, it is costly to evaluate 
since it has eight dimensions to take into account. 
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Figure 2.3: BSSRDF model /PHJOj 

BRDF 

The BRDF or Bidirectional Reflectance Distribution Function is a simplification of the BSSRDF, 
it describes the reflection behavior on a surface at. a single point. In Figure 2.4, we can see a visual 
relationship between the radiance leaving the surface, Lr, in the direction w, as a result of incident 
radiance, Li, from direction;;,_ 

i .... ••' 

Figure 2.4: BRDF model /PHJ O/ 

The BRDF, fr is defined as the proportionality between the differential exitant radiance and 
the differential irradiance dE(x, ;;,). As shown in Equation 2.3. 

f ( 
_ -,) _ dLr(x, w) 

r x,w,w - _ 
dE(x,w') 

dLr(x,w) 
= - . - ' Li(x, w')(iiw')dw' 

(2.3) 

where ii is the normal at x. 
To compute I.he rcflcct.ed radiance at. a point. we need to int.egral.e the incident. radiance, as 
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shown in Equation 2.4. 

Lr(x, w) = l fr(X, w, vecw')Li(X, ,;,) (ifw')<};j', (2.4) 

where (n~') is equal to cos0', and n is the hemisphere of incoming directions at x. 

2.1.4 Rendering equation 

The rendering equation is the mathematical description of global illumination. This equation 
describes the necessary conditions for equilibrium of light transport in scenes with no participating 
media. It can be used to compute the exitant radiance at any point in the model. 

The exitant radiance is equivalent to the emitted radiance plus the reflected radiance: 

by using Equation 2.4 to compute the reflected radiance we get Equation 2.5. 

(2.5) 

2.2 Participating media 

The rendering equation only works in models that do not have participating media. This is not 
the case when rendering a scene with translucent materials. After light rays enter a translucent 
material, the rays behave as in a participating medium. We will review the processes that occurs 
in this kind of environment. 

2.2.1 Light scattering 

When light enters a medium it can either continue its path unaltered or it can interact with 
the particles that compose it. When a photon interacts with the medium it is either scattered 
or absorbed. The parameters that determine which of these processes occur are the scattering 
coefficient, O"s, and the absorption coefficient, O"a- As a beam of light makes its path through the 
medium these interactions can be perceived as changes in the radiance of the ray [JenOl]. 

The change due to absorption interact.ions result. in a reduction of radiance, as defined in Equa­
tion 2.6 

(w · v')L(x,w) = -O"a(x)L(x,w). (2.6) 

The changes in light's direction due to the collision with particles result in out-scattering and in­
scattering. The change due to out-scattering also results in the reduction in the radiance because 
some of the rays are deflected in different directions, as depicted in Figure 2.5 and defined in 
Equation 2.7 . 

Figure 2.5: Differential cylinder filled with out-scallering particles /PH10/ 

(w · v')L(x, w) = -0"8 (x)L(x, w). (2.7) 
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When the reduction due to absorption and out-scattering are grouped together, we obtain the total 
reduction in radiance, defined in Equation 2.8 

(w · v')L(x, w) = - at(x)L(x, w), (2.8) 

where O"t = <Ta+ <Ts. 
As the ray moves through the media, the radiance of other rays that may be scattered into the 

ray's path, as depicted in Figure 2.6. 

• •• -.....----...;;;_--. 
• • • ----'~~ • 1----~• 

• 
Figure 2.6: Differential cylinder filled wil.h in-scalleri.ng particles /PHJOJ 

The change in radiance due to in-scattering is defined by Equation 2.9 

(2.9) 

which is the product of the scattering coefficient, as, and the integral, over the sphere n4,r sur­
rounding x, of the incident radiance and the phase function. The phase function, p(x, w, ;,) , defines 
the probability distributions for scattering in a particular direction. 

Finally, some participating media also presents an increment in radiance due to emission, 

(w · v')L(x,w) = a0 (x)Le(x,w). 

Combining Equations 2.8 and 2.9 plus the changes due to emission, the total change in radiance 
per unit distance is Equation 2.10: 

(w. v')L(x,w) = aa(x)Le(x,w) - O"t(x)L(x,w) + as(x) l p(x,w,;')Li(x,;1
)~'-

!141r 
(2.10) 

2.2.2 Volume rendering equation 

By integrating Equation 2.10 on both sides for a segment of length s, and adding incoming 
radiance from the other side of the medium we get Equation 2.11 . 

L(x,w) = las e-r(x,x'la0 (x')Le(x',;1)dx1 

+ f8 e-r(x,x')as(x') { p(x,w,;')Li(x',;')~'dx' 
lo 14,r 

(2.11) 

+ e-r(x,x+sw) L(x - sw, w) 

where -r(x, x') = J;' <Tt(i)dt or (x' - x)at when the medium is homogeneous. This is known as the 
volume rendering equation and is more complex than the rendering equation. To accurately render 
translucent materials it is necessary to simulate this process within the object. 



Chapter 3 

Diffusion theory 

The volume rendering equation accurately captures the subsurface scattering phenomenon that 
happens within translucent materials [DL 76]. For the simulation of light transport, Harrahan and 
Krueger proposed a division of the scattering events into reduced-radiance, single and multiple 
scattering [HK93] . Reduced-radiance follows the original path of the light until it extinguishes; 
single scattering represents all the paths with only one scattering event within the medium before 
their exit; and, finally, multiple scattering represents all those with more than one scattering event 
before exiting. 

Reduced-radiance and single scattering can be handled with simple approaches; multiple scat­
tering, however, is almost as complicated as the original problem. To solve multiple scattering, Har­
rahan and Krueger proposed an algorithm that follows light paths recursively (path tracing) [HK93]. 
However, this algorithm can become really expensive. To improve upon this shortcoming, a different 
approach was proposed by Jensen [JMLHOlj, based on diffusion approximation. Diffusion theory 
aims to solve the propagation of energy. It was originally developed to solve the propagation of 
neutrons in a nuclear fusion reaction [GS55], but can also be used in the light propagation problem. 

For the following sections, we will describe how the diffusion theory relates to the volume 
rendering equation and how the first model based on diffusion was created. To this end we have 
used Donner's thesis [Don061, Jensen's dipole model article [JMLHOl] and PBRT's implementation 
of the same [PHlO] as a basis. 

3.1 Deriving the diffusion equation 

We will start with the gradient version of the volume rendering equation, Equation 2.10, assum­
ing that materials are homogeneous. Homogeneity means their scattering and absorption coefficients, 
as well as their phase function, will be constant throughout the medium. Renaming the emission 
term as Q, or volumetric source gives the Radiance TI·ansfer Equation or RTE, Equation 3.1, for 
translucent materials. 

(w · \7)L(x,w) = -at(x)L(x, w) + a.,(x) { p(x,w,C.:;,)Li(x, c))~' + Q(x,w), (3.1) ln,,,. 
The phase function p describes the anisotropic behavior of the material. Anisotropic materials 

present a varying appearance that changes according to the illumination direction, for example CDs 
are anisotropic, meanwhile a matte painted wall is isotropic because it looks the same regardless of 
the illumination setting, Since isotropic materials arc much easier to model, the first simplification 
aims to reproduce the original anisotropic material as a new isotropic one. 

3.1.1 Principle of similarity 

The principle of similarity states that anisotropic media with a high albedo, i.e. materials whose 
particles will reflect most incident illumination (as > aa), can be approximated using isotropic 

13 



14 DIFFUSION THEORY 3.1 

models with modified scattering and attenuation coefficients [PHlO j. This approximation leads to a 
simplified solution thanks to the removal of anisotropy while maintaining a good relationship with 
the original model. 

The principle of similarity derives from the observation that after a series of scattering events, the 
distribution of light in anisotropic, high albedo media, resembles a uniform directional distribution. 
This behavior can be appreciated in Figure 3.1 , that shows the distribution of light that has been 
scattered 10, 100 and 1000 times respectively. This distribution is given by: 

_ 1 _ g2n 
Pn(w, w') = _ , 

41r(l + g2n - 2glgn-l 1(-w. w')3/2) 

where g is the anisotropy parameter, generated by computing the average cosine of the scattered 
direction. Its values vary between -1 and l. As n grows large, this converges to the isotropic phase 
function, 1/41r. 

(.., ,..,•)~------

., u 

(al 

·-... 
.... 

...... 

..... 

(b) 

(w • w') 

..... 

,.., . ..; 

.... 

•• • .,. •• " p,.(w,w') 

Figure 3.1: Principle of similarity: (a) Directional distribution of a single incident ray of light after 10 
scattering events in a highly anisotropic medium with the anisotropy parameter g equal to 0.9, (b} 100 
scattering events, (c) 1000 scattering events /PHJUJ 

The new modified scattering and attenuation coefficients are called reduced scattering coefficient, 
a~, and reduced attenuation coefficient, af. Their corresponding dcfinir.ions are: 

a:= a8 (1 - g), 

a~= C7a + a:. 
The reduced coefficients are modified by the anisotropic parameter, which indicates the behaviour 
of the phase function. When g = 0 the phase function is constant and represents an isotropic scat­
tering, when g < 0 the phase function is predominantly backward scattering, and correspondingly 
g > 0 indicates forward scattering dominance JJMLHOl]. Translucent materials are mostly forward 
scattering with g > 0.7, e.g. skin 0.7 < g < 0.9 [VGJSS89j. 

The anisotropic parameter helps ihe coefficients reach the isotropic behaviour. As an example, 
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consider a strongly forward scattering phase function with g ---t 1. At every scattering event, the 
light is most likely to continue along the same path. In this situation, the value of a~ will be much 
smaller than the original a5 , which means that there is less probability of a scattering event, leading 
to light traveling a larger distance in the medium before scattering [Don06]. 

3.1.2 Spherical harmonic expansion 

Radiance is decomposed into reduced-radiance, Lr;, also known as reduced intensity, which ac­
counts for the light rays that are parallel to each other, single-scattering, Ls, which accounts for 
rays that scatter once, and multiple-scattering, Lm, which accounts for those rays that scatter con­
siderably and is, therefore, independent of direction. To solve multiple-scattering a truncated series 
of spherical harmonics is used to approximate the radiance [JMLHOlj. Using the first four terms, 
we get a scalar ¢ and a vector terms E, shown in Equation 3.2. 

(3.2) 

where r represents the distance between the incident point x' and the exitant one x, r/>, called 
fiuence, represents the average amount of light that enters a volume differential, it is related to flux, 
c;l>; and E, called irradiance vector, represents the current of light particles at a point in the medium, 
related to the irradiance, E, the scalar defined in Section 2.1. These parameters are defined as: 

3.1.3 Gradient substitution 

c;I>(r) = { Lm(r, w)dvecw, 
ln1,. 

E(r) = { Lm(r, w)wdw . 
./ fl.4,, 

When the spherical harmonics approximation is substituted in the Radiance Transfer Equation, 
Equation 3.1; and we perform an integration over all directions, w (details in [Ish78]), the result is 
Equation 3.3. 

(3.3) 

where Q1 (r) is the 1st-order source term, Q1 (r) = J82 Q(r,w)wdw, where Q is the source function 
(emission term). In the case of no sources, or when the sources are isotropic, Q1 becomes zero, and, 
therefore, the irradiance vector equals the gradient of the fluence, as shown in Equation 3.4. This 
equation is known as Fick's Law [Fic55J. 

1 
E(r) = --, 'vcp(r) = -D'vcp(r), 

3a1 

where D = p1 is dubbed the diffusion constant. 
"t 

3.1.4 The classic diffusion equation 

(3.4) 

Substituting Equation 3.4 into the Radiance Transfer Equation,Equation 3.1, and integrating 
over all directions w gives the classic diffusion equation, defined in Equation 3.5. 

(3.5) 

where Q0 represents the 0th-order source term, Qo(r) = J8 2 Q(r,w)dw. 
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3.1.5 BSSRDF and the radiant exitance 

The reformulation of the general RTE to the local surface reflection integral gives the subsurface 
scattering equation. 

A BSSRDF accounting only for multiple-scattering is termed Sd, which is simplified as a product 
of a diffuse reflectance profile Rd and a directional Fresnel term [JMLHOl, dlll]. 

S ( . - .1 -,) _ 1 (., -, , ) (I. ·'l)Ft(x,w,r1) 
d x,w,x,w - -Ft x ,W,f/ Rd x-x 4C ( /) 

1T ,p 1 .,, 
(3.6) 

where Ft represents the Fresnel transmittance that affects light at the entry and exit point, 4C,t, is 
a constant needed for normalization, and 17 is the relative index of refraction1. Rd is equal to the 
radiant exitance divided by the incident flux: 

(3.7) 

3.2 The dipole diffusion model 

From the classic diffusion equation we proceed to explain how we can use the solutions to the 
diffusion equation to obtain a functional BSSRDF. 

3.2.1 Diffusion equation solution 

The diffusion equation, Equation 3.5, has a simple solution for a single point light source in an 
infinite medium [GS55]. The medium is assumed to be highly scattering and isotropic, which means 
no Q1 term will be present, resulting in Equation 3.8: 

(3.8) 

known as Green's Junction, where O"tr = J3a;a0 is dubbed the effective transport coefficient. 

3.2.2 Boundary Condition 

Since Equation 3.8 is a solution for an infinite setting, it needs to be modified for a finite volume. 
To this end, a semi-infinite setting is adopted, where the z = 0 plane is located at the material's 
surface and the positive z axis, 2, points into the medium, opposite to the surface's normal, ii= -2. 
This arrangement is depicted in Figure 3.2. 

The diffusion equation needs to be solved subject to a boundary condition to achieve this setting. 
When the two interacting layers do not share the same index of refraction, light is internally reflected 
at the surface. The boundary condition in this case is defined such that the diffuse incident radiance 
reflected down at the surface in the ii direction must be equal to the diffuse radiance in the -ii 
axis [GFTB83j. This is depicted in Equation 3.9. 

{ Ld(r, w)(w · ii)dw = { Fd,-Ld(r, w)(w · -n)dw ln+ ln- at z = 0, (3.9) 

where Fdr is the average diffuse Fresnel reflectance, which describes the amount of light reflected 
from a surface. This term is generally approximated with a simple polynomial expansion [GFTB83, 

1The index of refraction describes how light propagates within a medium 
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n 

0 

,... 
z 

Figure 3.2: Semi-infinite configuration with the positive z axis in the opposite direction to the surface's 
normal 

Rei73]. 

F ~ TJ ---;,r- r;r-, ., 
{ 

-0.4399 + 0.7099 _ 0.3319 + 0.0636 ,,, < l } 

dr - - l.~~
99 + 0.7~99 + 0.6681 + 0.063617, TJ > 1 ' 

(3.10) 

where 17 is the relative index of refraction, i.e. the ratio between the two indices of refraction. 
Using the spherical harmonics approximation, Equation 3.2, in Equation 3.9 gives the outward 

flux: 

</>o + 2ADd¢(r) = 0 
dz 

(3.11) 

where r/Jo is the flux at the boundary and the A term is responsible for taking into account the 
effects of internal diffuse reflection and is defined as: 

(3.12) 

Assuming that the flux decreases linearly outside the diffusing material, then the gradient of 
the function is d</>(r)/dz = -<l>o/(2AD). This assumption leads to flux vanishing at a distance 
2AD beyond the boundary IGS55 , FPB92]. Thus, the approximated surface boundary condition is: 
</>(2AD) = 0. This distance above the surface is often called the.extrapolated boundary IGS55 \. 

3.2.3 Final BSSRDF 

Equation 3.11 establishes that fluence goes to zero at a distance 2AD above the surface; which 
mirrors the falloff of fluence inside the medium as the boundary is approached. This boundary 
condition can be satisfied employing the method of images, which consists of a positive real source 
and a negative virtual source mirrored about the extrapolated boundary. 

According to the assumptions so far established, the medium where the propagation takes place 
is a semi-infinite, highly isotropically scattering material. As light propagates through the material, 
the beam has a reduced intensity Lri(x) = Lie-uix_ This beam can be represented as an infinite set 
of point sources with decaying intensity. The average intensity scattered out of the beam is: 

where o/ = a~/a~ is known as reduced albedo. 
To simulate an incident ray of illumination, a point source is placed at a representative depth. 
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The distance light travels before interacting with a particle is described by the PDF o-~e-u/x. The 

average distance light travels is the expected value of this PDF: 

known as mean-free-path (MFP) jPSW89, FPB92]. The point source is then placed at 1 MFP 

beneath the surface with its intensity equal to ci Li , 

To satisfy the boundary condition, a virtual source is placed above the real source mirrored 

about the extrapolated boundary. Its height is Zv = Zr + 4AD above the surface, as depicted in 

Figure 3.3. The resulting fluence is equal to the sum of the individual contributions from the two 

sources: 
(3.13) 

where dr = J{r2 + z;) and du = /(r2 + z;) are the distances from Pi to the real and mirrored 

source respectively, as seen in Figure 3.3. 

Figure 3.3: Real and vi,rtual source lights, representing an incident ray of light /Don06/ 

Finally, these definitions allow the computation of the diffuse BSSRDF, Sd, dependent of the 

diffuse reflectance profile Rd, as stated in Equation 3.6. Since Rd(r) = d(E(r) · n)/difl, according to 

Equation 3.7 and E(r) = -D'v'</>(r) following Fick's Law, Equation 3.4, we have: 

(3.14) 

where r = Ix - x'I-
Using the solution for fluence due to the dipole configuration, Equation 3.13, gives: 

R ( ) - a:' [Zr(l + 0-trdr)e- Utrdr + Zv(l + <7trdv)e-Utrd.,] 
d r - 4-;r d3 d3 . 

r V 

(3.15) 

A more graphical representation of the diffuse refleciance profile is depicted in Figure 3.4. In 

this plot, we see the values of Rd ( r) for a range of r . 
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The dipole model is well suited for the approximation of optically thick, highly scattering, 
homogeneous materials [D01106]. The problem originates from the semi-infinite assumption. In the 
case of thin slabs 2 , light may exit at the bottom (transmittance) instead of scattering back to the 
top surface. T he dipole model is unable to simulate this situation. 

It is also important to note that inaccuracies increase when the albedo decreases, as depicted 
in Figure 3.4. This error increases because light does not scatter very far from the incident point. 

1o"~·---,----.,....----,-----,---...... --...,...------...-----,-----, 

r, 

0 2 8 10 12 

DlalAnce (nvn) 

Monui Carlo, ct• 0.99 + 
Monte Carlo, u • 0,91 X 
Monui Carlo, u • o.e7 lo: 
Moma Carlo, a • o.S □ 

Oipoio, uc0.99 -
Dlpolo, u•0.91 - - • 
Dipole, u•0.67 • • • 

Dipole, u-0.5 .. .. · · 

18 18 20 

F igure 3.5: Diffusion profiles compared with MC packet tracing for different albedo values /Don06} 

2Thickness of only a few MFP, l M F P ~ 1mm 
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Chapter 4 

Evolution of the diffusion based models 

4.1 Introduction 

Since the development of the standard diffusion model in 2001 [JMLHOl], a series of new 

diffusion-based approximations were presented in the search for optimization and expansion of the 

limits held so far. Figure 4.1 shows a timeline with the publication dates of some of these models. 

We have chosen to display only these because they made significant modifications to the BSSRDF 

model, not just optimizations in the implementation. 

Standard dipole 
diffusion model 

1,J~tLHOl l 

Multlpole 
diffusion model 

IDJO'i l 

Quantized 
diffusion model 

1011 11 

Directional dipole 
diffusion model 

IFH1'14 l 

2001 

2005 

2011 

2014 

2007 

2013 

Sum-of-Gausslans 
approximation of 
dipole and 
multipole profiles 

IDLED71 

Photon diffusion 
model 

ID.1081 

Photon-beam 
diffusion model 

l11CJ J31 

Figure 4.1: Diffusion appro:i:imat-ion models for translucent material renderization timeline 

The multipole diffusion approximat.io11, developed by Donner and Jensen in 2005 IDJ05j enabled 

21 
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the correct renderization of thin slabs and layered materials. When rendering slim volumes, the 
dipole model produced an overestimation of the reflected amount of light, because part of it is 
actually transmitted through the slab. 

Later on, in 2007, Donner and Jensen developed the photon diffusion model [DJ08] aiming 
to cover more geometrically complex volumes and effects such as caustics, among others. Photon 
diffusion used photon tracing to calculate the diffusion of the photons' first interaction (scatter 

event) with the medium. 
In 2011, d'Eon and Irving presented the quantized-diffusion model !dill]. Their goal was to 

obtain a more realistic simulation of light's propagation. For this, they used the extended source, 
which computes the multiple scattering events for a beam as it passes through the medium, this leads 

to a model with multiple positive real sources. It , however, did not have an analytical solution and, 
therefore, a sum-of-Gaussians approximation was employed. Even though this approach provides a 
more accurate result, the methods used are complex, prone to errors, and require a considerable 
amount of storage. Aiming to solve these problems, the photon-beam diffusion model was developed 
by Habel et al. [HC.113] in 2013. This model uses the Monte Carlo (:MC) techniques instead of the 
sum-of-Gaussians approximation. By doing this, they reduced the computational complexity of the 

previous model. 
Finally, in 2014, Frisvad et al. developed the direction dipole model IFHK141, also known as 

dirpole. This model is based on the solution of the diffusion equation for a ray of light in an infinite 
medium IMSG05b), meaning they already take into account the extended source in the diffusion 
equation solution so only one positive source is required. Its main limitation, however, is the same 
as that of the standard dipole model: it lacks support for geometrically complex volumes such as 
thin slabs. 

In the following sections we will detail the models that served as basis for our new directional 
multipole model. These are the multipole model and the directional dipole. For our implementation 

we also used photon tracing, but we will leave these details for the next chapter. 

4.2 The multipole diffusion model 

The multipole model removes the semi-infinite restriction by extending the dipole model using 

multiple dipoles to account for thin geometries. 

4.2.1 New boundary condition 

The dipole approximation assumes that any light ray entering the material will be absorbed or 
returned to the surface (after some scattering events). In the case of thin slabs, light rays might 
get transmitted through them. This phenomenon reduces the amount of light diffusing back to the 

surface, which is why the dipole overestimates the reflectance. 
A new boundary condition is constructed for the bottom surface to overpass this problem, as 

shown in Figure 4.2. As with the top surface, the outward diffuse radiance is equal to the inward 

radiance reflected at the bottom surface: 

resulting into: 
</J(r) + 2AD(n · "v)</J(r) = 0 at z = d, (4.1) 

which means that flux vanishes at depth d + Zb, which is Zb below the bottom surface of the slab, 

as seen in Figure 4.2b. This boundary is called the bottom extrapolation boundary. 
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Extrapolated 
Boundary 

------------- 0 

- Z = Zv ,-1 

:r z = Zr,-1 

- z = Zv, 0 

z ,. 
z 

Z = Zr,O I 
__ d 

z = d + Zb 

(a) - z = Zv,1 

e z = Zr,1 

(b) 

Figure 4.2: Point source configuration: (a) Dipole configuration for semi-infinite slab and {b) multipole 

configuration for thin slabs f Don06/ 

4.2.2 Multipole BSSRDF 

To satisfy Equation 4.1 , the top dipole is mirrored about z = d + Zb, which makes the net 

fluence from both dipoles result in zero at the bottom extrapolation boundary (lower dotted line in 

Figure 4.2b). To maintain the correction of the condition at the top condition boundary, z = -Zb 

(top dotted line in Figure 4.2b), the bottom dipole needs to be mirrored about the top line. This 

process needs to be repeated infinitely in order to have both boundary conditions satisfied IDFG97, 

Wan98J. 
When the indices of refraction of the mediums above and below the slab are the same, the 

extrapolation distances will be the same, and the z-coordinates of the dipole sources will be given 
by : 

Zr,i = 2i(d + 2zb) + Zr,O 

Zv,i = 2i(d + 2zb) - Zr,O - 2zb 

for i = -n, ... , n 

where d is the slab thickness, Zr,o is the position of the original source at one MFP of depth 1, and 

Zb = 2AD is the extrapolation distance. The even i variables try to satisfy the top condition, while 
odd i ones do the same for the bottom one. Finally, the diffuse reflectance profile due to 2n + 1 

dipoles is equal to the sum of their individual contributions. 

(4.2) 

where dr,i = Jr2 + z;,i and dv,i = Jr2 + z;,i are the distances to the dipole sources. Due to the 

1U.1FP = 1/a; 
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fact that the contribution of each dipole decreases as the distance increases, the actual number of 

dipoles required depends on the slab thickness and the optical properties of the material. 

4.2.3 Optimizations and limitations 

The primary optimization brought by the rnultipole model is the capacity to support thin slabs. 
Figure 4.3 presents a piece of parchment illuminated from behind using Monte Carlo photon tracing, 
the dipole model and finally the multipole model. When evaluating the results of the dipole model 
one can perceive that it underestimates the amount of transmitted light while the multipole model 

matches the reference image, which was computed using Monte Carlo photon tracing. 

(a) (b) (c) 

Figure 4.3: Piece of parchment illuminated from behind using (a) Monte Carlo photon tracing as a reference, 
(b} the standard dipole model and (c) the multipole model /D.105/ 

The multipole model is also able to generate profiles for layered materials. Figure 4.4 presents 
the renderization of a human face using the dipole model with Jensen's parameters [JMLHOl ], 
using the multipole model with Tuchin's parameters [ToPoIE07], and, finally, an ear illuminated 
from behind using the multipole model. 

(a) (b) (c) 

Figure 4.4: Human face rendered using the: ( a) dipole model, (b) multipole model and ( c} an ear illuminated 
from behind rendered using the multipole model /DJOS} 

Even though far-source reflectance and transmittance computation improved, near-source com­
putation still presents a high error. Mainly because single scattering dominates radiant emittance 

in this area, and the dipole or multipole method fail to capture this. 
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4.3 The directional dipole diffusion model 

The directional dipole model presents the first BSSRDF that takes into consideration the direc­
tion of incident illumination jFHK14]. Based on the solution of the diffusion equation for a ray of 
light iu a highly scatteriug infinite medium [1ISG05a, MSG05b]. 

Typically, radiance is split into three terms: reduced intensity, single scattering, and multiple 
scattering [HK93, JMLHOl]. Instead, the directional dipole model uses the delta-Eddington (c5E) 
approximation [JWW76]. Including the part of the single scattering that continues along the re­

fracted ray in the reduced intensity term, Lu;; , and the remaining single scattering in the diffusive 
part of the BSSRDF La [FHKl-1]. 

The modified reduced intensity term Lrn maintains the definition of the original reduced inten­
sity term, Lri(x) = Lie-<hx, but uses a different set of scattering properties [JWW76]: 

4.3.1 Diffusion theory for a ray of light 

The solution to the diffusion equal.ion used in Lhe <lirect.ional dipole model works for a ray of 
light in an infinite medium. Solving the diffusion equation for this configuration gives: 

q> e-GtrT ( 1 + UtrT ) 
</J(r, 0) = 41rD _ r_ 1 + 3D r cos0 (4.3) 

where 0 is the angle with the ray direction, as depicted in Figure 4.5 (cos0 = ((x - x') · z)/r) 
[MSG05a, MSG05b]. 

Figure 4.5: Directional dipole configuration /JJCJ13/ 

4.3.2 Directional dipole BSSRDF 

The radiant exitance is calculated using Kienle and Patterson's [KP97] approach, which com­
bines the fluence and its derivative. The gradient of the fluence from the directional solution for a 
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monopole in an infinite medium is: 

where Xr is the location of the monopole and w;. is the direction of the incident ray after refraction. 
The diffuse radiant exitance for a monopole in an infinite medium is : 

where ii is the surface's normal at the exitant point, and C,t, = ¼(1 - 2C1 (17)) and CE = ½(1 -
3C2(1J)). C; are hemispherical integrals of the Fresnel reflectance Fr. The approximations of Ci are 
in appendix A.1. 

For the dipole configuration, some changes were made. The extrapolated distance Zb, generally 

defined as 2AD, changed to a new approximation, which is closer to the right Zb for weakly absorbing 

media with non-refractive boundary jDav58J: 

Zb = 2.131AD/# 

where cl is the reduced scattering albedo. When the real source is mirrored in the extrapolated 
boundary, the displacement of the virtual source becomes 2Azb, 

Since the source is directional, it is also necessary to mirror the direction as well as the origin. 
Instead of using the tangent plane, defined by ;;,, , which is inaccurate when flat boundary assumption 
is violated, a modified tangent plane is used. The normal of this new plane is defined as: 

ii 

ri"x (x-x') 

Ir? x (x-x') I 

,for x = x' 

, otherwise 

The use of this plane eliminates the exaggerated directional effects caused by the assumption of a 

semi-infinite medium. 
Other models m;e the average scattering displacement of the beam source as the representative 

location of the positive source (zr = 1/aD. Since the directional dipole aims to represent the actual 
light ray, no displacement is performed. This choice introduces a singularity in the model for r = 0 
and creates an overestimation in the region close to the singularity. A correction is used to overpass 

this difficulty: 
, for µo > 0 (front-lid) 

, otherwise (back-lid) 
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where µo = -n · w;., and the other cosine term is 

cos/3 = - sin0 r = Jr2 + z~ 
r2 - ((x - Xr) · w--;.) 2 

r2 + zl 

Using all these definitions, the final diffuse radiance profile of the directional dipole is: 

R ( I -, ) _ Rmonopole( . - d ) Rmonopole( - d ) 
dX,W,X - d X-Xr,Wr, r - d X-Xv,Wv, v 

Single scattering BSSRDF 
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(4.5) 

The modified reduced intensity / single scattering term of the BSSRDF SoE can be indirectly 

defined by the radiance due to delta-Eddington's reduced intensity, and the transmitted radiance, 

Lt: 
(4.6) 

where TJ is the relative refractive index and Wr is the direction of the refracted ray given by the law 

of refraction applied to ,;;,_ Then, the 6E modified direct transmission emerging from the medium 
is: 

L ( -) 2 r;, -u,.s L ( - ) 
r,oE .'Z:,W = T/ r21e t Xri,W-r (4.7) 

where Xri = x - sw:r is the only point on the surface that can contribute to this reduced intensity 
term, s is the distance from x to this point, and w:r is the direction of the ray from inside the 

medium refracting to the direction w according to the law of refraction. This term is easily evaluated 

using traditional ray-tracing [FHK14]. 

4.3.3 Optimizations and Limitations 

The directional dipole model takes into consideration the direction of the incident ray that hits 

the surface of a translucent object, which provides a better simulation of light. 
Figures 4.6 and 4.7 present a bunny made of white grapefruit juice and marble respectively. 

The bunnies are rendered using the standard dipole (left) and quantized-diffusion (second from 

left), with single scattering added using unbiased path tracing. There are also renderizations of the 

bunny using the directional dipole model (third from left) and using full path-tracing renderization 

(right), this last one is assumed to be the ground truth. The renderization of the bunny using the 

directional dipole model captures translucency effects that are present in the reference renderization. 

Though the inclusion of directional effects adds some costs in a rendering, the addition of single 

scattering balances these additional expenses, and outweighs them when light sources are small ( or 
singular) [FHK14). 

Figure 4.8 presents the squared differences (root-mean-square-error (RMSE) and structural sim­

ilarity (SSIM)) of the renderizations of each model versus the path-tracing references. 
The limitations of this model originate from the assumption of a planar semi-infinite medium. 

This assumption makes it difficult to represent objects that present thin features, or other complex 
geometries, accurately. This limitation is the reason to generate new models that extend the dirpole 

to lift these restrictions. 
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(a) (b) (c) (d) 

Figure 4.6: Bunny made of white grapefruit juice rendered with (a) full path-tracing renderization (b} the 

standard dipole model, (c) the quantized-diffusion model and, finally, (c} the directional dipole model. Both the 

dipole and the quantized-diffusion model inco1-porat·iny s·inyle-scalle1iny calculated ·using path-trac'irtg /FJJK14/ 

(a) (b) (c) (d) 

Figure 4. 7: Bunny made of marble rendered with (a) full path-tracing renderization (b) the standard dipole 

model, (c) the quantized-diffusion model and, finally, (c) the directional dipole model. Both the dipole and 

the quantized-diffusion model incorporating single-scattering r.a.lculated using path-tmcing /FHK14} 

standard dipole quantized-diffusion directional dipole 

o.o 0.5 1.0 

Figure 4.8: Squared differences (root-mean-square-error (RMSE} and structural similarity (SSJM)) of the 

renderizations of each model versus the path-tracing references. /FHK14/ 



Chapter 5 

The directional multipole model 

We have developed a new model that achieves a realistic simulation of light in translucent 

materials with geometrically thin volumes taking into account the direction of the incident ray. • 

This new model is an extension of the directional model, which takes into account the direction, 

position and normals of the incidence illumination ray as well as the normal of the exitant plane. 

This model achieves a great approximation using an analytic solution. We wanted to obtain this 

level of accuracy for thin volumes as well. 

The principal limitation of the directional dipole model is the assumption that materials are 

semi-infinite. This means that the model assumes the rays of light that enter the surface will most 

likely be absorbed or they might return from the same face they entered. This assumption works 

well in thick geometries, with depth values around the centimeters or meters; however, the results 

when trying to model a thin slab, with depth values around the millimeters, are not as accurate. 

This restriction needs to be lifted to obtain a model that is able to represent complex volumes made 

of translucent materials. 
Just like the multipole lifts this restriction from the dipole model, an extension of the directional 

dipole into a directional multipole would enable a better simulation of thin volumes. 

5.1 Directional dipole kappa 

Before creating a new model based on the directional dipole, we decided to compare it against 

the other models and improve its results. We realized the directional dipole model could be improved 

in the same way the dipole model was. With the help of an heuristic factor named kappa. 

R ( 1 -, ) _ Rmonopole( _ - ") _ Rmonopole(x _ X - d ) 
dX , W,X - d X Xr,Wr,''r d v,Wv, v 

where R~wnopole was defined as: 

R monopole(( _ ) - ) _ 
d X Xr ,Wr,T -

4
~ e:.:r [cq1(1J) (~ + 3(1 + atrr)(x - Xr) · w-;. )-

CE(7J) ( 3D(l + O"trr)w-;. · ii -

(1 + O"trr)((x - Xr) · ii) + 

{3D3(1 + O"tr:)2 + (Utrr)2 (x - Xr). w-;.)(x - Xr). ii,)]. 
Adding a factor to modulate the overestimation around the surface, where single scattering 

dominates, a better result was obtained. 

29 
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The kappa modulation factor is equal to the probability that light is not scattered before exiting 
the surface. This is why it works so well. 

The results of adding the kappa factor can be seen in Figure 5.1. The original directional model is 
represented by the purple line and is the farthest away from the Monte Carlo simulation (assumed as 
the ground truth) represented by the black line, both when not taking into account single scattering 
(first column) and when it is taken into account (second column). Meanwhile, when the kappa factor 
is used, represented by the yellow line, to modulate the directional model, the results are the best 
analytic approximation. The photon-beam model, represented by the green line, uses Monte Carlo 
techniques that require an expensive integration of the solution along the refracted ray[FHK14 I. 
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Figure 5.1: Radiance profile for different diffusion based models with <18 = 1, <1a = 0.1 and g = 0. 

5.2 Directional multipole 

3.0 

To improve the directional dipole model, we added a new boundary condition to the bottom 
surface. Some of the light that enters the material gets transmitted, reducing the amount of light 
diffusing back to the surface, ignoring this situation overestimates the reflectance. 

An important assumption is that diffuse light transmitted through the slab docs no return, as 
was assumed in the multipole model. This means that the upward diffuse radiance is equal to the 

reflected downward one at the bottom surface: 

{ Ld(r, w)(n · w)dw = Fdr { Ld(r, w)(-n · w)dw at z = d ln- ln+ 
Establishing that the flux vanishes at depth d + Zb,bottom, which is equal to the top boundary 

distance, except the refraction parameter, A, is calculated using the refractive index of the media 
underneath the bottom surface of the slab, 

1 - CE(T/bottom) 
Abottom = ( ) C<I> 1]botto-m 
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where CE and C<t, depend upon the hemispherical integrals of the Fresnel reflectance Ci previously 

mentioned. 

z = - 2z1, 
Extrapolated 

____________ Boundary _ 

Extrapolated 
. z = - Zt, __________ Boundary 

z = - z1, 

z=O 

· --- ·_r------------- -----
z = a+ Zt, 

(a) 

\ 
(b) 

Figure 5.2: Directional dipole configuration for semi-infinite slab ( a) and directional multipole configuration 

for thin slabs(b) /Don06/ 

Because of the method of images, the sources are mirrored about the top and bottom bound­

aries; both boundary conditions are simultaneously satisfied when there is an infinite array of 

dipoles [DFG97, Wan98j, as depicted in Figure 5.2b. However, since the contribution of each source 

diminishes as the distance to the point of interest grows, an approximation of a finite number of 

sources achieves a good result. Assuming the surface is at the z = 0 plane, the n7• = -z and that 

Zr,o = x', the positions of each dipole are, therefore: 

Pr,k = z~o - 2i(d + Zb,tap + Zb,bottom) * n'* 

Pv,k = z~o - 2i(d + Zb,tap + Zb,bottom) * n'* + 2zb,tap * n'* 

fork= -n, ... ,n 

where each Zb is computed using the appropriate A. The reason why the 2i term is negated is 

because the n'* is pointing in the opposite direction to the z, as was previously stated. Negating 

these terms make the location of the sources correct according to the z axis. 

When mirrored by the boundaries, the direction for each positive source light remains as Wr and 

for each negative one as Wv. 

Wv,i = Wv 

for i = -n, ... , fi. 
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5.2.1 Directional multipole BSSRDF 

The reflectance due to 2n + 1 dipoles used to satisfy both boundary conditions is equal to the 
summation of their individual contributions due to the linearity of illumination, giving us: 

n 

R ( 1 ~, ) _ " Rmonopole( - d ) Rmonopole( - ,1 ) 
d X ,W ,x - L..J d X - Pr,k,Wr, r,k - d X - P,,,k , Wv,u-v,k (5.1) 

k=-n 

where dr;,,,k are the distances to the dipole sources from a given point of interest x, and Pr/v,k is 
the position of each source. 

It is important to mention that when n = 0, the result of the directional multipole equation is 

the same as the directional dipole. 



Chapter 6 

Evaluation of the directional multipole 
model 

We tested our new method by computing the radiance profiles values obtained for different 

optical parameters and a range of radial distances. These results were compared to those achieved 

by the improved dipole, the multi pole, the photon-beam, and the directional dipole diffusion models. 

The Monte Carlo implementation used as the ground truth was the Monte Carlo for Multiple 

Layer media of Lihong Wang et alfLL07j. The values of the absorption and scattering coefficients of 

the materials tested were the ones previously calculated by Jensen [JMLHOl] and those calculated 

by Narasimhan et al. [NGD+06j. They are listed in Table 6.1. We chose these materials because 

they exemplify the different configurations of scattering properties. The apple and marble have 

significantly bigger scattering values compared to their absorption counterparts. Meanwhile, ketchup 

has higher values in absorption than scattering. It is important to test our model in the different 

ranges of scattering properties; however, it is important to consider that multiple scattering is most 

significant in materials with an albedo close to one. In materials with lower albedos, the illumination 

is mostly characterized by single scattering. 

R G B 
as= 2.29 as= 2.39 as= 1.97 

Apple aa = 0.003 aa = 0.0034 aa = 0.046 

a= 0.99 a= 0.99 a= 0.98 

mfp = 0.436 mfp = 0.418 mfp = 0.496 

Us= 0.18 as= 0.07 as= 0.03 

Ketchup Ua = 0.061 aa = 0.97 aa = 1.45 
a= 0.75 a= 0.07 a= 0.02 
mfp = 4.149 mfp = 0.962 mfp = 0.725 

Us= 2.55 as = 3.21 Us= 3.17 

Whole-milk <ia = 0.0011 aa = 0.0024 <ia = 0.014 

a= 0.99 a= 0.99 a= 0.99 

mfp = 0.392 mfp = 0.311 mfp = 0.264 

Table 6.1: Scattering properties of translucent materials: scattering and absorption coefficients in mm-1 

{as, aa), their albedo (a:), and their mean free path mm (mfp) 

The results of these tests can be appreciated in Figures 6.1, 6.2 and 6.3, which shows the results 

for apple, ketchup and whole-milk materials. The closeup to head of the function in the apple and 

whole-milk materials can be appreciated in each of these figures. 

33 



34 

-;:: 
~ . .. 

~ . .. 

-;:: 
~ 
:. 

EVALUATION OF THE DIRECTIONAL MULTIPOLE MODEL 6.0 

10• - llrMI•~ ---10• --_......, ..... ~ ------104 

101 

100 

10· 2 

10·• 
10-6 

10·• 
0.000 0.002 0,004 0.006 0,008 0.010 

(a) Multi+single scattering, channel R 

10• ------10• --- ........... ~ ------10• 

101 

10° 

10· 1 

10·• 

10·• 

10· 1 
0.000 0.002 0.004 0.006 0.008 0.010 

( c) Multi+single scattering, channel G 

10• ------10• ------------10• 

101 

10• 

10•1 

10 .. 

10· • 

10·• 
0,000 0.002 0.004 0.000 0.008 0.010 

( e) Multi+single scattering, channel B 

10• TT"""-- - -------------~ --------- ~,Qftf!Dlff.--
- D111ellWIIIIO,,.., -~--

10• +---.---,----.--~-~--,----,----l 
0.00000 0.00025 0.00050 0,00075 0,00100 0,00125 0,00150 0.00175 0.00200 

(b) Multi+single scattering closeup, channel R 

10' n-------- ---- -------, 
-Mwit.c.r .. 
__ ..,. -­_......,,..,_"'~ ------

10° -t-- -.--...... ---,.----,---,--...... ---,.-----1 
0.00000 0.00025 0,00050 0.00075 0,00100 0.00125 0,00150 0,00175 0,00200 

( d) Multi+single scattering closeup, channel G 

LO'-.,-------- - ------ - ---- ---, 

101 

101 

_ .....,....,. -­_ ,.,._ .. "' ~ ------

10• +-- -.---,----.--~--.---,----,---; 
0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0,00150 0,00175 0.00200 

(f) Multi+single scattering closeup, channel B 

Figure 6.1: Diffusion profile comparisons for an apple's RGB channels. ( a) and {b) correspond to the R 
channel with O's = 2.29, O'a = 0.003; {c) and {d) correspond to the R channel with O's = 2.39, O'a = 0.0034; 
finally, (e) and(!) co77'espond to the R channel with 0'8 = 1.97, Cla = 0.046 
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(e) Multi+single scattering, channel B {f) Multi+single scattering closeup, channel B 

Figure 6.2: Diffusion profile comparisons for an ketchup's RGB channels. { a) and {b} correspond to the R 
channel with as = 0.18, aa = 0.061; (c) and {d} correspond to the R channel with u8 = 0.07, <Ia = 0.97; 
finally, (e) and(!) correspond to the R channel with <Is= 0.03, <Ia= 1.45 
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(e) Jvlulti+single scattering, channel B (f) Multi+single scattering closeup, channel B 

Figure 6.3: Diffusion profile comparisons for whole-milk's RGB channels. (a) and (b) correspond to the R 

channel with as= 2.55, a 0 = 0.0011; (c} and (d} correspond to the R channel with a. = 3.21, a 0 = 0.0024; 

finally, (e) and(!) correspond to the R channel with as= 3.77, aa = 0.014 

In these graphs the dipole based models: Dipole, Photon-Beam and the dirpole, represented by 

the yellow, green and purple, fail to represent the diffusion reflectance profile. They overestimate 

it because they assume the rays that penetrate the surface are absorbed or exit from the same 

face they entered. This, however, is not the case with the multipole based models: Multipole and 

directional multipole. As can be seen, the directional multipole model, represented by the blue line, 
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presents an overestimation when r is small. After this region its values improve to the point where 
it is the best fit. 

In order to improve the result of our model we decided to apply a modified kappa factor to 
modulate the overestimation around the incident point. Our modified factor is defined as: 

When the modulating factor is used, the results improve significantly. The results of adding the 
kappa factor can be seen in Figures 6.4, 6.5 and 6.6. 



38 

ii: . -

-;:: 
ii: 
:. 

~ 
:. 

EVALUATION OF THE DIRECTIONAL MULTIPOLE MODEL 6.0 

101 
-~(M,;, ---106 --_ ,...,....,,_~ 
- Di~O,,... ---10• 

10• 

100 

10· • 

10· • 

10· • 

10·• 
0.000 0,002 0.004 0.006 0.008 0 .010 

(a) Multi+single scattering, channel R 

101 ------10• --- lltlal#~191~ 
- Di'"""9110..,.. 

0 ---10• 

10' 

10• 

10· • 

10 · • 

10-1 

10· 1 
0.000 0.002 0.004 0,006 0.008 0.010 

( c) Multi+single scattering, channel G 

101 

10• 

10• 

10' 

10• 

10· • 

10-< 

10· • 

10· 1 
0,000 0,002 0.004 0.006 

__ ,... ---_ ....... _,.... .. _~ -------

0.009 0.010 

(e) Multi+single scattering, channel B 

10• ,-------------- -- -- =- --, -----_ ,,,__,....,.~ 
- 0i,.. ...... ~ 
- o,~~ 

10• 

10° +---.------.--,...--- .,....- ---,.------.--....----1 
0.00000 0,00025 0.00050 0.00075 0.00100 0.00125 0,00150 0,00175 0,00200 

(b) Multi+single scattering closeup, channel R 

10• r---- -------------~ _,...,,,.,c., .. 

10• 

_ _,...,. -­_ .,.....lum~ 
- D11tdllnlll>,­

___ 

10° +-- --.--...... ---.,---.,..-- -.-- --r-- ,----l 
0,00000 0.00025 0.00050 0.00075 0,00100 0,00125 0.00150 0.00175 0.00200 

(d) Multi+single scattering closeup, channel G 

10• ..----------------- --, ---- "'-""'"'°'""' --- ~ ...... °"""'""' ------

--.:::::::: 

10• +----.-- ...... - -----.,..-- ---,.----r--,----l 
0.00000 0.00025 0,00050 0.00075 0.00100 0,00125 0,00150 0,00175 0.00200 

(f) Multi+single scattering closeup, channel B 

Figure 6.4: Diffusion profile comparisons for an apple's RGB channels with factored model {!i(r)). {a) and 

(b} correspond to the R channel with as = 2.29, aa = 0.003; (c) and (d) correspond to the R channel with 

Us= 2.39, aa = 0.0034; finally, {e) and (!) correspond to the R channel with as= 1.97, aa = 0.046 
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Figure 6.5: Diffusion profile comparisons for ketchup's RGB channels with factored model (K-(r)) . (a) and 
(b) correspond to the R channel with as = 0.18, aa = 0.061; (c) and (d) correspond to the R channel with 
a8 = 0.07, aa = 0.97; finally , (e) and (f) coTTespond to the R channel with 178 = 0.03, aa = 1.45 
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Figure 6.6: Diffusion profile comparisons for whole-milk's RGB channels with factored model {1,,(r)). {a) 
and {b) correspond to the R channel with as = 2.55, a 0 = 0.0011; (c) and {d) correspond to the R channel 
with a 8 = 3.21, aa = 0.0024; finally, {e) and {J) con-espond to the R channel with <Ts= 3.77, <Ta= 0.014 

The kappa factor is a scale of the pdf that light is not scattered before exiting the surface. 

Adding this factor increases the accuracy of our model, making it the closest one to the Monte 

Carlo simulation, represented by the black line. 
Until now we used the distance between the real source to the output point as part of our 

calculation. However, the directional dipole model uses a correction to control a singularity present 
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when r = 0. 

{

r 2 + Dµo(Dµ ,o - 2zbcosf3) , for 11,0 > 0 (front-lid) 
d2 -r -

r 2 + 1/(3a1,)2 , otherwise (back-lid) 

We use this approximation when the distance between the input and output point is less than 
2/at, This generates a small step in the values obtained around 2/at, but the magnitude of this 
step does not affect the final result, it also could be smoothed by the means of another factor, but it 
was not valued as important. The range of application of this correction was found through a series 
of tests with different materials. The results of using this correction can be seen in Figures 6.7, 6.8 
and 6.9. 
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Figure 6.7: Diffusion profile comparisons for an apple's RGB channels with factored model {,;,(r)) and 
corrected d(r). (a) and {b} correspond to the R channel with as= 2.29, aa = 0.003; (c) and {d) correspond 
to the R channel with as = 2.39, aa = 0.0034; finally, (e) and(!) correspond to the R channel wit.has = 1.97, 
aa = 0.046 



6.0 

10• - -= ---10• --_ ,,_.,,...,,~ ------104 

101 '---.., 
ii: 10• 
:. 

10-1 

10 .. 4 

10-• 

10· • 
0,000 0.002 0,004 0,006 0,001 0.010 

(a) Multi+single scattering, channel R (us = 0.18, 
O'a = 0.061} 

lo' --------10" _ ,.__,...,,.~ ------10• 

lo' 
.., 
ii: lo" 
:. 

10-1 

10'"' 

10"' 

0,002 0,004 0,006 0,001 0.010 

(c) Multi+single scattering, channel G (us = 0.07, 
O'a = 0.97) 

lo' - -""' ---10• --_ ....._..,,..~ 
- r,w .. --.,o,,,.i,, ---lo' 

lo' 
I: 
ii: lo" . .. 

10-• 

10- 4 

10-• 

0.002 0,004 0.006 0.001 0.010 

(e) Multi+single scattering, channel B (O's = 0.03, 
O'a = 1.45} 

i 
:. 

I: 
ii! 
:. 

lo' r-.......---- ----------------, 

10- 1 _ _,,.., -----_ ...,_.,,......,~ 
- o.~~ - I),,~,..... 

10-1 +---.--......... -~.-----.------r--.---( 
0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0,00175 0,00200 

(b) Multi+single scattering closeup, channel R 

101 

__ ..,. 

------ ~htlf'lo-.... ------101 

10• 

10- 1 

( d) Multi+single scattering closeup, channel G 

101 - -""' -----_ ,.,.......,.°"""""" ------101 

10• 

10- 1 

10 -1 ..--~-~-~--""""""-~-~-~- ----l 
0.00000 0.0002S 0.00050 0.00075 0.00100 0.00125 0.00IS0 0,00175 0.00200 

(f) Multi+single scattering closeup, channel B 

43 

Figure 6.8: Diffusion profile comparisons for ketchup 's RGB channels with factored model (x(r)) and 
corrected d(r). (a) and (b) correspond to the R channel with O's = 2.29, O'a = 0.003; {c) and {d) correspond 
to the R channel with O's = 2.39, O'a = 0.0034; finally, {e) and {J) co1Tespond to the R channel with O's = 1.97, 
O'a = 0.046 
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Figure 6.9: Diffusion profile comparisons for whole-milk's RGB channels with factored model {K(r)) and 
corrected d(r). (a) and {b) correspond to the R channel with <rs= 2.55, O'a = 0.0011; {c} and {d} correspond 
to the R channel with <rs= 3.21, a0 = 0.0024; finally, {e) and {f) car-respond to the R channel with O's= 3.77, 
0'0 = 0.014 
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6.1 Rendered image evaluation 

The following images were rendered using the photo-beam model, the directional dipole model, 
the multipole model and our directional multipole. They are visual representations of the reflectance 
diffusion profile. Vile are using the results of the rnultipole model as the ground truth since this is 
the model that best represented thin slabs. For our tests, we used homogeneous materials such as 
grapefruit juice, ketchup and marble, using the optical parameters previously detailed in Table (l.1 . 

The methods used for analysis are Mean squared error (MSE), Structural similarity (SSIM) 
and finally the Visual Difference Predictor for HDR images standard (HDR-VDP-2). The 
MSE gives a numerical punctuation of dissimilarity between two images, the smaller this value 
is, the more similar they are. This values is equal to the average of the squares of the deviations 
between these images. The SSIM indicator produces an image that shows darker color in the regions 
with values more distant to each other. Meanwhile, the HDR-VDP-2 allows us to compare a pair of 
images and measure I.lie probabilit.y [,hat, t.he differences between t.hc images is visible for an average 
observer; red denotes great probability and blue less. 

Figure 6.10: Directional multidirpole grapefruit 
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Figure 6.11: Multipole grapefruit 

As we can see the results from the directional multipole model come closer to the results from the 
multipole model. The directional dipole and photon-beam and directional dipole are more closely 
related to each other since they share the same assumptions. 
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Mean Squared Error Structural Similarity HDR-VDP-2 

(a) MSE:75.47546 (b) SSIM:0.98979 (c) 

(d) MSE:103.94792 (e) SSIM:0.98707 (f) 

(g) MSE:63.37565 (h) SSIM:0.99001 (i) 

Table 6.2: Comparing reflect.ion profile results for gra.pefru.it. lo the results obtained by I.he mullipole model; 
first. line corresponds to the diffusion beam, second line is the directional dipole, finally, the third one corre­
sponds to the directional multipole. The first column shows the results for each model and their Mean Square 
Error, the second column the Structural Similarity results, and, finally, the third one the Visual Difference 
Predictor 
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Figure 6.12: Directional multidirpole ketchup 
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Figure 6.13: Multipole ketchup 

As we can see the results from the ketchup material do not differ much from one another. This 
is because the resulting profile from the diffuse reflectance is mostly influenced by single scattering. 
Since single scattering is computed in the same way for all models, the resulting values are closely 

related. 
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Mean Squared Error Structural Similarity HDR-VDP-2 

(a) MSE:1.92571 (b) SSIM:0.99897 (c) 

(d) MSE:10.65553 (e) SSIM:0.99779 (f) 

(g) MSE:7.28456 (h) SSIM:0.98923 (i) 

Table 6.3: Comparing reflection profile results for ketchup to the results obtained by the multipole model; first 
line con·esponds to the diffusion beam, second line is the directional dipole, finally, the thir-d one co1nsponds 
to the directiona.l mullipole. The first column shows lhe resuU.~ J or each model a.nd their Jvfean Square Error, 

the second column the Structural Similarity results, and, finally, the third one the Visual Difference Predictor 
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Conclusions 

This dissertation evaluates further expansions in the image synthesis of subsurface scattering 
materials using the diffusion based approximation. It has introduced a new diffusion based model 
of light transport in thin scattering materials, we've dubbed it the directional multipole because it 
is a mixture of the dirpole diffusion model and the multipole model. We have shown that this new 
model achieves a better approximation of the reflectance profile as the distance from the incident 
point increases. We are not discouraged by the overestimation near the incident point because this 
issue can be fixed using a step function with different kappa factors according to the distance to the 
incident point. We found that this approximation is of most importance in materials with albedo's 
close to one, where multiple scattering plays an important part in illumination. 

We have also given a clear and detailed introduction to diffusion theory and a full derivation 
of multiple diffusion based models, starting from the dipole model until the directional dipole. 
This enabled us to analyze the limitations and improvements each of these models brought to 
the synthesis of translucent materials. Without this we would not have been able to notice where 
they could be extended and improved upon. Specifically, we found that the directional dipole is 
limited by its assumptions of semi-infinite geometry, in thin slabs rays may exit at the other surface 
and therefore this approximation leads the result to an overestimation. Meanwhile the multipole is 
still a basic representation of the incident light, it represents the diffuse illumination with a point 
underneath the surface. The directional multi pole method brings together the best of the directional 
dipole and the multi pole, which allows the improved representation of translucent material objects 
with shallow depths. The directional multipole uses the same diffusion solution that the directional 
dipole does, i.e. the solution for a ray of light, which is a better representation of the rays of light 
when compared to the point representation used by older models. When we extend this solution to 
control thin slabs while maintaining the gained accuracy for non-normal incident rays, we obtain a 

model that is able to provide a better result than those models previously used. 
We have compared the results of the directional multi pole method with Monte Carlo simulations 

using parameters previously published as examples of its performance, and have obtained uplifting 
results. Our model presents the best fit analytically. We have also given several examples of rendered 
images to improve the visualization of the reflectance profile. 

As we showed in Chapter 4, the diffusion approximation based models have evolved in order to 
provide more accurate solutions to the representation of translucent materials. We combined the 
best qualities of two of these methods in Chapter 5, but there are still limitations that the new 
directional multipole method cannot overcome. 

Just like the multipole model, there is a restriction on the minimum thickness of the slab, it 
should be at least two mean free paths thick because the positive source of the 0th order dipole pair 
must be contained within it. The restriction due to the assumption of high albedo is also present 
in our model. This restriction is present in all diffusion based models since it is intrinsic to the 
approximation. However, in the cases where a low albedo is present, single scattering predominates 
and an approximation ignoring multiple scattering can be more than enough. 

51 
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The most obvious solution to overcome these limitations is the real path tracing of the inter­
actions beneath the surface. Currently, the improvements in GPU and CPU make this approach a 
possible option. However, in some environments like the gaming industry it might be an overkill to 
perform such an expensive computation. This is why creating even better approximations is still a 
valid and important research. 

It would also be interesting to explore whether we can create a deep learning model that is able 
to predict with increased accuracy and efficiency the diffuse radiance profile. In recent years a lot of 
complex functions have been approximated using deep learning models. It might be interesting to 
test whether the Radiance Transfer Equation can be solved using this approach. Though diffusion 
theory is a great approximation it might be possible that it has reached its limit for translucent 
material representation. 
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Appendix 

A.1 Hemispherical integrals of the Fresnel reflectance 

2C1 ~ 

3C2 ~ 

l 
0.919317 - 3.479377 + 6.75335772 - 7.80989773+ 

4.98554174 - 1.36881775 ' 

-9.23372 + 22.227277 - 20.9292772 + 10.2291773 -

2.54396774 + 0.254913775 ' 

l 
0.828421 - 2.6205177 + 3.36231772 - 1.95284773+ 

0.236494774 + 0.145787775 ' 

-1641.1 + ~ -~ + 1376·53 + 1213.6777-
7/ 7/ 7/ 

568.556772 + 164.798773 - 27.0181774 + 1.91826775 ' 

A.2 Importance sampling techniques 

71 < 1 

77 2:: 1 

77 < 1 

77 2:: 1 

(A.l} 

(A.2} 

• Exponential Sampling. An exponentially decreasing sampling with a PDF proportional to the 

source term Q(t). Generally used in path tracing, photon mapping, and photon diffusion for 

choosing propagation distances in homogeneous media. 

w1'th df (t ) 'e-a-; t; P exp i = at (A.3) 

where {i E (0, 1) is a uniform random number. This PDF only depends on t. This means 

the dipole sources are placed at different depths and are weighted according to the inverse 

exponential PDF, canceling out the exponential variation in Q(t). 

• Equiangular Sampling. At each p, it distributes the samples uniformly in the angular domain 

subtended by the incident beam. This method was proposed by Kulla and Fajardo [KF12]. 

ti = -h tan 0; with (A.4) 

where his the distance between p and the beam w, 0a and 00 are the start and end angles of 

the integration in the angular domain, and 0i = lerp(0a, 01,, {;) . 

Multiple importance sampling (MIS) [VG95] is employed since there are two sampling strategies 

that perform well in different situations. The exponential sampling represents well the tail of the 

pro.file with as little as 1 sample; while the equiangular sampling represents the peak well even with 

just 1 sample. Since the region for which each strategy works better (tail vs. peak) is known, a 
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modified MIS weighting heuristic is tailored: 

N 
Rd~~ L f(p,w,ti)Wcxp(ti,P) 

N i=l Wexp(ti,p)pdfcxp(ti) + Wexp(ti,p)pdfequ(tilP,W) 

N 
1 '""" J(p,w,tj)Wequ(tj,P) +- L., 
N j=l Wexp(tj, p)pdfexp(tj) + Wcxp(tj, p)pdfequ (ti IP, w) 

(A.5) 

where Wexp(ti,P) = clamp((p - a)/(b - a), 0, l) and Wequ(ti,P) = l - Wexp(ti,p). The weighting 
strategy dedicates samples entirely to the superior PDF except in a small transition zone (p E [a, bl) 
where it smoothly weights the two strategies. The transition zone is centered around one diffuse 
mean free path, with a= 0.9/af and b = l.l/a~. 
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