
On the Link between Structural Dependencies
and Software Changes

Gustavo Ansaldi Oliva

THESIS PRESENTED
TO THE

INSTITUTE OF MATHEMATICS AND STATISTICS
OF THE

UNIVERSITY OF SAO PAULO
FOR

OBTAINING THE TITLE
OF

PH.D. IN COMPUTER SCIENCE

Program: Ph.D. in Computer Science

Supervisor: Marco Aurelio Gerosa, Ph.D.

During the development, of this author, the author received financial support from CAPES, CNPq,
European Commission, and Hewlett-Packard Brazil

Sao Paulo, September 2016

On the Link between Structural Dependencies

and Software Changes

This is the original version of the thesis elaborated by

the candidate Gustavo Ansaldi Oliva, just as

submitted to the Judging Committee.

Abstract

OLIVA, G. A. On the Link between Structural Dependencies and Software Changes. 2016.

78 f. Ph.D. Thesis - Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP),

Sao Paulo, 2016.

Low structural coupling is a design principle at the heart of software engineering. A recurrent

claim is that classes with high coupling are prone to undergo forced local changes as a consequence of

changes made in the classes they are connected to. This claim can be found in almost every Software

Engineering book, in fundrunental papers of the area, in whitepapers written by industry experts,

and even in Wikipedia. Despite the popularity and credibility of the claim, very little research effort

has been put on its understanding. In other words, if a class A depends on another class B, then is

A more likely to co-change with B as compared to the case where A does not depend on B? In other

words, is the existence of dependencies statistically associated with the occurrence of co-changes? To

what extent? Answering this question is crucial step in understanding the link between dependencies

and software changes. Hence, in this paper, we set out to empirically investigate the link between

structural dependencies and co-changes. In a preliminary study with 4 open-source systems, we

discovered that structural dependencies do not instantly make artifacts co-change. However, the

rate with which an artifact co-cochanges with another is indeed higher when the former structurally

depends on the latter. We confirmed this finding in a new study where we extracted structural

dependencies and co-changes from 77,286 code snapshots of 45 Java projects randomly sampled from

the Apache Software Foundation. Our results indicated that, when A depends on Band B changes,

the chances of A changing together with B is around 32% in average, with a standard deviation

of 13.6%. We also built classification models using Random Forests to investigate which kinds of

dependency best explain co-changes. We found that the length of transitive dependencies, number of

type imports, number of method calls, and number of references were the most important variables

in the model. However, the classifiers were often inaccurate, thus implying that dependencies are

not good predictors for co-changes. In fact, we also found that a substantial number of commits

involve classes that are not connected via dependencies, reinforcing our belief that co-changes are

more frequently induced by other forms of connascence, such as conceptual coupling. In summary,

on the one hand, we found empirical evidence connecting the existence of structural dependencies to

the occurrence co-changes. On the other hand, we found that the majority of co-changes do not cor

relate with structural dependencies, meaning that structural dependencies might be responsible for

a small portion of all software changes. As a practical consequence, developers should still embrace

the low coupling principle by managing software dependencies while designing and evolving their

systems. However, our findings also imply that IDEs should take into account additional sources

of information to support developers in successfully propagating software changes, as structural

iv

dependencies seem not to be the main player. Finally, the data and tools produced during this

research might be leveraged to bootstrap follow-up investigations, such as the influence of structural

anti-patterns on change propagation.

Keywords: structural dependencies, syntactic dependencies, co-changes, change propagation, change

coupling, evolutionary coupling, static analysis, historical analysis, classification models, random

forests.

Resumo

OLIVA, G. A. Sohre a Conexao entre Dependencias Estruturais e Mudan~as no Software.

2016. 78 f. Tese (Doutorado) - Instituto de Matematica e Estatfstica (IME), Universidade de Sao

Paulo (USP), Sao Paulo, 2016.

Baixo acoplamento estrutural e um princfpio de design que esta no corac;ao da engenharia de

software. Um discurso recorrente e de que classes com alto acoplamento sao mais propensas a

sofrerem mudanc;as forc;adas locais por consequencia de mudanc;as realizadas nas classes as quais

estao conectadas. Essa asserc;ao pode ser encontrada em quase todos os livros de Engenharia de

Software, em artifos fundamentais da area, em whitepapers escritos por especialistas da industria

e ate na Wikipedia. Apesar da popularidade e credibilidade do principio, pouqufssimo esforc;o de

pesquisa foi colocado na direc;ao de seu entendimento. Em outras palavras, se uma classe A depende

de outra classe B, entao A e mais propenso a mudar conjuntamente com B comparado a situac;ao em

que A nao depende de B? Ou seja, a existencia de dependencias e estatisticamente associada com a

ocorrencia de mudarn;;as casadas? Ate que ponto? Responder essa questao e um passo crucial para

um entendimento da conexao entre dependencias estruturais e mudanc;as casadas. Em um estudo

preliminar com 4 sistemas de c6digo aberto, descobrimos que dependencias estruturais nao fazem

com que artefatos fatalmente mudem de forma casada. Contudo, a taxa com a qual um artefato

muda conjuntamente com outro e, de fato, maior quando o primeiro estruturalmente depende do

segundo. N6s confirmamos essa descoberta em um nova estudo em que extraimos dependencias

estruturais e mudanc;as casadas de 77.286 snapshots de c6digo de 45 projetos Java aleatoriamente

selecionados da populac;ao de projetos da Apache Software Foundation. Nossos resultados indicaram

que, quando A depende de B e B muda, a chance de A mudar junta com B e de 32% em media,

com um desvio padrao de 13.6%. Tambem construimos modelos de classifica9ao usando Florestas

Aleat6rias para investigar quais tipos de dependencia melhor explicam mudarn;;as casadas. Desco

brimos que o comprimento formado do caminho formado par dependencias transitivas, o rn'.J.mero

de importac;oes de tipe, o m'.J.mero de chamadas de metodos e o m'.J.meros de referencias foram as

variaveis mais impmtantes no modelo. Contudo, os classificadores foram frequentemente impre

cisos, implicando assim que dependencias nao sao bans preditores para mudarn;as casadas. De fato,

tambem concluimos que um nfunero substancial de commits envolvem classes que nao estao conec

tadas par dependencias, reforc;ando nossa crenc;a de que mudanc;as casadas sao mas frequentemente

induzidas por outras formas de conascenc;a, tais como acoplamento conceitual. Em resumo, por

um lado encontramos evidencia empfrica conectando a existencia de dependencias estruturais com

a ocorrencia de mudanc;as casadas. Por outro lado, descobrimos que uma quantidade substanciaJ

de mudanc;as casadas nao esta correlacionada com dependencias estruturais, implicando que essas

dependencias sao provavelmente responsaveis por uma pon;;ao de pequena de todas as mudanc:;as

vi

no software. Como consequencia pratica, desenvolvedores devem continuar a abr~ar o principio

do baixo acoplamento por meio da gerencia de dependencia.c; durante o design e evoluc_;ao de seus

sistemas. Contudo, os resultados tambem implicam que IDEs devem passar a considerar adicionais

fontes de informac_;iio para dar suporte ao desenvolvedores na tarefa de propagac;ao das mudanc;as, ja

que dependencias estruturais niio parecem ser o ator principal nesse cenario. Finalmente, os dados e

ferramentas produzidos durante essa pesquisa podem ser aproveitados para alavancar investigac_;6es

seguintes, tal como a influencia de anti-padroes estruturais em propagaGao de mudanGas,

Palavras-chave: dependencias estruturais, dependencias sintaticas, mudanc;as casadas, propagac;ao

de mudangas, acoplamento de mudanga, acoplamento evolucionario, analise estatica, analise hist6rica,

modelos de classifica<;ao, florestas aleat6rias.

Contents

List of Acronyms and Abbreviations

List of Figures

List of Tables

1 Introduction

1.1 Problem Statement .

1.2 Major Thesis Contributions

1.3 Publications

1.3.1 Supporting Publications

1.3.2 Parallel Researches .

1.3.3 Co-authorship .

1.4 Thesis Organization

2 Background and Definitions

2.1 Software Changes

2.1.1 Change Coupling . .

2.2 Software Dependencies ...

2.2.1 Structural Dependencies

2.3 Java Code Entities

3 Related Research

3.1 Structural Anti-Patterns

3.2 Design Degradation ...

3.3 Architectural Conformance Checking

4 Warm-up Study

4.1 St.udy Design

4.1.1 Goal

4.1.2 Selection of Subject Systems

4.1.3 Data Collection

4.1.4 Data Preprocessing

4.1.5 Data Processing and Analysis .

4.1.6 Supporting Tools

4.2 Results

ix

xi

xiii

1

2

2

3

3

4

5

6

7

7

8

8

9
11

13

13

14

17

19

20

20

21

21

21

21

27

27

viii CONTENTS

4.2.1 Preliminary Analysis: Characterizing Subject Systems 27

4.2.2 RQl: Are dependent files more likely subject to co-change than independent

ones?. 28

4.2.3 RQ2: Are dependent files more likely subject to co-change than independent

ones when the change context is taken into account? ...

4.2.4 RQ3: Do changes propagate via structural dependencies? .

4.3 Threats to Validity

4.4 Summary .

5 Dependencies and Software Changes: A Large-Scale Empirical Study

5.1 Study Design

5.1.1 Goals

31

35

36

36

39

40

40

5.1.2 Selection of Subject Systems 40

5.1.3 Approach 41

5.1.4 Supporting Tools 46

5.2 Study Results 46

5.2.1 RQl: Are Structurally Dependent Files More Likely To Co-Change Than

Independent Ones? . 4 7

5.2.2 RQ2: How Accurately Can Co-Changes Be Predicted Using Structural Depen-

dencies . 53

5.2.3 RQ3: What Kinds of Structural Dependencies Best Explain the Occurrence

of Co-Changes? . 54

5.3 Discussion

5.4 Threats to Validity

5.5 Summary

6 Conclusion

6.1 Future Work

6.1.1 Structural Anti-Patterns

6.1.2 From Dependencies to Structural Relationships

Bibliography

54

55

56

57

57
57
58

59

List of Acronyms and Abbreviations

ASF Apache Software Foundation

CVS Concurrent Version System

IDE Integrated Development Environment

MSR Mining Software Repositories

UML Unified Modeling Language

SVN Subversion

VCS Version Control System

x LIST OF ACRONYMS AND ABBREVIATIONS

List of Figures

2.1 Structural dependencies exemplified in a sample Java code excerpt ... 10

3.1 Structural Anti-patterns: Butterfly, Breakable, and Change Propagator . 14

3.2 Structural Anti-patterns: Tangles . 15

3.3 Shotgun Surgery (Lanza and Marinescu, 2006) 16

3.4 Detection strategy for Shotgun Surgery (Lanza and Marinescu, 2006) 17

4.1 Overview of study design . 20

4.2 Beanplots comparing the distribution of CD (black) and CD gray 29

4.3 Beanplots comparing the distribution of s1 (black) and s2 (gray) . 30

4.4 Beanplots comparing the distribution of CD (black) and CD gray 32

4.5 Beanplots comparing the distribution of s1 (black) and s2 gray . . 34

4.6 Beanplot for the proportion of methods that propagated changes per commit 35

5.1 Overview of study design . 41

5.2 Evolution of the number of compilation units

5.3 Evolution of the average number of suppliers per compilation unit .

47
51

xii LIST OF FIGURES

List of Tables

4.1 Relationship Status

4.2 Description of Subject Systems

4.3 Descriptive Statistics for CD and CD

4.4 Descriptive Statistics for the Proportion of Methods That Propagated Changes per

Commit

5.1 Excerpt of a hypothetical dependencies dataset

5.2 Relationship Status

5.3 Description of Subject Systems . . .

5.4 Subject systems - Commit numbers .

5.5 Number of branches per project . .

5.6 Evaluation of Contingency Table . .

5. 7 Summary of Classification Dataset .

5.8 Results of Co-Change Prediction using Structural Dependencies .

5.9 Variable Importance: Mean Decrease in Accuracy

22

28
32

36

44

44

48

49

50

52

53
53

54

xiv LIST OF TABLES

Chapter 1

Introduction

Since the notorious software crisis from the late 60's (Naur and Randell, 1969), practitioners and

researchers have sought better ways to develop software systems. During this quest, some fundamental

Software Engineering development principles were conceived. Larry Constantine introduced a key

principle: design systems with 'low coupling' (Constantine, 1968). Coupling is the manner and degree

of interdependence between software modules1 . Constantine and colleagues claimed that 11minimizing

connection between modules also minimizes the paths along which changes and errors can propagate

into other parts of the system, thus eliminating disastrous ripple effects" (Stevens et al., 1974).

The low coupling principle is still highly regarded as of today. The common sense still is that,

in tightly coupled systems, "a change in one module usually forces a ripple effect of changes in

other modules 11 (Wikipedia, 2016). Similar statements can be found in several Software Engineering

books:

"A class with high (or strong) coupling relies on many other classes. Such classes may be undesirable;

some suffer from the fallowing problems: Forced local changes because of changes in related classes. (. . .)

Low Coupling supports the design of classes that are more independent, which reduces the impact of change"

(Larman, 2004)

"In software design, we strive for lowest possible coupling. Simple connectivity among modules results in

software that is easier to understand and less prone to a "ri,pple effect" {STE14/, caused when errors occur

at one location and propagate through a system. " (Pressman, 2009)

11Classes that are tightly coupled are hard to reuse in isolation, since they depend on each other. Tight

coupling leads to monolithic systems, where you can't change or remove a class without understanding and

changing many other classes. The system becomes a dense mass that's hard to learn, port, and maintain."

(Gamma et al., 1994)

"Not only outgoing dependencies cause trouble, but al.so incoming ones. This design disharmony means

that a change in an operation implies many {small) changes to a lot of different operations and classes''

(Lanza and Marinescu, 2006)

In academia, researchers have also extensively discussed the principle (Geipel and Schweitzer,

2012; Hassan and Holt, 2004; Sangal et al., 2005; Stevens et al., 1974; Wirth, 1971). In industry,

recognized experts have also long discussed the relationship between software dependencies and

coupling, including Robert Martin (2006) and Martin Fowler (2001).

1ISO/ IEC/ IEEE 24765:2010 Systems and software engineering - Vocabulary

2 INTRODUCTION 1.2

Despite the popularity and credibility of the principle, little effort has been put on understanding

and quantifying the link between dependencies and change propagation. If a class A depends

on another class B, then is A more likely to co-change with B as compared to the case where

A does not depend on B? In other words, is the existence of dependencies associated with the

occurrence of co-changes? How frequently? The answer to these questions will shed light into how

much effort developers should put on minimizing structural coupling between classes or modules,

which is a far from trivial task. In addition, discovering whether specific kinds of dependencies

are more likely to induce change propagation might help developers even more. The other side

of the coin is also utterly important. How many changes are motived by structural dependencies?

Can dependencies be used to predict co-changes? The will highlight whether IDEs should take

into account other sources of information besides structural relationships to support developers in

successfully propagating software changes, as incomplete or incorrect changes are known to lead to

bugs (Hassan and Holt, 2004; Zimmermann et al., 2005) . This functionality is particularly important

to newcomers, who have alleged they often have problems finding the correct artifacts to address

an open issue (Steinmacher et al., 2016) .

1.1 Problem Statement

Minimizing change propagation is a desirable software quality, because it eases software main

tenance. Structural dependencies have long been blamed to act as paths through which changes

propagate. Developers are taught to manage dependencies while designing, developing, and evolving

their systems. However, the extent to which dependencies indeed propagate changes is unknown.

Whether specific dependencies are more likely to propagate changes is also unknown. This leaves

developers rather clueless as to how much effo1t should be spent into managing dependencies in

order to minimize change propagation.

Thesis statement: Although dependencies increase the likelihood that a client will be affected by

changes to the supplier, most software changes scatter throughout the system via paths that do not

correspond to structural dependencies, meaning that change propagation cannot be significantly

minimized or appropriately dealt with by following these dependencies.

Our findings revealed that, in average, a co-change is 20% more likely to occur when a class

A depends on another class B as compared to when A does not depend on B. Even though the

low coupling principle holds in general, this rate differs from project to project. Therefore, in this

thesis we employed a mix of historical and analyses to acquire a deeper understanding of the link

between dependencies and software changes, as well as to glean actionable information that might

help developers or tool builders.

1.2 Major Thesis Contributions

This thesis demonstrates that:

• When a class A depends on another class B and B changes, the likelihood that A will change

together with B is 32% in average, being around 20% higher in average than the likelihood

found in the case where A does not depend on B. Hence, the "low coupling" principle holds.

1.3 PUBLICATIONS 3

• In the majority of cases, our classification models showed t.hat no two kinds of dependencies are

redundant, meaning that there is no silver bullet: all kinds of structural dependencies contribute

to explaining co-changes. This requires a fairly sophisticated dependency extraction tool.

• Despite the preprocessing and powerful classification algorithm, our classifiers were often

inaccurate, implying that structural dependencies are bad predictors for co-changes. In other

orders, it is very likely that most co-changes occur because of factors that are not directly

associated with structural dependencies.

As additional contributions, we emphasize the tools we developed and the data made available.

The toolset can be used to further explore the link between dependencies and co-changes. The

datasets, which track the evolution of the dependencies networks of all studied systems, can also be

leveraged to conduct different sorts of evolutionary analyses.

1.3 Publications

1. [Conference Paper] Experience Report: How do Structural Dependencies Influence Change

Propagation? An Empirical Study (Chapter 4)

Gustavo A. Oliva and Marco A. Gerosa. In Proceedings of the 26th IEEE International

Symposium on Software Reliability (ISSRE), pages 250-260, Gaithersburg, MD, USA, 2015.

IEEE Computer Society Press. (Acceptance ratio: 55/172 = 32%, Qualis A2 2).

2. (Journal Paper] On the Link between Structural Dependencies and Software Changes

(Chapter 5)

Gustavo A. Oliva, Christoph Treude, Marco A. Gerosa. To be submitted to the Empirical

Software Engineering journal.

1.3.1 Supporting Publications

1. (Book Chapter] Change Coupling between Software Artifacts: Learning from Past Changes

Gustavo A. Oliva and Marco A. Gerosa. The Art and Science of Analyzing Software Data, ed.

Christian Bird, Tim Menzies, and Thomas Zimmermann, pages 285-324. ISBN 978-0124115194.

Morgan Kaufmann, 1st edition, 2015.

2. (Workshop Paper] What Can Commit Metadata Tell us About Design Degradation?

Gustavo A. Oliva, Igor Steinmacher, Igor Wiese, Marco A. Gerosa. In Proceedings of the

2013 International Workshop on Principles of Software Evolution (IWPSE), pages 18-27, Saint

Petersburg, Russia, 2013. ACM. (Acceptance ratio: 10/21 = 48%)

3. [Workshop Paper] IVAR: A Conceptual Framework for Dependency Management

Gustavo A. Oliva, Marco A. Gerosa. IX Workshop de Manutenc,;ao de Software Moderna

(WMSWM), Fortaleza, Brazil, 2012.

2Based on the report issued by Capes in 2012: https: //www.capes.gov.br/images/stories/download/avaliacao/

Comunicado _ 004 _ 2012 _ Ciencia _ da _ Computacao. pdf

4 INTRODUCTION 1.3

4. (Workshop Paper] Preprocessing Change-Sets to Improve Logical Dependencies Identifica

tion

Gustavo A. Oliva, Francisco W. Santana, Cleidson R. B. de Souza, Marco A. Gerosa. In

Proceedings of the 6th International Workshop on Software Quality and Maintainability (SQM),

pages 17-24, Szeged, Hungary, 2012. Software Improvement Group (SIG). (Acceptance ratio:

7/16 = 44%)

5. [Doctoral Symposium Paper] A Method for the Identification of Logical Dependencies

Gustavo A. Oliva, Marco A. Gerosa. In Proceedings of the 7th International Conference on

Global Software Engineering (ICGSE) Workshops, pages 70-72, Porto Alegre, Brazil, 2012.

IEEE Computer Society Press.

1.3.2 Parallel Researches

1. [Conference Paper] .4 Change Impact Analysis Approach for Workfiow Repository Man

agement

Gustavo A. Oliva, Marco A. Gerosa, Dejan Milojicic, Virginia Smith. In Proceedings of the

20th IEEE International Conference on Web Services (ICWS) - Applications and Experience

Track, pages 308-315, Santa Clara, CA, USA, 2013. (Qualis AI2, Invited for Special Issue)

2. [Journal Paper] A Static Change Impact Analysis Approach based on Metrics and Visu

alizations to Support the Evoluti011 of Workfiow Repositories

Gustavo A. Oliva, Marco A. Gerosa, Fabio Kon, Dejan Milojicic, and Virginia Smith. Interna

tional Journal of Web Services Research (IJWSR) - Special Issue on Data Quality in Big Data

and Trust (volume 13, issue 2), pages 74-101, 2016. ISSN: 1545-7362. IGI Global. (Invited

extension of II A Change Impact Analysis Approach for Workflow Repository Management 11
,

Impact factor: 0.257 3)

3. [Conference Paper] Characterizing Key Developers: A Case Study with Apache Ant

Gustavo A. Oliva, Francisco W. Santana, Kleverton C. M. de Oliveira, Cleidson R. B. de Souza,

and Marco A. Gerosa. In Proceedings of the 18th International Conference on Collaboration

and Technology (CRJWG), pages 97-112, Raesfeld, Germany, 2012. Springer Berlin Heidelberg.

(Qualis Bl 2, Invited for Special Issue)

4. [Journal Paper] Evolving the System's Core: A Ca.se Study on the Identification and

Characterization of Key Developers in Apache Ant

Gustavo A. Oliva, Jose Teodoro da Silva, Marco A. Gerosa, Francisco W. Santana, Claudia

M. L. Werner, Cleidson R. B. de Souza, and Kleverton C. M. de Oliveira. Computing and

Informatics (CAI) - Special Issue on Selected Papers from CRIWG 2012 (volume 34, issue

3), pages 678-724, 2015. ISSN: 1335-9150. Slovak Academy of Sciences. (Invited extension of

"Characterizing Key Developers: A Case Study with Apache Ant", Impact factor: 0.524 3)

3Based on the 2015 In Cities TM Journal Citation Reports®, Thomson Reuters

1.3 PUBLICATIONS 5

1.3.3 Co-authorship

l. [Journal Paper] Using contextual information to predict co-changes

Igor S. Wiese, Reginaldo Re, Igor Steinmacher, Rodrigo T . Kuroda, Gustavo A. Oliva, Christoph

Treude, Marco A. Gerosa. Accepted for publication in Journal of Systems and Software (JSS)

- Special Issue on , 2016. ISSN: 0164-1212. Elsevier. (Impact factor: 1.424 3)

2. [Conference Paper] An Empirical Study of the Relation Between Strong Change Coupling

and Defects Using History and Social Metrics in the Apache Aries Project

Igor S. Wiese, Rodrigo T. Kuroda, Reginaldo Re, Gustavo A. Oliva, and Marco A. Gerosa.

In Proceedings of the 11th IFIP WG 2.13 International Conference on Open Source Systems

(OSS), pages 3-12, Florence, Italy, 2015. Springer International Publishing. (Qualis B22
)

3. (Workshop Paper] Are the methods in your data access objects {DAOs) in the right place?

A preliminary study

Mauricio F. Aniche, Gustavo A. Oliva, Marco A. Gerosa. In Proceedings of the 6th IEEE Inter

national Workshop on Managing Technical Debt (MTD), pages 47-50, Victoria, BC, Canada,

2014. CPS Conference Publishing Services.

4. (Conference Paper] Using Structural Holes Metrics from Communication Networks to

Predict Change Dependencies

Igor S. Wiese, Rodrigo T. Kuroda, Douglas N. R. Junior, Reginaldo Re, Gustavo A. Oliva,

Marco A. Gerosa. In Proceedings of the 20th International Conference on Collaboration and

Technology (CRIWG), pages 294-310, Santiago, Chile, 2014. Springer International Publishing.

(Qualis B12)

5. [Conference Paper] What do the Asserts in a Unit Test Tell us about Code Quality? A

Study on Open Source and Industrial Projects

Mauricio F. Aniche, Gustavo A. Oliva, Marco A. Gerosa. In Proceedings of the 17th European

Conference on Software Maintenance and Evolution (CSMR), pages 111-120, Genova, Italy,

2013. IEEE Computer Society Press. (Qualis A22)

6. [Workshop Paper] Understanding Complex Software Ecosystems: The Role of Core-Periphery

Identification

Francisco W. Santana, Gustavo A. Oliva, Marco A. Gerosa, Cleidson R. B. de Souza. The

Future of Collaborative Software Development (FutureCSD 2012)

7. (Book Chapter] An Integrated Development and Runtime Environment for the Future

Internet

Amira B. Hamida, Fabio Kon, Gustavo A. Oliva, Carlos E. M. dos Santos, Jean-Pierre Lorre,

Marco Autili, Guglielmo de Angelis, Apostolo Zarras, Nikolaos Georgantas, Valerie Issarny,

and Antonia Bertolino. The Future Internet, 81-92.

6 INTRODUCTION 1.4

8. [Journal Paper] A Systematic Literature Review of Service Choreography Adaptation

Leonardo A. F. Leite, Gustavo A. Oliva, Guilherme M. Nogueira, Marco A. Gerosa, Fabio

Kon, and Dejan Milojicic. Service Oriented Computing and Applications 7 (3), 199-216.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we provide a brief background

on software changes and structural dependencies. In Chapter 3, we present related research to our

analysis on the relationship between structural dependencies and software changes. In Chapter 4,

we present a warm-up study in which investigated the link between dependencies and co-changes in

4 open-source Java systems. In Chapter 5, we present our complete study on the topic, where we

investigated 45 open-source Java systems from the Apache Software Foundation. In Chapter 6, we

state our conclusions and plans for future work.

Chapter 2

Background and Definitions

2.1 Software Changes

To keep end-users satisfied, developers change software systems to introduce new feature and

fix bugs. To accomplish either task, it is common for developers to simultaneously modify more

than one artifacts (e.g., class) of the system. But why do artifacts co-change? In the early 90s,

Page-Jones tried to answer this question by introducing the concept of 11 connascence" (Page-Jones,

1992). The term connascence is derived from Latin and means "having been born together." The

Free Dictionary defines connascence as: (a) the common birth of two or more at the same time,

(b) that which is born or produced with another, and (c) the act of growing together. Page-Jones

borrowed the term and adapted it to the software engineering context: "connascence exists when

two software elements must be changed together in some circumstance in order to preserve software

correctness" (Page-Jones, 1999).

Connascence assumes several fonns and can be either explicit or implicit. To illustrate this point,

consider the following code excerptl written in Java and assume that its first line represents a

software element A and that its second line represents a software element B:

Strings; //Element A (single source code :ine)

s = "some st~ing" ; //E:ement B (single source code ~ine)

There are (at least) two examples of connascence involving elements A and B. If A is changed to

int s; then B will have to be changed too. This is called type connascence. Instead, if A is changed

to String str; then B will need to be changed to str = "some string". This is called name

connascence. These two forms of connascence are called explicit. A popular manifestation of explicit

connascence comes in the form of structural dependencies (e.g., methods calls), which is the target

of this thesis. In turn, as we mentioned before, connascence can also be implicit, such as when a

certain class needs to provide some functionality described in a design document.

In general, connascence involving two elements A and B occurs because of two distinct situations:

• A depends on B, B depends on A, or both: a classic scenario is when A changes because

A structurally depends on B and B is changed, i.e., the change propagates from B to A

via a structural dependency (e.g., a method from A calls a method from B). However, this

dependency relationship can be less obvious, as in the case where A changes because it

structurally depends on Band B structurally depends on C (transitive dependencies). Another

8 BACKGROUND AND DEFINITIONS 2.2

less obvious scenario is when A changes because it semantically depends on B.

• Both A and B depend on something else: this occurs when A and B have pieces of code with

similar functionality (e.g., use the same algorithm) and changing B requires changing A to

preserve software correctness. As in the previous case, this can be less obvious. For instance,

it can be that A belongs to the presentation layer, B belongs to the infrastructure layer, and

both have to change to accommodate a new change (e.g., new requirement) and preserve

correctness. In this case, A and B depend on the requirement.

Therefore, artifacts often co-change because of connascence relationships. This is what makes

artifacts "logically" connected. Most importantly, the theoretical foundation provided by connascence

is a key element that justifies the relevance and usefulness of change couplings, as we shall see in

the next section.

2.1.1 Change Coupling

Version control systems store and manage the history and current state of source code and

documentation. As early as 1997, Ball and colleagues wrote a paper entitled "If your version control

system could talk. .. 11
, in which they observed that these repositories store a great deal of contextual

information about software changes (Ball et al., 1997). Over the years, researchers have leveraged

such information to understand how software systems evolve over time, enabling predictions about

their properties.

While mining these repositories, researchers observed an interesting pattern: certain artifacts

are frequently committed together. These artifacts are connected to each other from an evolutionary

point of view, in the sense that their histories intertwine. We call this connection change coupling. We

also say that an artifact A is change coupled to B if A often co-changes with B. Other names employed

in the literature include logical dependencies/coupling, evolutionary dependencies/coupling, and

historical dependencies.

Change coupling can be calculated at different abstraction levels. In this thesis, we focus on file

level change coupling. Analyzing change couplings at this level has two key benefits (D'Ambros et al.,

2009): first and foremost, it can reveal hidden relationships that are not present in the code itself or

in the documentation. For instance, a certain class A might be change coupled to another class B

without structurally depending on it. Second, it relies on historical file co-change information only,

which can be easily extracted from commit logs. Therefore, it does not require parsing code, making

it more lightweight than structural analysis. It is also programming language agnostic, making it

flexible and a good candidate to be used in studies that involve many subject systems written in

different. languages.

2.2 Software Dependencies

According to the Merriam-Webster dictionary, a dependency refers to 11 the quality or state of

being dependent; especially: the quality or state of being influenced or determined by or subject

to another. 11 Software systems comprise artifacts that depend on one another during design time

and runtime. These dependencies connecting software artifacts are vaguely known as software

dependencies.

2.2 SOFTWARE DEPENDENCIES 9

2.2.1 Structural Dependencies

Structural dependencies, also known as syntactic dependencies, are a particular kind of software

dependency. If a class A depends on another class B, then A is called client and B is called supplier.

Thus, structural dependencies are directional relationships. In the context of object-oriented pro

gramming languages like C++, C#, and Java, structural dependencies occur whenever a compilation

unit depends on another at either compilation or linkage time. A compilation unit is the smallest

unit of source code that can be compiled. In the current implementation of the Java platform, the

compilation unit is a file (often with the .java extension) .

There are several kinds of structural dependencies, as illustrated in Figure 2.1. In the following,

we briefly describe these dependencies, since the subtle differences between them are central to our

third research question:

Member-to-member dependencies. These are dependencies where both client and supplier are

type members. A type corresponds to either a class or an interface (and several types can be defined

within a compilation unit} . Type members are the attributes and methods defined within the context

of a type. We capture two kinds of member-to-member dependencies, namely:

• Access dependency: a type's attribute access within the body of a certain method.

• Method call dependency: a method invocation (including constructor call) inside a method's

body or while defining an attribute.

Member-to-type dependencies. These are dependencies where the client is a method and the

supplier is a type, namely:

• Parameter dependency: an input parameter of some type as part of the method signature

definition.

• Reference dependency: a reference to a type while defining an attribute or a reference to a

type inside a method's body.

• Return dependency: the return type of a method declaration.

• Throw dependency: the exception types thrown as part of the method declaration.

Type-to-type dependencies. These are dependencies where both client and supplier are types,

namely:

• Class inheritance dependency: relationship derived from a class that extends another.

• Interface inheritance dependency: relationship derived from an interface that extends another .

• Interface implementation dependency: relationship derived from a class that implements an

interface.

Import dependencies. These are dependencies where the client is a compilation unit and the

supplier can be either a type or a method (in the case of static imports), namely:

• Type import dependency: a type import declaration as part of the compilation unit header.

10 BACKGROUND AND DEFINITIONS

!import org.usp.ime.B;] -➔ Type import dependency

I import erg. usp, ime. C. bar; ~ ----,.. Method import dependency

_,,. Oass inheritance
j dependency ~ Interface implementation dependency

class xlextends ~ !implements zl {
private~ Reference dependency

~ Parameter dependency

public~ fooLi) !throws oi-{-►Throwsdepcndcncy
4 Retum type dependency

I c • x = 14; I_.. Access dependency

!c. foo(); 1-Jt- Method call dependency

B b = new B();

return b;

}

} I Interface inheritance dependency

interTace Mlextends I {
public void foo();

}

Figure 2.1: Structural dependencies exemplified ·in a sample Java code excerpt

2.2

Chapter 3

Related Research

To the best of our knowledge, the work of Geipel and Schweitzer (2012) is the most similar

to ours, as they also investigate the link between structural dependencies and co-changes (change

propagation) in Java systems. Besides investing a lower number of subject systems (35), they do not

track the evolution of the structural dependencies network over time. Instead, they only take into

consideration the latest code snapshot when extracting dependencies, arguing that dependencies

between two classes i and j are stable from the creation of the younger class until the removal of either

i or j. We found that this assumption did not hold for the projects we investigated. Consequently,

we recalculate dependencies every time we check out a new version of the code. Finally, all the

systems they investigated were hosted in CVS, while ours were all hosted in SYN. Differently

from CVS, SYN supports atomic commits, and thus co-changes can be inferred directly from the

change-sets. In CVS, change-sets need to be inferred using heuristics, like the sliding time window

(Zimmermann and Weiil.gerber, 2004). Hence, we believe our dataset is more reliable.

Fluri et al. (2005) analyzed the degree to which co-changes are caused by structural changes

(which they also call source code coupling) and textual modifications (e.g., software license updates

and whitespaces between methods spaces). A preliminary evaluation involving the compare plugin of

Eclipse showed that more than 30% of all change transactions did not include any structural change.

Therefore, more than 30% of all change transactions have nothing to do with structural coupling.

They also found that more than 50% of change transactions had at least one non-structural change.

They hypothesize that this could be the result of code ownership/commit habit (a developer works

all day in his files and commits everything by the end of the day) and frequent license changes.

Mispropagating changes leads to bugs and increases the cost of developing large software systems.

To support developers, Hassan and Holt (2004) studied how change propagation can be predicted.

They investigated how a change in one source code entity (function, variable, etc.) propagates

to other entities. As opposed to our study, they investigated C systems and only three kinds of

relationships: call, use, and define. Later on, Malik and Hassan produced a new version of the

study (Malik and Hassan, 2008), in which they described a hybrid an adaptive change propagation

predictor that relies on both the software structure and in the development history

3.1 Structural Anti-Patterns

The anti-pattern term was coined in 1995 by Andrew Koenig to describe ineffective or counter

productive patterns (Koenig, 1995). Structural anti-patterns frequently point to design portions

2.3 JAVA CODE ENTITIES 11

• Method import dependency: a method static import declaration as part of the compilation

unit header

More details about ihe concept of structural dependencies and its applications to software

analysis can be found in the systematic review by Arias et al. (2011) .

2.3 Java Code Entities

In order to avoid possible misunderstandings due to the plurality of terms and meanings in

Software Engineering, we show the terminology we will employ throughout this thesis to refer to

Java entities. We focus on the Java terminology because all subject systems evaluated in this study

were written in Java. More information can be found at https: //docs.oracle.com/ javase/ tutorial/

information/ glossary.html

A compilation unit is the smallest unit of source code that can be compiled. In the current

implementation of the Java platform, the compilation unit is file (often with the .java extension) .

A type is a class or interface. If type X extends or implements type Y, then X is a subtype of

Y. We also say that Y is a supertype of X. A class is a type that defines the implementation of

a particular kind of object. A class definition defines instance and class variables and methods, as

well as specifying the interfaces the class implements and the immediate superclass of the class. If

the superclass is not explicitly specified, the superclass will implicitly be Object. An interface is

a collection of method definitions and constant values. An interface can be implement by one or

more classes. Type Members are the attributes and methods defined within the context of a type.

12 BACKGROUND AND DEFINITIONS 2.3

14 RELATED RESEARCH 3.2

,'11 , ;"f
; ,,,,' ,, , ,, ', ,,

,,
~

', ,
, ~ ,,
'
............ --> <----- ----➔ ----➔
' l", ,.,, ', ,,

' ' ', ', ,, ',
''.l ,, .,,' ' ~ '

Figure 3.1: Structural Anti-patterns: Butterfly, Breakable, and Change Propagator

that should be refactored or treated with special caution. We borrow the terminology employed in

IBM SA4J to present some structural anti-patterns (Figure 3.1).

Butterfly. A local butterfly is a compilation unit that has many immediate incoming dependencies.

A global butterfly is a compilation unit that has many indirect incoming dependencies and can thus

affect many components of the system due to a change. Butterflies are not harmful as long as they

comprise stable compilation units (basic interfaces, abstract base classes, etc.).

Breakable. In turn, a local breakable is a compilation unit that has many immediate outgoing

dependencies (high coupling). A global breakable is a compilation unit that has many outgoing

dependencies and is thus often affected when any other compilation unit in the system is changed.

Hub/Change Propagator. A local hub (a.k.a change propagator) is a compilation unit that is

both a butterfly and a breakable at the same time. A global hub is a compilation unit that is

often affected when any other compilation unit is changed and also frequently affects a lot of other

compilation units when it is changed.

Circular Dependencies and Tangle. A tangle is a strongly connected component of a dependency

graph (i.e. every compilation unit is involved in a cycle). An example is shown in Figure 3.2. Cyclic

dependencies involving modules are especially harmful and thwart code reuse. Structure 101 and

Stan4J provide some support for breaking large tangles

3.2 Design Degradation

The phenomenon of design degradation has been noted since the early days of Software Engi

neering. Along more than twenty years (1974-1992), Lehman and colleagues developed the laws (or

rather empirical hypotheses) of software evolution (Lehman et al., 1997), being among the first ones

specifically concerned with continuing change and increasing complexity. In parallel, inspired by the

Aristotelian subtance theory, Brooks wrote about the essential and accidental properties of software

systems (Brooks, 1987). Brooks also pinpointed complexity and changeability as inherent (essential)

properties of software systems. In 1992, inspired by the second law of thermodynamics, Jacobson

coined the term software entropy to refer to the increases in software disorder (entropy) over time

(Jacobson, 1992) . In 1994, Parnas introduced the idea of software aging, by arguing that programs

3.2 DESIGN DEGRADATION 15

Figure 3.2: Structural Anti-patterns: Tangles

get old, just like people (Parnas, 1994).

In early 2000's, Martin introduced a set of design degradation symptoms, which he called "Symp

toms of Rotting Design" (Martin, 2000). In the following, we present two of these symptoms:

Rigidity. The definition of rigidity given by Martin is as follows. Rigidity is the tendency for software

to be difficult to change, even in simple ways. A design is rigid if a single change causes a cascade of

subsequent changes in dependent modules. The more modules that must be changed, the more rigid

the design is. Most developers have faced this situation in one way or another. (Martin and Martin,

2006). Martin summarizes it as a design that is difficult to change.

This anti-pattern has also been studied under the name of ripple effect. An early work on

software ripple effect is that of Yau and colleagues, who presented a maintenance framework to cope

with program modifications (Yau et al., 1978). Wilkie and Kitchenham (2000) investigated whether

classes with high CBO (Coupling Between Objects) metric values are more likely to be affected by

change ripple effects. Similarly, Briand and colleagues investigated the use of coupling measures and

derived decision models for identifying classes likely to suffer from ripple effect (Briand et al., 1999).

Interestingly, these two last studies revealed that highly structurally coupled classes did not always

cause significant ripple effects. Conceptual coupling metrics, which are calculated based on semantic

information obtained from identifiers and comments in source code, have also been employed to

detect ripple effect (Kagdi et al., 2010) .

Fragility. The definition of fragility given by Martin is as follows. Fragility is the tendency of a

program to break in many different places when a single change is made. Often, the new problems are

in areas that have no conceptual relationship with the area that was changed. Fixing those problems

leads to even more problems, and the development team begins to resemble a dog chasing its tail

(Martin and Martin, 2006). Martin summarizes it as a design that is easy to break

16 RELATED RESEARCH 3.2

Provider1

s1

Provider2 Provider3

s2 ~ Client V s3

~ "' <v [) Provider4 m Providers
V J '

"' s4V ~ s5
Provider6

s6

Figure 3.3: Shotgun Suryery (Lanza and Marinescu, 2006}

This anti-pattern has also been studied under the name of Shotgun Surgery (Figure 3.3) (Fowler,

1999). We highlight the work of Lanza and colleagues in this area (Lanza and Marinescu, 2006;

Marinescu, 2004), who introduced mechanisms called "detection strategies,, that combine different

code metrics to detect code smells. Lanza and the LOOSE Research Group developed a free tool

called iPlasma (Marinescu et al., 2005), which implements the Shotgun Surgery detection strategy

(Figure 3.4) by parsing the source code of Java and C# projects. Gtrba ei al. (2007) proposed a

similar approach to detect this same smell based on the identification of classes that have bad their

implementation changed together while maintaining their interfaces intact. While all these studies

depend on the actual code, ow- proposed metric relies on commit metadata obtained through the

parsing of the log files generated by the version control system. Therefore, the calculation of our

metric is fast and does not depend on the programming language in which the software was written.

What kind of changes cause designs to rot? Changes that introduce new and unplanned for

dependencies. Each of the four symptoms mentioned above is either directly, or indirectly caused by

improper dependencies between the modules of the software. It is the dependency architecture that is

degrading, and with it the ability of the software to be maintained.

In a more general context, Gall et al. (2003) mined CVS repositories, collected change cou

plings and showed that design flaws such as God Classes (Fowler, 1999) and Spaghetti Code

(Foote and Yoder, 1999) could be discovered without analyzing the actual source code. D'Ambros

and colleagues developed an interactive visualization tool called Evolution Radar (D'Ambros et al.,

3.3 ARCHITECTURAL CONFORMANCE CHECKING 17

Operation is called by too many
other methods

(CM > Short Memory Cap)
AND Shotgun Surgery

[ncoming calls are from
many classes

(CC> MANY)
Figure 3.4: Detection strategy for Shotgun Surgery (Lanza and Marinescu, 2006}

2009) that displays logical dependencies among modules of a software system. They showed that

their tool was able to detect design issues that were not detectable by means of static analysis of

code.

3.3 Architectural Conformance Checking

The role played by software architecture in the development process is widely known as crucial.

Architectural conformance consists in verifying whether a low-level representation of a software sys

tem (e.g. the code) complies with the planned architecture (also known as documented architecture)

(Sangal et al., 2005). No conformation means that decisions implemented in code somehow violate

the planned architecture, leading to unexpected collateral effects and design degradation. Further

more, it can be than no conformation means that the planned architecture should be reviewed.

Several known techniques and tools aid in architecture conformance. Lattix LDM tool enforces

architectural conformance through the specification of architectural rules (in x can-use y and x

cannot-use y forms) and partitioning algorithms. Structure 101 tool aids on this task by comparing

a user defined architectural diagram to the actual code, resembling the reflexion models technique

(Murphy et al., 2001) . JDepend tool accomplishes this task by providing an appropriate Java API

that can be used in unit tests.

18 RELATED RESEARCH 3.3

Chapter 4

Warm-up Study

In this study, we set out to empirically investigate the influence of structural dependencies on

change propagation. We focus on a quantitative analysis of how these dependencies relate to the

occurrence of co-changes found in the version history of the subject systems. We performed our

analysis on 4 open source Java projects, namely Apache Lucene, Apache Tomcat 7, Megamek, and

Apache Commons CSV. We answered the following research questions:

(RQl) Are dependent files more likely subject to co-change than independent ones?

Given a pair of Java files (/1, h), our results indicated that, even though it is more likely

that Ji and h will not co-change just because Ji depends on h (i.e., dependencies do not

instantly make two files change together), the rate with which Ji co-changes with h is

higher when Ji structurally depends on h (as compared to when Ji does not depend on

/2). However, this rate is fairly low, with its median ranging from 13.5% (Commons CSV)

to 20% (Lucene).

(RQ2) Are dependent files more likely subject to co-change than independent ones

when the change context is taken into account?

In this research question, we take the change context into consideration. In this new scenario,

we consider that there is a dependency from Ji to h only if f1 depends on 11 something 11 that

changed in h (e.g., a field definition or a method1s body). The results vary substantially

compared to those we obtained in RQl. Given a pair of Java files (!1 , h), when Ji depends

on h and h changes, it is more likely that Ji will co-change with h in Lucene and Tomcat.

In Commons CSV, the number of co-changes and absence of co-changes is roughly the

same in the presence of structural dependencies. In Megamek, it is more likely Ji will not

co-change with /2.

Furthermore, we also found that the rate with which Ji co-changes with h is again higher

when f1 structurally depends on h (as compared to when Ji does not depend on f2). This

rate is also substantially higher than that we found when ignoring the change context (RQI),

ranging from 43.08% (Commons CSV) to 100% (Lucene and Tomcat).

(RQ3) Do changes propagate via structural dependencies?

We focused on an analysis of the proportion of changed methods that propagated changes

via call dependencies to other methods per commit. The distribution of this proportion was

20 WARM-UP STUDY

Data PraprocQllln1
Phase

Dab Proc.Rsslr,a
Phase

Figure 4.1: Overview of study design

4.1

D:a~ An:alysls
Phase

RStudio

r A.nal~data {() I
[an1Wff RQ1

read

similar in all projects, with a median of zero. The mean varied from 11.40% (Tomcat) to

18.55% (Lucene). Hence, we concluded that changes in methods rarely propagate via call

dependencies. This result supports the idea found in some related work that few changes

are "justified" by the software architecture (Geipel and Schweitzer, 2012).

The key take-home message of this study is that the relationship between structural dependencies

and software changes are not as straightforward as one might think. The results of RQl and RQ2

reiterate the importance of managing structural dependencies while evolving software systems. This

calls for advanced supporting tools that are capable of, for example, measuring the levels of change

propagation over time and alerting end-users when thresholds are exceeded. Commercial tools used

in industry like IBM RSA and Stan4J only act on a code snapshot and thus are not able to offer

features like this. In turn, the results of RQ3 show that the relationship between individual software

changes made in a commit might very loosely related to the software architecture. This reinforces the

need of researching the relationship between change propagation and the many forms of connascence

(Page-Jones, 1992), such as conceptual coupling (Poshyvanyk and Marcus, 2006).

Study organization. The rest of this study is organized as follows. In Section 4.1, we describe

the study design, which includes our goals, the procedures for subject systems selection and data

collection, and the tools we used. In Section 4.2, we present the detailed results for the research

questions. In Section 4.3, we discuss the threats to the validity of this study. Finally, in Section 4.4,

we provide a summary of our findings.

4.1 Study Design

In this section, we describe the study design. Figure 4.1 shows an overview of the steps we

followed.

4.1.1 Goal

The goal of this study is to empirically determine the influence of structural dependencies on

change propagation. The focus is on the evolution of open-source Java applications. Our perspective

is that of developers, as they need to be aware of and manage coupling while evolving software

systems

4.1 STUDY DESIGN 21

4.1.2 Selection of Subject Systems

We pre-established a set of requirements for choosing the subject projects. First, as the identifi

cation of structural dependencies is programming language dependent, we decided to pick projects

written in the same language. We chose Java, since there are many open0source projects written

in this language and we had an appropriate tool to extract Java dependencies. This decision also

enabled us to compare the results across projects. Second, due to limitations of our tool set, we chose

projects versioned with Subversion (SVN) only. Third, in order to improve the external validity of

our findings, we selected projects of different sizes and domains. Finally, since we want to investigate

the link between structural dependencies and co-changes, we need to extract these dependencies

in every code snapshot of the subject system. In this warm-up study, we limited our analysis to 4

systems.

4.1.3 Data Collection

All Apache Software Foundation projects in Subversion are hosted under the same repository.

As of August 24, 2015, this repository hosts more than 1.69 million commits. Working with large

remote repositories poses a series of challenges. To cope with them, we built a local mirror of the

whole repository. In fact, we already had this mirror in hands, as it was built for previous studies

we conducted (Oliva and Gerosa, 2011).

4.1.4 Data Preprocessing

We used XFlow to collect, parse, and store commit metadata (Figure 4.1 - Data Preprocessing

Phase). We relied on such data to determine which commits to analyze, as we are only interested

in commits that included Java files. We also relied on these data to gain more insight about the

subject systems, including their age, number of developers, and number of Java files per commit.

4.1.5 Data Processing and Analysis

In this section, we detail the data processing and analysis phases of the study design. As depicted

in Figure 4.1, for each parsed commit, we read it, check-out the corresponding code snapshot, extract

dependencies, and analyze them according to the specific research question at hand. After all code

snapshots are analyzed, we export the results to a CSV file and analyze it using RStudio. More

details about the tools we used in this study are given in Section 4.1.6.

In the following, we discuss the dependency analysis method we employed to answer each of

three research questions we raised in this study.

a) RQl - Data Processing and Analysis

To address this research question, we mined the version control system to capture dependencies

and co-changes (algorithm I describes the steps we followed in details). For each commit, the

corresponding code is checked-out. Afterwards, each file h in the commit is compared with each

file Ji in the checked-out code in order to discover two things: whether Ji is a client of h (line 07)

and whether they co-changed (line 08). A file Ji is a client of h if there is at least one dependency

from fi to h (e.g., when a certain method from Ji calls a method defined in h)- The kinds of

22 WARM-UP STUDY 4.1

Table 4.1: Relationship Status

Does Ji depend on h?
Yes No

File pair (11, h)
(there is at least one (there are no deps. from

dep. from Ji to h Ji to h)
Yes

Does Ji (h changes and Ji CD CD

co-change with
changes as well)

No
/2? (h changes and Ji does CD CD

not change)

dependencies we capture are described in Section 2.2.1. We also say that a file Ji co-changes with

h when both are included in the same commit.

A rel (relationship) object stores how many times Ji depended (and did not depend) on h,

as well as how many times Ji co-changed (and did not co-change) with /2. This object is kept in

memory and is retrieved on demand (line 05) . The rel object for Ji and h is updated every time h
is included in a commit and Ji is in the checked-out code.

Algorithm I: Recording co-changes and structural dependencies

01. for each commit c do

02. code<- checkout(c)

03. for each file f_2 in commit c do

04 . for each file $f_l \neq f_2$ in the code do

05. rel<- getRelationship(f_1,f_2)

06. if(rel is null) createRel(f_l,f_2)

07. isClient <- is f_1 a client of f_2?

08. hasCoChanged <- does c contain f_l?

09. rel.update(isClient,hasCoChanged)

After mining all commits, we obtained the data shown in Table 4.1 for every single pair of files

evaluated. From such data, we derived a series of metrics:

• CoChanges(f1 , f2): Number of commits in which fi co-changed with /2: CD+ CD

• NoCoChanges(f1 , h): Number of commits in which /1 did not co-change with h: GD+ CD

• Dep(f1, h): Number of commits that included hand Ji depended on h: CD+ CD

• NoDep(f1, h): Number of commits that included hand Ji did not depend on h: CD+ CD

• CoChangeRatioWithDep(f1, /2): Of all commits that included h and /1 depended on h,
how many times did Ji co-change with h? CD/(CD +CD)= CD/Dep(f1,h)

• CoChangeRatioWithoutDep(J1, h): Of all commits that included h and fi did not depend

on h, how many times did Ji co-change with h? CD/ (CD + CD) = CD/ N oDep(f 1, h)

4.1 STUDY DESIGN 23

These metrics were exported to a CSV file and then statistically analyzed in RStudio (Figure

4.1). As a preliminary analysis, we compared the distributions of CD and CD to understand the

frequency of co-changes in the presence of structural dependencies. Next, to answer the research

question, we investigated whether files with structural dependencies are more likely to co-change.

We accomplished that by checking whether the rate with which Ji co-changes with his higher when

Ji structurally depends on h (as compared to when Ji does not depend on h). That is, we expect

CoChangeRatioWithDep(f1,h) to be higher than CoChangeRatioWithoutDep(J1,h) in most cases.

This intuition was formalized as an experiment with the following hypotheses:

NullHypothesis(Ho): Occurrence of co-changes involving Ji and h is not higher when Ji depends

onf2.

AlternativeH ypothesis (H 1): Occurrence of co-changes involving Ji and h is higher when Ji depends

onf2.

Our findings for this research question are presented in Section 4.2.2.

b) RQ2 - Data Processing and Analysis

To answer this research question, it becomes imperative to be able to identify the different kinds

of changes. In the scope of this study, we focus on investigating the extent to which the three

following kinds of change propagate:

(i) Added methods and changed methods: in a commit, a developer might add methods to

a class and change existing methods. For instance, the method foo() from the class A might be

modified to call the method bar() from class B. To the purpose of this analysis, constructors and
the set of lines corresponding to the declaration of attributes are both considered methods.

(ii) Added types: in a commit, a developer might add a new type to either a new class or an

existing class.

(iii) Types with changed set of type-to-type (t2t) dependencies: in a commit, a developer

might add or remove a type dependency for a certain type s/ he is working on. For instance, a
developer might make a certain class A extend a class B or make a class C implement an interface

D instead of an interface E.

The following algorithm describes the approach we employed to detect added and changed

methods (i).

Algorithm II: Capturing added and changed methods

01. for each commit c do

02. code<- checkout(c)

03. prevCode <- checkout(previous(c))

04. for each file fin commit c do

05. methods<- getMethods(f,code)

06. prevMethods <- getMethods(f,prevCode)

07. methodComp <- MethodComparator.run(methods,prevMethods)

08. record(c,methodComp)

24 WARM-UP STUDY 4.1

Subroutine: Method Comparator .run(methods,prev Methods)

01. identical<- removeidentical(methods,prevMethods)

02. changed<- removeChanged(methods,prevMethods)

03. deleted<- prevMethods

04. added<- methods

05. methodComp <- new MethodComp(identical,changed,deleted,added)

06. return methodComp

We start by getting the list of methods from a certain artifact in the current code snapshot

and in the previous code snapshot (line 01-06). We then compare the two lists of methods (line 07)

and record the changes (line 08). We detect added and removed methods using a simple syntactic

heuristic. First, identical methods are removed from both lists (subroutine, line 01). We then capture

changed methods (subroutine, line 02). We consider that a method m changed into a method m'

when their signatures are the same, their return type is the same and their body is different. We

then remove these changed methods from both lists. The remaining methods in the prevMethods

list are deemed as deleted (subroutine, line 03). The remaining ones in the methods list are deemed

as added.

Vlith relation to finding the added types (ii), we proceed in a similar fashion of Algorithm II. Let

the types found in the previous version of a file be prevTypes and let the types found in the current

version of a file be types. We deem two types as identical when they have the exact same source

code. Let identicalTypes be the set with the identical types. The set of added types correspond to

types minus identicalTypes.

Finally, in order to detect changes in type-to-type dependencies (iii), we employed Algorithm

III.

Algorithm III: Capturing types with changed set of type-to-type (t2t) dependencies

01. for each commit c do

02. code<- checkout(c)

03. prevCode <- checkout(previous(c))

04. for each file fin commit c do

05. changedTypes <- empty list

06. types<- getTypes(f,code)

07. prevTypes <- getTypes(f,prevCode)

08. pairs<prevType,type) <- types with same FQN, but different code

09. for each pair in pairs do

10. if (pair.prevType.getT2TDeps \neq (pair.type.getT2TDeps)

11. changedTypes.add(~ype)

12. record(c,changedTypes)

We first get the list of types from a certain artifact in the current code snapshot and in the

previous code snapshot (line 01-07). We then discover the types with same FQN but with different

source code (line 08). Next, we examine these (pairs of) types to discover the cases where type-to-type

dependencies were added or removed (line 09-11). Finally, we record the results (line 12).

4.1 STUDY DESIGN 25

Now that we showed how the three kinds of changes we de£ned were detected, we can rely on

Algorithm I to answer the research question. However, the way the client is determined changes now

(line 07). Instead of checking whether there is any dependency from Ji to h, we check the low-level

software changes (i), (ii), and (iii) we previously defined. More specifically, we perform the steps

described in Algorithm IV.

Algorithm IV: Deciding whether there is a dependency from Ji to h while considering

the change context

01. deps <- JDX.getAllDeps(f_1,f_2)

02. for each dep do

03. addedM <- get added methods in commit

04. removed.M <- get removed methods in commit

05. if (added.Mor changedM contains dep.Supp) do

06. isClient <- true

07. break

08. addedT <- get added types in commit

09. changedT < - get types with changed t2t deps

10. if (addedT or changedT contains dep.Supp) do

11. isClient <- true

12. break

13. return isClient

The main idea is to discover whether Ji has a dependency to something that changed in f2.
Hence, we £rst get all kinds of dependencies from Ji to h (line 01). Next, we check whether the

supplier of any of these dependencies is either an added or changed method (lines 03-07) or an added

or changed type (lines 08-12). If we find at least a single positive case, then we state that Ji is a

client of f2.
Finally, just as we did for RQl, we check whether the rate with which Ji co-changes with h is

higher when Ji structurally depends on h (as compared to when Ji does not depend on /2). This

intuition is again formalized as an experiment with the following hypotheses:

Nullhypothesis(H0): Occurrence of co-changes involving Ji and h is not higher when Ji depends

on h and the change context is taken into account.

AlternativeH ypothesis(H1): Occurrence of co-changes involving Ji and h is higher when Ji depends

on h and the change context is taken into account.

Our findings for this research question are presented in Section 4.2.3.

c) RQ3 - Data Processing and Analysis

To answer this research question, we identified the changes that happened in a commit and

inferred whether they propagated via structural dependencies. For the purpose of this analysis, we

focused on added and changed methods. The detailed steps we followed are described in Algorithm

V.

Algorithm V: Determining change propagation via structural dependencies

26 WARM-UP STUDY 4.1

01. for each commit c do

02. code<- checkout(c)

03. addedChangedM <- discover added and changed methods

04. if (addedChangedM > 0) do

05. deps <- JDX.getCallDeps(code)

06. callGraph <- Jung.getGraph(deps)

07. callGraphT <- Jung.getTransitiveClosure(callGraph)

08. propagatedM <- 0

09. for each method min addedChangedM do

10. preds <- callGraphT.getPred(m)

11. for each method pred in preds do

12. if(m \neq pred and

13. addedChangedM constains pred) do

14. distance<- Dijkstra.calcDistance(callGraph,pred,m)

15. if (distance<= 3) do

16. propagatedM <- propagated+ 1

17. break

18. percentProp <-propagated/ size(addedChangedM)

19. record(c,percentProp)

For each commit, we check-out the code (line 02) and discover the added and changed methods

(line 03) using the approach we described in Section 4. 1.5. If we find at least one added or changed

method, we proceed with the analysis. Otherwise, we skip the commit and investigate the following

one (line 04). Using JDX, we obtain all call dependencies found in the code (line 05). With these

dependencies in hands, we use Jung to build a call-graph (line 06). A call-graph is a directed graph

where vertices are methods and edges represent calling relationships. More specifically, the edges

connect a method m to another method m' if and only if there is at least one call dependency from

m tom'. Subsequently, we use Jung once more, but this time to calculate the transitive closure of

the call-graph (line 07). The transitive closure is a graph in which there is an edge connecting v to

v' if and only if there is a path from v to v' in the original graph. In our case, the transitive closure

of the call-graph is a directed graph in which an edge from m to m' implies in the existence of a

transitive dependency in the original call-graph. In line 08, we initialize a counting variable that

will record the number of added/ changed methods that propagated changes via call dependencies.

We consider that an added/ changed method m propagates a change via call dependencies if at least

one of its predecessors in the transitive closure is a method m' that was either added or changed in

the commit. However, since an edge in the transitive closure stands for a transitive dependency, we

check back in the original call-graph how many edges (hops) were needed to connect m' tom. We

thus use the Dijkstra's shortest path algorithm (line 14) to determine the length of the shortest path

that connects m' tom in the original call-graph. However, since this path might be quite lengthy,

we restrict the maximum distance to 3 (line 15). In other words, we accept only two intermediary

methods in the path that connects m' to m. The rationale is the following: if too many hops are

needed to connect m' to m, then it is more likely that they changed together because of some other

reason that is not directly related to the calling dependencies. For instance, it could be the case that

two classes are semantically related, with similar terms present in their comments and identifiers

4.2 RESULTS 27

(Poshyvanyk and Marcus, 2006). Finally, we record the proportion of added/ changed methods that

propagated changes in the commit (line 19). Once all data are captured, we analyze the distribution
using descriptive statistics.

Our findings for this research question are presented in Section 4.2.4.

4.1.6 Supporting Tools

XFlow. This is an extensible, interactive, and stand-alone tool we have developed Santana et al.

(2011), whose general goal is to provide a comprehensive software evolution analysis by mining

software repositories and taking into account both technical and social aspects of the developed

systems. In this study, we employed XFlow to parse and store commit logs. Project website: https:

/ / github.com/ golivax/ xflow2

JDX. Java Dependency eXtractor (JDX) is a core tool in this study. It is a Java library we have

developed to extract dependencies from Java code. The tool is robust and is able to extract all

dependencies listed in Section 2.2.1. The library relies on the robust Java Development Tools Core

(JDT Core) library, which is the incremental compiler used by the Eclipse IDE. As a desirable

consequence, JDX is able to handle Java source code in its plain form. Project website: https:

/ / github.com/ golivax/ JDX

Jung. Java Universal Network/ Graph Framework (Jung) is a Java library that provides a common
and extensible language for modeling, analyzing, and visualizing data that can be represented as a

graph or network. In this study, we employed Jung to help us compute certain algorithms, such as

the transitive closure of a directed (dependency) graph. Project website: http://jung.sourceforge.net

Structural Dependencies Analyzer. This is a custom tool we built for the purpose of answering

the research questions of this study. It relies on JDX and Jung. It implements all algorithms shown

in Section 4.1.5.

R and RStudio. All statistical analyses of this study were conducted using the R package v3.l.2.,
with the support of RStudio IDE v.0.98.1103.

4.2 Results

This section presents and discusses the results of our three research questions. For each re

search question, before presenting the results, we first briefly recall our motivation to study it and
the approach we employed to answer it. All data and scripts used in this study are available at:

https:// github.com/ golivax/issre2015.

4.2.1 Preliminary Analysis: Characterizing Subject Systems

Given the criteria listed in Section 4.1.2, we selected the 4 following projects: Apache Lucene

(core), Apache Tomcat 7, Megamek, and Apache Commons CSV. Lucene is an information retrieval
library widely used in the implementation of Internet search engines. Tomcat is a renowned web

server and servlet container that implements several Java EE specifications, Megamek is a turn-based
strategy game inspired by the "Classic BattleTech11 board game. Commons CSV is a library to read,

write, and manipulate CSV files.

28 WARM-UP STUDY 4.2

Table 4.2: Description of Subject Systems

Project O:mmit I,m,el Val URL Mired Path (n,ge,c) Total Cbmmfus (w/ J...,,. files)

Ap,,d,e ux:ene (oore) [149570, ~ Inµ;:/ /~repa,/asf/ /Jucere/ja,,a/trunk/&e/ja,,a/ .•1\ \ Jam 1962
Apache Toma,t 7 l540100, 11552551 1np;:/ /~repa,/asf/ / t:ancat/ trud</jaw/."'7\ \ J&a 35.54
Mega,n,k [2, 1l344j lt:tp://svruxxlesf.net/p/,_nek/cxxle /trunk/m,gamei</m:/megamek/ ."'7\ \ .jm,a 7754
Apache Cl:mmom CSV (1200101, 1600967! lnp;://~repa,/asf/ /oacmrnrs/rrop,%/r:sv/ trunk/=/mam/},.va/,"?\\.ja."' 415

Table 4.2 shows the commit interval we mined for each system. It also depicts the repository

URL, the repository path regex, and the total number of commits that matched the regex. We

say that a commit matches the regex when it contains at least one file whose path matches the

regex. This implies that commits with no Java files were discarded. We also highlight that the

reason why the commit intervals seem so big for the Apache projects is because all projects from

the Apache Software Foundation are hosted in a single Subversion server. Therefore, we must take

a large interval to find all the commits we want for a single system.

4.2.2 RQl: Are dependent files more likely subject to co-change than indepen

dent ones?

Motivation. Classic Software Engineering literature has long stated that structural coupling

should be minimized because every time a certain class changes, all other dependent classes are also

likely to change, thus inducing ripple effects. Hence, with this research question, we aim to empirically

investigate whether dependent files are more likely subject to co-change than independent ones.

Approach. To address this research question, we mine the version control system. For each

commit, we search for co-changes and structural dependencies between pairs of files <fi,h>, where

h is a file in the commit's change-set and Ji is a file in the checked-out code. Algorithm I describes

the steps we followed in details.

Results. We start by showing the results of the comparison of GD and GD. For this analysis,

we selected only the file pairs where Dep(f1,h) =I= 0, i.e., file pairs where Ji was a client of h in at

least one commit. The results for the subject systems are summarized as bean plots in Figure 4.2.

The black horizontal lines denote the median of the distributions. The dotted line represents the

median of the two distributions combined.

In all systems, the median of CD (left, black) is smaller than the median of CD (right, gray).

Moreover, the distribution of GD has a much larger tail. This suggests that GD is in general smaller

than CD. To further investigate this, we performed a paired two-sample Wilcoxon test (a.k.a. Mann

Whitney test) with the alternative hypothesis that GD is less than CD at a significance level of

0.05. We could reject the null hypothesis in all systems with the following p-values: less than 2.2e-16

(Lucene), less than 2.2e-16 (Megamek), equal to 6.506e-06 (CSV Commons), and less than 2.2e-16

(Tomcat).

In summary, we found a consistent behavior across all systems: given a pair of files <fi,h >
where Ji depends on h, the number of co-changes (CD) is, in general, smaller than the number of

no co-changes (CD).

(Result I) The number of times Ji co-changes with h is smaller than the number of times Ji
does not co-change with h in the context where Ji depends on h and h changes.

Next, we investigate whether dependent files are more likely subject to co-change than indepen

dent ones. The CoChangeRatioWithDep(f1 , h) metric is undefined when both CD and CD are

4.2

<.;ommons

Megamek

lO
N

~ 1
\() .i ~,
~1
IO j

o I ----:::11111111

0
M

RESULTS

Lucene

Tomcat

Figure 4.2: Beanplots comparing the distribution of CD (black} and CD gray

29

30 WARM-UP STUDY 4.2

commons Lucene

9
T""

MegameK tomcat

0
'I'""

co
0 ci
i
a: co ' 1:7
CJ · . o
0

c N I

~

0 -----

0
ci

0
0

Figure 4.3: Beanplots comparing the distribution of s 1 {black} and s 2 {gmy)

zero. Analogously, CoChangeRatioWithoutDep(/1, h) is undefined when both CD and CD are

zero. Therefore, for each project, we had to first preprocess the data to remove the cases where these

metrics could not be calculated. This led to two samples s1 and s2 :

• Sample s1: CoChangeRatioWithDep(/1, h) with Dep(J1, h) =CD+ CD> 0

• Sample s2: CoChangeRatioWithoutDep(/1,h) with N0Dep(J1,h) =CD+ CD> 0

As we did in the previous case, we start with a graphical analysis of the distributions of s1 and

s2 for each project. Figure 4.3 depicts the bean plots we obtained.

In all systems, the median of s1 is higher than the median of s2. This supports our hypothesis

that the rate with which Ji co-changes with fz is higher when Ji structurally depends on fz. However,

we highlight that the medians for s1 are all fairly low: 13.54% for Commons CSV, 20% for Lucene,

17.65% for Megamek, and 14.29% for Tomcat.

The next step was to evaluate whether dependent files are more likely subject to co-change than

independent ones (alternative hypothesis). We employed a non-paired two-sample Wilcoxon test at a

significance level of 0.05. As opposed to the first test we conducted, this must be non-paired because

of the preprocessing we executed. We could reject the null hypothesis for three systems, all of them

with a p-value smaller than 2.2e-16. The exception was Apache Commons CSV, since its p-value

was equal to 0.1811. In fact, in this system, the medians of s1 and s2 were very similar: 0.1354 for

4.2 RESULTS 31

s1 and 0.1129 for s2. Hence, in this system, structural dependencies seem not to be associated with

co-changes. Given that Commons CSV is a much smaller system (10 classes in vl.2) and it is a

library, our hypothesis is that it has very stable interfaces, leading to surgical changes that are not
driven by structural relationships.

In summary, in three of the four systems, we could reject the null hypothesis. This provides

empirical evidence to support the claim that dependent files are more likely subject to co-change

than independent ones.

(Result II) The rate with which Ji co-changes with h is higher when Ji structurally depends on

h (as compared to when Ji does not depend on h). However, this rate is fairly low, ranging

from 13.5% to 20%.

As a general conclusion, we can say that even though it is more likely that Ji and h will not

co-change just because Ji depends on h (i.e., dependencies do not instantly make two files change

together), the rate with which Ji co-changes with h is higher when Ji structurally depends on h -

4.2.3 RQ2: Are dependent files more likely subject to co-change than indepen
dent ones when the change context is taken into account?

Motivation. The previous analysis did not take into consideration the specific changes that
happened in each file of the commit's change-set. That is, we analyzed dependencies at the file-level.

What if we accounted for the specific changes? If a certain method is changed, will its clients (from

other classes) change as well? If a certain type now extends another, will the clients of the former

be affected?

Approach. The approach we employed is similar to that ofRQl. However, the way the structural

client is determined is different. Instead of checking whether there is any dependency from Ji to h
in a given commit, we check whether there is a dependency from Ji to "something" that changed

inside h- In the scope of this study, "something" can be either: (i) added/changed methods (e.g., a

new method m was added to a type tin h), (ii) added types (e.g., a new type twas added to h),
and type-to-type dependencies (e.g., a type tin h now extends type t' instead oft").

Results. We proceed in the exact same way we did for RQl. Therefore, we start by showing the

results of the comparison of CD and CD via bean plots (Figure 4.4). We highlight that we again
selected only the file pairs where Dep(f1 ,h) f; 0, i.e., file pairs where Ji was a client of h in at least

one commit.

As compared to RQl, the results are much subtler now, as the medians became much closer to
each other in all systems. This is also evidenced by the descriptive statistics for the distributions,
which are shown in Table 4.3. Lucene and Tomcat seem to show a similar behavior, with higher

number of observations equaling to zero in the right-hand side (CD) and a higher number of
observations equaling to one in the left-hand side (CD). In both systems, the median for CD is

one, the median for CD is zero, and the mean of CD is higher than the mean of CD. The shape of

the distributions of Commons CSV and Megamek are quite different from the two other systems.

In Commons CSV, even though the median of CD is higher than that of CD, the mean is not. In

Megamek, the medians of CD and CD are identical, and the mean of CD is higher.

To further investigate the data, we performed a series of paired two-sample Wilcoxon tests, all

at a significance level of 0.05. For Lucene and Tomcat, we performed the test with the alternative
hypothesis that CD is greater than CD. In both cases, we could reject the null hypothesis with a

32 WARM-UP STUDY 4.2

commons Lucene

gr ~- 0 - - --

►
- I

co

ij l
(0 o ,

('I')

0 'l!f' -
~

0 ' N l ,...

0 -, o -·

MegameK 1omcat

~ co

lt) ,
.. 7 (0 i
0 "t'-; i
~

•
N1 ◄l

,
o -

0

Figure 4.4: Beanplots comparing the distribution of CD {black) and CD gray

Table 4.3: Descriptive Statistics for CD and CD

System
CD CD

Min Ql Med Mean Q3 Max Min Ql Med Mean Q3 Max
CommonsCSV 0 1 3 3.04 4 13 0 1 2 5.81 6.75 51
Megamek 0 0 1 1.76 2 305 0 0 1 5.12 3 504
Lucene 0 1 1 1.55 2 31 0 0 0 0.98 1 45
Tomcat 0 1 1 0.97 1 16 0 0 0 0.71 1 38

4.2 RESULTS 33

p-value small than 2.2e-16. For Commons CSV, we tested the alternative hypothesis that CD is less

than CD. The p-value was 0.1562 and thus we could not reject the null hypothesis. In addition, we

tested the alternative hypothesis that CD and CD are distributions with different shapes (two-sided

test). The p-value was 0.3124 and thus we could not reject the null hypothesis again. That is, for

Commons CSV, the distributions of CD and CD are roughly indistinguishable (as also supported

by its bean plot depicted in Figure 4.4). Finally, in Megamek, since the median of CD and CD are

the same, we first tested the alternative hypothesis that CD and CD are distributions with different

shapes. We could reject the null hypothesis with a p-value smaller than 2.2e-16., i.e., the location

shift is not equal to zero. We then tested whether CD was less than CD, since the mean of CD

(1.76) is smaller than the mean of CD (5.12). We could again reject the null hypothesis with the

same p-value.

In summary, we compared CD and CD to understand the frequency of co-changes in the occur

rence of structural dependencies. Given a pair of files <f1,h> with Ji depending on h, the number

of co-changes is, in general, greater than the number of no co-changes (absence of co-changes) for

Lucene and Tomcat. In Commons CSV, these numbers are roughly the same. In Megamek, the

number of co-changes is, in general, smaller than the number of no co-changes. Hence, the results

changed substantially as compared to the previous RQ.

(Result III) When taking the change context into account, the results change substantially as

compared to (Result I). In the context where Ji depends on h and h changes: (a) It is more

likely that Ji will co-change with h (instead of not co-changing) in Lucene and Tomcat; {b} the

number of co-changes and no co-changes will be roughly the same in Commons CSV; (c) it is

more likely that Ji will not co-change with h in M egamek

We now investigate whether dependent files are more likely subject to co-change than independent

ones. As we did for RQl, we check whether the rate with which Ji co-changes with h is higher

when Ji structurally depends on h (as compared to when Ji does not depend on h). We apply the

same preprocessing and obtain the samples s1 and s2, which are the target of the analysis. Before

evaluating the hypothesis, we start with a graphical analysis of the distributions of s1 and s2 for

each project. Figure 4.5 depicts the bean plots we obtained.

In all systems, the median of s1 is significantly higher than the median of s2. In particular, the

median of s1 is equal to LO in Lucene and Tomcat. This implies that at least 50% of the observations

in these distributions are equal to 1, i.e., the client always changed when the supplier changed (the

change always propagated). In Megamek, the third quartile of s2 is equal to 1.0. In turn, the shape

of the distributions for Commons CSV looks more uniform, with data more evenly spread in the

[0,1] interval. We highlight that the medians for s1 are significantly higher than those we found in

RQl, as they now ranged from 43.08% (Commons CSV) to 100% (Lucene and Tomcat).

We then evaluated the hypothesis itself using a non-paired two-sample Wilcoxon test at a

significance level of 0.05. We could reject the null hypothesis for all systems. Lucene, Megamek,

Tomcat had a p-value smaller than 2.2e-16. Commons CSV had a p-value of 0.0015, which is not as

strong as the former, but still sufficient to reject the null hypothesis.

In summary, all these results provide empirical evidence to support the claim that dependent

files are more likely subject to co-change than independent ones.

34 WARM-UP STUDY 4.2

Commons Lucene
------ -

Megamek 1omcat
fl lb

0
0

Figure 4.5: Beanplots comparing the distribution of s1 {black) and s2 gmy

4.2

~
~

~
0

N
0

q
0

RESULTS

i

I

I ,

CommonsCSV Lucene Megamek Tomcat

Figure 4.6: Beanplot for the proportion of methods that propagated changes per commit

(Result IV) When taking the change context into consideration, the rate with which Ji co-changes

with h is higher when Ji structurally depends on h (as compared to when Ji does not depend on

h). This rate is also substantially higher than that we found when ignoring the change context

(Result II).

4.2.4 RQ3: Do changes propagate via structural dependencies?

35

Motivation. Even though structural dependencies might lead to co-changes, it is not clear the ex-

tent to which the architecture "justify" software changes (Geipel and Schweitzer, 2012; Zimmermann et al.,

2003). How do the actual software changes relate to the architecture? In particular, are there situa-

tions where two classes change together and there is no structural connection between them? How

often does it happen? These are the aspects we will investigate.

Approach. To answer this research question, we identified the changes that happened in a

commit and inferred whether they propagated via structural dependencies using graph algorithms.

For the purpose of this analysis, we focused on added and changed methods. The detailed steps we

followed are described in Algorithm V.

Results. Figure 4.6 depicts the bean plot for the proportion of added/changed methods that

propagated changes via call dependencies per commit. We see a consistent behavior across all systems,

as their distributions are very similar. Most importantly, the distributions are very right-skewed and

the medians are all zero.

Table 4.4 depicts descriptive statistics for the same variable. The means vary from 11.40%

36 WARM-UP STUDY 4.4

Table 4.4: Descriptive Statistics for the Proportion of Methods That Propagated Changes per Commit

Systems Min Ql Med Mean StdDev Q3 Max

Commons CSV 0 0 0 14.46% 22.77% 33.33% 86.36%
Megamek 0 0 0 13.72% 21.19% 27.27% 100.00%
Lucene 0 0 0 18.55% 22.71% 36.27% 100.00%
Tomcat 0 0 0 11.40% 19.57% 20.00% 88.89%

(Tomcat) to 18.55% (Lucene), and the standard deviations are significant, varying from 19.57% to

22.77%. Hence, the mean is also fairly low for all distributions and there is a significant variability

around it.

These results have strong implications in practice: most changes in methods do not tend to

propagate via call dependencies. This supports the claim found in the study of Geipel and Schweitzer

(2012): very few changes are "justified" by the software architecture.

(Result V) Changes in methods rarely propagate via call dependencies.

4.3 Threats to Validity

Some aspects may have pose threats to the validity of this study. First, our toolset has some

limitations. Algorithm I relies on paths for distinguishing between files. Hence, it does not account

for renames and file moving. Furthermore, in RQ2 we do not deal with removed methods. Although

method removals could be the trigger of change propagations chains, we believe that adding and

changing methods are more usual operations done by developers. Hence, we believe our results are

still reliable, in the sense that they cover enough ground.

In RQ2, we deem "changed types" as those that had their type-to-type dependencies changed. As

part of our future work, we plan to use more sophisticated heuristics. In RQ3, we only investigated

calling relationships. Analogously, in future work, we plan to investigate other kinds of structural

relationships. Moreover, even though we selected projects of different sizes and domains, the small

number of subjects limits the generalizability of our results. Furthermore, we have only investigated

a single module of a single branch of each project. Finally, given the research method we used, we

cannot infer causal relationships between dependencies and co-changes.

4.4 Summary

Software development is an inherently complex socio-technical activity. Since the notorious

software crisis acknowledged in the late 60's (Naur and Randell, 1969), practitioners and researchers

have sought better ways to develop software systems. During this quest, some fundamental Software

Engineering principles have emerged. One of these principles is known as "low coupling" and says

that both the number and the strength of interconnections among modules should be minimized in

order to prevent change propagation.

In this study, we set out to empirically investigate the link between dependencies and change

propagation. With the support of a fairly sophisticated toolset, we analyzed 4 open source systems

written in Java. Our results indicated that, in general, it is more likely that two artifacts will not co

change just because one depends on the other. However, the rate with which an artifact co-changes

4.4
SUMMARY 37

with another is higher when the former structurally depends on the latter. This rate becomes higher

if we track down dependencies to the low-level entities that are changed in commits. We also fonnd

several cases where software changes could not be justified using structural dependencies, meaning

that co-changes are possibly induced by other subtler kinds of relationships

Besides addressing some of the limitations given in the prior section, as future work we plan

and factorize the analysis done in RQ2 according to the different kinds of structural dependencies,

including method calls, imports, and others. This would allow us to know the role of each kind of

dependency separately.

38 WARM-UP STUDY 4.4

Chapter 5

Dependencies and Software Changes: A

Large-Scale Empirical Study

With the lessons learned from the warm-up study (Oliva and Gerosa, 2015), we designed a new

study that investigates similar aspects, but at a much larger scale. More specifically, using a fairly

sophisticated toolset, we mined structural dependencies and co-changes from 45 randomly chosen

Java projects belonging to the Apache Software Foundation. This work extends the previous one by:

(i) captming dependencies more precisely using a branch-aware method, (ii) evaluating the statistical

relationship between dependencies and co-changes using the chi-squared, and (iii) analyzing the

importance of kind of dependency when trying to explain co-changes. In the following, we list our

research questions and summarize the main results we obtained.

(RQl) Are structurally dependent files more likely to co-change than independent

ones?

Yes, dependencies increase the likelihood that two artifacts will co-change. When a class A

depends on another class B and B changes, the likelihood that A will change together with

B is 32% in average, being around 20% higher in average than the likelihood found in the

case where A does not depend on B. Hence, the 11 low coupling" principle holds.

(RQ2) How accurately can. co-changes be predicted using structural dependencies?

We recorded dependencies between pairs of files and built a classifier for each system using

Random Forests. Classifiers had a poor accuracy in general, with Area Under the Curve

(AUC) ranging from 0.52 to 0. 76, thus implying that it is not possible to accurately predict

co-changes solely using dependencies.

(RQ3) What kinds of structural dependencies best explain the occurrence of co-changes?

Analyzing the mean decrease in accuracy for each variable of the Random Forests model,

we discovered that the length of indirect dependency, number of type imports, number of

method calls, and number of references are the best predictors for co-changes. To the best

of our knowledge, no change propagation prediction study has taken the length of indirect

dependencies into account (either as a heuristic or a model variable).

Study organization. The rest of this study is organized as follows. In Section 5.1, we describe

the study design, which includes our goals, the procedures for subject systems selection and data

40 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.1

collection, and the tools we used. In Section 5.2, we present the detailed results for the research

questions. In Section 5.3, we discuss the results of the previous section. In Section 5.4, we discuss the

threats to the validity of this study. Finally, in Section 5.5, we provide a summary of our findings.

5.1 Study Design

In this section, we present our goals, the rationale for selecting the subject systems, our data

extraction and analysis approaches, and the supporting tools we used.

5.1.1 Goals

The goal of this empirical study is to understand and quantify the interplay between structural

dependencies and co-changes. We take into account all kinds of structural dependencies shown in

Section 2.2.1. Our perspective is mainly that of software developers, who are daily challenged to

keep coupling under control while developing and maintaining software systems. The target systems

of our study are 45 Java projects from the Apache Software Foundation. More details about the

procedures for the selection of these systems are given in the next subsection.

5.1.2 Selection of Subject Systems

The subject systems were selected as a random sample of Apache Software Foundation (ASF)

projects written in Java and stored in SVN. In the following, we show the rationale for these criteria.

Programming language. The detection of structural dependencies is done via static analysis,

and thus depends on the programming language in which the target is written. We decided to

focus our analysis on Java projects. According to the GitHub website (La, 2015), Java is second in

the yearly rank of programming language popularity since 2014. More details about programming

language use in GitHub can be found at the GitHut website (Zapponi, 2014) . The large public

directory of free and open source software OpenHub shows that Java ranks third in terms of the

number of monthly commits in late 2015 when compared to C++, C#, JavaScript, Perl, PHP,

Python, and Ruby (BlackDuck, 2016a). Hence, this study deals with subject systems written in a

programming language that is often used in open-source development, making it relevant to a broad

audience.

Version control system. Brindescu et al. (2014) conducted a large-scale empirical study (358k

commits, 132 repositories, 5890 developers) and showed that commits made in distributed repositories

were 32% smaller (fewer files) than in centralized repositories, and that developers split commits

more often in distributed repositories. To minimize confounding factors, we decided to focus on a

single distribution paradigm.

We decided to analyze projects from the ASF, which is a non-profit organization that has

developed nearly a hundred distinguishing software projects that cover a wide range of technologies

and address several problems from diverse contexts. In particular, the popularity of ASF projects

and the heterogeneity of their projects made it a suitable choice for our study. In addition, ASF

currently owns a single Subversion repository that hosts all Apache projects.

Subject systems selection. According to the Apache Projects Directory, most of their projects

(215, 61.3%) are written in Java. In particular, the website stores high-level development metadata

for each project, including the URL of the project's version control system. Relying on information

5.1

Commits

Commn 1
ComrnIt2
Comm1t3
Commt4

Comm1tll O

•

1: Parse
commits

Branches

Branch b, /a:f/m&hou1/trunk
C<>mmn loiBs IO blanch b,. AJBW
{:(J!Vlln r,tes., blar.ch b, B)8Va

B,a,,c:t, bz /Ml/mahOut/1)1"'1G""s/dev1 0
Comml1 Illas in blanch b_ C }aVI

B<ench b, /asl/n)ahoul/bfanches,ldevl
t..:omm1t hies m bral\Ctl ~ o Java

2: Map Compllatlon
Units lo Bnnches

STUDY DESIGN

[for each comrm c,J

[lor each branch b,J

[for each changed file f2 in branch b,J

Client candidates (f,l

f' :=•lrl'Javo I<·;
~bJfmodule2/G 1ava ,; :

4: Discover client
candldaleS

5:Evaluate client
candidates

·------

3: Create comp. unit
dependency graph

Comp UM
Dependency

Gr2ph foe orench
bI incomm1tc;

Evalualion of
client candidates

,., llumbe! of deps of ea:11
tund trom 11 to f~

Did 11 and 11 co-change?

&: Address
RHNrcll Questions

Figure 5.1: Overview of study design

41

from this webpage, we selected all projects written in Java and that had an associated Subversion

URL (we did not validate these data for missing or incorrect information). We discovered that 165

out of the 215 Java projects had an associated Subversion URL. We regarded this set of projects as

the population of this study. From this population, we obtained a random sample of 45 projects.

5.1.3 Approach

We mined the version control system of each subject system and, for each commit, check whether

pairs of files (i) co-changed and/or (ii) a structural dependency existed from one file to the other.

Our hypothesis is that a file A should co-change more frequently with B when it depends on B (as

compared to when A does not depend on B). An overview of the approach is depicted. in Figure 5.1.

In the following, we describe each of the main steps we followed.

Parse Commits

All Apache Software Foundation projects in Subversion are hosted under the same repository.

As of November 9th, 2015, this repository hosts more than 1. 71 million commits. Working with large

remote repositories poses a series of challenges. To cope with them, we have maintained a local copy

that we synchronize in an on-demand fashion. By the time we wrote this study, our mirror pointed

to commit 1,615,288.

We used XFlow (Santana et al., 2011) to collect, parse, and store commit metadata of each

subject project. The input consisted of two parameters: the version control system URL and the

commit range (first commit, last commit) to be analyzed. We also used the tool to perform two

filters on-the-fly. First, we only processed commits that included at least one Java file. Second, we

discarded commits having more than 100 Java files, since these usually refer to repository operations

(e.g., branch merging) and crosscutting changes (e.g., license change) - both of which have little

to do with structural dependencies. In addition, these commits would require non-justifiable high

computational power to be processed (Table 5.3).

42 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.1

Map Compilation Units to Branches

After we parsed the project's commits, we processed one commit at a time (note the outer large

rectangle in Figure 5.1). For each commit, we discovered the branches that the commit modifies.

Before we dig into how we discovered these branches, let us first justify the effort. For each added

or modified Java file, we need to know which branch it belongs to in order to perform a fair analysis

of structural dependencies and co-changes. The main reason is that development branches are often

created in the repository to store and evolve an independent version of the system. One cannot

expect a branch to have compilation units that depend on other compilation from other branches

(e.g., a file A from the trunk should not depend on a file B from a sandbox branch). Therefore,

our whole approach is branch-aware, in the sense that it does not evaluate pairs of files from

different branches for analyzing structural dependencies and co-changes. In fact, our approach is

also module-dependency-aware, as we shall see in step 4.

We discovered the branches that a certain commit modifies by using a mix of heuristics and

manual validation. Finally, once we detected all branches that existed in the project's repository at

a particular commit, we mapped the Java files in the commit's change-set to those branches.

Create Compilation Unit Dependency Graph

In this step, we processed the branches discovered in the previous step, one at a time. For each

branch, we checked-out its code from the repository and detected the structural dependencies using

JDX (see Section 5.1.4 for a description of this tool). In other words, the dependency extraction

takes into account only the files in the specific branch being processed. Once dependencies were

captured, we built a Compilation Unit Meta-Dependency Graph.

This is a directed graph where nodes are compilation units and edges are meta-dependencies.

A meta-dependency indicates the existence of one or more underlying dependencies between two

compilation units. For instance, a meta-dependency from A. java to B. java could indicate that a

certain method A. foo () calls B. bar (), that A uses B as a method parameter in A. do (B), and

that A imports B. We opted to build this graph because it is smaller (in terms of both the number

of nodes and edges) and thus easier to work with. Furthermore, as we stated, we can recover the

specific dependencies from each meta-dependency. We relied on this graph to discover whether a
certain compilation unit A depends on another unit B.

Discover Client Candidates

For each modified file, we needed to discover which other files depended on it. As we noted in

step 2, our approach is branch-aware, so only files from the same branch are taken into account. In

addition to that, our approach is also module-dependency-aware. The reason is that projects often

indicate allowed module dependencies in their build files. As a consequence, only files from a subset

of modules (client modules) are allowed to depend on a certain file from a specific module (provider

module). Therefore, for each modified file fj, we needed to discover which other files fi were allowed

to depend on it (client candidates).

Parsing the build files to extract these pre-established module dependencies would require

developing a parser for each build technology. Given these problems, we conceived and applied an

alternative approach, which is agnostic to the build technology the projects use. We first discovered

5.1 STUDY DESIGN 43

all the modules of the branch being processed by inferring them from the path of the compilation

units in that branch. Afterwards, we lifted the compilation unit meta-dependency graph built in step

3 to derive the module dependencies. For instance, if a compilation unit A from module examples

depends on a compilation unit from module utils, then we say that examples depends on utils. After

that, we created a Module Dependency graph, in which nodes represent modules and edges represent

dependencies among these modules.

The rationale is that this graph should correspond to the dependencies established in the build

file. If there is a dependency from module A to module B in the build file and files from module A

indeed call files from module B, then this module dependency will appear in our graph. If a module

dependency is listed in the build file but no actual dependencies between files from these modules

exist, then there will be no dependencies between the modules, and thus no dependencies between

these modules will show up in our graph. Finally, if a dependency from module A to B is not listed

in the build file, developers will not be able to make calls from A's files to B's files, yielding no

dependencies between the two modules. In this case, our graph will have no dependencies between

these modules.

Therefore, given a certain modified file (j, the client candidates were all those lying in (i's module

and in other modules that depended on fj's module.

Evaluate Client Candidates

In this step, each client candidate Ji in the checked-out code was evaluated against a file h
in the commit's change-set. This evaluation consisted of determining which dependencies existed

(if any) from Ji to h and whether the files co-changed. We highlight that, at this point, we have

ensured that Ji and h belonged to the same branch and that the module from Ji was allowed to

call the module from h.
Dependencies from / 1 to /2 were straightforwardly derived from the compilation unit meta-

dependency graph. We counted how many dependencies of each kind (Section 2.2.1) existed from

Ji to h- We also checked whether Ji indirectly depended on f2. More specifically, we counted how

many chained dependencies it takes to connect Ji to h- If no such path exists, we registered the

value zero.
Co-change was determined by checking whether both files were included in the commit's cbange

set. The results of this evaluation were incrementally registered in a table and then later on used to

answer both research questions. From now on, we call this table the dependencies dataset.

Table 5.1 shows an excerpt of a hypothetical dependencies dataset. It focuses on the results of

processing commit #10 from a certain project. The commit changed two files, namely: A.java and

B.java. The project has only 4 classes at this point (commit 10), namely: A.java, B.java, C.java, and

D.java. To simplify the example, we assume that all four classes lie in the same branch (e.g., trunk)

and in the same module. The results of processing commit #10 are indicated in rows 151-155. Row

151 indicates that, in the code snapshot corresponding to commit 10, A.java calls methods of B.java

five times, and that the former has a method that returns an instance of latter type. As A.java and

B.java are included in the change-set of commit 10, we mark that they co-changed. In the second

row, we notice that even though there were no direct dependencies from C.java to A.java, there was

an indirect dependency of length 3, i.e., it took 3 direct dependencies (hops) to reach A from C. The

exact path is not registered. The third row shows an example where there is no dependency from

44 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.1

Table 5.1: Excerpt of a hypothetical dependencies dataset

Raw O:,mnu: h h #Aca,sa#Method # Pararn #Ra #Rtrum #fThro,, ~ #Trtm. #ffype #Mdh:xi c...,gth Co.Chang,,
(clmtod(~ Dq,s. Call Dq,s. Dq,s. Dq,s. Dq,s. Dq,s. Inh. Dq,s. Tnh.Dep, fmpat fmpat lndm:t
out file) file) Dq,s. Dep,. Dq,.

150 00 - .. ·-
151 10 B.ja,,a A.jm.e. 0 5 0 0 1 0 0 0 0 0 1 YES
152 10 C.ja,,a A.ja,,a 0 0 0 0 0 0 0 0 0 0 3 NO
153 10 O.ja,a A.jar.a 0 0 0 0 0 0 0 0 0 0 0 NO
lS4 10 CJ- Bja,a 0 0 0 0 0 0 1 0 0 0 1 NO
155 10 D.ja."' s.;.r.. 0 0 0 0 0 0 0 0 0 0 0 NO
.156 11

Table 5.2: Relationship Status

Does Ji depend on h?

File pair U1, h)
Yes No

(there is at least one (there are no deps. from
dep. from Ji to h Ji to h)

Yes

Does Ji (h changes and Ji CD CD

co-change with
changes as well)

No
h? (h changes and Ii does CD CD

not change)

/1 to f2, even in the indirect case. The fourth row indicates that a type from C.java extends a type

from B.java, but that the two files did not co-change in commit 10. Finally, the last row is another

example where ii does not depend on hand the two files do not co-change. This is by far the most

common scenario.

Row 150 indicates the last (!1, h) pair evaluated as part of the analysis of commit 9. Analogously,

row 156 indicates the first pair evaluation as part of the analysis of commit 11. This is meant to

exemplify that this table is constructed incrementally and that it registers the results of every pair

evaluation of every commit in the scope of analysis. Finally, we highlight that the same pair (!1 , h)

might appear in several rows of this table, as the same file h might be changed in several commits

and f1 might exist in the code snapshot corresponding to all these commits.

Address Research Questions

Addressing RQl. In this research question, we aim to discover whether dependent files are more

likely to co-change than independent ones. In statistical terms, we want to discover whether there is

an association between a variable denoting the presence (or absence) of structural dependencies and

a variable representing the occurrence (or not) of co-changes. To this end, we derived n contingency

tables summarizing the evaluation results of the n distinct (!1 , h) pairs included in Table 5.1. A

contingency table is a data structure that shows the distribution of one variable in rows and another

in columns. The contingency table we elaborated for a given (!1, h) pair takes the form depicted in

Table 5.6. The four cells register how many times each of the four possible combinations occurred:

co-change and (at least one) dependency (CD), co-change and no dependency (CD) no co-change

and at least one dependency (CD) , and no co-change and no-dependency (CD) .

To answer the research question, we created a new single contingency table C that covered the

whole evolution of the system by aggregating the data from all the n contingency tables. Each cell

C[i , j], with i,j in {1, 2}, was defined as follows: C[i,j] = :E;=l C11[i,j], where C11 is the contingency

5.1 STUDY DESIGN 45

table for a pair p = (f 1, J2) and n is the total number of contingency tables. In other words, each cell

of C is the sum of the corresponding cells from all n contingency tables we created. Once we built

C, we ran Pearson's Chi-Squared test of independence with a= 0.05. This test assesses whether

unpaired observations on two variables, expressed in a contingency table, are independent of each

other. In our case, the two variables were presence of structural dependencies and occurrence of

co-change.

Addressing RQ2 and RQ3. In this research question, we aim to discover the kinds of struc

tural dependencies that best help to explain the occurrence of co-changes. To this end, we built a

classification model. In the domain of statistical learning, supervised learning involves building a

statistical model for predicting an output based on one or more inputs (James et al., 2013). Classi

fication is an instance of supervised statistical learning, in which the goal is to predict a qualitative

response for a given observation. A classification model tackles a certain classification problem. In

our study, we built a classification model to predict whether files will co-change based on structural

dependencies information. Ultimately, we investigate this model to understand which predictors

(kinds of structural dependencies) best the occurrence of co-changes. We build the input to our clas

sification model out of the dependencies dataset (Table 5.1) as follows: each dependency column was

taken as a feature/ explanatory variable (e.g., the number of call dependencies) and the occurrence

(or absence) of co-changes was taken as the class under observation.

We prepared this input dataset using a state-of-the-art approach (McIntosh et al., 2015; Tantithamthavorn et a

2015), which includes (i) removing highly correlated features and (ii) removing redundant variables.

The goal of the first step is to reduce multicollinearity among the features. \Ve chose to use Spear-

man's rank correlation test (p) instead of other types of correlation (e.g., Pearson's) because it is

resilient to data that is not normally distributed. We employed a variable clustering analysis known

as varclus, which produces a hierarchical overview of the correlation among all explanatory variables.

As in the work of McIntosh and colleagues McIntosh et al. (2015), for subhierarchies of explanatory

variables with correlation IPI > 0. 7, we selected only one variable from the subhierarchy for inclusion

in the model. We used the varclus implementation provided by the Hmisc R package (Harrell Jr.,

2016b). This package was written by Frank Harrell Jr., an expert in regression mode~ing techniques

(Harrell Jr., 2015).
Even though correlation analysis reduces multicollinearity, it may not detect all of the redundant

variables, i.e., variables that do not have a unique signal from the other explanatory variables.

Redundant variables interfere with each other in an explanatory model, "distorting the modeled

relationship between the explanatory and dependent variables" (McIntosh et al., 2015). Hence, we

removed redundant variables from our dataset. The approach we used consisted of fitting preliminary

models that explain each feature using the other available features. We then used the R2 value of

the preliminary models to measure and decide how well each feature was explained by the others.

As in literature (McIntosh et al., 2015; Tantithamthavorn et al., 2015), we used the implementation

provided by the redun function from the Hmisc R package (Harrell Jr., 2016a) . This function

builds preliminary models for each feature in each bootstrap iteration. The feature that is most

well-explained by the others is iteratively dropped until either: (1) no preliminary model achieves an

R2 above a cutoff threshold, or (2) removing a metric would make a previously dropped metric no

longer explainable, i.e., its preliminary model will no longer achieve an R2 exceeding the threshold

(McIntosh et al., 2015; Tantithamthavorn et al., 2015). For this study, we used the default threshold

46 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.2

of 0.9.

After the dataset was prepared, we built the classification model using Random Forests (Breiman,

2001). A Random Forest is an accurate classification technique that has been used in several literature

studies (Fukushima et al., 2014; Gousios et al., 2014; Lessmann et al., 2008; Tantithamthavorn et al.,

2015). As described by James et al. (2013), the technique involves building a collection of decision

trees, where each tree gets a 11 vote" in classifying. Random forests have two main components of

randomness. For each tree, the algorithm selects a random subsample of the dataset to build it

(a.k.a., bootstrapped training samples). In addition, at each split during decision tree building, the

algorithm chooses a fresh random sample of predictors (features) and uses only one from this sample.

This ensures a low correlation degree between the predictions made by the trees. A final decision is

made by aggregating the votes from all trees and comparing the fraction of votes in each class to a

certain threshold. We followed the common practice, which is to take the wining class as the one

with the majority of the votes. We used the implementation of Random Forests provided by the

randomForest R package (Breiman and Cutler, 2015). After the classification model was built,

we answered RQ2 by evaluating the classifier's performance using Area Under the Curve (AUC)

and the out-of-bag error (OOB).

In order to answer RQ3, we analyzed variables' importance in the Random Forests model.

Analogously to Tantithamthavorn et al. (2015), we relied on the technique introduced by Breiman

(2001), which is implemented in the randomForest R package (Breiman and Cutler, 2015) via

the importance function. As explained in the package's manual, "for each tree, the prediction

error on the out-of-bag portion of the data is recorded (error rate) . Then the same is done after

permuting each predictor variable. The difference between the two are then averaged over all trees,

and normalized by the standard deviation of the differences. 11 The intuition is that, if the variable

is important, disturbing it will cause a great impact in the classifier's accuracy.

5.1.4 Supporting Tools

The supporting tools we used are exactly the same as those employed in the warm-up study

(Section 4.1.6). However, we extended the Structural Dependencies Analyzer, so that it is now

more abstract and acts like a framework that can be used for several studies relying on a historical

analysis of structural dependencies. In addition, for this study, we used additional packages in

R, namely: varclus (variable correlation), redun (variable redundancy), and randomForest

(implementation of Random Forests).

5.2 Study Results

After applying the procedures described in Section 5.1.2, we obtained a random sample of

45 projects from the Apache Software Foundation. Table 5.3 lists the projects and some of their

characteristics, including: the number and date of first and last commits, project age in years, number

of commits, and number of developers who committed at least once (commiters). Subject systems

differ substantially in terms of the domains they tackle. Data from Table 5.3 also show that they

differ in terms of age (1.5 to 9.4 years), number of commits (292 to 18,776), and number of commiters

(1 to 37). Therefore, the random selection of projects led to a heterogeneous sample that resembles

the inherent heterogeneity of the whole population. Data from OpenHub also supports this claim

5.2 STUDY RESULTS 47

(BlackDuck, 2016b).

In our study, we discard commits with 100 files or more, as then often point to crosscutting

operations (repository merges, etc.) and do not reflect true change propagations. Table 5.4 presents

the number of commits we obtained after applying this filter.

Figure 5.2 shows that the number of compilation units increased over time. This was expected, as

systems tend to grow over time (Lehman et al., 1997). Interestingly, the average number of suppliers

also increased over time, as shown in Figure 5.3.

5250•

,ooo-

,ooo-

mo•

.....

,,.._
,
IIIOO•

750 ·

,...

I

I

Figure 5.2: Evolution of the number of compilation units

In Table 5.5, we show the number of branches in each system and compare the number of trunk

branches and non-trunk branches. As we can easily notice, some projects have a very high number

of branches (118 for Manifold CF). We also notice that some project move the location of their trunk

folder frequently. This all reinforces the need to perform an analysis that covers all branches, since

analyzing only a single trunk branch could lead to misleading results.

5.2.1 RQl: Are Structurally Dependent Files More Likely To Co-Change Than

Independent Ones?

As detailed in Section 5.1.3, we mined the version control system of each subject system and,

for each commit, determined whether pairs of files (Ji, h) co-changed and whether at least one

structural dependency existed from Ji to /2. We also recall that Ji is a file from the checked out

code and h is a file from the commit's change-set. Grounded on Software Engineering literature

(Fowler, 2001; Larman, 2004; Martin and Martin, 2006), our hypothesis is that a file A should co

change more frequently with B when it depends on it (as compared to when A does not depend on

B).
We derived a single contingency table C for the whole system from all k contingency tables.

Afterwards, we ran the chi-squared (X2) independence test to discover whether the "presence of

48 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.2

Table 5.3: Description of Subject Systems

Projai SVNURL First Date lag; Datecfl.est ~ Ca:mnits ~
Onnnit of Fnst O:rnmit O:rnmit ueus)

Chnmit

D.di troa}/etch 71273J 2:1/C!l/'XIB 1004167 2J/00/2J14 5.9 714 8
0:mmw, Mockh (rodl/anurons/i:rc:.JH/mxlli- 1:Irni Z7/01/m5 1534259 21/10/2)13 8.7 :m 15
ECS (in the Atti:) !roctVjalMa!~ 16':m3 00/05/:ms 1(00542 ffi/11/2J10 5.5 m 14

SSHD (rod-VmmjsM nI!Jjl 04/12/'XIB 1434658 17/01/2)13 4.1 32) 4
Scoot (roctJ/judli/snit 570Ci0 00/11/:roi 141:lm 2>/ll/2J12 8.0 4I57 8
Oltu - Pamit [r<xtj/oltu 940023 31/05/2)10 1005761 2>/00/2J14 4.1 ro; 7
Exrahoor (in the Atti:) lroctVexi:alibur 21165 13/00/2)04 1053268 28/12/aJlO 6.5 1284 19
Canmcm DbUtils ~ /crnlIDJllS/ i:rc:.JH/clootils 141653 Z7/01/m5 lfro218 OO/ffi/2Jl4 93 640 14

~ (roctJ/cfuaiudllly 1179158 05/10/:rlll 1004957 ~/OO/:rl14 27 819 8
CanmaB Procy (rod-Va:mnxn;;/ i:rc:.JH/procy 2342.82 21/00/m5 1585561 ITT /04/:rl14 8.6 6t'3 7

Axi:>m (roctJ/~/axnn lml:rl8 04/11/:rll0 1007207 01/07 /:rl14 3. 7 514 1

lfue:nind (in the Attic) (rcxtl/hMmm 18ffi58 CJl/OO/m5 1(00543 ffi/11/:rll0 5.4 932 8

Wmk (rodl/wink 779148 Z7/05/'M1J 1005853 2>/00/:rl14 5.1 1319 11

CanmcmCll ~ /CXIllIDJllS/ i:rc:.JH/di 121765 Z7/01/2Xl5 1570m 21/IJ2/:rl14 9.1 1001 2)

Vy.;pa- (rodl/mina/vyspa- 53710'5 11/05/:rlCJl 1423331 18/12/:rl12 5.6 ~ 8

ACE (roctJ/are nm5 00/05/'MYJ 1~ 2:l/ffi/2J14 5.1 'X'fl2 8

Wxleri {roctV~/v.udm lfm16 11/04/m5 1561765 27 /01/3)14 8.8 1448 12

Voocity'Iools [r<xtj/\tb:iy/ t.oci; 71525 15/11/2)04 151m!l 22/Di/:rl14 9.4 1500 11

Rama [rocil/bama 6.:Ml.8 23/05/'XIB 1007244 112/CJl /:rl14 6.1 1629 14

'Il::mEE !roctVt.cmre/1:ame 1434793 17/01/:rll3 1007123 01/07 /:rll 4 1.5 1009 7

O:muxmIO (rod-Vcx:mrra:s/ i:rc:.JH/D 14Wfil Z7/0l/:rl05 l<m4ffi 18/00/2J14 9.4 178.3 ~

Omrocm Omr-res [r<xtj/cxmm:im/i:rc:.JH/<XXIJIIffil 144651 Z7/01/:rl05 1004313 21/00/2J14 9.4 1003 14

Canmcm Na [r<xtj/cx.mm:m/~ /n:t 1:mi'O Z7 /01/:rl05 1001100 07/00/:rl14 9.4 1901 15

cTAKE, luxtJ/ctale, 1385218 16/00/:rl12 l!IB}A.3 27/00/:rl14 1.8 2l93 21

HttpCbmpcnnls C'.cre (rod:l/httpcanpjhttp:ne 392762 00/04/:.mi l!illl75 2:I/OO/:rl14 8.2 2155 8

Cle:nsiy (rod-Vcmnistzy 77f.'J1J7 3J/Oi/'MYJ 1006578 2:1/00/'XJ14 52 3285 15

Toqre (rod-Vdb/taqw 2275Z7 04/00/:rl05 1586449 10/Di/2J14 8. 7 4.486 21

Pig [r<xtj/pig 10039W 0'2/10/:rll.0 100689'2 :JJ/OO/:rl14 3.7 2710 21

PDFBax: [r<xtj/pdfooc tm3(J3 10/02/:rJOO 1007237 01/07 /2J14 6.4 2>00 16

l36me (in the Atti:) (roc.tVbrebive 'XSZ}. 15/CJl /2J04 W8328 28/ffi/:rllO 5.7 3006 15

Stanbd (roctJ/~ lill52>1 15/11/:rll0 1005683 23/00/:rl14 3.6 4584 al
O:nunca:,s O:nligurolitn ~CCll1lIDCCS/~ /an6gumtian 141754 27/01/xm lm5500 29/l)6/all4 9.4 2817 14

Am [r<xtj/am 817817 ZJ,/00/'Xm 100700l 01/07 /2Jl4 4.8 5531 32

OODT (roctJ/oodt 002889 25/01/2)10 1007'211 01/ 07 /2Jl4 4.4 4284 19

Mamut (roctJ/malDut 61:rlOl 15/01/:rlOO 1005800 23/00/ :rl14 6.4 3758 24.

ManiiiiCF ~ /maniillf 89:094 11/01/:rllO 1007170 01/07 /2J14 4.5 50'26 8

~ (roctJ/sbindig 001882 00/12/:rlCJl 1005175 24./00/:rl14 6.6 5344 34

Umtiauum [r<xtj/antirnrum 100813 10/04/:rl05 lro.5752 23/00/2Jl4 92 6IDl 21

Hne froctVhire 1005672 07/10/3)10 1607'Dl 01/07/.1)14 3.7 :mi .15

8ynapE [r<xtj/~ 234477 22/00/:rl05 156148:l 23/ 01/ :rl14 8.4 4ffi9 2:1

JAMES (roctJ/jams/~ 107010 3J/ll/aJ04 159'2312 Di/ CX5/2Jl4 9.4 7582 32

Lmya (in the Atti:) (roctLlrny.i, 37790 ffi/OO/aJ04 1549014 00/12/:rl13 93 13440 37

UIMA (roctJ/uima. 4fm25 30/10/:.mi 1007171 01/ 07 /:rl14 7.7 12845 18

Xfro:SirJava. (roctJ/xml:S/java 3lfffi'l 12/10/:rl05 1594800 15/ffi/ :rl14 8.6 7fI1l 2:1

Qpd (roctJ/cui:i 443185 13/09/:.mi 1007176 01/07 / :rl14 7.8 18776 34

5.2 STUDY RESULTS 49

Table 5.4: Subject systems - Commit numbers

Projej; Onnnits Oxnmits with Java Chmnits with leB than 100
Fili; JavaFlli;

:&.ch 714 144 (al.2%) 140 ('J7.2%)
O:rnmcm Mcrl:b- :m 157 (47.1%) 156 (99.4%)
KS (in the Atti:) 212 177 (60.6%) 174 (98.3%)
ffilID :m 211 (6.5.Wo) 'XJl (98.1%)
Scnit 4S7 214 (43.Wo) 213 (99.5%)
Oltu-Parmt ID> 2A6 (35.4%) 244 (99.2%)
ExralJoor (in the Atti:) 1234 271 (211%) al6 (98.2%)
C.anmcns DbUtils 6iO 2)3 (45.8%) 2)1 (99.3%)
Dira::tMen:ny 819 322 (:I!.3%) 321 (99.7%)
Chnmcm Procy 643 :Il5 (614%) :m (99.5%)
Amm 514 :m (77.2%) :Il4 (99.2%)
~ (in the Attic) 932 564(59.4%) 541 ('J7.7%)
Wmk 1319 562 (42.6%) sro ('J7.Wo)
Canmc:mCLI 1001 ffi4 (ffi.3%) 00) (99.3%)

~ !m 771 (80.1%) 7ol (99.5%)
ACE 'XJl2 792 (38.2%) 7lii (99.2%)
\.\bcleri 1448 ffi6 (57.7%) &31 (99.4%)
Vwaty 'Iools 1500 898 (5.5.8%) 888 (100.Wo)
Rama 162'.l lCXll (61.9%) l(X)3 (99.4%)

Tu:nEE 1009 1179 (70.6%) 1168 (99.1%)
ChnmcmIO 1783 1187 (ffi.6%) 1183 (99.7%)

C.anmcns 0:mJreB 1003 1192 (74.4%) 1191 (00.Wo)
C.anmcns Net um 1215 (639%) JZll (98.8%)

cTAKES m3 1316 (44.0%) 1lX) (98.8%)
HttpCompcD'm O::re 215.5 1549 (71.9%) 1538 (00.3%)
C1mimy 3285 lm:l (fil5%) 1748 (99.4%)
'Il:rqiE 4486 182} (40.8%) 1822 (00.6%)
Pig 2710 1885 (00.6%) 1876 (00.5%)
PDFBa>c am 1888 (72.6%) 1879 (00.5%)
Bedme (in the Atti::) 3500 1932 (5.5.1%) 1912 (99.Wo)

Stanbd 4584 :m4 (45.o%) 2)48 (00.2%)
O:nnncm Carliguralm 2817 2100 (74.8%) 2101 (00.7%)
Arifs 5531 2157 (~.o%) 2143 (00.4%)

OODT 4284 2164. (fJJ.5%) 2148 (00.3%)

Mamut 3758 mo (00.4%) ~ (00.1%)
Manifcli(l<' 5Cm Z365 (47.1%) Z¼5 (00.2%)

~ 5-34.-4 2479 (46.4%) 2ffiO (00.2%)

Cmtinuum 0003 2976 (45.o%) 2)17 (00.Wo)

lfue :ml ZE7 (75.3%) 2952 (00.5%)
Syrl8JHl 4689 3)11 (64.2%) :JX)l (00.7%)

JAMES 7582 4463 (58.9%) 4421 (00.1%}

Lmya. (in the Atti:) 13i40 46.13 (34.5%) 400S (00.5%)

UIMA 12845 MOO (42.8%) 5443 (00.Wo}
Xa-as i:r Jaw. 7ffJl 6110 (79.4%) 6100 (00.8%)

Qixi 18776 WJT(:n.3%) 6152 (oo.3%)

50 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.2

Table 5.5: Number of branches per project

Proja::f, #BranciE, #Thmk Bran:hffi
~ d Ommits Pmmtage d Canmits

in 'Ilunk Branche; #()the: Bran:hffi in Oth:r Brandx.s

ACE 4 1 00.4% 3 3.6'%
Arie; 16 1 00.2% 15 9.8%
Axiom 14 l 62.4% 13 37.6%
8ehiw 10 2 98.5% 8 1.5%
Cremistzy 14 7 97.2% 7 2.8%
CcmmmsCIJ 8 1 50.8% 7 49.2%
Ch:nmmsilinJmE 5 1 00.5% 4 9.5%
Ccmmms Omliguralm 5 1 61.2% 4 38.8%
Ccmmms DbUtw 2 1 74.Wo 1 ~Wo
CcmmmsIO 3 1 99.Wo 2 0.1%
0:mmcns Mcrlh 1 1 100.Wo 0 o.Wo
0:mmcnsN<:t 7 1 78.3% 6 21.7%
Ccmmms Prucy 3 1 74.Wo 2 ~Wo
Cmtinuum 78 1 65.Wo 'Z7 35.Wo
c'ThkEs 17 l 87.6% 16 12.4%
DiIErl Me::rny 2 2 LOO.Wo 0 0.Wo
ECS 1 1 100.Wo 0 O.Wo
Elm 12 1 67.1% 11 32Wo
Excahbur 3 1 !¾6% 2 5.4%

Hama 8 l 9.52% 7 4.8%
Hhe 14 1 00.3% 13 33.7%

HMmincl. 6 2 73.Wo 4 Zl.Wo
HttpCornpcnm, Ccre 6 1 00.4% 5 3.6'%
JlllllB :!) 2 71.1% 18 28.Wo
l.mya 17 2 8'1.6'% 15 15.4%

Mamut 2 1 100.£1l/o 1 O.Wo

ManiWCF 118 5 49.5% 113 50.5%

OltuPmmt 3 1 99.8% 2 0.2%

oour 51 19 75.5% 32 24.5%
PDFBa,c 7 3 IDB% 4 19.2%

Pig 8 1 55.5% 7 44.5%

Qpn 64. 3 48.UYo 61 52C1Yo

Scoo.t 5 1 m.2% 4 29.8%

Smlig 7 2 00.8% 5 3.2%
ffilID 1 1 100.Wo 0 O.Wo

Stanbd 18 1 ffi.7% 17 10.3%
$ynaple 13 1 911% 12 5.Wo

TunEE 5 1 99.3% 4 0.7%

To-qre 12 7 !:6.8% 5 4.2%

UJMA ?A 12 95.5% 12 4.5%

Velocicy Took 5 1 47.7% 4 523%

\Tj,spa- 8 1 ro.Wo 7 36.1%

Wmk 10 3 97.3% 7 2.7%

Wxhi 12 1 41.8% 11 58.2%

5.2 STUDY RESULTS 51

•·

•-

•· l
,.

O·

Figure 5.3: Evolution of the average number of suppliers per compilation unit

dependencies" and the "occurrence of co-changes" are associated. To support interpreting the results,

we also calculated. two metrics, which are defined as follows:

CoChangeRatioWithDep(f1, h) = 0;.f>cD = R1 the number of commits in which Ji depended

on fz and Ji co-changed with /2 over the number of commits in which h changed and Ji
depended on h.

CoChangeRatioWithoutDep(f1, h) =
0
;Jc.v = R2 the number of commits in which Ji did not

depend on hand fi co-changed with hover the number of commits in which h changed and

Ji did not depend on h-

The results we obtained are depicted in Table V. The Chi-Squared test revealed an association

between the two variables in almost all projects. Furthermore, R1 was almost always higher than

R2 . In particular, the median of the former was 31.7% and the median of the latter was 9.7%. To

determine if this difference between the medians was statistically significant, we performed a paired

two-sample Wilcoxon test (a.k.a., Mann-Whitney test) with the alternative hypothesis that R1 is

greater than R2 with alpha = 0.05. We could reject the null hypothesis, as the obtained p-value

was 9.76 x 10-4 . Therefore, the co-change ratio is higher when there is dependency (as compared

to when there is no dependency).

When a class A depends on another class B and B changes, the likelihood that A will change

together with Bis 32% in avemge, being around 20% higher in avemge than the likelihood found

in the case where A does not depend on B. Hence, the "low coupling" principle holds.

52 DEPENDENCIES AND SOFTWARE CHANCES: A LARGE-SCALE EMPIRICAL STUDY 5.2

Table 5.6: Evaluation of Contingency Table

Prop±
Cootingeny Tobie

R1 Ri
x2 t.e3t

CD CD CD CD (p-wlue)

Harna 5'D4 374S3 8822 ~ 37.fJP/o 924% 0
Are :m ~ 317'2 13ml 53.00% 22.Wfo 0
Ariffi 7008 64.Ui 7003 319746 48.21¼ 16.7tY/o 0
Hi\.e 2ffi5 m35 100464 16177:m 11.:mo 1.44% 0
Hhmlind 5132 56147 7514 661100 40.Wfo 7.83% 0
Http(hnprnmts Che 4007 fm32 14670 9.'ml 25.3Yfo 5.W/4 0
Axbrn :m 25814 al373 814778 14.00% 3.07% 0
JamESSeral- 15782 194007 24100 Z"l822M 39.21¼ 6.5.5% 0
Brehn,e 1~ lro.548 ~ 1800702 31% 8.~ 0
L=nya 12:817 135716 45186 3243114 22.10¾ 4.02% 0
ChmIBtzy 14rol 13i054 :m2A 1102851 2).l{Wo 11.10¾ 0

Mahout 10054 rr.rm 25473 ~ 28.00% 3.44% 0
Mmilid.CF ~ 4'7'.m 25453 1239'22) 21.4CWo 3.68% 0

Oltu 541 3797 1074 J.2.3El) :nfJP/o 23.fJP/o < 7.llE-19
OODT 13856 17£52 ~ 647&32 52.3Yfo 21.10¾ 0
PDFlh 7ID} 65356 62781 a:i1070i 10.ro¼ 2.5.5% 0
Pig 5500 5.5738 47355 4870011 10.Wfo 1.13% 0
Qpid 45117 446100 181597 1~ 19.00% 3.18% 0
Sooui 713 9700 676 ~ 51.3Yfo W.:JPlo < 1.76E-170
Shindig 8126 79B) 217.l) 1~ ZlZf/o 4.82% 0
SSHD 1392 142'31 2M6 9ITT40 37Zf/o 12.fJP/o 0
Stanhl 14010 145279 l!ill3 535767 46Zf/o 21.:JPlo 0

S:ynai:re 7.£4 154fffl 10025 3162107 41.00% 4.67% 0

'Il:mEE 2100 30073 16354 2377924 11.00% 1.40% 0
'IlrqlE 5140 65751 1012) 33trn3 33.7l11o 16.3J% 0

UIMA 1~ 3)2fil) 00177 594.4918 16.50% 4.85% 0

Voocity gX) 17400 2)13 121378 24% 12.Wfo < 1.23E-95

Vysper 32ro 22835 10181 5352)3 24Zflo 4.00% 0

O:mrrx>IBCIJ W13 17221 197'2 315a:i ro.50% 35.31% <L~E-81

Wmk 1544 15fill 4238 387661 a:i.7tY/o 3.W/4 0
Woden 400) 46463 ffil:) 432847 :JT. 7ff'/o 9.00% 0

Xercrs Zlll4 xm'7'2 8327'2 10079910 21.7l11o 2.45% 0

O:mmom O:mpl'6$ 1588 1~ 3Z21 158888 33% 11.10¾ 0

O:mrmm Ccnfigurati:n Z345 16445 10500 41fil38 18Zf/o 3.ro¼ 0

O:mrrxm DbUtm ~ 4551 ']jg 9106 57SXP/o 33.3J% < 1.BlE-39

O:mrrx>IBIO IDS 28846 2564 l(m16 ~ W.00% < 3.7JE-24

Cammns Mcxlela- 406 4814 548 5.521 42.Wfo 46.Wfo < 0.0187i'Zm

O:mrromN:t 1m 41681 fill2 300512 21.4Wo 9.45% < 3.WE - 283
O:mrrom Pmcy 1113 21005 gX) ~ 54.7l11o 43.xP/o < l.OIB-24

O:ntirnnnn ~ 1079.51 lffffi lCXM.'m 31.7l11o 9.7tY/o 0

cTAKES 2952 ~ :m4 55.5241 42.ro'/o 13% 0

Dirro:MEflll)' lOOS 7728 ~ 45427 45.10¾ 14.50% 0

ECS 670 42473 9348 161831 6.00% W.oo% < l.23E-258

Etch m 0051 825 25051 48.50% 21.7tY/o <4.52E-1:Ji

Excalibur 1474 13377 'lJ72 79763 34.'itflo 14.40% < l.14E-284

5.2 STUDY RESULTS 53

Table 5. 7: Summa1·y of Classification Dataset

Project Rows Rows with dependencies No Co-change Co-change

bval 190,155 24,073 (12.66%) 0.74 0.26
commons 180,402 9,291 (5.15%) 0.75 0.25
derby 2.7E+07 9,352,791 (35.17%) 0.98 0.02
mahout 6,617,325 211,782 (3.20%) 0.86 0.14
scout 47,946 5,793 (12.08%) 0.66 0.34
tentacles 1,628 161 (9.89%) 0.40 0.60
tomcat 4,950,500 551,840 (11.15%) 0.98 0.02
tomEE 2,378,300 286,386 (42.89%) 0.98 0.02
velocity 585,567 251,157 (42.89%) 0.91 0.09
whirr 48,575 12,836 (26.43%) 0.83 0.17

Table 5.8: Results of Co-Change Prediction using Structural Dependencies

Project OOB Error
No Co-Change Co-Change

AUC
Class Error Class Error

bval 26.10% 0.46% 97.50% 0.54
commons 23.29% 1.61% 89.88% 0.65
derby 1.52% 0.01% 98.95% 0.53
mahout 13.98% 0.30% 96.85% 0.56
scout 29.92% 8.65% 71.74% 0.64
tentacles 22.98% 36.92% 13.54% 0.76
tomcat 2.41% 0.01% 99.26% 0.56
tomEE 2.33% 0.01% 99.83% 0.54
velocity 9.14% 0.06% 98.75% 0.52
whirr 16.79% 0.13% 97.81% 0.56

5.2.2 RQ2: How Accurately Can Co-Changes Be Predicted Using Structural

Dependencies

To answer this research question, we relied on the dependencies dataset (Table 5.1) to build

a classification model: the number of dependencies of each kind is taken as a feature, and the

occurrence (or absence) of co-changes is taken as the class under observation. Both in RQ2 and in

RQ3, we used a reduced sample of 10 projects.

While preparing the dataset, we did not find correlated variables nor redundant variables for

any of the systems (Section 5.1.3). This indicates that all variables are sending a distinct signal to

the classification model. Table 5. 7 shows some characteristics of the dependencies dataset.

The number of rows that had at least one dependency in the dataset varies substantially from

project to project, going from 3.20% (mahout) to 42.89% (velocity). In all projects, except for

tentacles (the smallest project), the percentage of rows indicating no co-change was substantially

higher than the percentage of rows indicating co-change.

Once we filtered out the rows with no dependencies (i.e., rows where all features were not present),

we ran the Random Forests algorithm and calculated the AUC of each classifier. The results are

depicted in Table 5.8.

Results indicate that, most of the time, the classifier goes for the most frequent class and guesses

no co-change. By doing so, it achieves low error rates for this class most of the times. However, this

54 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.3

Table 5.9: Variable Importance: Mean Decrease in Accuracy

bva) commons derby mahout scout tentacles tomcat tomee velocity whirr
value rank value rank value rank value rank value rank value rank value rank value rank value rank value rank

#T:ypelmport (0~ 2 0.0133 4 wr:i'/'&05 .,....,3. 0:~l "'2, 0.0084 4 0.0162 5 0.ll014 :! 1~- ! O:OOR~ Ii :0.0243 - 1
#Metbodlmpoct 0.0001 9 0.0001 11 0.OOE+OO 5 .. ii li D 12 0 7 D 9 OO~E-+00 - 6 - ----0- g· o:ooi l; '
#C!a,;slnheritance 0.0019 6 0.0029 9 -8.96E-06 8 0.0005 9 0.0025 7 0 7 0.0002 6 O.OOE+OO 6 0 9 0.0018 7
#Interfaceimpl [0~ ,3 0.009_5 5 - 1.46E-04 f . 0.0027 4 0.0021 9 0 7 0.0003 4 O.OOE+OO 6 0.0007 4 0.0001 10
#Reference 0.0016 7 ,0.0144 3 13ZIM 2· .ooza $ 0.0114 3 . 0.0233 4 0.0003 4 2.00E-04 4 0.0009 3 0.0078 4
#Retum'I'ype 0.0013 8 Ci:0055 - 6 :Uo&os - 9 0.0007 8 0:0035 - 6-0.0023 6 0 9 O.OOE+QO 6 O.OOOi - 8 0.0015 8
#Parameter 0.0022 5 0.0029 9 -2.lOE-05 10 0.0009 7 0.0074 5 °0:lia6'1 2" 0.0002 6 1.00E-04 5 0.0002 6 0.0029 5
#Throws O 11 0.0043 8 -4.57E-06 7 0.0001 IO 0.0023 8 ' -- 0 7 0 9 O.OOE+OO 6 0 9 0 11
#Access 0.0001 9 0.0046 7 -3.47E-05 11 0.001 6 0.0017 10 0 7 0.0002 6 O.OOE+OO 6 0.0002 6 0.001 9
#MethodCall 0.0034 4 Jfl'.iMII ~ , 3.00E-05 4 0.0021 5 'O:li286~ ·o.lli:iijg 1 0.0000 3 .-lLOCIS04 --1' 0.0006 5 o;i)()S7- 3i
#Interfacelnheritance O 11 . • 0 -ti O.OOE-tOO 5 0 11 ·0.0001 11 ·-5 7 .. 0 9 O.OOE+ocf- 6 0 9 ' - _, 0 i i'
Length Indirect Dep. f:!!:(L~"':17?~1--1 -7.47E-ll5 12 ,fil)JM~ 1 Cl:~~~~ S 0.Oo28 ~ _3,~-~ Jitxf_J,_!f:_1, ~~}f/, t

behavior naturally yields bad results for the predictions of the rare class (co-change). The AUC

measure captures this deficiency, as it ranges from 0.52 to 0. 76 (the closer to one, the more accurate

the model is).

This result supports the idea that the relationship between dependencies and co-changes might

not be very straightforward as traditional literature suggests. In addition, the hypothesis that changes

propagate through indirect dependencies seems plausible, but calls for further exploration. From a

practical perspective, the variable importance assessment shows that type import dependencies is a

good candidate to be used in practice, as they are easy to be determined (as compared to indirect

dependencies, for example).

The classifiers we built based on dependency information are often inaccurate, with A UC values

ranging from 0.52 to 0. 76. This implies dependencies are bad predictors for co-changes.

5.2.3 RQ3: What Kinds of Structural Dependencies Best Explain the Occur

rence of Co-Changes?

Table 5.9 presents the importance of all variables for all projects. The higher the value, the

higher the importance. For each system, we ranked the variables according to their importance. We

used shading to highlight the top 3 variables for each project. Even though the winning variables

changed from project to project, some of them appeared more often in the top 3 groups, namely:

length of indirect dependency (9 out of 10), number of type imports (7 out of 10), number of method

call dependencies (6 out of 10), and number of reference dependencies (5 out of 10). The actual

scores of variables (including the most important ones) show that dependencies were indeed bad

predictors for co-change.

The kinds of dependency that best explain co-change are: length of indirect dependency, number

of type imports, number of method calls, and number of references.

5. 3 Discussion

Traditional literature in software engineering, early research studies, and practitioners have long

conveyed the idea that structural dependencies are paths through which dependencies propagate.

However, more recent research has shown that, even though dependencies are somewhat connected

to co-changes, it seems that many co-changes are not motivated or linked back to structural depen

dencies. Starting in 2004, several researchers published studies indicating that co-changes could be

much more accurately predicted using historical information (e.g., evolutionary coupling) instead of

structural information (Hassan and Holt, 2004; Ying et al., 2004; Zimmermann et al., 2005). Some

5.4 THREATS TO VALIDITY 55

years later, researchers started developing more sophisticated change propagation prediction models

that relied on several sources of information (e.g., structural dependencies, code ownership, evolu

tionary coupling) and were adaptive (Hassan and Holt, 2006; Malik and Hassan, 2008). More recent

change prediction studies have achieved higher levels of predictive power by using hybrid meth

ods that combine information retrieval (text similarity), dynamic analysis (execution traces), and

evolutionary coupling (Dit et al., 2014; Gethers et al., 2012). We highlight, conversely, that when

developing a new module (or a new software system altogether), no historical information might be

available (if any) and few execution traces might exist, so dependencies would still be a precious

source of information.

5.4 Threats to Validity

In this section, we discuss the threats to the validity of our empirical study.

Construct Validity. This kind of validity refers to whether the operational definition of a variable

actually reflects the true theoretical meaning of a concept. As in several mining studies (Bavota et al.,

2013; D'Ambros et al., 2009; Hassan and Holt, 2004; Zimmermann et al., 2005), we assume that the

commit's change-set represents co-changes. In other words, we take the change-set as our operational

definition of co-changes. This seems adequate in the particular context of change propagation,

since we do not expect developers to perform incomplete changes very often, i.e., address change

propagation in more than one commit. In studies where change-sets would be deemed too fine

grained, authors inferred co-changes from the set of files that. had to be changed in order t.o address

a certain specific issue registered in an Issue Tracking Systems (Mcintosh et al., 2014; Wiese et al.,

2015). In our study, we also applied a filter to ignore commits with crosscutting changes. This

filter might accidentally remove large commits that refactor a large portion of the code or that

implements a new big feature. Finally, it is impossible to guarantee that JDX indeed captures all

existing structural dependencies from a certain codebase, especially given that developers can write

code and use language constructs in unexpected and creative ways. However, we have tested JDX

to be confident that it works as expected.

Internal Validity. This kind of validity reflects the extent to which a certain study warrants a causal

conclusion. Our research design does not at tempt to establish a causal relationship between structural

dependencies and co-changes. Instead, we only investigate whether their occurrence is associated or

independent. In fact, if we were to establish a causal relationship, we would need to guarantee the

absence of plausible alternative explanations for the observed covariation of the variables (nonspuri

ousness) (Shadish et al., 2001). In our context, a number of other variables would possibly lead to

alternative explanations for the effects found. For instance, certain artifacts might co-change because

they are semantically related (a.k.a., conceptual coupling (Poshyvanyk and Marcus, 2006)), and not

because they are structurally connected. More than that, literature studies in change coupling show

that non-structurally-related files might co-change frequently (Zimmermann et al., 2005). Indeed,

our classification models showed that structural dependencies were bad predictors for co-changes,

which corroborates results found in the literature (Hassan and Holt, 2004; Malik and Hassan, 2008).

External Validity. Even though we picked a random sample of projects to analyze, our general

izability power is limited due to the small size of this sample. More precisely, selecting 10 projects

56 DEPENDENCIES AND SOFTWARE CHANGES: A LARGE-SCALE EMPIRICAL STUDY 5.5

from a population of 165 allowed us to generalize the results with a sampling error of 31 % and

with a confidence of 95%. In order to achieve a sampling error of 10% with a confidence level of

95%, it would be necessary to evaluate 61 projects. Although we do not have statistical support

to make claims beyond SVN projects in ASF, we believe other open source projects would yield

similar results due to the heterogeneity of the sample we analyzed in this study. Improving on this

aspect is part of our future work.

Limitations. Our toolset has some limitations: it only works for Java. Removed classes and methods

are not considered in our analyses, test classes are also ignored, and we do not keep track of

class/ method renaming. We also highlight that this study focuses on structural dependencies only.

Hence, JDX does not infer dependencies from reflection code blocks (Oracle, 2016), dependency

injection configuration files (e.g., from Spring, Java EE), or annotations.

5.5 Summary

Since the notorious software crisis acknowledged in the late 60's (Naur and Randell, 1969),

practitioners and researchers have sought better ways to develop software. During this quest, some

fundamental Software Engineering principles have emerged, including "low coupling". At the same

time, developers are frequently challenged to evolve very large codebases, in which several classes

depend on one another in many different ways through many different kinds of dependencies. From

a change propagation perspective, should developers care about all of these dependencies? Are there

specific kinds of dependencies that are more associated with co-changes?

Building on our previous studies (Oliva and Gerosa, 2011, 2015; Oliva et al. , 2011) and in recent

literature (Geipel and Schweitzer, 2012), we set out to empirically investigate the interplay between

structural dependencies and change propagation (co-changes). With the support of a fairly sophis

ticated toolset, we analyzed a random sample of 10 Java open source systems from the Apache

Software Foundation, which were all hosted in SVN. At every commit, we recorded the occurrence of

co-changes and dependencies. We extracted co-changes by analyzing the logs of the version control

system. In turn, we extract dependencies from the code snapshot corresponding to every commit in

the projects' history.

Our results indicated that structurally dependent files are more likely to co-change than indepen

dent ones. Our results also indicated that structural dependencies were bad predictors for co-changes

(AUC ranging from 0.52 to 0.76), thus supporting the claim that many co-changes occur because

of other reasons. The length of indirect dependencies was the best predictor, which was noi used

by recent studies that attempted to predict co-changes using structural information (among other

sources of information) .

Chapter 6

Conclusion

Changeability is an essential property of software systems (Brooks, 1987). In this thesis, we

set out to investigate the link between structural dependencies and software changes. We analyzed

the history of 45 Java projects randomly sampled from the Apache Software Foundation. Our key

findings were:

• When a class A depends on another class B and B changes, the likelihood that A will change

together with B is 32% in average, being around 20% higher in average than the likelihood

found in the case where A does not depend on B. Hence, the "low coupling" principle holds.

• In the majority of cases, our classification models showed that no two kinds of dependencies are

redundant, meaning that there is no silver bullet: all kinds of structural dependencies contribute

to explaining co-changes. This requires a fairly sophisticated dependency extraction tool.

• Despite the preprocessing and powerful classification algorithm, our classifiers were often

inaccurate, implying that structural dependencies are bad predictors for co-changes. In other

orders, it is very likely that most co-changes occur because of factors that are not directly

associated with structural dependencies.

6.1 Future Work

In this section, we list open avenues of research that can leverage the toolset and data produced

in this thesis.

6.1.1 Structural Anti-Patterns

The structural anti-patterns shown in Section 3.1 are natural candidates to be evaluated as a

continuation of this work. They point to specific dependency structures that are claimed to cause

large ripple effects and maintenance problems. A future work could leverage the tools and all

the dependency graphs already built for all the subject systems to investigate whether breakables

are indeed breakables (and to what extent), whether butterflies cause shotgun surgeries (and how

frequently), and whether tangles correlate with change coupling relationships. If the claims are true,

then IDE would better implement mechanisms to detect these anti-patterns and warn developers

about them, especially newcomers.

58 CONCLUSION

During the evolution of a software system, some specific pairs or set of elements keep changing

together. We say that these elements are change coupled. It would be helpful to discover whether

specific dependency structures or anti-patterns (e.g., highly coupled elements) are associated with

change coupling. Such elements would be natural candidates for refactoring.

6.1.2 From Dependencies to Structural Relationships

In this thesis, we strictly investigate structural dependencies. A natural extension of this work

would be consider more general "structural relationships", such as classes that are in the same level

on a inheritance hierarchy, classes that are located in the same module, etc. Investigating these

other structural relationships might shed more light into the relationship between architecture and

software changes.

Bibliography

Callo Arias, 'Irosky B., Pieter Spek, and Paris Avgeriou. A practice-driven systematic review of
dependency analysis solutions. Empirical Software Engineering, 16:544- 586, October 2011. ISSN
1382-3256. doi: http: //dx.doi.org/10.1007 /sl0664-0ll-9158-8. URL http: //dx.doi.org/ 10.1007 /
sl0664-0ll-9158-8. 11

Thomas Ball, Jung-Min Kim Adam, A. Porter Harvey, and P. Siy. If your version control system could
talk ... In ICSE Workshop on Process Modeling and Empirical Studies of Software Engineering,
March 1997. 8

Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshyvanyk, and Andrea
De Lucia. An empirical study on the developers' perception of software coupling. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE '13, pages 692- 701, Piscataway,
NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL http://dl.acm.org/ citation.cfm?id=
2486788.2486879. 55

BlackDuck. Compare Languages - Open Hub. https: //www.openhub.net/languages/compare.
Accessed: 2016-04-01, 2016a. 40

BlackDuck. Black Duck Open Hub Blog - Factoid List. https://www.openhub.net/languages/
compare. Accessed: 2016-04-01, 2016b. 47

Grady Boo ch. Object Solutions: Managing the Object-Oriented Project. Addison-Wesley Professional,
first edition, 1995.

Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, October 2001. ISSN 0885-6125. doi:
10.1023 / A: 1010933404324. URL http://dx.doi.org/ 10.1023 / A: 1010933404324. 46

Leo Breiman and Adele Cutler. Breiman and Cutler's Random Forests for Classification and Regres
sion, 2015. https://cran.r-project.org/ web/ packages/ randomForest/ randomForest.pdf. Accessed:

2016-04-01. 46

Lionel C. Briand, John W. Daly, and Jurgen K. Wiist. A unified framework for coupling measurement
in object-oriented systems. IEEE Trans. Softw. Eng., 25(1):91-121, January 1999. ISSN 0098-5589.
doi: 10.1109/32.748920. URL http://dx.doi.org/10.1109/ 32.748920. 15

Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. How do centralized and
distributed version control systems impact software changes? In Proceedings of the 36th In
ternational Conference on Software Engineering, ICSE 2014, pages 322-333, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/ 2568225.2568322. URL http:
/ / doi.acm.org/10.1145/ 2568225.2568322. 40

Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software engineering. Computer,
20(4):10-19, April 1987. ISSN 0018-9162. doi: 10.1109/ MC.1987.1663532. URL http: //dx.doi.
org/ 10.1109/ MC.1987.1663532. 14, 57

Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476- 493, 1994.

60 BIBLIOGRAPHY

Larry L. Constantine. Segmentation and design strategies for modular programming. In Barnett and
Constantine, editors, Modular Programming: Proceedings of a National Symposium. Information
& Systems Press, Cambridge, Massachusetts, 1968. 1

Marco D'Ambros, Michele Lanza, and Mircea Lungu. Visualizing co-change information with the evo
lution radar. IEEE Trans. Software Eng, 35(5):720-735, 2009. URL http://doi.ieeecomputersociety.
org/ 10.1109/TSE.2009.17. 8, 16, 55

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):
269-271, 1959. ISSN 0029-599X. doi: 10.1007 / BF01386390. URL http: //dx.doi.org/10.1007 /
BF01386390.

Bogdan Dit, Michael Wagner, Shasha Wen, Weilin Wang, Mario Linares-Vasquez, Denys Poshyvanyk,
and Huzefa Kagdi. Impactminer: A tool for change impact analysis. In Companion Proceedings of
the 36th International Conference on Software Engineering, ICSE Companion 2014, pages 540-543,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2768-8. doi: 10.1145/2591062.2591064. URL
http: / /doi.acm.org/10.1145/2591062.2591064. 55

Beat Fluri, Harald C. Gall, and Martin Pinzger. Fine-grained analysis of change couplings. In
Proceedings of the Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
SCAM '05, pages 66-74, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2292-0. doi: 10.1109/SCAM.2005.14. URL http://dx.doi.org/10.1109/ SCAM.2005.14. 13

Brian Foote and Joseph W. Yoder. Pattern Languages of Program Design, volume 4. Addison-Wesley
Professional, 1999. 16

Martin Fowler. Refactoring: Improving the Design of Existing Code. Object Technology Series.
Addison-Wesley, jun 1999. With contributions by Kent Beck, John Brant, Willima Opdyke, and
Don Roberts. 16

Martin Fowler. Reducing coupling. IEEE Software, 18(4):102-104, 2001. URL http: //www.computer.
org:80/ software/so2001/s4102abs.htm. 1, 47

Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and Naoyasu
Ubayashi. An empirical study of just-in-time defect prediction using cross-project models. In
Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, pages 172-
181, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.2597075.
URL http: / / doi.acm.org/10.1145/2597073.2597075. 46

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for detecting logical
couplings. In Proceedings of the 6th International Workshop on Principles of Software Evolution,
pages 13- , Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1903-2. URL
http: / /dl.acm.org/citation.cfrn?id= 942803.94374l. 16

Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, first edition, 1994. 1

M.M. Geipel and F. Schweitzer. The link between dependency and cochange: Empirical evidence.
Software Engineering, IEEE Transactions on, 38(6):1432- 1444, Nov 2012. ISSN 0098-5589. doi:
10.1109/ TSE.2011.91. 1, 13, 20, 35, 36, 56

Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk. Integrated impact analysis
for managing software changes. In Proceedings of the 34th International Conference on Software
Engineering, ICSE '12, pages 430-440, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-
1067-3. URL http:// dl.acm.org/ citation.cfm?id= 2337223.2337274. 55

BIBLIOGRAPHY 61

Tudor Girba, Stephane Ducasse, Adrian Kuhn, Radu Marinescu, and Ratiu Daniel. Using concept
analysis to detect co-change patterns. In Ninth International Workshop on Principles of Software
Evolution: In Conjunction with the 6th ESEC/ FSE Joint Meeting, IWPSE '07, pages 83- 89, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-722-3. doi: 10.1145/ 1294948.1294970. URL
http: //doi.acm.org/10.1145/1294948.1294970. 16

Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of the pull-based
software development model. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 345- 355, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5.
doi: 10.1145/2568225.2568260. URL http://doi.acm.org/10.1145/2568225.2568260. 46

Frank E. Harrell Jr. Regression Modeling Stmtegies: : With Applications to Linear Models, Logistic
and Ordinal Regression, and Survival Analysis. Springer International Publishing, 2nd edition,
2015. ISBN 3319194240. URL http://www.springer.com/it/book/ 9783319194240. 45

Frank E. Harrell Jr. Hmisc Package Manual v3.11-1: Redun function., 2016a. https:/ / cran.r-project.
org/ web/packages/ Hmisc/Hmisc.pdf (page 232). Accessed: 2016-04-01. 45

Frank E. Harrell Jr. Hmisc Package Manual v3.17-1: Varclus function., 2016b. https://cran.r-project.
org/ web/packages/Hmisc/Hmisc.pdf (page 368). Accessed: 2016-04-01. 45

Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software systems. In
Proceedings of the 20th IEEE International Conference on Software Maintenance, ICSM '04,
pages 284- 293, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2213-0. URL
http: //dl.acm.org/citation.cfm?id=l01843l.l021436. 1, 2, 13, 54, 55

Ahmed E. Hassan and Richard C. Holt. Replaying development history to assess the effectiveness
of change propagation tools. Empirical Softw. Engg., 11(3):335- 367, September 2006. ISSN
1382-3256. doi: 10.1007 / s10664-006-9006-4. URL http: //dx.doi.org/ 10.1007 /s10664-006-9006-4.
55

Ivar Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley
Professional, first edition, 1992. 14

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical
Learning with Applications in R. Springer New York, 2013. ISBN 1461471370, 9781461471370.
doi: 10.1007 /978-1-4614-7138-7. URL http: //dx.doi.org/10.1007 /978-1-4614-7138-7. 45, 46

H. Kagdi, M. Gethers, D. Poshyvanyk, and M.L. Collard. Blending conceptual and evolutionary
couplings to support change impact analysis in source code. In Reverse Engineering (WCRE},
2010 11th Working Conference on, pages 119 -128, oct. 2010. doi: 10.1109/WCRE.2010.21. 15

Andrew Koenig. Patterns and antipatterns. Journal of Object-Oriented Programming (JOOP), 8
(1):46- 48, 1995. 13

Alyson La. Language Trends on GitHub. https://github.com/ blog/ 2047-language-trends-on-github.
Accessed: 2016-04-01, 2015. 40

Michele Lanza and Radu Marinescu. Object-oriented Metrics in Pmctice: Using Software Metrics
to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer, first
edition, 2006. xi, 1, 16, 17

Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development. Prentice Hall, third edition, 2004. 1, 47

Manny Lehman, Dewayne Perry, Juan Ramil, Wladyslaw Turski, and Paul Wernick. Metrics and
laws of software evolution- the nineties view. In Proceedings IEEE International Software Metrics
Symposium (METRICS'97}, pages 20-32, Los Alan1itos CA, 1997. IEEE Computer Society Press.
doi: 10.1109/ METRIC.1997.637156. 14, 47

62 BIBLIOGRAPHY

Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. Benchmarking classification
models for software defect prediction: A proposed framework and novel findings. IEEE Trans.
Softw. Eng., 34(4):485-496, July 2008. ISSN 0098-5589. doi: 10.1109/TSE.2008.35. URL http:
/ / dx.doi.org/10.1109/TSE.2008.35. 46

H. Malik and A.E. Hassan. Supporting software evolution using adaptive change propagation
heuristics. In IEEE International Conference on Software Maintenance, 2008. ICSM 2008., pages
177-186, Sept 2008. doi: 10.1109IICSM.2008.4658066. 13, 55

Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, Daniel Ratiu, and Richard Wettel.
iplasma: An integrated platform for quality assessment of object-oriented design. In Proceedings
of the 21st IEEE International Conference on Software Maintenance (ICSM 2005} - Industrial
and Tool volume, pages 77- 80, 2005. ISBN 9-6346-0980-5. 16

Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In Proceedings
of the 20th IEEE International Conference on Software Maintenance, ICSM '04, pages 350- 359,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2213-0. URL http:l l dl.acm.
org/citation.cfrn?id= l018431.1021443. 16

Robert Martin. Design principles and design patterns. Technical report, Object Mentor, 2000. URL
https: / / sites.google.com/ site/unclebobconsultingllc/home/ articles. 15

Robert C. Martin and Micah Martin. Agile Principles, Patterns, and Practices in C#. Prentice
Hall, first edition, 2006. 1, 15, 47

S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan. Mining co-change information to under
stand when build changes are necessary. In Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, pages 241- 250, Sept 2014. doi: 10.1109/ ICSME.2014.46. 55

Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An empirical study of
the impact of modern code review practices on software quality. Empirical Software Engineering,
pages 1- 44, 2015. ISSN 1573-7616. doi: 10.1007 / s10664-015-9381-9. URL http: / /dx.doi.org/ 10.
1007 / s10664-015-9381-9. 45

Hayden Melton and Ewan D. Tempera. An empirical study of cycles among classes in java. Empirical
Software Engineering, 12(4):389-415, 2007. URL http: I I dx.doi.orgll0.1007 I s10664-006-9033-l.

Gail C. Murphy, David Notkin, and Kevin J. Sullivan. So~ware reflexion models: Bridging the gap
between design and implementation. IEEE Trans. Softw. Eng., 27(4):364-380, April 2001. ISSN
0098-5589. doi: 10.1109 /32.917525. URL http://dx.doi.org/10.1109 /32.917525. 17

Peter Naur and Brian Randell, editors. Software Engineering: Report of a conference sponsored by
the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968. NATO Science Committee,
1969. URL http:/ l homepages.cs.ncl.ac.uklbrian.randell/NATOlnato1969.PDF. 1, 36, 56

Gustavo Ansaldi Oliva. JDX GitHub Page. https://github.com/golivax:IJDX. Accessed: 2016-04-01,
2016a.

Gustavo Ansaldi Oliva. XFlow GitHub Page. https://github.com/ golivax/xflow2. Accessed: 2016-
04-01, 2016b.

Gustavo Ansaldi Oliva and Marco Aurelio Gerosa. On the interplay between structural and logical
dependencies in open-source software. In Proceedings of the 2011 25th Brazilian Symposium on
Software Engineering, SBES '11, pages 144-153, Washington, DC, USA, 2011. IEEE Computer
Society. ISBN 978-0-7695-4603-2. doi: http: //dx.doi.org/ 10.1109/ SBES.2011.39. URL http:
I / dx.doi.orgl 10.1109ISBES.2011.39. 21, 56

BIBLIOGRAPHY 63

Gustavo Ansaldi Oliva and Marco Aurelio Gerosa. Experience report: How do structural depen
dencies influence change propagation? an empirical study. In Proceedings of the 26th IEEE
International Symposium on Software Reliability Engineering, ISSRE 2015, pages 250-260. IEEE,
2015. ISBN 978-1-5090-0405-8. doi: http://dx.doi.org/10.1109/ ISSRE.2015.7381818. 39, 56

Gustavo Ansaldi Oliva, Francisco W.S. Santana, Marco A. Gerosa, and Cleidson R.B. de Souza.
Towards a classification of logical dependencies origins: a case study. In Proceedings of the
12th International Workshop on Principles of Software Evolution and the 1th annual ERCIM
Workshop on Software Evolution, IWPSE-EVOL '11, pages 31- 40, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0848-9. doi: http:/ / doi.acm.org/ 10.1145/ 2024445.2024452. URL http:
/ /doi.acm.org/ 10.1145/2024445.2024452. 56

Joshua O'Madadhain. GitHub - jrtom/jung: JUNG: Java Universal Network/Graph Framework.
https://github.com/jrtom/jung. Accessed: 2016-05-01, 2016.

Oracle. Trail: The Reflection API (The Java Tutorials), 2016. https://docs.oracle.com/javase/
tutorial/reflect. Accessed: 2016-04-01. 56

Meilir Page-Jones. Comparing techniques by means of encapsulation and connascence. Commun.
ACM, 35(9):147- 151, September 1992. ISSN 0001-0782. doi: 10.1145/130994.131004. URL
http:// doi.acm.org/ 10.1145/130994.131004. 7, 20

Meilir Page-Jones. Fundamentals of Object-Oriented Design in UML. Addison-Wesley, first edition,
1999. 7

David Lorge Parnas. Software aging. In Proceedings of the 16th international conference on Software
engineering, ICSE '94, pages 279-287, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press. ISBN 0-8186-5855-X. URL http: //dl.acm.org/ citation.cfm?id= 257734.257788. 15

Denys Poshyvanyk and Andrian Marcus. The conceptual coupling metrics for object-oriented systems.
In Proceedings of the 22Nd IEEE International Conference on Software Maintenance, ICSM '06,
pages 469-478, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2354-4. doi:
10.1109/ ICSM.2006.67. URL http://dx.doi.org/10.1109/ICSM.2006.67. 20, 27, 55

Roger Pressman. Software Engineering: A practitioner's approach. McGraw-Hill, seventh edition,
2009. 1

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models to manage
complex software architecture. In Proceedings of the 20th Annual ACM SIG PLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, OOPSLA '05, pages 167- 176,
New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/ 1094811.1094824. URL
http: //doi.acm.org/10.1145/1094811.1094824. 1, 17

Francisco Santana, Gustavo Oliva, Cleidson R. B. de Souza, and Marco Aurelio Gerosa. Xflow: An
extensible tool for empirical analysis of software systems evolution. In Proceedings of the VIII
Experimental Software Engineering Latin American Workshop, ESELAW '11, 2011. 27, 41

William Shadish, Thomas Cook, and Donald Campbell. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Wadsworth Publishing, 2nd edition, 2001. ISBN
0395615569. 55

Igor Steinmacher, Tayana Conte, Christoph Treude, and Marco A. Gerosa. Overcoming open source
project entry barriers with a portal for newcomers. In 38th International Conference on Software
Engineering, 2016, 1CSE2016, pages 1- 12, New York, NY, USA, 2016. ACM. 2

Wayne P. Stevens, Glenford James Myers, and Larry L. Constantine. Structured design. IBM Syst.
J., 13(2):115- 139, June 1974. ISSN 0018-8670. doi: 10.1147 / sj.132.0115. URL http://dx.doi.org/
10.1147 / sj.132.0115. 1

64 BIBLIOGRAPHY

Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, Akinori !hara, and Kenichi Mat
sumoto. The impact of mislabelling on the performance and interpretation of defect prediction
models. In Proceedings of the 37th International Conference on Software Engineering - Volume
1, ICSE '15, pages 812-823, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5.
URL http: / /dl.acm.org/citation.cfm?id= 2818754.2818852. 45, 46

Igor Scaliante Wiese, Rodrigo Takashi Kuroda, Reginaldo Re, Gustavo Ansaldi Oliva, and Marco Au
relio Gerosa. An empirical study of the relation between strong change coupling and defects using
history and social metrics in the apache aries project. In Ernesto Damiani, Fulvio Frati, Dirk
Riehle, and Anthony I. Wasserman, editors, Open Source Systems: Adoption and Impact, volume
451 of IFIP Advances in Information and Communication Technology, pages 3- 12. Springer In
ternational Publishing, 2015. ISBN 978-3-319-17836-3. doi: 10.1007 /978-3-319-17837-0 _ 1. URL
http: //dx.doi.org/10.1007 /978-3-319-17837-0_l. 55

Wikipedia. Coupling (computer programming). https:/ /en.wikipedia.org/ wiki/ Coupling_
(computer_programming). Accessed: 2016-04-01, 2016. 1

F. G. Wilkie and B. A. Kitchenham. Coupling measures and change ripples inc++ application soft
ware. J. Syst. Softw., 52(2-3):157-164, June 2000. ISSN 0164-1212. doi: 10.1016/S0164-1212(99)
00142-9. URL http://dx.doi.org/10.1016/S0164-1212(99)00142-9. 15

Niklaus Wirth. Program development by stepwise refinement. Commun. ACM, 14(4):221- 227, April
1971. ISSN 0001-0782. doi: 10.1145/ 362575.362577. URL http: / / doi.acm.org/ 10.1145/ 362575.
362577. 1

Stephen S. Yau, J. S. Collofello, and T. MacGregor. Ripple effect analysis of software maintenance.
In The IEEE Computer Society's Second International Computer Software and Applications Con
ference, pages 6Q-65. IEEE Press, November 1978. 15

Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predicting source code
changes by mining change history. IEEE Trans. Softw. Eng., 30:574- 586, September 2004. ISSN
0098-5589. doi: 10.1109/ TSE.2004.52. URL http://dl.acm.org/ citation.cfm?id= l0l8037.l018388.
54

Carlo Zapponi. GitHut - Programming Languages and GitHub. http: //githut.info. Accessed:
2016-04-01, 2014. 40

T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system architecture (or not). In
Software Evolution, 2003. Proceedings. Sixth International Workshop on Principle:, of, pages 73 -
83, sept. 2003. doi: 10.1109/IWPSE.2003.1231213. 35

Thomas Zimmermann and Peter Wei:!Sgerber. Preprocessing CVS data for fine-grained analysis. In
Proceedings 1st International Workshop on Mining Software Repositorie:, (MSR 2004), pages 2- 6,
Los Alamitos CA, 2004. IEEE Computer Society Press. 13

Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller. Mining version
histories to guide software changes. IEEE Trans. Softw. Eng., 31:429-445, June 2005. ISSN 0098-
5589. doi: http: / / dx.doi.org/ 10.1109/ TSE.2005.72. URL http: //dx.doi.org/ 10.1109/ TSE.2005.72.
2, 54, 55

