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Abstract

SOBRENOME, A. B. C. IMPROV: An architecture for distributed and reliable execu-
tion of dynamically built service choreographies. 2017. 88 f. Tese (Doutorado) - Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Adaptivity is a capability that enables a system to choose amongst various alternatives to sat-
isfy or maintain the satisfaction of certain requirements. The criteria of requirements satisfaction
could be pragmatic and context-dependent. Contextual Goal Models (CGM) capture the power of
context on banning or allowing certain alternatives to reach requirements (goals) and also deciding
the quality of those alternatives with regards to certain quality measures (softgoals). It is used to
depict facets of the decision making strategy and rationale of an adaptive system at the preliminary
level of requirements. In this thesis we argue the case for pragmatic requirements and extend the
CGM with additional constructs to capture them and allow their analysis. We also develop an auto-
mated analysis which aids the planning and scheduling of tasks execution to meet pragmatic goals.
Moreover, we evaluate our modelling and analysis regarding correctness and performance. Such an
evaluation showed the applicability of the approach and its usefulness in aiding sensible decisions.
It has also shown its capability to do so in a time short enough to suit run-time adaptation decision
making.

Keywords: Service Composition, Fault Tolerance, Context Aware.
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Chapter 1

Introduction

Nowadays, the usage of web services as building-blocks for larger applications and the inte-
gration of different applications is already wide-spread in the industry. The BPEL language and
execution engines allows for using and integrating web services into highly complex and specialized
applications in a predetermined way.

However, with the advent of wearable computing, mobile devices and ubiquitous computing,
the computational environment now transcends from a traditional computer-based system into an
ever-present and ever-changing system with elements entering and leaving the vicinities of an actor
many times over. In such a scenario, the service-oriented architecture also presents itself as a very
interesting alternative to grasp and collaborate with adjacent resources to achieve greater goals,
given its ability to describe functionalities over a registry via WSDL files. This means that the SOA
architecture can play a major role in supporting self-adaptive systems, allowing them to collaborate
in possibly unplanned manners in order to achieve a goal.

In this sense, we introduce a novel way to describe actors’ roles. By combining state-of-the-art
requirements engineering techniques to depict systems’ behaviours and an underlying architecture
to convert those into a service choreography, we enable dynamic, unforeseen, distributed and fault-
tolerant collaboration between actors

1.1 Motivação

Nowadays, the usage of web services as building-blocks for larger applications and the integration
of different applications is already wide-spread in the industry. The BPEL language and execution
engines allows for using and integrating web services into highly complex and specialized applica-
tions in a predetermined way. The almost omnipresence of computational services and resources
made possible for information to run freely to the point of the arrival of concepts such as wearable
computing, mobile devices and ubiquitous computing and the Internet of Things (IoT). This means
that the computational environment now transcends from a traditional computer-based system into
an ever-present and ever-changing system with elements entering and leaving the vicinities of an
actor many times over.

In this new context, systems integration brings about a whole new set of challenges and oppor-
tunities with computational systems overcoming the computer systems’ frontiers and being widely
spread as a part of people’s daily routines. This means that the elements of such systems are ever-
more subject to an infinite variable environment, which may impact the system’s functionalities.

Capturing such variability is a novell challenge for requirement engineers and several models have
been proposed to grasp this variability. But capturing the variability is not enough if we cannot
integrate the resources available and this is where the SOA architecture comes in handy. SOA
provides the means for system interoperation without the need for modifications in the system’s
inner working.

In such a scenario, the service-oriented architecture also presents itself as a very interesting
alternative to grasp and collaborate with adjacent resources to achieve greater goals, given its ability

1



2 INTRODUCTION 1.1

Figure 1.1: A goal model for dispatching an ambulance to assist a patient

to describe functionalities over a registry via WSDL files. This means that the SOA architecture
can play a major role in supporting self-adaptive systems, allowing them to collaborate in possibly
unplanned manners in order to achieve a goal.

In this sense, we introduce a novel way to describe actors’ roles. By combining state-of-the-art
requirements engineering techniques to depict systems’ behaviours and an underlying architecture
to convert those into a service choreography, we enable dynamic, unforeseen, distributed and fault-
tolerant collaboration between actors

1.1.1 Leading example - Assisted Living

A possible use case scenario comes from the assisted living environment. Imagine a system
for early emergency response for elderly people. This system would need to interact with several
different actors (mobile device, hospital, ambulance dispatch, health-care insurance, among others).
However, the manner through which such actors may interact will depend on the context they
belong to. For instance, the actor “health-care insurance” would only be involved in the scenario if
the patient is himself insured; the ambulance actor will be expected to arrive at the scene faster
whenever a patient is suffering from, let’s say, a cardiac arrhythmia and so on.

Let’s take the example presented in Figure 1.1. The ambulance dispatch process to provide a
patient with assistance starts up by defining the actual location of the patient, either through the
already stored data or through geolocation data gathered from the patient’s smartphone. Then, it
must trace a route from the hospital to the patient, get to the patient’s location, choose the hospital
to take the patient in and finally report the patient’s condition to the selected hospital so that it
can prepare itself for receiving the patient.

However, take notice of all the contexts involved in this workflow. The amulance would depend
on a mobile connection to access the internet that may not be available in remote locations. The
“unavailable connection” context can impact the applicable alternatives making it impossible to
look up the patient’s location on an online geographic data source or to monitor real-time traffic.
On another front, taking the patient to a nearer private hospital may be faster but it can only be
done if the patient is insured, otherwise it is necessary to deliver the patient at a public hospital.

Another aspect to be considered is that the very same tasks may be implemented by very
different services. Let’s consider the “Online geographic data search” task: it can be provided both
by Google (Google Maps) and by Microsoft (Bing Maps) and any provider can be used to achieve
the goal. Such multiplicity of available providers allows us to implement fault-tolerance techniques
that will enhance the overall quality of the composition.

The challenge however arises from the consequent variability of such scenarios. This rather small
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Active Contexts Routing Server Health-care Insurance Hospital
C1 ^ C2 X X X
¬ C1 ^ C2 X

C1 ^ ¬ C2 X X
¬ C1 ^ ¬ C2 X

Table 1.1: Involved agents for each context combination

scenario already contains two contexts and four involved actors. Also, it already presents:

1. topology and involved actors that depend directly on the current context;

2. Several environments and several distinct administrative domains and;

3. the possibility of using the multiplicity of implementing services to provide higher levels of
provided quality.

Item (1) may be perceived because of the possible interactions between the ambulance actor
and the other three agents (Routing Service, Hospital, Health-care Insurance) but, as illustrated in
Table 1.1, only under certain contexts; Item (2) is due to the fact that most likely the ambulance
dispatch, the health-care insurance, the routing server and the hospital are independently managed
systems interacting among themselves but, despite pursuing a common goal, may not allow for
external entities to overcome the limits imposed by their administrators.
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Chapter 2

Theoretical Background

2.1 Web Services

The service-oriented computing (SOC) paradigm uses services to support the development of
rapid, low-cost, interoperable, evolvable, and massively distributed applications. Services are au-
tonomous, platform-independent entities that can be described, published, discovered, and loosely
coupled in novel ways [PTDL07]. They are meant to be used as building blocks for rapid, low-cost,
yet secure applications [WB10]. In [Pap03], some of the main characteristics of SOC are presented:
its services must be invokable through standardized technologies (technology neutral), must not
require knowledge about internal structures or conventions at the server side(loosely coupled) and
have accessible information so that the invocation may happen irrespective of the service location
(location transparency).

Services may be spread over several departments or organizations [LR12] and possibly provided
as-is. Therefore we can divide them into two categories: the first category are the in-house developed
services. This category includes all services that are developed by the same team that will actually
use them. Services belonging to this category are easily adjustable and can be tweaked accordingly
to arising needs in the business. The other category are services which are available for usage but
not under the user’s administrative control. These services can be referred to as web services (WS)
in-the-wild. The concept of a web service in-the-wild tries to imply that they belong to a dynamic
web service ecosystem[BDB05]. Important characteristics of services that fall within this category is
that they are not prone to any adjustment and that their availability cannot be taken for granted,
given that changes in their individual administrative domain, and therefore unpredictable, may
impact their level of service or even take them offline.

2.1.1 Integration of Legacy Software

In [Gen97], the author points out three basic approaches to dealing with the integration of
legacy software into an agent-based architecture: transducers, wrappers and rewrite.

In the transducer approach (Figure 2.1a), the agent mediates the existing programs and the
other agents. The transducer agent receives requests from the other agents and translates them into
the legacy software’s native communication language. The main advantages of this approach is that
it requires no knowledge of the underlying program except that of its communication behaviour.

A second approach consists of the implementation of a wrapper software that, in essence, injects
code into the legacy software to allow it to communicate directly. This approach, illustrated in Figure
2.1b, assumes that the wrapper can directly examine and modify the data structures of the original
software. It has the benefit of greater performance in comparison to the transducer due to the lower
serial communication.

The third and most drastic approach is the complete rewriting of the legacy code, thus enabling
even further performance gains. However, this is also the most expensive alternative due to the
workload of understanding and re-implementing the application from scratch.

5
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(a) Transducer (b) Wrapper (c) Rewrite

Figure 2.1: Three possible approaches for integrating legacy software into an agent-based architecture
(adapted from [Gen97])

Although the SOA architecture is not agent-based, the same approaches can be used for exposing
a legacy application as a web service.

2.1.2 Service Compositions

A service composition provides higher-level functionalities by consuming lower-level services. It
may utilize any number of in-house developed and WS in-the-wild to achieve such functionalities. A
composition that involves services in-the-wild cannot require any intrusive approach neither demand
of the providing services any specific semantics . Much of the existing work [BDH+12, Dob06, FD02,
LFCL03, MBHJ+11] does not consider this. This assumption may render them unsuitable for several
real-world scenarios in which the WS provider is not under the user’s control.

Services Orchestrations and Choreographies

There are two main ways of defining and performing a service composition: orchestrations and
choreographies [Pel03]. In an orchestration, the whole composition is controlled by an entity referred
to as the orchestrator. This entity coordinates and mediates all the interactions between the involved
services. On the other hand, in a choreography the services do not have any kind of centralized
control [BWR09] and rely on peer-to-peer (P2P) communication. In this scenario, each involved
service or entity has the knowledge of how to perform its operations, with whom to interact and
when to do it. This sequence of activities and interactions is commonly referred to as the role
which the entity is playing out. Due to the lower need of communication and the decentralization of
the data transfers, choreographies may achieve higher performance than orchestrations [GKB+12].

Reliability of service compositions:

One of the issues with the composition of services has to do with the reliability of the composed
service. It depends completely on the reliability of the consumed web services, which may themselves
be error-prone or even become unavailable.

Several fault-tolerance techniques have been proposed, each having a different impact on the
observed reliability and performance of a service composition. In this Section, we study the impact
for each of the considered FT techniques.

Since we are dealing with web services and their intrinsic encapsulation and loose coupling,
the failure types prone to consideration are limited by the SOAP protocol’s observable events
and different failures may fall within the same categorization. For instance, an erroneous response
may be due to corruption over the transmission or malicious components, but it is not possible
to say which without actually inspecting the service and/or the network themselves. The failures
that may be observed in non fault-tolerant compositions are depicted in Table 2.1. The considered
failures within this environment are: (1) Request not replied - timeout after a service invocation;
(2) incorrect reply - an incorrect response is received and; (3) service offline - a service that is no
longer available and its WSDL interface is no longer accessible. Following the failure classification
from Avižienis et al. [ALRL04], these failures are then categorized according to the component in



2.2 FAULT-TOLERANCE FOR WEB SERVICE COMPOSITIONS 7

Table 2.1: Failures in non-FT compositions

Failure Comp. Domain Detectab. Conseq.
Request not replied WS Time yes Medium
Incorrect Reply WS Content no Major
Service Offline WS Time yes Catastrophic

Table 2.2: Failures in FT compositions

Failure Comp. Domain Detectab. Conseq.
Request not replied WS Time yes Medium
Incorrect Reply WS Content yes Major

Regular WS Offline WS Time yes Minor
Unique WS Offline WS Time yes Catastrophic

which they occur, the domain of the failure (time or content), their detection capability and finally
the consequences of their occurrence (minor, medium, major or catastrophic)1.

However, when we turn to compositions in fault-tolerant environments, the multiplicity of ser-
vices makes it possible to identify and tackle with incorrect responses or to circumvent a service
that has gone offline by replacing it with another candidate to play its role. As such, failures cate-
gorization falls into what is presented in Table 2.2.

The overall reliability of a service composition in non-FT environments can be estimated as the
probability that all the tasks (service invocations) are completed, given the individual reliability of
the underlying service providing such functionality. The dependencies are not considered because
we define a successful invocation as the whole process of sending the request and receiving its reply.

Should we consider a generic service composition as a mathematical problem we may, without
loss of generality, consider the the overall composition reliability - Rc - as the probability that all
tasks performed by each of the i services, by the means of invwsi invocations with Rwsi chance of
success, are correctly executed. This is given by Equation 2.1.

Rc =
n∏
i=1

(Rwsi ∗ invwsi) (2.1)

2.2 Fault-Tolerance for web service compositions

Several fault-tolerance techniques already exist. Zheng et al. [ZL10] uses four main techniques
in the SOC context: retry, recovery block (RB), N-Version Programming (NVP) and active. Retry
sends a new request to the same resource, hoping that the fault was transient. Recovery block
retries the request in an standby service, until successful or all resources were attempted. The NVP
technique sends the request to an even number of resources and determines the final result by
majority voting. The active FTT invokes all services in parallel and selects the first returned value
as the final result.

Fault-tolerance for web services has been largely discussed over the last years [BDH+12, Dob06,
FD02, LV07, LFCL03, MBHJ+11, MGMS11, MRD08, ZL10]. Each of the cited references presents a
slightly different approach. In [BDH+12], the authors propose the active replication of several BPEL-
engines aided by a collection of input and output proxies collocated with the web services and BPEL
engines; [Dob06] investigates the feasibility of using WS-BPEL as an implementation technique for
isolated fault tolerant Web services without actually dealing with the service composition issue;
[LV07] proposes a centralized architecture in which a central application server deals with proxy
services which then deal with several alternative web services; [LFCL03] uses dynamically created
services and replications, with supporting infrastructural components such as fault-detectors, to

1citação?
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Retry RRetry = 1− (1−Rws)tries

Active RActive = 1−
∏n
i=1(1−Rwsi)

Recovery Block RRB = 1−
∏n
i=1(1−Rwsi)

Table 2.3: Individual WS reliability aided by FTTs

provide higher reliability to a service; [MBHJ+11] uses aspect-orientation programming (AOP) to
intercept sent and received WS invocations for WS implemented in Java R© to evaluate the reliability
and eventually act upon it; [MGMS11] describes a framework for self-architecting service-oriented
systems that uses FT as a means of attend QoS constraints but does not focus on how to do it;
[MRD08] creates architectural components within a JBoss application server with a BPEL processor
so that the BPEL’s service invocations are intercepted through AOP, its context is modified and
the SOAP call is finally made invoking either the original WS or an alternative one. [ZL10] uses
an approach similar to the one used by [BDH+12] in the sense of creating coordinators for service
communities to enhance the overall reliability.

In an FT environment, the Rwsi factor need to take into consideration the gains in terms of
reliability due to the FTTs being used. This may also add parameters to it, such as the maximum
allowed amount of tries for the Retry FTT, the amount of replicas used for Active FTT and the
amount of candidate services for RB.

The expressions for evaluating the Rwsi factor when using the FTTs are described in Table ??.
These formulae model the expected behavior for a given service when using one of these techniques.
The task will succeed unless all of the attempts fail. For Retry, the probability that any given try
will fail is given by 1− Rws. The probability that all tries will fail is then given by (1− Rws)tries.
Finally, the probability of success can be calculated as 1− (1−Rws)tries. The reliability for Active
is similar but instead of always using the same reliability Rws it will use the different reliabilities
for all n services being used (Rwsi). Since it will succeed unless all replicas fail, the final reliability
can be calculated as 1 minus the product of all i terms in the form (1−Rwsi). The Recovery Block
Reliability calculation is similar since it also places n attempts on n different services.

Note that the above FTTs (Retry, Active and Recovery Block) do not account for content
failures, only time-domain failures. To deal with failures in the content domain, one may use the
NVP technique whose reliability is given by Equation 2.2.

RNVP = 1−
res∑

i=res/2+1

Rwsi (2.2)

Though somewhat similar to the expressions presented in [ZL10], these expressions differ from
those because Zheng evaluated the failure rate f while we evaluate the observed reliability Rc. Both
Zheng’s as well as our equations consider that an invocation is successful as long as one of all the
posed requests is replied.

Finally, we model the composition as a whole as a Kubat failure model. This model considers
the case of a software composed ofM modules designed for K different tasks. Each task may require
several modules and the same module can be used for different tasks. Since we are dealing with
service-oriented systems, the choreography agents may be perceived as the modules M , and the
tasks are the provided functionalities described in the composition’s WSDL. For simplicity, we will
assume that a composition provides a single functionality.

Similarly to the work [GCRB13], the architecture of this model is given by a DTMC in which,
after an agent i, with αi reliability, is invoked to perform task k, there is a probability pij(k) that
the agent j will be invoked after the execution of k after its execution. The sojourn time during the
execution of agent i has the probability distribution function gi(k, t).
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Thus, the probability that no failure occurs while agent i is executing task k is given by:

Ri(k) =

∫ ∞
0

e−αitgi(k, t)dt (2.3)

The expected number of visits in module i by task k, denoted by ai(k) can be obtained by
solving

ai(k) = qi(k) +
M∑
j=1

aj(k)pji(k) (2.4)

The probability that no failure will occur while executing task k is given by

R(k) =

M∏
i=1

[Ri(k)]
ai(k) (2.5)

And the overall composition failure rate can be calculated as λs =
∑K

k=1 rk[1−R(k)] where rk
is the arrival rate of task k.

By combining these equations with Equation 2.1, it is possible to formulate the overall com-
position reliability by replacing the Rwsi with the observed reliability for the service using the
chosen FTT. Thus it is possible to evaluate, a priori, the expected reliability for the composition
and choose a suitable FTT for each choreography agent so that the composition’s reliability QoS
requirement is met.

2.3 Fault-Tolerance for web services in-the-wild

When dealing with fault-tolerance for services in-the-wild, it is essential to emphasize that SOC
differs from computational-intensive applications. It is usual for a service’s semantics to overcome
computational borders, i.e., a service invocation may not only consume computational power but
also trigger real-world effects. For instance, a credit card service invocation may incur in transferring
an amount of money between parties, a delivery service may incur in some goods being transported
across the country and so on.

Much of the available research regarding web service fault-tolerance neglect to acknowledge this
characteristic and consider that only computational resources are consumed by a service invocation.
As an example, the FT-SOAP fault-tolerance mechanism proposed in Liang et al. [LFCL03] always
retries a failed request on a different resource until it succeeds or until all the resources have failed.
While perfectly reasonable for a credit card service, for a large set of unreliable arithmetical services
it may be far less efficient than simply sending the request in parallel to all of them.

The idea of using an architecture in which the interaction with the components is mediated by
an specialized entity (proxy) is not new and has been used for Multi-Agent Systems back in 2002
[FD02] as well as for web services, as seen on the last paragraph [BDH+12, Dob06, LV07, LFCL03,
MBHJ+11, MRD08]. However, some proposals require that additional software is installed either in
the client’s or the server’s end [LFCL03, MBHJ+11, MRD08], some are exclusive to a programming
language [MBHJ+11, MRD08] or deal only with BPEL orchestrations [BDH+12, Dob06, MGMS11],
some depend on an application server that becomes a single point of failure [LV07], and most do not
provide multiple fault-tolerance techniques in order to accommodate real-world services’ semantics
[BDH+12, FD02, MBHJ+11, MRD08]. Most notably, none of the approaches enable the composition
of generic web services into a choreography, since they do not enable the P2P communication that
characterizes it.
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2.4 Self-Adaptive and Context-aware Systems

Self-adaptive systems are computational systems designed to enjoy a degree of flexibility in
meeting their requirements and maintaining them. Adaptivity requires variability so that the sys-
tem can choose amongst alternatives and optimize certain performance indicators. In requirements
engineering literature, a main-stream model to capture and analyse such variability is Goal-Model
(GM) [YM98]. It provides the requirements (goals) for which the system is designed and the var-
ious possible ways to reach those goals (alternatives) and their quality (soft-goals). It also allows
breaking down the system to a set of autonomous entities (actors) who can also decide adaptively
how to depend on each others to reach requirements.

Adaptivity is triggered by contextual factors which could be internal, e.g. errors and availability
of computational resources, or external, e.g., newly available services and packages, physical and
social environment of the user, their skills and computing device. In [ADG10], traditional goal
models [BPG+04, CKM02, Yu11] were extended to capture the notion of context and its relation
with requirements. The proposed Contextual Goal Model (CGM) treats context as an adaptation
driver which can help filtering the space of applicable alternatives to reach goals and dependencies
between actors and deciding the quality of such alternatives and dependencies with regards to certain
quality measures (softgoals). The Runtime Goal Models proposed in Dalpiaz et al. [DBHM13]
elaborate on specifying the possible valid alternatives to reach goals and the possible sequences for
that achievement.

2.4.1 Goal Models

Goal-Models (GM) are well established requirements engineering tools to depict and break-down
systems using socio-technical concepts [YM98]. In other words, it provides the goals for which the
system should be designed and the various possible ways to reach those goals. However, as pointed
out in [ADG10] and [DBHM13] two aspects of real-life cannot be captured in the traditional goal
model [BPG+04, CKM02, Yu11]: the notion of contexts [ADG10], the determination whether a task
sequencing is valid within the model and the exploration of alternative system configurations to
restore the system to a valid state [DBHM13].

Goal-Models (GM) are well established requirements engineering tools to depict and break-down
systems using socio-technical concepts [YM98]. In other words, it provides the goals for which the
system should be designed and the various possible ways to reach those goals. However, as pointed
out in [ADG10] and [DBHM13] two aspects of real-life cannot be captured in the traditional goal
model [BPG+04, CKM02, Yu11]: the notion of contexts [ADG10], the determination whether a task
sequencing is valid within the model and the exploration of alternative system configurations to
restore the system to a valid state [DBHM13].

Runtime Goal-Model

In [DBHM13] Dalpiaz et al. present a framework for bridging the gap between design-time goal-
models and runtime behaviour. Starting with an early requirements model representing stakeholder
goals (Design-time Goal Model or DGM ) they refine it with additional behavioural detail about how
goals are to be achieved. Specifically, they add constraints on valid orderings for pursuing sub-goals
thereby creating a Runtime Goal-Model (RGM ).

Dalpiaz argues that DGMs are in some ways too abstract to enable runtime monitoring of
requirements. In this sense, they pose some questions:(1) Is observed behaviour compliant with the
system specification?; (2) How does system behaviour relate to the fulfilment of stakeholders (root)
goals? and; (3) Can the system switch to an alternative behaviour to restore fulfilment?

Furthermore, they state that such questions may be projected over a time frame, similarly to the
Awareness Requirements proposed by [SLRM11]. In this sense, one would also be able to question:
(4) What is the percentage of success for a given goal during the last month? and ; (5) What is the
trend for failure of a given goal in the last week?
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Annotation Meaning
R1;R2 Sequential execution of R1 then R2

R1#R2 Parallel execution of R1, R2 or both
Rk# Parallel execution of k instances of R, with k > 0

Rk+ Sequential execution of k iterations of R, with k > 0

try(R1)?R2 : R3 Attempt R1. If R1 is fulfilled, R2; otherwise R3

R1|R2 Alternative execution of R1 or R2, not both
opt(R) R is optional
skip do nothing;

Table 2.4: Goal annotations syntax and meaning [DBHM13]

Dalpiaz’s work on runtime goal models focus on the first two questions: providing algorithms
for deciding whether a given execution trace is compliant with the specification and with the
relationship of the system behaviour with the stakeholders’ goals.

To do so, Dalpiaz proposed the goal annotations depicted in Table 2.4. In addition to the tradi-
tional AND- and OR- decomposition semantics, Dalpiaz’s goal annotations guarantee it is fulfilled
in accordance with the runtime rules associated with R for sequential and parallel executions.

Suppose a goal R is decomposed into R1 and R2. While the AND/OR-decomposition rules
define if all of R subgoals must be achieved, the goal annotations define the order in which they
may be achieved. As such, an (R1;R2) annotation requires the fulfillment of R1 prior to R2, while an
(R1#R2) does not impose any order on the fulfillment of R1 and R2 allowing for parallel execution
of both.

For the other rules, the fulfillment of the node follows runtime rules. If R must be repeated
k times, k instances of R must be executed serially (Rk+) or in parallel (Rk#). The ternary try
(try(R1)?R2 : R3) is interpreted as the attempt of R1 followed by R2 (if R1 succeeds) or R3 (should
R1 fail). Finally, alternative rule (R1|R2) is interpreted of either R1 or R2, but not both.

In the remainder of this paper, we have tackled the concept brought about by Dalpiaz’s third
question: the search, within the acceptable system configurations, of some set up to allow it to
restore fulfilment of the root goal.

Contextual Goal-Model

Traditional goal modelling tools and techniques depict the intentionality behind the goals and
the possible several different ways of achieving those goals. However, they do not explicitly state the
triggers or drivers that motivate such adaptation. Contextual goal-models seeks to collaborate with
requirements engineering by adding the application’s context as an explicit adaptation driver. Under
some enviromental variables, a set of alternatives may be rendered impractible, inadequate or, on
the other hand, may be made obligatory. In this sense, context itself and its eventual changes become
a very important adaptation trigger, that respond to internal (e.g. errors, computational resources
availability) or external (e.g. newly found services, weather conditions, time of day) changes.

The Contextual Goal Model, proposed in [ADG10], is meant to capture the relation between re-
quirements and their dynamic environment. Context can guide adaptation and support the decision
in the goals to activate and filter the space of alternative strategies - subgoal, task or delegation
- which can be applied to achieve activated goals. Context can also have an effect on the quality
of those alternatives and this is captured through the notion of contextual contribution from goals
and tasks to softgoals.

Context is the description that concretize relevant factors in the system’s environment, i.e., the
surrounding in which it operates [FS01]. In goal modeling terminology, context is a specification
of a partial state of the world relevant to an actor’s goals [ADG10]. Actors are social entities, or
software representing them, in an organization. Actors exist to have and be responsible of achieving
goals and they have degree of flexibility how to achieve them. A context that affects that choice
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could be the time of the day, a weather condition, patient’s chronic cardiac problem, etc.
Fig. 2.2 present a CGM that depicts the requirements of a Mobile Personal Emergency Response

System meant to respond to emergency situations for people in an assisted living environment.
The root goal is “respond to emergency”, which is performed by the actor Mobile Personal
Emergency Response. The root goal is divided into 4 subgoals: “emergency is detected”, “[p]
is notified about emergency”, “central receives [p] info” and “medical care reaches [p]” ([p] stands
for “patient”). Such goals are then further decomposed, within the boundary of an actor, to finally
reach executable tasks or delegations to other actors. A task is a process performed by the actor
and a delegation is the act of passing a goal on to another actor that can perform it.
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Figure 2.2: A Pragmatic GM for responding to emergencies in an assisted living environment (adapted
from [MAR14])

It is important to highlight that not all the subgoals, delegations and/or tasks are always
applicable. Some of them depend on certain contexts whether they hold.



Chapter 3

Pragmatic Runtime Goal Model -
PRCGM

As we have introduced in Chapter 2, in a goal model the relations between sub-nodes and parent
nodes are supposed to be causal. Achieving one (OR-Decomposition) or all (AND- Decomposition)
of the subgoals is seen as a satisfactory precondition for achieving the parent goal. However, in
[PGNRMBA15] we argued that the achievement of goals would in certain cases need to be seen
in a pragmatic fashion and not as a direct causation of the achievement of other goals or the
execution of certain tasks. The decision whether a goal is achieved could be context-dependent. Our
work advocated the need for a more flexible definition of goals to accommodate their contextual
interpretation and achievement measures.

Take the example of Fig. 2.2: in general, let’s consider that the ambulance may take up to
ten minutes to arrive. For a patient with a minor discomfort it can take its time and arrive in 20
minutes without suffering any penalty. On the other hand, if the patient is having a heart attack,
one cannot say the goal was achieved. In these situations, the mere fact that the ambulance has
reached the event site is not sufficient to render the goal as achieved. If the time between the need
for assistance was detected and the ambulance’s actual arrival is unacceptably long, the goal would
be considered failed in spite of the arrival. In other words, the delivered level of quality may not
be a separate part from the boolean answer of whether a goal is achieved or not, but is actually an
integral part of it.

The Pragmatic Goal Model (PGM) was initially presented in [PGNRMBA15], with the concepts
of pragmatic requirements and pragmatic goals. In this paper we have stated that the achievement
of a goal may depend on the provided level of quality and that both the provided and the required
level of quality may be dependent on the context. Later, we have enhanced the PGM into what we
called the Pragmatic Runtime Goal Model - PRGM presented in [GRAB17]. The PRCGM extends
the PGM model with Dalpiaz’s Runtime Annotations in order to allow the PRCGM to specify the
system’s runtime behavior and engineer, on the fly, a system configuration that would satisfy the
user needs under the current context.

In the following Sections we are going to dig deeper into the need for pragmatic goals and the
PRCGM model. We will also introduce some newly added modifications to the model so that it
can also be used to decide on the fault-tolerance technique to be used. This model is itself one
of the contributions of this work to requirements engineering state-of-the-art by combining the
CGM [ADG10], PGM [PGNRMBA15] and RGM [DBHM13], while adding to them the ability to
explicitly include fault-tolerance specifications. It is also the conceptual basis on which the IMPROV
architecture implementation lies.

3.1 Conceptualizing Pragmatism in Requirements

We will now present the need and the concept of a pragmatic goal as a modelling tool to fully
capture the nuances of a real-world scenario. Next, we concretize these concepts and present the

13
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Pragmatic Goal Model or PGM. The PGM is an extension to the CGM and was initially proposed
in [PGNRMBA15] to depict the goal’s pragmatic aspect and the goal’s context-dependent inter-
pretation. In [GRAB17], it has been improved to depict also the task sequencing and to allow the
engineering of an execution plan. Mainly, we have enhanced the PGM model with goal annotations
for specification of valid decomposition orderings, context-dependent goal interpretations, the ex-
pected delivered QoS for tasks - which are also context-dependent, in order to reason about the
achievability of goals and to engineer a suitable execution plan to achieve them.

In Goal Modelling, the relations between sub-nodes and parent nodes are supposed to be causal.
Achieving one (OR-Decomposition) or all (AND- Decomposition) of the subgoals is seen as a sat-
isfactory precondition for achieving the parent goal. However, in [PGNRMBA15] we argued that
the achievement of goals would in certain cases need to be seen in a pragmatic fashion and not
as a direct causation of the achievement of other goals or the execution of certain tasks. The de-
cision whether a goal is achieved could be context-dependent. Our work advocated the need for a
more flexible definition of goals to accommodate their contextual interpretation and achievement
measures.

It is paramount to note that the representation of the perceived quality of a goal as a softgoal is
innately different from the pragmatism of the goal achievement. From a pragmatic point of view, a
proposition is true if it works satisfactorily. Similarly, a pragmatic goal is achieved if a satisfactorily
high level of service is provided. It is not a matter of achieving it with higher or lower quality, but
achieving it at all. Also, the satisfactory quality level for the pragmatic goal may even depend on
the context of the system at runtime not just on the model itself - making it more strict or even
more relaxed when some contexts apply.

Take the example of Fig. 2.2: in general, let’s consider that the ambulance may take up to ten
minutes to arrive. For a patient with a minor discomfort it can take its time and arrive in 20 minutes
without suffering any penalty. On the other hand, if the patient is having a heart attack, one cannot
say the goal was achieved. In these situations, the delivered level of quality may not be a separate
part from the boolean answer of whether a goal is achieved or not, but an integral part of it.

A pragmatic goal model, just like a regular goal-model, describes the means to achieve it but
it also describes the interpretation of such achievement. This interpretation, which depicts the
goal’s pragmatic fulfilment criteria, can be expressed as a set of quality constraints (QCs). Unlike
softgoals, which are a special type of goal with no clear-cut satisfaction criteria[SLRM11], these QCs
are mandatory and crisp, therefore quantifiable, constraints needed for the fulfilment of a goal and
an inherent part of its definition. For instance, take goal “[p] location is identified” from Fig. 2.2(Gloc

for short): it could be defined as “in order to reach Gloc, the location must be identified within an
error radius of maximum 500 meters and in less than 2 minutes”.

But then again, this would not suffice as a radius of 500m and 2 minutes might be an over-relaxed
condition for patients under critical conditions.This brings into light another aspect to be taken
into account for the pragmatic requirements: the fact that the interpretation for the achievement of
a goal is itself context-dependent. We consider that there is a default condition for achieving a goal.
However, for specific contexts, we could relax or further strengthen the condition which interprets
whether a goal is achieved. We propose that the contextual QCs on the achievement of a goal should
be captured together with the other effects of context in the CGM. One advantage of capturing the
pragmatic goals within the CGM is to enable reasoning on the possibility of achieving a goal under
the current context and QCs. We differentiate these interpretations in the sense that a relaxation
condition is not mandatory but a requirement that further strengthen the QC must necessarily be
considered.

In the previous example, a QC of getting a location within 500m in less than 2 minutes is a
default constraint. However, if the user has access to mobile data (context C5) then a much preciser
location can be obtained from the GPS. Under these circumstances, a lock within 500m may seem
like an over-relaxed constraint. For a patient with cardiac arrhythmia (context C10), a more strict
QC is needed. Suppose that the system has to ensure that an ambulance reaches the patient’s home
within 5 minutes. Possibly, in this case, a faster but less precise location would be better suited.
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Figure 3.1: Gloc graphical representation as a pragmatic goal

The requirements for a minor discomfort (context C9) are also more flexible than those for an
arrhythmia (C10). In the three specific contexts, the interpretation must differ from the original
baseline.

Figure 3.1 sums up Gloc’s interpretation criteria and presents it as a box connected to the
goal itself. However, not only the goal’s interpretation may vary according to the context but
also the delivered quality of service (QoS) levels. When executed in different contexts, a task may
provide different QoS levels, represented by the boxes linked to the tasks in Figure 3.1. Furthermore,
provided thatGloc is annotated with G1;G2;G3;G4, the consequent task sequencing - derived from
the goal’s annotation - will too impact on the goal’s perceived QoS. For instance, forGloc this means
that, although no individual task has a time constraint of over 120 seconds, unless context C9 is
active at least one of such tasks will obligatorily not be chosen so that the total time stays under
120 seconds.

The set of QCs that represent the pragmatic aspects of a goal and the variable delivered QoS
levels extend the traditional CGM into a Pragmatic CGM and allow for the reasoning over the
achievability of a goal under a certain context.

3.2 Achievability of Pragmatic Goals

Pragmatic goals can only be achieved if their provided QoS levels comply with the QCs specified
for them, both of which are context-dependent. This means that we extended the basic effect of
context on a CGM to cover success and achievement criteria. Such expressiveness enables further
analysis for a key adaptation decision: how to, under the current context, pick a task set and arrange
them into a valid task sequence in order to reach our goals while respecting its interpretation when
the goals’ interpretations, the space of applicable alternatives to reach them and the QoS levels
provided by the tasks are all context-dependent?

Such adaptation decision may also lead down a dire path. It is inevitable for one to wonder:
“what to do when such a sequence cannot be found? ”. Situations where it may not be possible to
meet the goal’s interpretation QoS standards through any of the applicable sub goals, tasks and/or
delegations are also considered in our approach. This is a rather likely scenario considering that
the tasks deliver not a static but a context-dependent QoS level. Whenever there is no possible
task sequencing able to deliver the goal’s required QoS we classify the goal as unachievable. This
is expected to happen and the proper way of dealing with such goals is explained in the reasoning
part.

Let’s get back to the example in Figure 2.2: if we consider the goal Gloc and the contexts
impacting on its interpretation, the conclusion is that under a certain context the system may not
be able to determine the patient’s location with the required precision. This, in practice, does not
mean doing nothing. The motivation of doing this analysis and deeming the goal unachievable is
simply to have such knowledge beforehand. At design-time, this allows the goal model designer to
add new strategies for reaching the goal with that particular context in mind, thus covering a larger
range of contexts. At runtime, this early conclusion would lead to search for a better variant at a
higher-level goal by choosing another task sequencing, which is able to deliver the required quality
standard. Therefore, our analysis is both meant for design-time - reasoning to evaluate and validate
the comprehensiveness of the solution - and for runtime - devising the suitable planning strategy
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to reach goals in a specific context under a certain set of quality constraints.

3.3 Meta-Model

Figure 3.2 presents a conceptual model of our extension to the CGM. For the focus of this paper,
the CGM could be seen as an aggregation of Requirements. Requirements may be specialized
into several types: Tasks, Delegations and Goals. A Delegation represents when the Goal
or Task (dependum) is pursued not by the current but by an external actor (delegatee). Tasks
are performed by the actor in order to achieve a goal. Tasks may report the expected delivered
quality for each metric through the providedQuality method.

A Goal is a useful abstraction to represent stakeholders’ needs and expectations and they offer
a very intuitive way to elicit and analyse requirements[ADG10]. Goals have a refinements set which
define the Requirements (subgoals, tasks and/or delegations) that can be used for achieving it
as well as a method to distinguish AND- from OR-compositions. Each goal is annotated with a
Goal Annotation which describes the required behaviour of the goal’s requirement instances.
Goal annotations are thoroughly discussed in Section 3.4. Context is also strongly related to goals,
for it changes the current goals of a stakeholder and the possible ways to satisfy them[ADG10]. In
this sense, the goal’s decomposition may vary according to the context and this is modelled in the
meta-model as the method getApplicableRefinements.

1..*

1..*

1..*

CGM

+ getRoot();
+ getVariant();
+ isAchievable();

Requirement

+ isApplicable()
+ isAchievable()

Delegation

+ delegatee
+ dependum

Task

+ myProvidedQuality()

Goal

+ getApplicableRe�nements();
+ isOrDecomposition();
+ isAndDecomposition();

Pragmatic Goal

+ getInterpretation()

Interpretation

+ getQualityConstraints();

QualityConstraint

+ getQualityRequirement();

CompositeQC

+ getQualReq();

TaskQC

+ getQualReq();

Goal Annotation

+ getPossiblePlans();

CompositeMetric

Figure 3.2: Metamodel for the Pragmatic Goal Model with QoS-constrained planning

Pragmatic Goals extend the Goal concept with the Interpretation of its achievement.
A goal’s Interpretation is an abstract concept that has the function of cross-referencing a
context and the appropriate QualityConstraints for that given context. The Pragmatic
Goal is said to be achieved if, and only if, such requirements are met. Otherwise, the goal’s delivered
QoS is considered inappropriate and the goal is not achieved regardless of achieving one or all of
its Requirements.

The Quality Constraints are expressed in terms of the
applicableContext in which it holds, the metric that should be considered, the threshold
which is a numerical value that represents the scalar value for such metric and the comparison
which defines whether the threshold described is the maximum allowed value or the minimum. For
instance, to state a quality requirement of at most 250ms for the execution time when context C1
holds, the metric would be “ms”, threshold would be 250, condition would be “Less or Equal”
and applicableContext would be C1. Quality constraints may have task (TaskQC) or
workflow scope (CompositeQC). TaskQCs impose a restriction on the applicable tasks whereas
CompositeQCs restrictions apply to the workflow as a whole. The composition rules for the cal-
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Annotation QoS Function QoS Function
Time Reliability

R1;R2 t(R1) + t(R2) rel(R1) ∗ rel(R2)

R1#R2 max(t(R1), t(R2)) rel(R1) ∗ rel(R2)

Rk# t(R) rel(R)k

Rk+ t(R) ∗ k rel(R)k

R1|R2
R1 was chosen: t(R1) rel(R1)
R2 was chosen: t(R2) rel(R2)

try(R)?R1 : R2
R is achievable: t(r) + t(R1) rel(R) ∗ rel(R1)
R is unachievable: t(r) + t(R2) (1− rel(R) ∗ rel(R2)

Table 3.1: Goal annotations and respective evaluated QoS Functions)

culation of Composite QCs are expressed via the CompositeMetric objects, which are able to
estimate the resulting metric depending on the goal annotation being considered (Section 3.4). The
difference between these two kinds of quality constraints (QCs) is further discussed in Section 3.6
whereas their usage in the QoS-Constrained Planning Algorithm algorithm is explained in Section
??.

Every Requirement inherits the isAchievable method. This method can be used either by
the final users or by the higher level goals to define whether a particular goal can be achieved for a
given quality requirement under the current context. While this is obviously necessary for the root
goal, as the ultimate objective, we also allow certain subgoals to be defined as pragmatic, i.e., they
may also have their own predefined interpretation. In principle, actors should be able to impose
further constraints on the criteria for achieving any goal within their boundary. The importance
of the subgoals quality requirement becomes obvious when dealing with delegation of goals where
the external actor may have itself a different, more relaxed or more strict, quality constraint, not
necessarily compatible with what the delegator intends.

In this model, the goal annotations, the expectation of delivered quality by the tasks, the quality
constraints for the goals, subgoals or delegations and the metrics compositional rules are added to
the traditional CGM. This is meant to be done by the requirements expert or the domain experts
due to the need for specialized knowledge to define such metrics.

3.4 Goal Annotations

As previously discussed in Section 2.4.1, goal annotations were first defined in [DBHM13].
They are intended to express the expected behaviour of a goal, regarding the manners in which its
refinements may be sequenced. Following the meaning, allowed set of traces for goal annotations and
annotation creation rules, the interleaved and sequential annotations are applicable to AND-Goals
whereas try and alternative annotations are applicable to OR-Goals. The remaining annotations
are unary therefore indifferently applicable to AND and OR decompositions.

In our case, goals are to be fulfilled by the system by taking into account (1) contextual specifi-
cations and (2) the possible valid configurations for goals and tasks, following RGM runtime rules,
extended from [DBHM13]. Table 3.1 synthesizes a textual description of each RGM rule and its
corresponding semantics.

In our model, the goal annotations are used to determine, together with the goal decomposition
type, the different possible approaches for dealing with the goal’s underlying requirements. It is the
goal’s annotation that first envisions the possible plans for achieving the goal. It is also the goal
annotation, together with the Composite Quality metrics’ QoS functions, that estimate the overall
plan quality measures for each possibility. Only then, does the Qos Constrained Planning
algorithm (see Section ??) compare the possible plans and chooses an appropriate one.

As depicted in Table 3.1, the runtime annotations we have used are:

Sequential (R1;R2) Serial execution of two refinements, with composed time equals to the sum
of their individual execution times (t(R1) + t(R2)) and reliability equals to the chance of
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successfully executing R1 and R2 (rel(R1) ∗ rel(R2));

Interleaved (R1#R2) Refinement executions performed in parallel, with composed time equals
to that of the most time consuming one (MAX(t(R1), t(R2)))and reliability equals to the
chance of successfully executing R1 and R2 successfully (rel(R1) ∗ rel(R2));

Sequential iterations (Rk+) serial execution of k instances of the plan R, with composed time
equal to the time spent for a single execution multiplied by the amount of repetitions (t(R)∗k)
and reliability equals to the chance of successfully executing all the k instances (rel(R)k);

Interleaved iterations (Rk#) Parallel execution of k instances of the plan R, with total time
estimate equivalent to that of a single task (t(R)), since the model allows them all to be
executed in parallel and reliability equals to the chance of successfully executing all the k
instances (rel(R)k);

Alternative (R1|R2) Alternative execution of plan R1 or R2, with the same time and reliability
QoS levels as that of the chosen alternative;

Try (try(R)?R1 : R2) Annotation that depends on the achievability of R. If it is achievable, per-
forms R and R1 sequentially, otherwise, performs R - which will fail - and R2. The time QoS
is then evaluated similarly to the sequential annotation and the reliability becomes the chance
of successfully executing R and R1 (R achievable) or just R2 (since R will fail per design).

In Dalpiaz’s original work, there was also the opt(G) annotation which meant G was optional
and applicable only under certain circumstances. Accordingly, we map the original annotation as a
context-dependency on the goal itself.

Figure 3.3 presents the Pragmatic GM from Figure 2.2 but now with annotated goals (the goal
annotations are represented as the black boxes on top of the goals). Because of such annotations,
the possible behaviours of the system are now thoroughly specified and the dependencies between
tasks can now be represented and taken into consideration when planning the system adaptation.
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Figure 3.3: The goal-annotated Pragmatic Goal for MPERS
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3.5 Task Fault-Tolerance Annotations

3.6 Quality Constraints

To enhance goals with context-dependent interpretation, we must revisit the classical concept
of achievability of a goal to fit the nature of Pragmatic CGMs. On top of the basic context effect
on a CGM, we enable a higher model expressiveness through the goal interpretation.

The goal interpretation, as stated in Section 3.1, is a set of mandatory and crisp, therefore
quantifiable, quality constraints needed for the fulfilment of a goal. Since we are dealing with a
goal annotated model and considering the tasks interdependencies are accurately modelled, we
must also further divide the quality constraints into two classes based on their scope: individual
task-wise constraints and composite workflow-wise constraints. Their concepts are as follows:

Task-wise Constraints
Many constraints deal with the individual quality provided by the task itself. These constraints
can include measures like “level of precision”, “margin of error”, “noise” or “false negatives”.
Any task that can isolatedly reach the level of quality stated in such constraints can be used,
regardless of the remainder task choices. All constraints from [PGNRMBA15] were task-wise
constraints, given that no sequencing was made. These constraints can be added to the model
directly, simply by giving them a unique label.

Workflow-wise Constraints
Differently from the task-wise constraints, workflow-wise or composite constraints are ap-
plicable to the quality level of the overall chosen tasks sequencing that satisfy the root goal.
In this sense, these constraints have a direct dependency on the way the tasks cooperate to
fulfil a certain goal.

Provided that the QoS level composition is heavily dependent on the type of QoS being consid-
ered, each composite metric must implement a CompositeMetric object (from our meta model
in Figure 3.2) defining the compositional rules for the calculation of CompositeQCs for each goal
annotation. For this paper, the implemented CompositeMetrics were Time and Reliability
but the approach as well as the developed algorithm are able to deal with any composite metric,
given a CompositeMetrics object implementing all the compositional rules.

3.7 Goal Interpretation and Achievement Criteria

As stated previously in Section 3.1, a pragmatic goal’s achievement criteria is based on the
user’s expected QoS levels for a given scenario or context.

These criteria are specified via a set of quality-constraints which are also context-dependent.
Thus, a goal can be interpreted as achieved if, and only if, its provided QoS is within the QCs
acceptable scope. This also means that the goal’s decompositions are not all equivalent. The ap-
plicability of each alternative decomposition now depends on both the applicable contexts but also
on the level of QoS they are able to deliver. In turn, the levels they deliver also depend on the
delivered QoS levels of their decompositions and so on.

The expressiveness power added by the dynamic, context-aware, task- or workflow-wise quality
constraints enable richer adaptation decisions which not only consider the static achievability but
also the achievability under the dynamic context and its effect on the fulfilment criteria of a goal. The
achievability of a goal and the space of adoptable alternatives to achieve it are essential information
to plan adaptation, seen as a selection and an enactment of a suitable alternative to reach a goal
under a certain context.

However, the enhanced expressiveness allied with the context-dependency also largely affects the
model’s variability. Given the multitude of possibilities and alternatives given by the PGM (OR-
Nodes, contexts, task and goal-annotations, QoS-Constraints and provided QoS levels), finding a
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configuration within the expected behaviour considering both task and composite quality constraints
may become humanly infeasible.

Thus along with the definition of a pragmatic goal model we have also developed and imple-
mented the QoS-Constrained Planning Algorithm to engineer an execution plan that abides by the
interpretation of the goals within the model, if possible, or to lay out the best effort allowed by the
model under the current context.

3.7.1 Goal Achievability Function and QoS-Constrained Planning Algorithm

In a nutshell, the QoS-Constrained Planning Algorithm algorithm initially performs a depth-
first filter, aggregating the Task Quality Constraints on each branch of the CGM tree, so that all
task-wise constraints respect all the upper level goals’ interpretations. Once it finds a leaf-node
(task), it uses the collected task quality constraints to decide whether the task at hand is able to
fulfil the collected constraints. Then, it returns this task and begins agglutinating, at each goal, the
possible plans for its refinements, always choosing the plan that provides the best quality for the
composite requirement being considered1.

We present the QoS-Constrained Planning Algorithm in Algorithm 1. It implements the Requirement
entity’s isAchievable method (Figure 3.2) and correlates three context-dependent aspects from the
model: (1) the applicable requirements; (2) the goals’ interpretations and; (3) the delivered QoS
level provided by the tasks.

The QoS-Constrained Planning Algorithm algorithm decides whether the root goal is achievable
and, if so, lays out an execution plan, i.e. a workflow, which is most likely to achieve the desired
QCs.

QoS-Constrained Planning Algorithm considers firstly the type of refinement it is dealing with.
Should this refinement be a task (line 5) then the algorithm can decide whether this particular task
abides by all of the task-wise and workflow-wise constraints (canFulfil(interp)) and returns
a plan consisting solely of this refinement, already indicating whether it is a usable plan or not
(lines 7 and 8). On the more likely case that this is not a leaf-goal and, therefore that this node has
refinements, the first step in the algorithm is to invoke itself recursively for each refinement so that
the plans for its subgoals are created (lines 11 - 14) and save them.

Once it has knowledge of the outputted plans for its refinements, it can begin on the workflow-
wise QoS constrained planning. At this point, the QoS-Constrained Planning Algorithm algorithm
interacts with the goal annotation to obtain all the allowed behaviours for the achievement
of this refinement (line 16), already annotated with time and reliability QoS metrics calculated
through the rules presented in Table 3.1. Initially, the algorithm accepts any approach to realize
the goal at hand available, disregarding whether it is achievable or not (line 20). Then, for each
successive possible approach (line 18), the algorithm compares the candidateApproach with the
previously chosenPlan to choose the best alternative in terms of achievability (line 22-23) or QoS
(lines 24-25), always striving to return the approach with the best possible QoS for the Composite
QC being considered in the given interpretation.

The QoS-Constrained Planning Algorithm algorithms validates whether the best candidate plan
is still within the interpretation’s composite QC limits (line 29) and, if it is not, sets the plan as
unachievable.

Either way, the best candidate plan - achievable or the goal’s best effort - is finally returned in
the end. To exemplify the algorithm, we now present the following scenario: a patient with a heart
condition (C10) needs medical assistance and needs certainty that it will arrive. He currently has
good data coverage (C4) and mobile data enabled (C5). He is also in a dim location (C7) which
tolerates phone ring (C6). However, the area’s GSM tower density is low (C11).

In this situation, the algorithm would analyse the Pragmatic GM prioritizing the reliability
quality constraint. It would then suggest the plan depicted in Figure 3.4. We also present, in Figure

1Currently, only one composite requirement can be considered at each QoS constrained planning.
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Algorithm 1 Pragmatic Planning Algorithm
1: procedure qosConstrainedPlanning(Context current, Interpretation interp)
2: if !isApplicable(current) then
3: return NULL
4: end if
5: if (isTask()) then
6: Plan pTask ← new Plan(this);
7: pTask.setAchievable(canFulfill(interp));
8: return pTask
9: end if

10: Map<Refinement, Plan> refPlans;
11: for all Refinement ref in getApplicableDependencies(current) do
12: Plan pRef;
13: plan ← ref.qosConstrainedPlanning(current, interp);
14: refPlans.put(ref, plan);
15: end for
16: List <Plan> approaches ← getRuntimeAnnotation()

.getPlans(refPlans);
17: Plan chosenPlan ← NULL
18: for all Plan candidateApproach in approaches do
19: if chosenPlan == NULL then
20: chosenPlan ← candidateApproach;
21: else
22: if (!chosenPlan.getAchievable() AND

candidateApproach.getAchievable() ) then
23: chosenPlan ← candidateApproach;
24: else if (chosenPlan.getAchievable() AND

candidateApproach.getAchievable()) then
25: chosenPlan ← chooseBetterPlan(candidateApproach,

chosenApproach, interp);
26: end if
27: end if
28: end for
29: if !interp.withinLimits(chosenPlan) then
30: chosenPlan.setAchievable(false);
31: end if
32: return chosenPlan
33: end procedure

3.5, the original Pragmatic GM with the chosen tasks highlighted to depict the adherence of the
chosen tasks to the current context and goal annotations.

To comprehend the reasoning performed in choosing this approach, we must first identify the
alternatives available at such time. To facilitate the reader’s understanding of this example, all the
tasks are considered to have the same reliability level, let’s say 99% reliability.

So first, it considers the root goal and the fact that it is an AND-decomposition with linear
sequencing of tasks. Then it invokes the QoS-Constrained Planning Algorithm algorithm recursively
for goal G2, then a new recursive call for G6, and yet another for G11. At G11 the recursive calls
made over tasks T1 and T2 return a plan consisting of task T2 and a null plan, since T1 is
inapplicable under the considered context. G11 then chooses such plan and returns this to G6. G6
now invokes the QoS-Constrained Planning Algorithm algorithm at G12, which checks and sees that
G16 is unachievable it is not applicable at the current context. Thus it returns a plan consisting of
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Figure 3.4: Workflow output for context [c4, c5, c6, c7, c10, c11]

T3.
Now that G6 has a complete plan for G11 (T2;T3), it invokes the QoS-Constrained Planning

Algorithm algorithm on G7. G7 execution returns a plan consisting of (T7#(T5#T6)#T8). Con-
sidering the annotations in Table 3.1, the observed reliability of these two alternative plans for
G2 would be 0.9801 for (T2;T3) and 0.96059601 for plan (T7#(T5#T6)#T8). Since the QoS-
Constrained Planning Algorithm algorithm is prioritizing the reliability QoS constraint, the plan
(T2;T3) is returned as the best alternative for G2 and the algorithm proceeds in similar way for
goals G3, G4 and G5, providing the plan

T2;T3;T11; (T18#T19);D1 (3.1)

as a valid alternative for this situation. This plan is depicted as a workflow in Figure 3.4, whereas
Figure 3.5 highlights the chosen tasks in blue to aid the reader to verify their adherence to the
model’s semantics.
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Figure 3.5: MPERS model with tasks chosen by the QoS-Constrained Planning Algorithm algorithm high-
lighted in blue

From Figure 3.5, we can see that such workflow respects all the annotations’ rules in the model:
it contains tasks from G2, G3, G4 and G5, sequentially linked between them; it contains tasks from
G6 but not G7 as defined in G2 alternative annotation; it contains T3 because G16 is unachievable
given that C2 is not active effectively deeming G16 unachievable. From the four G3 dependencies,
the only ones applicable for the patient’s context were T10 and T11, where the algorithm opted for
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T11, which provided better Composite QoS levels. G4 annotation required that G9 subtree tasks
(“Access location from aGPS” and “Access Database”) were performed before sending info over the
internet. Also, since G14 was achievable, the else branch for G9 was not executed because G14 was
achievable. Finally, the G10 delegation was performed and the root goal achieved correctly.
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Chapter 4

IMPROV Architecture

Chapters 1 and ?? have presented the problem we are trying to solve; in this Chapter, we intro-
duce our solution: the IMPROV architecture. The term improv is coloquially used as an abreviation
for improvisation. The Cambridge dictionary defines improvisation as a performance that has not
practised or planned or the act of doing something with whatever is available at the time. This idea
sums up the main goals of the IMPROV architecture: allowing for dynamic choreographies which
depend on the current state of the world (context), the provided QoS levels for the tasks and on
the user’s expected level of quality, in a request-centered and individualized manner.

The proposed architecture provides a dynamically adaptive service choreography that respond
to changes in the user requirements and in the context. It adapts the service composition so that the
performed choreography uses only applicable alternatives under the current context and delivers QoS
levels which abide by te user’s expectations. It also ensures that the architecture can autonomously
withstand and recover from failures in the web services and in the actual choreography actors and
that the actors themselves can have sufficient autonomy to define its own priorities and plans while
also being able to evolve or change its own behavior without disrupting the dynamic composition
as a whole.

To reach such goals, the IMPROV architecture performs the steps depicted in Figure 4.1. Ini-
tially, it receives a set of QoS requirements from the user and the contextual information for the
system’s environment. Then the agents which implement the architecture communicate among
themselves in order to dynamically define the choreography and fault-tolerance techniques to be
used to achieve such QoS levels. Finally, the actors move on to the distributed and fault-tolerant ex-
ecution of the devised choreography, via a decentralized peer-to-peer communication scheme, while
monitoring the QoS levels provided by the tasks in order to keep track of their performance and
further enhance future QoS level predictions on future invocations.

In a nutshell, our proposal presents the IMPROV architecture which can adapt to different QoS
requirements, different contexts and different levels of provided QoS via a decentralized planning
algorithm which allows several autonomous actors to engineer a service choreography at the time
of execution and deliver the expected QoS under various scenarios.

During the next Sections we will depict the IMPROV architecture. Initially, we present how to
depict actors’ behavior through a PRCGM model; next - in Section 4.1.1 - we go from the abstract
and high-level objectives presented in the first chapters to more palpable requirements for the
IMPROV architecture. Then we begin to drill down into the architecture beginning by describing
the MAPE-K cycle that summarizes the higher-level process in Section ?? and the supporting
communication structure in Section 4.3.2. At this point we move on to describing IMPROV’s core
element: the actors. Section ?? presents their internal modules, their interactions and the part
they play on the composition. In Section 4.5 we introduce and categorize the faults considered by
our architecture and the fault-tolerance mechanisms in place to mask or recover from such faults.
Finally, during Section ?? we present the execution process and actor’s interaction for carrying out
the complete decided execution, Section ?? presents the lifecycle of a dynamic composition and
Section 4.7 present some of our project decisions and the reasons behind them.

25
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Figure 4.1: Visão macro do processo de tratamento de requisições pela arquitetura IMPROV

4.1 Using a Pragmatic GM to model actor behaviour

In the IMPROV architecture, we use Pragmatic Goal Models to describe the actors’ possible
behaviours and context-dependent strategies. Through these models the actors are able to under-
stand their role in the choreography. They may also evaluate the applicable alternatives to provide
a suitable QoS level and collaboratively interact with the other actors to dynamically engineer a
service choreography that would meet the user’s pragmatic requirements.

Each actor’s task is mapped to a service method invocation, which will actually perform the
task. The IMPROV architecture and its modelling is mainly concerned with the integration and
dynamic nature of the composition. This means that the model will allow a choreography to have
a different topology for each enactment. This also means that the architecture is able to remain
agnostic to the underlying implementation details by restricting itself to the SOA interface level.

With regard to the PGM design process, there are two possible ways of defining the actors’
PGMs: either top-down or bottom-up. The top-down approach is more natural when using the
PGM as a RE tool. Starting from the root goal definition and then decomposing it into sub-goals
and/or tasks. The sub-goals are then refined and the process is repeated up until all the leaf nodes
in the model are simple enough to be considered as tasks and mapped to a service invocation.

On the other end, a bottom-up design process starts from the available services and their
methods, which are represented in the PGM as tasks. Then the choreography designer pieces them
together and generates higher-level goals. This process is also repeated by creating even higher
abstraction level goals up until the point in which the root goal can be defined.

Regardless, the task-nodes are mapped to a web service invocation which are the building-blocks
for any service composition [WB10].

The next step in the choreography design and actor behaviour description is the definition of
the task/goal sequencing and the definition of the applicable fault-tolerance techniques which may
be applicable for each task and their contextual restrictions.

Using a PGM with goal sequence and task fault-tolerance annotations allows us to:

1. harness the power provided by the Goal-Model as a requirement engineering tool and as an
easily user-understandable model;

2. depict the complexity of the underlying variability and adaptivity alternatives in an easily
understandable model and;

3. formally state the possible execution alternatives and fault-tolerance strategies.

This formal definition of the possible execution alternatives is crucial for the actors’ autonomy.
Since we have a formal statement and strict applicability rules (goal decompositions, context and
sequencing) the actors are able to understand the role they are supposed to play. This, in turn,
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allows them to decide on an acceptable strategy built to suit the user’s QoS requirements. Such
strategy is composed of a valid sequence of tasks and delegations.

4.1.1 Requirements for Composition of Unmodified Web Services

As previously discussed during Chapters 1 e ??, one of the main goals for IMPROV is to
allow the distributed composition of unmodified web services. Such services follow the SOC main
characteristics of loose coupling, technology neutrality and location transparency [Pap03]. Thus, the
requirements for the composition of generic web services below derive both from such characteristics
as well as from reliability issues.

In [Pap03], some of the main characteristics of SOA are presented. Its services must be invoca-
ble through standardized technologies (technology neutral), must not require knowledge about the
implementation (loosely coupled) and have its definition and location publicly available (location
transparency). These characteristics do not allow for intrusive interventions. Moreover, services in-
the-wild are usually beyond a user’s control scope anyhow. Thus, any interaction must be done
according to the standard protocols and with little or no knowledge of the host’s platform.

One of IMPROV’s main goals is to enable a distributed, fault-tolerant and context-aware web
service composition. But given these characteristics, it becomes clear the need to deal with un-
modified web services instead of developing specialized services, at the risk of losing the SOA’s
benefits.

Therefore we will, during this Section, break this goal apart into several concrete requirements.
These requirements will ensure the reuse of existing models, concepts, tools and systems. They
will guarantee that existing systems will be able to be integrated and interoperate in novell ways,
dynamically adapting their behaviour to changes in the system’s context and in the user’s QoS
requirements without the need for deep modifications or code refactoring.

These requirements will be central in the remainder of our work, serving as the guiding principle
for most of the taken decisions and providing a clear objective to be achieved by the IMPROV
architecture. To assist the reader and materialize the concepts, we will use the MPERS use case
presented in Section ?? as a leading example and present how each of these requirements falls inline
with the use case scenario.

Unmodified Web services A core requirement to IMPROV is the ability to integrate non-
specialized, previously existing web services in a novell way. However, the loose coupling character-
istic of web services implies that a service composition must not make any assumption regarding
the provided service’s implementation (no mandatory software installation, service specialization or
any other modification to the services themselves). Such requirement also implies that the IMPROV
architecture may not pose any requirement whatsoever onto the underlying web services, except for
those required by SOA itself (see Section ??). The architecture must work with both in-house and
in-the-wild services, and therefore beyond the users’ administrative domain. In the MPERS use case,
we have a clear example for this requirement. In MPERS we have several different administrative
domains (...). In such an heteregeneous environment, demanding that all involved services abide
by a pre-defined set of ruled, provide a set of data or present a certain behaviour would severely
cripple the architecture’s applicability and its capability to interoperate with, for instance, legacy
systems that do not have such requirements.

Requirement 1: The service composition mechanism must respect the loose coupling char-
acteristic of SOC, thus not demanding modifications to the service, code or infrastructure-wise.

Context- and user’s requirement-aware adaptivity As previously discussed in Section 2.4,
the environment may have deep repercussions on the system’s behaviour, either by forcing or pre-
venting some alternatives, altering the underlying services’ provided QoS levels or by requiring a
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certain level of quality. The user may also impact the possible behaviours by demanding a given
level of quality. Moreover, such variability in the planning’s input variable makes it impossible to
apply predetermined strategies. On the other hand, using a runtime planning approach may mit-
igate the variability impact by considering only applicable alternatives and current environmental
and contextual data at the cost of runtime execution delays. Being so, the IMPROV architecture
must decide on the choreography topology, the tasks sequencing, service selection and fault-tolerant
alternatives at runtime. Another key-issue brought about by this requirement is the need for run-
time responsivity to contextual changes. If, during the performance of a choreography a context
change occur the architecture must halt, decide on the impact of such a change and if the plan may
be kept and then proceed with the prestablished execution or fallback to the planning phase if the
context change renders the current plan inapplicable or inadequate.

Requirement 2: The service composition mechanism must respond to user’s requirements
and to environmental change presenting a suitable behaviour that respects the limits imposed
by both.

Tolerate services and architectural failures The choreography’s reliability as a whole depends
directly on the reliability of its underlying services. To be able to deliver QoS levels greater than
the mere direct composition of services - which may not be sufficient for achieving the expected
QoS levels - it is necessary for the achitecture to implent fault-tolerance techniques. IMPROV
must, then, provide fault-tolerance techniques that build-up on the multiplicity of available WS to
provide higher reliability levels. It must also ensure the smooth functioning of its own components
and provide manners to deal with architectural faults and recover the architecture so that the
compositions stays operational. It must also allow for the decentralization of its components so that
no resource becomes a single point of failure for the composition as a whole. In our leading example,
this need is rather clear given that a failure in the process may lead to the ambulance not reaching
the patient in time.

Requirement 3: WS’ and agents’ faults must be masked or recoverable up to the required
reliability level.

Requirement 4: Fault-tolerance techniques and their mechanisms may not pose assump-
tions on the quality or quantity of available services and must adapt to a changing environment
to provide reliability

Requirement 5: Web services in the wild cannot be blindly trusted regarding content and
time domain failures.

Involved agents’ are autonomous Requirement 1 states that previously existing services may
be distributed among different administrative domains. The same also applies to choreography
actors. The choreography must not be - by design - in a single administrative domain. Instead, it
must allow for different actors in different administrative domains to interact and collaborate. This
means that the actors must be provided with complete autonomy over their own decisions. Each
actor must be sovereign to decide on its own actions and no given set of options or decisions may
be imposed on it by any other actor. The distinct choregraphy actors, similarly to what happens
in the actual artistic performance, must collaborate in a constructive way to engineer and perform
the choreography but without interfering on internal affairs of one another. In the leading example,
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this requirement states that the MPERS actor may report on the user’s QoS levels and “ask” the
Ambulance actor’s assistance in achieving the root goal and receive an execution plan from the
Ambulance actor but it may not impose any requirement on the provided plan, except for the
goal’s interpretation.

Requirement 6: Actors in the choreography are autonomous and may not be imposed any
restrictions except for those explicitly provided by the architecture or by themselves.

Allow the evolution of the actors’ behaviour over time Demanding that all the subtleties
of the context-dependent composition be understood before implementing the choreography is not
acceptable. In a scenario with such variability is only natural that the requirements and the under-
standing of the problem may evolve over time. Even further, new alternatives may arise and older
ones may be rendered obsolete. The IMPROV architecture must allow for agents to revisit and
change their behaviours over time, either by adding or removing elements from their PGMs. This
requirement relates to requirement 6 in the sense that the actors’ autonomy also implies that an
actor may change its behaviour without previous notice. Thus, the architecture must ensure that
such modifications are performed transparently to the composition as a whole with little impact on
the other actors and on the current and future executions of the composition. This is paramount to
the viability and maintanability of the system as a whole. As for our leading example, this require-
ment means that a change in the Ambulance actor’s behaviour will not require any modification
on the MPERS actor. The reciprocal also applies, changes in the MPERS actor’s behaviour does not
imply or depend on any modification of the Ambulance actor’s behaviour.

Requirement 7: Changes in an actor’s behaviour must not impact other actor’s behaviour
definitions

4.2 MAPE cycle

IMPROV’s core elements are its Actors. The choreography actors are the elements responsible for
planning and delivering the dynamic service compositions. It is in the actors that all of IMPROV’s
data structures and features lie.

Each actor brings along the knowledge of how to perform its role in the composition by consum-
ing a set of web services and interacting with a set of adjacent actors. To do so, each actor performs
a MAPE-K cycle where it continuously monitor its web services and analyse their historical data in
order to enhance the actor’s knowledge about their behavior and enhance its capability to estimate
the QoS for the subsequent WS invocations. It is then able to plan a web service composition under
QoS and Context constraints and finally execute it in a fault-tolerant way.

To present how the IMPROV architecture uses the MAPE-K cycle we will during this Section
present the macro view of the process, leaving the underlying details for the following sections of
the thesis.

The cycle starts with the actors monitoring the contexts defined in their PGM and the services
they utilize to perform the PGM’s tasks.

The second step in the MAPE-K cycle - Analysis - takes the collected monitoring data and
transforms it into usable information. In our case, in this phase the actor uses the context informa-
tion to exclude behavioural alternatives rendered inapplicable by the current context and the WS
quality levels to enhance its estimate on the expected QoS-level for the next executions.

During this step, the actor drills down the PGM to exclude behavioural alternatives, rendered
inapplicable by the current context. At this stage, it also communicates with other actors in order
to figure out the possible alternatives and QoS levels that they can provide.
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Figure 4.2: MAPE cycle implemented by the agents and involved

At the analysis step of the MAPE-K cycle, the actor drills down the PGM to exclude inapplicable
behavioural alternatives under the current context. At this stage, it also communicates with other
actors in order to figure out the possible alternatives and QoS levels that they can provide.

The third step - Planning - is then triggered by an user’s request or an actor’s delegation. In
this stage the actor interacts with other actors and compares the applicable alternatives to engineer
a plan which can achieve the expected QoS levels under the current context.

Finally, in the Execution step, each actor performs the service invocations that perform the laid
out tasks and communicates with adjacent actors to delegate the goal executions.

4.2.1 Monitoring

The MAPE-K cycle starts with the monitoring of the system’s environment. In IMPROV, the
monitoring aspect has two main focuses: contexts and WS QoS-levels.

Context monitoring is a crucial part of the IMPROV architecture in the sense that the actor’s
behaviour is itself limited by the current state of the environment. As described in its PGM, some
circumstances may force or prevent some alternatives to be used. Therefore, every actor involved in
the choreography must be aware of its environmental context and respond adapting its behaviour
accordingly.

Context monitoring is not, however, performed actively by the actor itself. Instead, external
monitors and sensors evaluate the current state of affairs and report them to the actors. This allows
for more comprehensive and application-specific solutions and does not limit the concept or the
definition of “context” but leaves it open for the choreography designer to define what a context is
and how to monitor it.

The service monitoring on the other hand is performed by the actor. This is by itself a challenge
for the IMPROV architecture because of the non-intrusiveness requirement described in Section
4.1.1. Since the actor holds no knowledge of the WS implementation and can only interact with
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it via service invocations, the service QoS-level monitoring is performed on externally observable
attributes. As per exemplification, we list the measured time between the WS invocation or the
response receipt and the amount of times it has timed-out. Although other externally observable
metrics are viable and may be used within the IMPROV architecture with little modification to the
actors, for the remainder of this paper we will focus on time and reliability metrics.

In IMPROV, the QoS and reliability metrics monitoring is performed by logging the WS in-
vocations and evaluating the related metric. For the performance monitoring, before every WS
invocation the actor starts a clock and then stops it upon the response receipt. Thus, the whole
communication process can be monitored.

The reliability monitoring is a little more complicated in the sense that the actor may capture
both time and content domain faults. Time faults are simpler in the sense that a response is
considered a success if it has been received and a failure if a timeout has been detected regardless of
the fault-tolerance technique used. On the other hand, content domain faults can only be detected
when using a voting FT mechanism. In this scenario, if a service has produced an answer distinct
from those produced by the other instances, this is considered a content domain fault and duly
logged as such.

4.2.2 Analysis

The analysis step of the MAPE-K cycle consists of turning the monitors’ gathered data and
transform it into usable information. Provided IMPROV strives to present itself as an architecture
fully compatible with pre-existing web services and that such web services may have different QoS
levels over different time spans, the QoS-levels estimates cannot be trivially considered. Using a
simple average calculation would result in slowly responding and adapting to changing loads and
behaviours. Timely response to changes and variations in the WS QoS levels require more emphasis
in recent values when compared to older ones.

To do so, we use the historical QoS-levels sequence and apply a technique similar to what has
been used for years in Memory management: the Aging algorithm 1.

The aging algorithm is a descendant of the not frequently used (NFU) algorithm, with modifi-
cations to make it aware of the time span of use. Instead of just incrementing the counters of pages
referenced, putting equal emphasis on page references regardless of the time, the reference counter
on a page is first divided by 2, before adding the referenced bit to the left of that binary number.
For instance, if a page has referenced bits 1,0,0,1,1,0 in the past 6 clock ticks, its referenced counter
will look like this: 10000000, 01000000, 00100000, 10010000, 11001000, 01100100. Page references
closer to the present time have more impact than page references long ago. This ensures that pages
referenced more recently, though less frequently referenced, will have higher priority over pages
more frequently referenced in the past. Thus, when a page needs to be swapped out, the page with
the lowest counter will be chosen.

In our case, for a given historic dataset x0, x1x2, x3 . . . xi (with xn being the most recent value),
we apply a weighted mean Ti which represents the estimate for the WS QoS level xi+1. The degree
at which the importance of the metrics decay can be defined by the designer for each WS and is
expressed in the formula as δ. The weight attributed for metric xi is then calculated by δn−i. At
last, the formula as a whole can de defined as:

T0 = x0 (4.1)

Tn =
n∑
i=0

δn−i ∗ xi
n

(4.2)

This equation can be further enhanced by placing the most recent element x0 element outside
the sum:

1http://ieeexplore.ieee.org/document/5461964/
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Tn = (
xn
n
∗ δ) + (

n−1∑
i=0

δ(n−i) ∗ xi
n
) (4.3)

Tn = (
xn
n
∗ δ) + (

n−1∑
i=0

δ ∗ δ(n−i−1) ∗ xi
n
) (4.4)

Tn = (
xn
n
∗ δ) + (

n−1∑
i=0

δ(n−i−1) ∗ xi
n
) ∗ δ (4.5)

Tn = (
xn
n
∗ δ) + (

(n−1)∑
i=0

δ((n−1)−i) ∗ xi
n
) ∗ δ (4.6)

(4.7)

Since
∑(n−1)

i=0 δ((n−1)−i) ∗ xin is, by definition, Tn−1, we produce the simpler equation:

Tn = (
xn
n
∗ δ) + (Tn−1) ∗ δ (4.8)

This is an interesting approach because of workload-dependent QoS-level fluctuations for in-
stance. The choreography designer may define an appropriate δ value for each service and allows
for more rapid response to abrupt changes in behaviour when compared to the simple average ap-
proach. By default, IMPROV sets the δ value at 0.5. Also, since performance is a key matter in the
IMPROV architecture, through equation 4.8 we can perform the estimate calculation in constant
time, regardless of the amount of previous evaluations.

Another characteristic in the analysis of the WS QoS levels is that a time threshold may be
established to determine a point in time when the estimate looses its value. This threshold allows
for any estimate that has been made with old and out-of-date measurements to be discarded in
favour of an expected QoS-level predetermined in the PGM model.

4.2.3 Planning

The planning stage of the MAPE-K cycle is triggered by a request at runtime, either a user’s
request or a fellow actor’s delegation request. To perform the choreography planning, the actors
build on the PGM’s innate capability of providing an executable plan in linear time over the actor’s
behavioural model size to provide feasible execution alternatives within a considerably small time
span.

Initially, an actor - which holds the root goal - receives an user request to improvise a chore-
ography, possibly under a certain goal interpretation. This actor will then trigger the Pragmatic
Planning Algorithm on its PGM, to engineer an execution plan. If the PPA algorithm reaches
up a task-node, the latest analysed data will provide, alongside with the user’s interpretation, the
information the actor needs to decide on whether to choose that particular task and - if convenient
- which fault-tolerance technique to employ. If, on the other hand, the PPA algorithm reaches a
delegation-node, it recursively invokes the planning algorithm of its adjacent actor so that it can
collaborate and participate on the improvised choreography. The adjacent actor will then, in turn,
execute the PPA algorithm on its own PGM, reaching more tasks and more actors. Ultimately, the
adjacent actor will report the QoS levels it can provide to the root actor and the execution plan
that does so. Finally, with these information the root actor’s PPA can, at last, decide on a complete
execution plan to achieve the root goal under the user’s QoS constraints.

4.2.4 Execution

After deciding on an execution plan the root actor may or may not start the execution phase of
the MAPE-K cycle depending on the engineered plan ability to deliver the expected QoS level or,
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at least, an acceptably lower level. To start the execution phase, the root actor starts playing its
role and, whenever needed, delegating goals to other actors. To delegate a goal during the execution
phase, one must invoke the other actor’s communication interface and supply him with the decided
workflow (plan) it must follow as well as any required input data. The delegatee, similarly to what
happened in the planning phase, will then start playing its own part in the choreography or, if input
from other actor is also needed, wait for those. After playing its part, the actor will either pass the
required data on to other actors or report back to the root actor depending on the workflow’s layout.
This process repeats itself until all the plan’s tasks have been executed and the last actor reports
back to the root actor the successful execution of the workflow.

4.3 IMPROV choreography agents

IMPROV architecture is implemented through what we have been referring to as Choreography
Actors. These actors concretize the PGM actor entity in the sense that they are the ones who
understand that they are taking part in a larger choreography and they are the ones who withhold
the knowledge on how to perform their goals through task executions or fellow actors’ collaboration.
They are at the core of IMPROV architecture’s structure thus providing the means through which
IMPROV is able to deliver the user requirements described in Section 4.1.1.

Each actor is an autonomous entity that contains the knowledge on how to reach a given root
goal under varying contexts, via collaboration or web service invocations. In this Section we will
depict the internal workings of the choreography actors alongside with their internal structure,
its communication and collaboration with other actors, its planning, WS handling, input/output
management, fault-tolerance and WS monitoring mechanisms.

4.3.1 Communication Architecture and WS Handling

The Communication Architecture and WS Handling structure in the actors was designed to
favour WS fault-tolerance and delivered QoS levels. At the same time, its design takes into con-
sideration Requirement 1, in the sense that the actors must deal with unmodified web services,
therefore they are not supposed to make demands or impose premises on the WS themselves other
than those imposed by the SOA architecture itself.

The more traditional approach to dealing with unmodified and unspecialized web serviced is
service orchestration. However, using an orchestrated structure would harm Requirement 3 and
Requirement 6. With regard to Requirement 3, we must consider that in an orchestrated
structure the orchestrator holds all the execution information and all the knowledge about the
composition thus being itself a single point of failure. Also, the delivered QoS levels would suffer
due to the orchestrator’s resource bottleneck in terms of communication [GKB+12]. Requirement
6 would also be affected by the decision of working with an orchestrated approach in the sense that
it presumes that the orchestrator holds the of the entire process, in order to plan the execution
workflow. However, due to Requirement 6, no one entity may have the knowledge and the au-
thority over the entire process. Each actor is autonomous to decide by itself on the proper way to
dealing with requests.

Because of such considerations, IMPROV architecture utilizes agent-based software engineering
(see Section ??) and web services choreographies. Each IMPROV actor is then free to handle
requests as desired and contain the necessary knowledge to do so. It works similarly to a transducer:
receiving messages from other agents and mediating the communication between the actors and the
underlying web services.

To play out their role in the composition, agents interact and communicate among themselves,
via an exposed WSDL interface. This interface, as it will be further described ahead, is composed
of web methods that permit the actor to be informed of external conditions of the environment
or contexts, respond to planning requests, receive input needed as input for its tasks or to receive
notice of another actor’s task completion.
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The interaction with the underlying web services on the other hand is entirely handled by an
specialized module known as Equivalent Service Pool or ESP. This module handles all individual
invocations to the web services and their monitoring and will be described in the next Section.

Figure 4.3: Esquema de cooperação entre os agentes da coreografia.

To summarize the communication architecture, we present Figure 4.4. In this image we can see
four PRCGM actors (ChorAg 1 to 4) and several web services. Each agent deals with a subset of
the available services through its ESP and also with adjacent actors through their control interface.
ChorAg 1 also exposes another WSDL interface which is referred to as the choreography’s end-
point. This is the endpoint through which the final user will be able to request the execution of the
composition and inform its QoS requirements, if there is any.

4.3.2 Communication Architecture and WS Handling

The Communication Architecture and WS Handling structure in the actors was designed to
favour WS fault-tolerance and delivered QoS levels. At the same time, its design takes into con-
sideration Requirement 1, in the sense that the actors must deal with unmodified web services,
therefore they are not supposed to make demands or impose premises on the WS themselves other
than those imposed by the SOA architecture itself.

The more traditional approach to dealing with unmodified and unspecialized web serviced is
service orchestration. However, using an orchestrated structure would harm Requirement 3 and
Requirement 6. With regard to Requirement 3, we must consider that in an orchestrated
structure the orchestrator holds all the execution information and all the knowledge about the
composition thus being itself a single point of failure. Also, the delivered QoS levels would suffer
due to the orchestrator’s resource bottleneck in terms of communication [GKB+12]. Requirement
6 would also be affected by the decision of working with an orchestrated approach in the sense that
it presumes that the orchestrator holds the of the entire process, in order to plan the execution
workflow. However, due to Requirement 6, no one entity may have the knowledge and the au-
thority over the entire process. Each actor is autonomous to decide by itself on the proper way to
dealing with requests.

Because of such considerations, IMPROV architecture utilizes agent-based software engineering
and web services choreographies. Each IMPROV actor is then free to handle requests as desired and
contain the necessary knowledge to do so. It works similarly to a transducer: receiving messages
from other agents and mediating the communication between the actors and the underlying web
services.

To play out their role in the composition, agents interact and communicate among themselves,
via an exposed WSDL interface. This interface, as it will be further described ahead, is composed
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of web methods that permit the actor to be informed of external conditions of the environment
or contexts, respond to planning requests, receive input needed as input for its tasks or to receive
notice of another actor’s task completion.

The interaction with the underlying web services on the other hand is entirely handled by an
specialized module known as Equivalent Service Pool or ESP. This module handles all individual
invocations to the web services and their monitoring and will be described in the next Section.

Figure 4.4: Esquema de cooperação entre os agentes da coreografia.

To summarize the communication architecture, we present Figure 4.4. In this image we can see
four PRCGM actors (ChorAg 1 to 4) and several web services. Each agent deals with a subset of
the available services through its ESP and also with adjacent actors through their control interface.
ChorAg 1 also exposes another WSDL interface which is referred to as the choreography’s end-
point. This is the endpoint through which the final user will be able to request the execution of the
composition and inform its QoS requirements, if there is any.

4.3.3 Agent Interactions

The interaction among several composition actors is made through SOAP requests. These re-
quests are performed on the actors’ control interface and, since they also rely on the WS* stack for
the communication used for the interaction with the underlying services, they do not impose any
further restrictions on the architecture or on the computational environment other than the ones
already demanded by the web services themselves.

The option of using WSDL interfaces and SOAP requests to perform the communication among
actors also facilitated the architecture’s fault-tolerance and recovery mechanisms due to SOA’s
location transparency, loose coupling and late binding capabilitities. Such mechanisms allows the
architecture to replace a failed actor with another replica of it instantiated at another location/re-
source and simply update the adjacent actor’s endpoint for the control interface.

Each actor exposes its control interface which has a predetermined set of methods publicly
available to receive messages from the other actors. On the other hand, sending a message to
another actor is as simple as invoking a web method on its interface. It is then via this interface
that all actor interactions occur. Planning and Analysis interactions are performed by the invocation
of a “plan” method in the actor; execution coordination is performed by invoking the “playRole”
method; context updates are informed using the “context” method and so on.
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4.3.4 Internal Agent Architecture

The communication architecture laid out in Section 4.3.2 as well as the requirements presented
in Section 4.1.1 set the basis for the engineering of the actors themselves, and their internal structure
are a direct reference to such aspects.

In the communication architecture we have stated that actors work similarly to a transducer me-
diating the communication between the remaining actors, their web services and its own web service
pool in order to enable the interaction and composition of those services into a higher level function-
ality. This capability is now translated into three main modules: the Communication, Workflow
Execution and Equivalent Service Pool (ESP) managermodules. The communication
module is the one responsible for exposing the WSDL interface and dealing/routing the requests
for the remaining modules. On the other end of the architecture, the ESP manager deals with the
invocation and monitoring of the web services it handles. Between these two ends, we have the
Workflow Manager that evaluates and handles the sequencing of the tasks.

However, the actor’s role in IMPROV is not limited to working as transducers to route the
messages from users/actors to the proper web service. They not only handle the distributed com-
munication and coordination execution of the composition but also engineer the execution plan
according to the current environment situation, contexts and user-required Qos levels as well as
incorporate fault-tolerance techniques to the composed service execution. These characteristics are
incorporated in the actor through two other modules: Planning and Task Executionmanagers.
The planning stage is performed in the Planning module, which harbors the algorithm presented
in Section 3.7.1. The fault-tolerance mechanism implementation and management is performed by
the Task Execution Manager

Figure 4.5: Arquitetura Interna dos Agentes

The final internal actors’ architecture is illustrated in Figure 4.5. In it we can see the five
introduced modules, the data flow between them and also two data sets which represent the data
that the actor holds about its surrounding environment. Each of these elements are described below.

Communication The Communication module is the module responsible for handling all in-
coming and outgoing communications. It is the Communication module which exposes the
control and, if necessary, the endpoint WSDL interfaces to receive communications from other
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actors, components or users. It also the Communications module that converts the actor’s
requests into SOA method invocations and ensures the receipt of the messages by the adjacent
actors.

Planning In order to achieve Requirement 2 (Section 4.1.1), it is paramount that the composi-
tion’s execution plan is decided collaboratively and at runtime. This is the main focus of
this module: to plan the dynamic aspect of the choreography considering the current context,
the possibilities described in the actor’s PRCGM and the available service pool and their
individual current QoS levels.

The Planning module is triggered by the Communication module upon receipt of a plan
message from another actor on the control interface or by an user request on the endpoint.
At this point, the planning module executes the algorithm described in Section 3.7.1 to cross-
reference the current QoS level of the underlying web-services (registered in the WS Dataset),
the context (context Dataset) and its own PRCGM. While executing the QoS-Constrained
planning any possible delegation will also trigger an interaction with the delegate actor via
outgoing messages posted by the Communication module. Finally, once all delegate actors
have reported their plan, the algorithm is completed and the execution plan is devised. The
produced task sequencing is then informed back to the Communication module, in the case
of an actor-sent planning request, or to the Workflow Execution module in the case of
an user request.

Workflow Execution After the proper course of action has been decided on, the root actor starts
its execution of the plan. The execution is coordinated by the Workflow Execution mod-
ule. This is the module responsible for the correct sequencing of the tasks and the overall
workflow execution. Once it receives an execution plan, either from the Planning or from
the Communication modules, it analyses it to decide the tasks apt for execution and sends
them to the Task Execution module. Also, after the Task Execution module reports
back and informs of the successful completion of a task, it is the Workflow manager’s job to
define whether this completion should be reported to adjacent actors so that they can carry
out their part in the overall execution planning. It is this module responsibility to handle the
input/output communication between workflow tasks.

Task Execution The Task Execution module plays an important role in the fault-tolerant
aspect of the task execution. For an actor, a task execution is not merely mapped to a service
invocation. Instead, it deals with task execution in such a way that failures in the underlying
services would not necessarily impact or impede the execution of the workflow as a whole.
Such insurance of successfuly executing the tasks in the composition is the primary focus
of the Task Execution module. This module receives individual tasks from the workflow
manager and dispatches a set of service invocations to the ESP module. It thens monitor
the success of the individual invocations and takes action accordingly to the fault-tolerance
technique chosen at the planning stage.

Equivalent Service Pool The ESPmodules encapsulates the web service invocation process. This
module handles the interactions between the actors and the task-providing web services it han-
dles. At the same time, the ESP modules makes use of the service invocations to monitor the
WS’s behavior and update the observable QoS variables (time and reliability) estimates. These
observations feed the WS Dataset with new and updated information, which will retroactively
impact on future executions planning.

4.3.5 Internal Elements Interactions

Figure 4.5 presented not only the modules themselves but also the interactions between them.
These interactions are the means by which the actors perform the MAPE-K cycle we have introduced
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Figure 4.6: MAPE cycle implemented by the agents and involved

in Figure 4.2. It is now necessary to dig deeper into such interactions, specially considering their
non-linear aspect, to envision the MAPE-K cycle it performs.

Figure 4.6 extends Figure 4.2 and places each of the actor modules into the stages it takes part
on. It also introduces the macro output artifacts of each MAPE stage.

We will now present the MAPE-K cycle execution alongside the handling of a user request. Under
such pretext, let’s consider we already have up-to-date WS and context datasets and eventually
received an user request for performing the composition. In this scenario, the first stage of our cycle
would be the analysis stage. At this point, the user request was received by the Communications
module and then forwarded to the Planning module. The Planning uses the PRCGM and
Contexts Dataset to trim out any inapplicable alternatives given the current context.

In the next stage (planning), the Planning module uses the trimmed out PRCGM tree to
engineer the actual execution plan using the QoS-Constrained planning algorithm and aided by
the Communication module which communicates with delegate actors to gather their execution
plans for the possibly delegated goals. At the end of this stage, the Planning module produces an
execution plan that may involve several delegations and several actors.

Thus, during the planning stage the Planning module evaluates the distinct alternatives and
paths to reach the root goal and the QoS levels they would provide, according to the gathered
information available at the WS Dataset. It then decides on an alternative that is likely to satisfy
the required QoS levels. It does so by agglutinating its own plans with the plans provided by
adjacent actors in order to generate a global task workflow. This task workflow is the final output
of this stage and represents the conclusion of the planning stage and the beginning of the execution
stage.

In the third stage the execution of the devised plan is performed. This stage begins with the
receipt of the execution plan by the worflow manager. During this stage the Workflow module
oversees the tasks execution and handles their senquencing, both internally via Task Execution
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manager and externally sending messages to other actors through the Communications module.
It parses the plan and dispatches tasks (with the appropriate fault-tolerance mechanism indication)
to the Task Execution module and delegations to the communication mechanism along with
any necessary input.

If, in one hand, the Workflow Manager is responsible for the overall task sequencing and
coordination, on the other the Task Execution module oversees their individual execution pro-
cess. The Task Execution manager receives the tasks and their fault-tolerance mechanism and
converts it into the appropriate service invocations. Each of these service invocations is then passed
on to the ESP module which then places the actual invocations onto the web services and relays the
corresponding responses back to the Task Execution module which decides on the next step.

After successfully executing a task, the Task Execution manager reports the completion back
to the Workflow Manager so that the workflow may be carried on.

The monitoring stage in IMPROV is actually performed at the same time as the execution itself.
However, to make it easier on the reader to understand the flow, we placed this step as a final step.
In IMPROV, to diminish the impact of the monitoring in the execution and due to the restrictions
imposed by the requirements, we do not monitor the service themselves but actually monitor the
interactions the actor has with it. One can think of the monitoring in IMPROV as the “personal
opinion” the actor has on each service. During each service invocation performed by the ESP module
it also controls the amount of time needed to receive a response. This amount of time is then added
to the WS Dataset. For the context dataset, we have opted to update it using external features or
sensors that notify the actor of a change through the Communications module.

4.4 Dynamic Choreography Execution

During the planning stage of the MAPE cycle, a workflow was devised. The creation of this
document and its receipt by the Workflow Manager are the starting events of the dynamic
choreography execution. During this process, the tasks in the workflow are evaluated and converted
into a set of service invocations to be made by the ESP manager to the task implementing web
services.

During the execution, each actor becomes a service monitor and an execution coordinator for
the undergoing composition. Starting with the endpoint actor, each actor submits its available tasks
to their web services and then they await the response from the WS.

Each workflow task already contains the expected fault-tolerance technique to be employed, the
web services involved and the web method to be invoked, leaving for the workflow manager simply
to point those out to the task manager.

The Workflow manager starts the process seen in Figure 4.7 by defining the tasks and delega-
tions apt for execution.

The Task Execution manager in converts the tasks into an appropriate set of service in-
vocations according to the chosen fault-tolerance technique and relays the responsibility for the
individual invocations to the ESP module. The ESP module invokes the web service while also
taking note on the elapsed time between the invocation and receipt of the reply. Once the response
is received, the ESP relays the produced output to the workflow manager (5) who checks the
tasks that will consume such output as well as the actor responsible for them. Finally, each of these
actors is notified of the task completion and sent its output. Upon receiving a task completion no-
tification and/or an input data the workflow manager re-evaluates the ongoing workflow to assess
the existence of any newly available tasks. If the dependencies set of any task has been satisfied,
that task is considered ready and promptly sent to execution.

Similarly, an available delegation is converted into an adjacent actor invocation which will trigger
the same process at the fellow actor’s side. After the actor successfully executed its tasks in the
choreography it will notify the current actor of the conclusion (5) and restart the process with the
workflow manager re-evaluating the dependencies to check if any new tasks or delegations are ready.
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Figure 4.7: Laço de execução do workflow

4.4.1 Tasks Execution Process

After receiveing a task from the Workflow Execution module, the Task Manager module
steps up to convert the tasks into service invocations and coordinate their sequencing. By doing so,
it tries to make sure of the successful execution of the task in spite of eventual web service failures.

It has two basic elements: (1) Fault-Tolerance Managers: A implementation for each of the
available FT techniques. (2) Thread Factory: A component to allow the parallel coordination of
all invocations.

The Task Execution process is illustrated in Figure 4.8. As it illustrates, for each task
received the Task Manager Module:

1. Instantiates a Fault-Tolerance Manager that will oversee and coordinate the service invoca-
tions in order to implement the desired fault-tolerance technique. The Fault-tolerance
manager will then:

(a) Create execution threads for each parallel invocation and each thread will:

i. Interact with the ESP Manager to invoke the appropriate web service;
ii. Await for the response receipt
iii. Gather the outputted data;
iv. Notify the FT Manager of the successful conclusion or of the timeout

(b) After being notified of a Thread conclusion, the FT manager decides, depending on the
FT mechanism it implements, whether to carry on with the execution, fail or wait for
another thread’s completion.

(c) Once enough threads have successfully completed, the FT Manager decides on the out-
putted value for the task (for instance on a voting mechanism) and;

(d) Notifies the Task Execution module of the produced response;
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Figure 4.8: Fluxo para realização tolerante a falhas de tarefas

2. Finally, the Task Execution module notifies the Workflow module of the task’s comple-
tion so that it can proceed with the remainder of the composition.

4.4.2 Task Sequencing and Inter-Services Communication

In the workflow, each task has a set of dependencies (tasks that need to be completed prior
to execution), a set of inputs and an output. Each input and output is identified by an unique ID
within the PRCGM.

It is through this informations that the actors manage and mediate the temporal sequencing
and the communications between the tasks. Every input of a task necessarily has been produced
by one of the task’s dependencies or has been informed by the user as an input to the composition.

All of these inputs and outputs in the composition are stored by the actor during the execution
of the workflow. Whenever a task is about to be initiated, the actor gathers its inputs and forwards
it to the web service. Upon receipt of the produced output, the actors stores it, marks it with its
identifier and triggers the execution of tasks which were dependending on the conclusion of that
task to be initiated.

Therefore, it is through this input/output identification and storage that actors are able to
mediate the communication between services.

4.4.3 Actors Execution Coordination

The execution coordination between the actors is performed via the delegation process and task
completion notification. Eventually, while performing its role, an actor might need to ask another
actor to perform some task(s). This solicitation takes place through a delegation.

However, the mere delegation is not enough to ensure the proper execution and task sequencing.
Therefore after each task completion, the Workflow Manager verifies all the tasks that depend on
the recently completed task and notifies their actors of the completion, eventually passing them any
necessary input data allowing for more distributed coordination. For instance, a task that depends
on two tasks, performed by two different agents cannot be started at the time of the first delegation
arrival. It should wait for another delegation request from the other actor indicating that both tasks
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are completed before being able to gather the necesary input and before all dependent tasks are
completed.

As stated in Section 4.3.2, all of this communication is performed using the SOA architecture,
thus facilitating the data transfers and the actors independency.

To perform a delegation, the originating actor invokes the method playRole from the delegate
actor, passing the decided workflow and any necessary input as a parameter. Similarly to what has
been done wih the services, during the delegation process the actor also monitors and probes the
correct execution of its partners and may, eventually, detect failures in the delegate actor. If such is
the case, a recovery process may be triggered. This process of fellow actors monitoring and recovery
will be throughly described in Section 4.5.3.

4.5 Fault Tolerance

As illustrated in Figure 4.4 and discussed so far, actors interact with their equivalent service
pool and among themselves to perform the dynamic composition. However this is not their only
role in the choreography, they are also responsible for implementing the fault-tolerance mechanisms
chosen at the planning stage in accordance to the PRCGM tasks fault-tolerance annotations.

Such responsibility is placed in the Task Execution Manager module. During this Section
we will categorize the faults handled by the IMPROV architecture, then explain how each of these
are handled during execution.

4.5.1 Fault Categorization

Since we are dealing with unmodified web services (Requirement 1), the failures types that
we may consider are severely restricted by the observable events in SOA itself. This means that
the failure categorization cannot be grouped by their actual causes (hardware failures, software
bugs, network errors, etc) but by the actual observable event from the service invocator’s (in our
case, the actor) point-of-view. To better understand this peculiarity let’s consider a content fault.
From the service consumer’s perspective a content fault derived from a bug cannot be diferentiated
from another fault due to a network error or a bit change in the hardware. Because the service
is unmodified and unspecialized the actor has no power to interfere directly on the service’s inner
workings and therefore on the fault’s actual origin. From the actor’s perspective all content failures
have the same effect and the same handling mechanisms for all of the afore mentioned situations.
Regardless of its origin, in this case the failure is considered simply as an Incorrect Answer.

The full scope of the considered failures in this Thesis are presented on Table 4.1. According to
the failure categorization defined in Avižienis et al. [ALRL04], the failures have been classified by the
component on which they occur (web services or actors), their domain (time or content),
their detectability and degree of impact (low, medium, high or catastrophic)

The first failure type is the unavailability of a replicated service. This kind of failure occurs
whenever a service becomes unavailable. However, in this situation there are other replicas or
resources able to deliver the same features, thus incurring simply in a service switch. At most, there
will be some requests that will have to be replanned should the unavailability of this service impact
on the achievability of their root goal.

The second kind of failures considered and treated by IMPROV is similar to the first in the
sense that occurs due to a service becoming inavailable but in this situation it is far more harmful
because the unavailable service has no substitute candidate to replace it. In this situation, all of the
requests depending on such service for their executions will have to be replanned and some may
even become unachievable.

The third failure category is the only one in the content domain. For some more data-sensitive
tasks, the PRCGM designer may opt to use a voting mechanism to diminish the possibility for an
incorrect response. Whenever that occurs, content failures may be detected. An incorrect failure,
from IMPROV’s and the actor’s perspective, occurs whenever a service included in an NVP scheme
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Unavailable Unique Service WS Time No Yes Medium
Incorrect Response WS Content Yes Yes2 Low
Irresponsive Actor Actor Time No Yes Low
Unreachable Actor Actor Time Yes Yes High
Endpoint Unavailability Actor Time Yes Yes High

Table 4.1: IMPROV’s Considered Faults Categorization

disagrees from the majority of the others. If such situation occurs, IMPROV interprets the most
voted response as the correct one and any services that did not produce that very same response
will be attributed a content-failure.

The fourth kind of failure considered does not regard the web services anymore but the actors
themselves. In IMPROV each actor serves as a monitoring and recovery mechanism for all adja-
cent actors. An Irresponsive Actor failure signifies that a communication attempt has failed. The
actor was somehow unable to receive a message sent from an adjacent actor, which will trigger a
Irresponsive Actor fault on the emissary actor. This failure is on the time domain, is detectable by
the emissary actor and has a low impact on the architecture because it will simply mean that the
emissary should retry sending the message.

The fifth kind of failure occurs when the emissary actor has already retried several times to reach
the adjacent actor without success. In this situation, the emissary actor throws a Unreachable Actor
fault. These faults are in the domain of time and have a much deeper and long lasting impact on the
architecture. If an actor has been deemed offline, the emissary will start a recovery process which will
bring up a replica of the unavailable actor in the same resource as the emissary actor. Next, all of the
unavailable actor’s adjacent actors will be informed of its unavailability and instructed to re-route
their requests to the newly instantiated replica. This process however diminishes the composition’s
resources, with one resource providing two actors. It also augments the actors’ concentration per
resource, meaning that a failure in another resource may cripple several actors at the same time.
Therefore this is one of the most costful failures in the IMPROV architecture.

The sixth and last kind of failure considered by IMPROV is the unavailability of the endpoint
providing actor. In this situation the actor that goes offline is the very same actor which publishes
the composition’s public interface. This kind of failure is considered catastrophic as there is no way
of notifying all clients of a change in the composition’s endpoint. If the WSDL interface cannot
be found on the previously advertised location, the composition as a whole is rendered offline. In
particular, we consider that raising the same WSDL interface on another location would actually
create a new composition, even in the case of reusing the previously deployed actors.

4.5.2 Task-level Fault-Tolerance

Considering the presented failures and - again - Requirement 1, we have used in this work
only fault-tolerance techniques that would raise the overall reliability levels without any intrusive
mechanisms, like the ones that would be necessary to implement a task-level checkpoint technique
or to ensure the maintenance of an secondary set of services in the same state as the primary ones
to implement a Passive Replication mechanism.

Therefore, the techniques currently available in IMPROV are Retry, Active Replication,
Retry on Alternate Resource, Voting and Voting with Active Replication. Al-
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though IMPROV currently implements only the aforementioned techniques, its internal architec-
ture and the Task Execution Manager implementation allows for non-intrusive extensions to
be added on a later time, as long as the SOA characteristics are left untouched.

Each of these techniques are implemented by the Task Manager module by conveniently placing
service invocations on the ESP manager and awaiting their replies. The active replication simply
places requests on all available services and returns the first replied response. The Retry technique
places a single invocation and, should it fail by timeout, places another one on the same service.
The Retry On Alternate Resource works similarly but places the new attempted request on another
service, instead of the same. The Voting mechanism places requests on all the services, awaits all
the replies and then decides on the most voted answer. Finally Voting with Active Replication
places requests on all services but awaits for only half the replies before deciding on the most voted
answer.

4.5.3 Actors’ Fault-tolerance mechanism

Whenever an actor is initialized, they go through a setup phase in which they may publish to
their adjacent actors their own behavior, as described in their PRCGM and also the list of adjacent
actors. They also publish in their control WSDL interface a method called updateNeighbor
through which another actor may upload or update their behavior on the event of a change.

This structure aims at maintaining at all actors all the information needed to create a replica
of an adjacent actor. This way, in the case of any actor becoming unavailable the adjacent actor
is capable of creating a replica of the original actor and notify its adjacent services of the change.
Whenever an actor sends a message to another actor, it awaits for a receipt confirmation. If the
confirmation does not arrive, an Irresponsive Fault is thrown, and then two new attempts are made.
Should these attempts fail as well then an Unavilable Actor Failure is thrown and the recovery
process begins.

Figure 4.9: Processo para identificação e recuperação de agentes inacessíveis ou indisponíveis

The recovery process is illustrated in Figure 4.9 and consists of the following steps:

1. Irresponsive Actor Fault
The confirmation of receipt of a message sent to an actor is not received.

2. New Attempts
The emissary actor tries to send the same message again another two times

3. Unavailable Actor Fault
After three failed attempts of communication, the emissary actor declares the receiving actor
unavailable.
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4. Recovery Process Notification
The emissary actor notifies the failed actor’s neighbors that the actor was declared unavailable
and that a recovery process will be started.

5. Faulty Actor Instantiation
The emissary actor uses the faulty actor’s PRCGM data to create a new instance of it.

6. Endpoint Publishing
After instantiating the faulty actor, the emissary notifies all neighbors of the new endpoint
on which the newly instantiated actor may be found.

As an example, let’s imagine a faulty actor A1faulty that interacts with actors P1, P2 e P3.
During its setup phase, A1faulty has sent its PRCGM data to P1, P2 and P3. However, at any
given time, actor A1faulty becomes unavailable or unaccessible by its peers (for instance, because
of a hardware failure on its resource). Eventually P2 sends a message to A1faulty but A1faulty
does not acknowledges the message receipt. P2 sends the message two more time, without success.
At this point, P2 declares actor A1faulty unavailable. P2 notifies P1 and P3 that actor A1faulty
is unavailable and that it will be reinstantiated in a new resource. P2 creates another instance
A1recovered) in some available computational resource and then A1recovered notifies P1 and P3 of
its new endpoint effectively restoring the service composition to a working condition.6

4.6 Compositions Lifecycle and Evolution

The lifecycle of an adaptive and distributed service composition using the IMPROV architecture
is a long lasting one, with several stages. These stages are represented in Figure ??.

Every composition starts its lifecycle with the definition of a root goal, derived directly from
the goal-based requirements engineering process [ADG10]. This initial process is illustrated in the
lifecycle by the means of the first two ativities: Root Goal Specification and Actor Behavior Defini-
tion. Initially, to specify the behavioral traits of an actor and, subsequently, of the composition, the
compositiondesigner must identify the root goal that is to be pursued by the composition. Next, the
actor’s behavioral traits must be specified by the means of its PRCGM model and, consequently,
by mapping the possible alternative strategies to reaching each specified goal, the contexts that
may affect the environment and the necessary actor behaviour and the necessary web services that
implement the tasks described in the process.

After defining the actors’ behaviours, they must be deployed on the environment. At this point,
an instance of each actor is instantiated in an appropriate computational resource and executed.
From this point on, that actor is available for answering requests from other actors or from users.

The composition now moves on to a more operational phase of its lifecycle. It is now ready to
handle user requests. The next step in the lifecycle and in the actors’ history is the handling of
these user requests with multiple possible QoS level requirements. For each of these requests, the
actor first evaluates the possibilities and alternative strategies to handle the user request, maybe
by itself but probably by interacting with other actors to define an execution plan.

Finally, the user request is performed in accordance to the decided plan and the services are mon-
itored, thus improving the actor’s knowledge of their behavior and updating the agents behavioral
definitions to work with this newly acquired knowledge.

4.7 Project Decisions

During the development of IMPROV we have hit a few speedbumps, specially considering the
ambitious goal we have set to achieve. In this Section we present some of these hard choices and
concessions that were needed and expose our reasons to make such choices.
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Figure 4.10: Ciclo de vida de uma composição sensível a contexto
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Only one composed QoS constraint Some of the guiding principles in IMPROV development
were: (1) a highly adaptable service composition - adaptive service selection, topology and
fault tolerance techniques - that can respond to dynamic changes in the environment; (2) the
preservation of the actors’ autonomy with regard to their behaviour. From the first principle,
we may derive the need for runtime adaptation and, consequently, of a low planning overhead
for the algorithm. From the second principle we derive the notion that the actors must be able
to decide their own behaviour without a centralized supervenient entity’s point-of-view. There-
fore, using a multiple selection criteria for composed QoS levels was deemed too heavy-weight
a solution to be applicable. Multi-criteria QoS restrictions have much higher complexity than
the QoS-Constrained algorithm. If we were to employ such algorithms to decide the actors’
behaviours we would not be able to do so in a localized manner - thus infringing the actors’
autonomy - nor with a greedy approach - thus providing higher complexity levels and much
higher execution overhead. Because of these reasons, we opted to restrict the composed QoS
levels to a single one. However, as explained in Section 3.7.1 multiple individually evaluated
(filter) restrictions may be employed.

Web Service Discovery Although IMPROV foresees dynamic adaptation due to service discov-
ery, there are already many published papers on this issue and we chose not to focus on that
particular aspect, leaving us to give more attention to the adaptivity aspect of the architecture.

Monitored QoS Levels To monitor unmodified web services in-the-wild behaviour one must con-
sider the services’ loose coupling and location transparency. Therefore, similarly to the fault-
tolerance techniques that needed to be non-intrusive, the service monitoring mechanism also
has to deal only with non invasive measurements. Thus, a thorough monitoring of their more
implementation- and resource-centric metrics is not feasible. The non-instrusive WS moni-
toring is performed only for the metrics that can be observed from the actor’s point-of-view
and extracted from its interactions with the service: response time and reliability. These are
currently the only two monitored QoS levels. The remaining QoS levels are treated as fixed
or externally updated.
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Chapter 5

Validation

5.1 Pragmatic Model and Achievability Algorithm Evaluation

In this section, we experimented on the algorithm to find out its effectiveness and to evaluate
its usefulness in finding achievable plans and its scalability as to assert its practical application
in large scenarios, both at design-time and runtime using the Goal-Question-Metric evaluation
methodology [BCR94].

GQM is a goal-oriented approach used throughout software engineering to evaluate products and
software processes. It assumes that any data gathering must be based on an explicitly documented
logical foundation which may be either a goal or an objective.

5.1.1 GQM Validation Plan

The Goal/Question/Metric (GQM) [BCR94] methodology. GQM is a well-established top-down
goal-oriented approach used throughout software engineering to evaluate products and software
processes. Its main premise is that any data gathering must be based on an explicitly documented
logical foundation which may be either a goal or an objective.

In short, GQM’s first step is to define the high-level goals to be reached. From each of these goals
derives several quantifiable questions that need to be answered to consider that goal fulfilled. Finally,
for each question, the necessary measures for duly assessing the evaluation [BCR94]. These questions
identify the necessary information to achieve the goals while the metrics define the operational data
to be collected to answer each question. These goals are tailored in such a way that they summarize
the macro objectives of our architecture and implemented mechanism. Following these guidelines,
our GQM model was designed to verify that all our goals were methodologically tested and assured1

.
In such a methodology, we started up by setting the three main goals of our evaluation : (I)

verifying the usability of the model for the MPERS case study at runtime; (II) verify that algorithm’s
performance allows it to also be used also at runtime for larger models and; (3) define whether the
model can be used at design-time to pinpoint context sets in which the model may be, per design,
unachievable. These three goals were the foundation on which the GQM validation plan was based.

5.1.2 Experiment Setup

The experiment setup consisted in evaluating the Pragmatic model and the algorithm’s capa-
bility to support design-time and runtime usage.

These parts and their evaluations were engineered to provide the metrics demanded by the GQM
plan (Table 5.2).

1Although the same GQM model may be used for comparing two equivalent approaches no similar work - fault-
tolerant choreographies mechanism - was found. The closest in nature to our proposal was [? ] which used GQM
method to derive the metrics for evaluating the successful adoption of SOA in a project however no GQM plan was
presented.

49
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Goal 1: PPA’s runtime usage capability in the MPERS case study
Question Metric

1.1 How long would it take for the PPA
algorithm to come up with a plan for the MPERS
case study?

Execution time

1.2 How reliable are the plans provided by PPA
for the MPERS model?

% of correct
answers

Goal 2: PPA’s runtime usage capability for larger models
Question Metric

2.1 How does the PPA algorithm scale over the
amount of goals in the model?

Execution time

2.2 How does the PPA algorithm scale over the
amount of contexts in the model?

Execution time

Goal 3: Algorithm’s design-time usage capability
Question Metric

3.1 How long would it take to cover all context
sets for increasingly large models?

Time elapsed

Table 5.1: GQM devised plan

The first evaluation goal is directed towards the MPERS case study and aims at a more com-
prehensive and detailed evaluation and it is intended as a “proof of concept”. On this front we have
evaluated the time to produce an execution plan and the reliability of the plans provided evaluation.
In this evaluations, we have used the MPERS Pragmatic Goal Model as the input for the evaluation
tool and measured the time for producing a plan and its adherence to the model’s restrictions.

The second evaluation goal concerns itself with the scalability of the proposed model and its
applicability on larger models, both in terms of goals and contexts amount. For this evaluation
we have generated models with varying amounts of goals and tasks using each one the possible
annotations to evaluate the impact on using such annotations - when compared to one another
- and to determine the worst case scenario. This is meant to ascertain the planning overhead on
the model. This information also gives designers a baseline on which to base their decision on the
applicability of the model to perform runtime decisions.

Finally, the third evaluation front is concerned with the usability of the algorithm as a design-
time tool to pinpoint scenarios in the Pragmatic GM which may be unachievable by design, given
the goal interpretations, tasks’ quality levels provided under specific contexts. For this goal, we have
evaluated the time spent to sweep all context combinations in randomized models with 10 contexts
and sizes ranging from 500 to 6,000 nodes.

The PPA algorithm from Figure 1 was implemented2 using Java Oracle JDK 1.8.0_92 and all
evaluation tests were performed on a Dell Inspiron 15r SE notebook equipped with a Intel Core i7
processor, 8GB RAM running Ubuntu 16.04, 64 bits and kernel 3.16.0-29-generic.

All experiments to evaluate the correctness and performance of the algorithm were implemented
as automated tests under Java’s JUnit framework. This guarantees that the evaluation is both
effortless and repeatable.

5.1.3 Goal 1: PPA’s runtime usage capability in the MPERS case study

For this goal, we evaluated the average time to produce an answer in the presented MPERS
scenario (Figure 2.2) and the reliability of the engineered plans.

2Source code, evaluation mechanisms, and complete result sets are available at https://github.com/felps/
PragmaticGoals/tree/RuntimeGoalModel. Accessed on 2016/07/30
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Figure 5.1: Assertions to verify the generated plan’s adherence to the annotations’ semantics

Question 1.1: How long does it take for the PPA algorithm to come up with an execu-
tion plan for the MPERS case study? To evaluate the time for the algorithm execution on
the CGM of Figure 2.2, we executed 100 iterations of the algorithm for each possible context set.
The results showed that the algorithm took, in average, less than 1 ms to be executed.

This evaluation was performed by executing the algorithm over the MPERS model 100 times
for each possible context set, summing up to a total of 409600 repetitions.

The average time for coming up with a plan for the MPERS case study was 0.34 ± 0.09 ms.
Out of the 409600 measurements, there were however 62 outliers (0.015%) with execution times of
more than 10 ms. These outliers points are still under a second and are likely due to background
tasks in the machine, which was not dedicated.

Question 1.2: How reliable are the plans provided by PPA for the MPERS model?
To validate the correctness of the plans we have, for each context set for the MPERS, identified
all the inapplicable tasks, all restrictions imposed by the goal annotations’ and the composite QoS
constraints. Then, we formally coded these restrictions through 42 assertion statements, similar to
the ones presented in Figure 5.1, throughout the test so as to guarantee that none of the restrictions
were disrespected in any of the outputted plans.

Finally this test was performed for every possible context set and none of the coded restrictions
were infringed.

Analysis of the results With regard to the MPERS case study, the proposed algorithm have
been shown to be efficient. The planning stage for this scenario took around 3 milliseconds to
be computed and none of the 4096 executions, effectively sweeping all the possible context sets,
triggered any of the several assertion statements introduced in the tests.

It was certainly expected - given the deterministic nature of the algorithm - that all the responses
were valid. However the level of efficiency in solving this problem was remarkable.

5.1.4 Goal 2: PPA’s runtime usage capability for larger models

The second goal from the GQM validation plan aims at defining if the model and algorithm
proposed are suitable for usage in larger models. To uncover some information regarding this ob-
jective, we have stated two questions on the scalability of our proposal: how does it scale over the
amount of goals in a model and how does it scales over the amount of contexts in a model.

This investigation is important considering the objective of using this model and this algorithm
to engineer - at runtime - an execution plan able to achieve the CGM’s root goal under the current
context and current QoS constraints. To accomplish this goal - and this is a pragmatic goal itself -
it is not sufficient to engineer the plan but it needs to done in a reasonable amount of time so that
it will not seriously impact the response time.
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Question 2.1 and 2.2: How does the PPA algorithm scale over the amount of goals
and contexts in the model? To answer questions 2.1 and 2.2, we have performed a scalability
analysis on Pragmatic GMs of different sizes, in terms of goals and contexts amounts, for each one
of the possible goal annotations.

For each of the available annotations, we engineered and performed a series of evaluations.
A pragmatic model with size ranging from 500 to 10.000 (in steps of 500 nodes) and contexts

ranging from 1 to 20 containing goals annotated with the selected annotation would be generated.
Then, for each of these models, we executed the isAchievablemethod 50 times and measured the
total execution time. Finally, the test outputted the average execution time per method invocation.
The resulting average times are presented - one for each annotation - in Figure 5.2.

In these graphs, the x- and z-axes represent the model-size and the amount of contexts used
in each execution respectively, i.e, the independent variables. The y-axis represent the time for
engineering an execution plan, i.e, the experiment’s dependent variable. In all six experiments, the
average time for engineering the plan did not go over 5 seconds.

Also, in the plotted graphs we are able to glimpse into the expected complexity of O(m ∗ n)
over the model size m (x-axis) and over context sizes n (z-axis).

Analysis of the results In general, Figure 5.2 shows a good behaviour of the algorithm. The
growth ratio for the algorithm’s execution time grows linearly over the amount of goals and con-
texts. None of the annotations had issues in elaborating a plan on larger models, although their
performance varied in different degrees. The behaviour of the Sequential annotation was the worst
of them all with an execution time of a little under 4.5 seconds for models with 10,000 nodes and
10 contexts. Still this was considered an affordable execution time for the planning stage of such
large scenario in terms of goals, tasks and contexts.

5.1.5 Goal 3: Algorithm’s pinpointing unachievable context sets capability

Finally, the last goal of the evaluation is to show the applicability of this algorithm to benefit
software designers. More specifically, we want to know if it can answer the following question: “Given
that the system has been modelled as a Pragmatic GM, is it possible to use this algorithm pinpoint
context sets in which such system would inherently be unable to reach its goals?”

To deal with this we have implemented one last test which would generate 600 random models
varying from 100 to 6000 nodes with a fixed set of 10 contexts. Then, the algorithm was executed
for every one of the 210 possible context sets and the time spent to do so was measured. The results
are now presented in Figure 5.3, with each point representing the average time to sweep all the
context sets in 10 randomized models.

Analysis of the results As shown in Figure 5.3, on smaller models - up to 300 goals - the
algorithm was able to fully analyze the 32768 context sets within the 10 seconds deadline. On larger
models - up to 5000 goals - the algorithm was able to analyse around 40% of the combinations.
Even at the limit, with models of 10000 nodes, it was able to cover more than 25% of the possible
combinations. This result suggests that even for models with up to 10000 goals and 20 contexts the
complete analysis can be performed within a minute.

5.1.6 Discussion of the results

As stated in the GQM plan (Table 5.2), the experiments had three main goals: (1) determine if
there is the necessity for an algorithmic approach, (2) determine if the algorithm could be used at
runtime to find a suitable plan for the current context and; (3) whether it could also be used for pin-
pointing context combinations in which there is no applicable goals/tasks combination sufficiently
good to satisfy the pragmatic goals’ requirements.

For the first goal, the results have corroborated with the understanding that the Pragmatic
CGM complexity is far too great to be dealt simply by the human perspective.
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(a) Sequential (b) Parallel

(c) Sequential Iterative (d) Parallel iterative

(e) Alternative (f) Try

Figure 5.2: Algorithm’s scalability over the model size, in number of nodes, and context amount
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Figure 5.3: Time spent to run PPA algorithm for all the possible context sets (average execution time over
10 different models)

On the other hand, the algorithm proved itself as a much faster and deterministic alternative.
While the volunteers took up to 17 minutes to provide an answer with 73.19% reliability, the
algorithm produced an answer to the same problem in under 1 millisecond. Also, since it is a
deterministic algorithm, the produced answers are always valid. Even if considering very large
improvements on the human performance, the algorithmic approach would, most likely, still largely
surpass human performance.

As it can be perceived from the metrics presented, human judgment takes a lot of time and it is
also very unreliable whereas the algorithm provided correct answers in a very timely manner, thus
allowing us to state that an algorithmic approach is apparently needed.

Though the comparison between volunteers and an algorithm may seem unfair, the goal of this
comparison is to determine the necessity of an algorithmic approach. Being so and as expected, the
algorithm has proved itself much better both in terms of efficiency and efficacy as well as subsiding
the desired hypothesis that an algorithm is indeed necessary.

In this section, we compare the performance and accuracy of the human and algorithmic ap-
proaches.

For the second goal, we aimed to evaluate whether the algorithm was suitable for execution at
runtime. This meant verifying two main aspects: that the algorithm would efficiently execute even
with large Pragmatic CGM models and within a reasonable time to not affect the response time.
We performed this analysis for random models (Figures 5.2a and ??) which may have incurred in
the observed high variability for the average case. However, an upper boundary was also set with
the worst case evaluation (Figure ??).

With regard to the first aspect, Figure ?? shows that the algorithm’s execution time grows
linearly over the amount of goals as well as over the amount of contexts in the Pragmatic CGM
model, both in the average and in the worst case scenarios.

The second aspect can also be derived from Figure ??. As it shows, even when considering the
worst case scenario , the time for evaluating a model with 10000 nodes and 20 contexts was 1081
ms. As a matter of comparison, the default setting of Axis2 (Java’s API for web services) for a read
timeout is set to be 300 seconds3. Therefore, we see this as an acceptable result for the purposes of
showing that the algorithm’s performance is enough not to severely impact runtime.

Finally, for the third goal we evaluated how long the algorithm took to sweep all context com-
3http://www-01.ibm.com/support/knowledgecenter/SSD28V_8.5.5/com.ibm.websphere.nd.doc/ae/rwbs_

jaxwstimeouts.html. Accessed on January 14th, 2015
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binations. Given the results from Figure 5.3, we can state that for models with up to 10000 goals
and 15 contexts, it is actually possible to evaluate all context set combinations within one minute.
Thus, the proposed algorithm can indeed be used on a Pragmatic CGM to pinpoint unachievable
scenarios with up to 15 contexts, which can then be scrutinized by the CGM designer in order to
correct or document it.

5.1.7 Threats to validity

Construct validity concerns establishing correct operational measures for the concepts being
studied. This was minimized by the usage of the GQM methodology to lay out the evaluation plan.
Firstly, the goals that needed to be achieved were laid out; for each goal we envisioned the questions
which needed to be answered and only then the metrics were defined with these questions in mind.

Internal validity concerns establishing a causal relationship, whereby certain conditions are
shown to lead to other conditions. The experiment setups guaranteed that all computer experiments
and evaluations were performed in the same resource and environment. At each evaluation, up to
two controlled variables were used.

The main benefits of the algorithmic approach to tackle with contextual goal-models and prag-
matic CGMs is the ability to pinpoint inconsistencies and scenarios under which the CGM’s root
goal is unachievable, even after considering all possibilities. Doing so manually is a very labori-
ous task due to the exponential explosion of the solution space domain. Take the CGM presented
in Figure 2.2 as an example. There are 12 different context annotations (C1. . .C12) and 7 OR-
decompositions (5 with 2 refinements and 2 with 4 refinements). This builds up to 212 or 4096
possible context combinations. In addition, the OR-decompositions create 512 CGM variants.

External validity concerns establishing the domain to which the findings can be generalized.
We conducted the assessment in the context of the Mobile Personal Emergency Response, which
is specific to a given domain. Nevertheless, future work should assess this in different and real-life
domains and with higher number of goals, contexts and quality constraints. In particular, this would
help to further assess the scalability we observed. Furthermore, other non-functional properties could
be evaluated and we consider it as future work.

On the other hand, with the advent of our proposed algorithm the same solution space domain
of all context combinations can be analyzed in under a second. This means that the requirements
engineers, stakeholders and domain experts may focus on the context combinations under which
the root goal is not achievable. Either to modify the CGM and correct inconsistencies, enhance the
quality provided by the tasks or to review the quality constraints imposed by the pragmatic goals.

5.2 Fault-Tolerance Mechanism effectiveness

On another evaluation front, we need to evaluate the benefits provided by the fault-tolerance
mechanisms implemented by IMPROV.

The GQM plan for such evalation is defined and presented in Table 5.2. The experiments4 to
evaluate each question are described in the following sections. Every presented measurement is the
average of 1000 measures.

The Systems’ Laboratory at IME-USP provides publicly available services with specific and
predefined reliabilities. These services are located in an application server at the University of Sao
Paulo. This server has one Intel CoreTM i7-2700K processor at 3.5GHz and 8MB cache, 16GB RAM
and 1TB of local storage.. For all of the following experiments, these services were used to create
the choreographies.

Each instance is invoked sequentially by the choreography agents, located at Universidade de
Brasília. The two sites are connected via Internet with an average bandwidth of 42 Mbits/sec and
28ms RTT.

4The evaluation mechanisms were implemented as automated tests and the complete result set as well as the code
for implementing them are available at https://github.com/felps/CloudTolerance
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Table 5.2: GQM devised plan

Goal: (1) Choreography-Enabling
Question Metric

1.1 In a failure-free environment, how many requests are
replied properly in a given choreography?

Observed failed requests

1.2 How does the choreography scale over the number of
involved services regarding performance?

Composition’s average re-
sponse time

1.3 How does the choreography scale over the number of
exchanged messages regarding performance?

Composition’s average re-
sponse time

Goal: (2) Enhance Reliability
Question Metric

2.1 What is the impact of the services’ reliability on the
overall system reliability, regarding fail-stop failures?

Observed failed requests

2.2 What is the impact of the services’ reliability on the
overall system performance, regarding fail-stop failures?

Composition’s average re-
sponse time

2.3 What is the impact of the services’ reliability on the
overall system reliability, regarding incorrect responses?

Observed failed requests

2.4 What is the impact of the services’ reliability on the
overall system performance, regarding incorrect responses?

Composition’s average re-
sponse time

2.5 What is the impact of a fault on a choreography agent
itself on the overall system performance?

Agent’s recovery time

5.2.1 Goal 1: Enabling Service Choreographies

To evaluate the first goal - enabling the composition of unmodified services into a choreography
- we dealt mainly with three variables: services involved, messages exchanged and WS reliability.
From those variables we evaluated the behavior of the composition with regard to performance and
overall composition reliability.

Question 1.1 : In a failure-free environment, how many are replied properly in a given
choreography? To evaluate the capability of duly composing several WSs into a choreography, we
used a scenario with four services invoked sequentially. We performed 1000 choreography requests,
using FTTs as well as with no FTT at all.

Since we are considering a failure-free environment for this experiment, in this scenario as long
as the agents are able to compose the services in an effective manner, the foreseen denouement is
that all requests will be replied correctly in spite of the usage or not of FTTs .

As expected, in this experiment all requests were properly replied, thus confirming the efficacy
of the choreography agents in performing the WS composition.

Question 1.2 : How does the performance decay when the number of involved services
increase? In order to evaluate the decay of performance over the number of involved services,
a series of linear choreographies, ranging from 2 (the smallest composition possible) to 8 services
were used. In this choreography each service is invoked once its reply is forwarded as an input to
the next agent. The following choreography agent will use it as input for the subsequent service,
until the choreography is complete and the final result is returned to the user. All choreography
agents resided in dedicated machines.

The observed results for this experiment are shown in Figure 5.4a. The observed results are
within expectations, rising as the amount of invoked services increases. There was an unforeseen
spike with 7 agents. However, this measurement also had the highest error margin, thus still being
within expected values.

Question 1.3 : How does the performance decay when the number of exchanged mes-
sages increase? In order to evaluate the decay of performance over the number of exchanged
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messages between the services, a simple choreography, with only 2 services was used. This choreog-
raphy exchanged messages until a previously established threshold was reached. The threshold for
the evaluations varied from 4 to 1,024 messages, doubling the amount at each step.

The observed results for this experiment are shown in Figure 5.4b. As it can be seen in the
figure, the observed response time was linear with regard to the amount of exchanged messages
between the choreography agents in the choreography.

5.2.2 Goal 2: Increase the composition’s reliability with several FTTs

To evaluate the effectiveness of the proposed architecture, a set of services were developed so
that their reliability regarding fail-stop and content failures is configurable. When instantiating the
web service, the occurrence probabilities for both content and a fail-stop failures is passed as input
to it.

Based on these reliabilities, for each processed request by the WS it would take a random number
between 0 and 1. Should it be less than the fail-stop probability, the WS would halt. Similarly,
should the random number be less than the content failure probability, a randomly generated
response would be replied. Such failures were injected in the controlled environment of the services
execution.

Question 2.1 : What is the impact of the services’ reliability on the overall system
reliability, regarding fail-stop failures? In this scenario, a set of 3 equivalent web services
are available. Each web service is warranted to return only correct answers but will suddenly halt
in some of the requests. In this experiment the probability of a fail-stop failure being injected
ranged from 0% to 9% with steps of 1%. We performed a total of 1000 requests to each service
and compared the observed output of: (1) a client choosing a fixed web service from the pool, i.e.,
without using ChorTolerance, (2) ChorTolerance’s Retry FTT, (3) RB and (4) Active FTTs. The
amount of requests that were not properly replied (e.g. timed out, thrown an exception) for each WS
reliability and FTT are shown in Figures 5.5a, 5.5c and 5.5e. As expected, usage of an appropriate
FTT for fail-stop failures steeply lowered the amount of observed failed requests.

Question 2.2 : What is the impact of the services’ reliability on the overall system
performance, regarding fail-stop failures? For this evaluation the same setup as the one used
for Question 2.1 was used. However, instead of measuring the amount of observed failed requests,
we measured the average response time, for the correctly replied requests. The observed results are
shown in Figures 5.5b, 5.5d and 5.5f. The results show that the overhead for using the Active FTT,
regarding time is very low. Retry has a slightly higher overhead and RB has the most significant
overhead.

Question 2.3 : What is the impact of the services’ reliability on the overall system reli-
ability, regarding incorrect responses? In this scenario, a set of 3 equivalent web services are
available, all of which have the same probability of returning an erroneous value. In this experiment
the probability of a content failure be injected ranged from 0% to 9% with steps of 1%.

We compared the observed reliability of (1) a client randomly choosing a web service from
the pool, i.e., without using ChorTolerance and (2) using ChorTolerance’s NVP FTT with three
resources.The amount of observed failed requests are shown in Figure 5.6a.

Question 2.4 : What is the impact of the services’ reliability on the overall system
performance, regarding incorrect responses? Once again, the same set-up as the previous
experiment was used, but measuring the average response time for successful requests with and
without the NVP FTT. The observed results are presented in Figure 5.6b. This FTT had the
greatest overhead of all. This was expected since it awaited for all services to reply before deciding
on the final value to be returned.



5.2 FAULT-TOLERANCE MECHANISM EFFECTIVENESS 59

 0

 20

 40

 60

 80

 100

 120

100 99 98 97 96 95 94 93 92 91

O
b

s
e
rv

e
d
 E

rr
o
rs

WS Reliability

Observed Composition Faults -
 Web Service Fail-Stop Failures

FailStop - No FT
FailStop - Retry

(a) Retry: Observed faults in 1000 requests

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100 99 98 97 96 95 94 93 92 91

A
v
e
ra

g
e
 R

e
s
p
o
n

s
e

 T
im

e
 (

in
 m

s
)

WS Reliability

Impact on Response Time due to Retry FTT Usage

FailStop - No FT
FailStop - Retry

(b) Retry: Average response time for successful requests

 0

 20

 40

 60

 80

 100

 120

100 99 98 97 96 95 94 93 92 91

O
b
s
e
rv

e
d
 E

rr
o
rs

WS Reliability

Observed Composition Faults -
 Web Service Fail-Stop Failures

FailStop - No FT
FailStop - RB

(c) RB: Observed faults in 1000 requests
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(d) RB: Average response time for successful requests
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(e) Active: Observed faults in 1000 requests
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Figure 5.5: Comparison between observed faults and average response time for fail-stop scenarios with and
without each of the built-in FTTs
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Figure 5.6: Comparison between observed faults and average response time for faulty response scenarios
with and without NVP FTT

Question 2.5 : What is the impact of a fault on a choreography agent itself on the overall
system performance For this evaluation, we have performed a choreography consisting of two
roles, and thus two agents. Firstly, we have performed the choreography in an error-free environment
where no recovery was needed to establish the basic execution time. Then we performed the same
choreography, but with the second agent missing thus forcing the first agent to identify and correct
this situation by performing the second choreography agent’s recovery.

The observed results indicated that the average execution time for the error-free choreography
was of (77±13) milliseconds and for the recovered proxy scenario was of (122±21) milliseconds.
These results allow us to deduce that the recovery itself takes a toll on the execution time of
approximately 45 milliseconds in response to the occurrence of an error on an agent which was
considered a good result.

5.2.3 Adaptation to different contexts

In adition, we also executed experiments to evaluate the capability of the proposed mechanism
of adapting itself to different contexts, responding to changes observed in the service pool. Much
like the other experiments, for this one we focused our attention on the reliability enhancement due
to the usage of a single proxy.

We evaluated the capability and the observed behavior of the system under three context varia-
tions: Equivalent service pool increase, decrease and single service available. For each context, 1000
requests were issued and their response time measured. The results are depicted in Fig. 5.7. The
vertical lines represent a timeout, or a failed request. Context changes over time are identified by
the thick, dashed vertical lines.

Three services were used for this experiment: WS_90, WS_95 and WS_98 each one with 90%,
95% and 98% of reliability respectively.

Initially, only services WS_95 and WS_98 were available. Then, after request 1000, WS_90
was added to the pool. After request 2000, WS_98 is removed from the pool thus decreasing
the maximum possible overall and individual reliability. Finally, after request 3000 WS_95 is also
removed leaving only WS_90 in the ESP. This forces the proxy to dynamically switch to the retry
technique.

The observed results are presented in Figure 5.6a (response time) and Table 5.3. They are
interesting since in the first context (WS_95 and WS_98) the observed reliability was of 97.7.
Once the third WS enters the pool it rises to 99% reliability under the second context and, after
the pool falls back to two services it slightly decays back into 98.6% reliability. This was very in
line with what would be expected from the mathematical model. The fourth context, with a single
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Table 5.3: Observed errors and reliability under each of the considered contexts

Context Observed Errors Observed Reliability
1 23 97.7
2 10 99.0
3 14 98.6
4 0 100.0

Figure 5.7: Response time in a scenario with changes observed in the service pool

service in the pool, actually masked all errors introduced by the web services. We advocate that
this behavior was due to the fact that the error distribution was linear and the service provided was
a simple mathematical task with very little computational effort and time consumption. However,
it can be perceived that the average response time for the last scenario has increased in comparison
to the non-faulty requests in the previous scenarios.
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Chapter 6

Conclusions and Future Work

In this paper we have proposed the utilization of a Pragmatic CGM in which the goals’ context-
dependent interpretation is an integral part of the model. We have also shown why hard goals
and softgoals are not enough to grasp some of the real-world peculiarities and context-dependent
goal interpretations. We have also extended the model with Dalpiaz’s goal annotations in order to
properly specify the allowable system’s behaviours at runtime.

We defined the pragmatic goals’ achievability property: whether there is any allowable execution
plan that fulfils the goal’s interpretation under a given context. We also proposed, and implemented
the PPA algorithm. This algorithm is able to decide on the achievability of a goal and, if so, engineer
an execution plan in compliance with all the goal annotations to do so.

Finally, we thoroughly evaluated the model and the algorithm. The evaluation was performed in
three different fronts, all of which rendered very appealing results. On the first front, we evaluated,
for the MPERS case study, the algorithm’s performance (execution time of less than 4ms in average)
and reliability (no errors detected over more than 4000 executions). On the second front we have
performed a scalability analysis on the algorithm running with every possible annotation and shown
that in all the situations the PPA algorithm scales linearly over the amount of goals and context
amount. For the third front, we have evaluated the capability of using the algorithm to pinpoint
at design-time scenarios in which the model’s root goal is unachievable by design in order to alert
the GM designer of this potential flaw. The results for the third evaluation front showed that for
models with 6000 goals and 10 contexts, the full scope of context sets could be swept in about 2’30”
(two and a half minutes).

For future work, we plan to:
(1) compare the performance offered by the QoS-constrained algorithm to that achieved by

SAT-solvers; (2) study the impact of considering more than one composite QoS constraint and; (3)
integrate IMPROV’s PRCGM model into a more user friendly tool to allow for easier modelling of
the actors’ behaviour.

63
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Index

DFT, see transformada discreta de Fourier
DSP, see processamento digital de sinais

Fourier
transformada, see transformada de Fourier

STFT, see transformada de Fourier de tempo re-
duzido

TBP, see periodicidade região codificante
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