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Resumo 

LIMA, R. A. Modelagem de WED-flow Temporal. 2017. 120 f. Disserla<;ao (Mestrado) - ln

stituto de Matematica e Estatfstica, Universidade de Sao Paulo, Sao Paulo, 2017. 

Organizac;oes que buscam apoiar seus processos de neg6cio de forma mais flexivel estao cada vcz mais 

interessadas em substituir os sistemas de informac;ao existentes centrados em dados por sistemas 

de infonnac;ao cientes de processo (PAISs), uos quais a 16gica de controle de fluxo dos processos e 

especificada cm modelos executaveis separados do c6digo da aplica<_.ao. Ainda quc as abordagens 

tradicionais de modelagern de processes sejam amplarnente utilizadas para o desenvolvimcnto de 

PAISs empresariais, muitas nao possuem a flexibilidadc necessaria para: realizar reengenharia de 

processos de neg6cios; gerenciar dependencias entre processos interativos e paralelos; e manter a 

base de c6digo para tratar exccc;6es e cstados de proccsso imprevistos pequena e gercnciavel. WED

.flow, por sua vez, e uma abordagem de modelagem de processes transacional, baseada em eventos, 

e orientada a dados que atende a esses desafios. No entanto, 'WED-flow nao pode modelar o corn

portamento e as restric;6es temporais dos processes sensiveis ao tempo encontrados em sistemas de 

tempo real. Para a maioria dos sistemas de tempo real, o nao cumprimento de restric;oes de tempo 

pode resultar em catastrofes. Assim, a capacidade de decidir se um processo sensfvel ao tempo pode 

ou nao cumprir seus prazos e essencial para ao menos aliviar sens efeitos colaterais potencialmente 

perigosos. Alem disso, se processes sensfveis ao tempo competirem por recursos compartilhados, a 

detec<;ao antecipada de que alguns deles nao atenderao aos seus prazos pode aumentar a eficien

cia da polftica de aloca<;ao de recursos em uso. As principais contribuic;oes deste trabalho sao: (1) 

apresentar o modelo WED-flow Temporal, estendendo WED-flow com uma noc;a.o rle tempo; (2) 

apresentar um metodo para ma.pear um modelo de processo vVED-flow para uma rede de Petri - um 

formalismo grafico e matematico para modelagem e analise de sisternas concorrentes; (3) e apresen

tar um modelo de rede Petri dependente de tempo adequado para descrever a semantica temporal 

dos modelos de processo de WED-flow Temporal. As::;im, podernos verificar a l6gica de controle de 

fluxo dos modelos de processo WED-flow atraves de ::mas redes de Petri equivalentes, assim como 

verificar sua pontualidade. Como um exemplo de um sbtema de tempo real modelado usando WED

flow, apresentamos SISAUT - um sistema de gerenciamento de aut6psias que coordena processes 

interativos, paralelos e sensiveis ao tempo para coletar e processar 6rgiios para projetos de pesquisa. 

Palavras-chave: WED-flow. WED-flow Temporal, sistemas de tempo real, rede de Petri, rede de 

Petri dependente de tempo. 
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Abstract 

LIMA, R. A .. 2010. 120 f. Dissertai:;ao (Mestrado) - Instituto de Matematica e Estatfstica, Univer

sidade de Sao Paulo, Sao Paulo, 2017. 

Organizations seeking to support their business processes in a more flexible way are increasingly 

interested in replacing existing information systems centered on data with process-aware informa

tion systems (PAISs), in which the control-flow logic of processes is specified in executable models 

separate from the application code. Even though traditional process modeling approaches have been 

largely used to build enterprise PAISs, most lack the flexibility needed to: perform business process 

reengineering; manage dependencies among interacting, parallel processes; and keep the code base 

for handling exceptions and unforeseen process states small and manageable. 'WED-flow, in turn, is 

a transactional, event-based, and data-driven process modeling approach that addresses these chal

lenges. However, WED-flow cannot model the temporal behavior and constraints of time-critical 

processes found in real-time systems. For most real-time systems, failing to meet time constraints 

could result in catastrophic damage. Hence, the ability to decide whether or not a time-critical 

process can meet its deadlines is essential to at least alleviate potentially hazardous side effects. 

Moreover, if time-critical processes compete for shared resources, early detecting that some of them 

are likely to miss their deadlines could increase the efficiency of the resource allocation policy in use. 

The main contributions of this work are: (1) to present Time WED-flow, extending WED-flow with 

the notion of time; (2) to present a method for mapping a WED-flow process model to a Petri net -

a graphical and mathematical formalism for modeling and reasoning about the functional behavior 

of concurrent systems; (3) and to present a time dependent Petri net model suitable for describing 

the temporal semantics of Time WED-flow process models. Thus, we can check the control-flow 

logic of WED-flow process models through their equivalent Petri nets, and check their timeliness 

as well . As an example uf a real-time system modeled using \.VED-flow, we present SISAUT - an 

autopsy management system that coordinates interacting, parallel, time-critical processes to collect 

and process organs for research projects. 

Keywords: WED-flow, Time WED-flow, real-time systems, Petri net, time dependent Petri net. 
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Chapter 1 

Introduction 

Organizations seeking to support their business processes in a more flexible way are increasingly 

interested in replacing existing information systems centered on data with process-aware information 

systems (hereinafter referred to as PAISs) IDvdAtH], in which the control-flow logic of processes 

is specified in executable models separate from the application code [RvV12]. Reichert and Weber 

identified four flexibility needs of business processes to be met by PAISs: variability, evolution, 

looseness, and adaptation IRW12]. In the following, we briefly describe each of these needs: 

• Variability is needed to model variants of a single business process. For example, consider a 

car rental business process. Distinct state traffic laws might apply depending on the location 

selected to pick up the car (e.g., whether or not an international driver's license is valid), and 

this business process is expected to handle them all. 

• Looseness is needed to support a business process dependent on human knowledge. For ex

ample, consider a hospital's medical care scheduling system. After a patient goes through 

the triage, the selection of each next activity to be performed (e.g., physical examination, 

collection of blood sample, etc.) is dependent on the medical staff. 

• Evolution can be understood as the need to update the control-flow logic or the application 

code of a business process. For example, consider a travel agency's business process for booking 

flight tickets . At some point, one might decide to extend this business process with a service 

for booking hotel rooms . 

• Adaptation can be understood as the need to handle exceptions of a business process. For 

example, consider an e-commerce's online shopping business process. If a client's credit card 

is denied at checkout. another option of payment method should he promptly offered. 

1 



2 CHAPTER 1. INTRODUCTION 

In the following, we briefly describe four of the most popular process modeling approaches: 

graph-based, rule-based, constraint-based, and data-driven. 

• A graph-based process model is a graph of activity nodes connected to each other and to 

control-flow primitives [1S07]. Graph-based process modeling approaches are suitable for 

modeling repetitive and predictable processes. BPMN (Business Process Model and Notation) 

[Whi04l and YAWL (Yet Another Workflow Language) [VDATH05] are well-known examples 

of graph-based process modeling approaches. 

• A rule-based process model is composed of a set of so-called ECA (Event-Condition-Action) 

rules[LS07].Sucharuleisoftheformon [event] if [condition] do [activity], 

which means that activity is performed when event happens if condition is satisfied. 

Rule-based process modeling approaches are particularly appropriate for modeling rapidly 

evolving processes. Active database systems have been commonly used for enacting rule-based 

process models [KRSR96] IBJ94]. 

• A constraint-based process model is composed of a set of constraints preventing undesired 

execution behaviors. Constraint-based process modeling approaches are suitable for modeling 

processes dependent on human knowledge. Dynamic Condition Response Graphs [HMlOI and 

ConDec [PVdA06] are examples of constraint-based process modeling approaches. 

• A data-driven process model describes the lifecycle of process entities represented as data 

objects. Business Artifacts [CH09j and Case Handling [VdAWG05] are examples of data

driven process modeling approaches. 

Even though traditional process modeling approaches have been largely used to build enterprise 

PAISs, most lack the flexibility needed to perform business process reengineering [Att04] and fail 

to keep the code base for handling exceptions and unforeseen process states small and manageable. 

Furthermore, software engineers often rely on message queues and other middleware components 

to manage dependencies among interacting, parallel proces:;e:;, which not only add another layer of 

complexity to the system but also :;hatter its execution history across many data repositories. 

WED-flow, in turn, is a transactional, event-based, and data-driven process modeling approach 

that addresses these challenges [FBTP12j [FTK+j . In summary, WED-flow can keep track of the 

communication between interacting, parallel processes through shared data states [FTK+j. Also, by 

harnessing the ACID properties of classical database transactions [GR92] . WED-flow has a simple 

yet powerfol transactional recovery mechanism based on its well-defined failure semanLics [FBTP12]. 
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However, WED-flow cannot model the temporal behavior and constraints of time-critical pro

cesses found in real-time systems [Lap041, which are expected to not only produce correct results 

but also to meet pre-specified time constraints. The correctness of a time-critical process, therefore, 

depends on its outputs as well as on the time these outputs are produced. Typical examples of 

real-time systems include flight control, power plant control, multimedia streaming, and anti-lock 

braking systems. A power plant control system, for example, should be expected to take some action 

to cool down a nuclear reactor when its temperature is above a safe operating level. Furthermore, 

failing to take this action within a short period of time could result in hazardous side effects. In 

fact, for most real-time systems, failing to meet time constraints could result in catastrophic dam

age. Hence, the ability to decide whether or not a time-critical process can meet its deadlines is 

essential to at least alleviate potentially hazardous side effects. Moreover, if time-critical processes 

compete for shared resources, early detecting that some of them are likely to miss their deadlines 

could increase the efficiency of the resource allocation policy in use. 

Formal verification methods have been used to check the correctness of both functional (e.g., 

decide whether or not a desired state can be reached) and temporal (e.g. , decide whether or not a 

deadline can be met) behaviors of real-time systems [HM96]. In particular, model checking [CGP99] 

is a formal verification method that has been successfully used for verifying real-time systems 

[ACD90]. Model checking techniques evaluate models of concurrent systems rather than their actual 

executable code, though, and these models should be specified in terms of a mathematical notation 

(e.g., Petri net [Mur89]) or formal specification language (e.g., TLA+ [Lam02] and Promela [Hol97]). 

Further, these models should capture the semantics needed to establish the correctness of those 

concurrent systems while abstracting away unnecessary details for their checking to be tractable. 

The main contributions of this work are (1) to present Time WED-flow. extending WED

.flow with the notion of time; (2) to present a method for mapping a WED-flow process model 

to a Petri net - a graphical and mathematical formalism for modeling and reasoning about the 

functional behavior of concurrent systems; (3) and to present a time dependent Petri net model 

suitable for describing the temporal semantics of Time WED-flow process models. Thus, we can 

check the control-flow logic of \,VED-flow process models through their equivalent Petri nets, aud 

check their timeliness a:; well. As an example of a real-time system modeled using vVED-flow, we 

present SISAUT - an autopsy management system that coordinates interacting, parallel, time

critical processes to collect and process organs for research projects. 

In Chapter 2, we present the fundamentals of WED-flow and a method for mapping a WED

flow process model to a Petri net. \,Ve then extend \,\,'ED-flow with the notion of time and present 
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a time dependent Petri net model suitable for describing the temporal semantics of Time WED

flow process models in Chapter 3. Next, we present SISAUT as an example of a real-time system 

modeled using WED-fl.ow in Chapter 4. Finally, we draw our conclusions in Chapter 5. 

r 



Chapter 2 

The WED-flow Process Modeling 

Approach 

WED-flow (Work, Event, Data-flow) is a long-running transaction model in which data states 

are first-class citizens and the control-flow logic of process models is specified by rules. A WED-flow 

process instance can be seen as a state transition system: starting from an initial state, state tran

sitions are continuously applied until a final state is reached. Such a state transition is implemented 

with a classical database transaction [GR921, and thus can be seen as a saga step [GMS87] . 

Each WED-flow process instance has a data state ( WED-state) , which can be seen as a dic

tionary mapping pre-specified attributes of interest ( WED-attrib'Utes) to values. So-called WED

triggers arc rules bonding logical predicates ( WED-conditions) together with state transitions 

(WED-transitions). A special logical predicate ( initial WED-condition) validates the first WED

state created for a WED-flow process instance, and another special logical predicate (final WED

condition) terminates WED-flow process instances. 

2.1 Definitions 

Unless explicitly noted, the following definitions are based on the ones presented in [FBTP12]. 

Definition 2.1.1 (WED-attribute). A WED-attribute is an attribute of interest of the process 

being modeled. The WED-attributes defined for a process P are formally given by the n-tuple A = 

(a1 , ... , an). Also, a domain has to be assigned to each WED-attribute of A. For example, if ak is a 

boolean WED-attribute, l ~ k ~ n, domain(ak) = {true,false}. 

Definition 2.1.2 (WED-state). A WED-state is a valuation of the WED-attributes of the process 

5 



6 CHAPTER 2. THE WED-FLOW PROCESS MODELING APPROACH 

being modeled. A WED-state of P is formally given by an n-tuple ( v1, ... , Vn) such that, for all 

1 ~ i ~ n, Vie domain(ai)- The set of all possible WED-states of P is denoted by S. 

Definition 2.1.3 (WED-condition). A WED-condition is a logical predicate defined over the WED

attributes of the process being modeled. A WED-condition of P is formally given by a function from 

S to the set of boolean values. The set of WED-conditions defined for P is denoted by C. Also, a 

WED-states ES is said to satisfy a WED-condition c EC if and only if c(s) = true. 

Definition 2.1.4 (WED-transition). A WED-transition is a data state transition function of the 

process being modeled. A WED-transition of P is formally given by a function from S to S. The 

set of WED-transitions defined for P is denoted by U. Also, WED-transitions are implemented with 

A CID transactions f GR92j, which ensure the serializability of concurrent WED-transitions. 

Definition 2.1.5 (WED-trigger). A WED-trigger of P is formally given by a 2-tuple (c, u), where 

c EC and u EU. The set of WED-triggers defined for P is denoted by G. 

Definition 2.1.6 (WED-flow process model). A WED-flow process model of P is formally given 

by a 3-tuple WF = (G,ci,CJ), where G is its finite set of WED-triggers, Ci EC is its initial WED

condition, and Cf E C is its final WED-condition. The initial WED-condition Ci tests if the first 

WED-state created for each instance ofWF is valid. If Ci is satisfied, each WED-trigger ofG is then 

evaluated with respect to the initial WED-state. For example, consider a WED-trigger ( c, u) e G. If 

c is satisfied by the initial WED-state, u is triggered. Furthermore, if u is triggered, it eventually 

creates a new WED-state, for which each WED-trigger of G is evaluated once more, and so on. The 

final WED-condition c. f tests each newly created WED-state as well. If cf is satisfied, though, an 

instance of WF is promptly terminated. Also, an instance of W F is said to be properly terminated 

if no WED-transition is running when CJ is satisfied and its final WED-state does not trigger any 

other WED-transition. 

WED-states satisfying the initial and final WED-conditions are called initial and final WED

states, respectively. WED-states that trigger the execution of at least one WED-transition are said 

to be transaction-consistent. It may be the case, however, that a non-final WED-state does not 

trigger the execution of any WED-transition. If at least one WED-transition is running when such 

a WED-state is created, it is also said to be transaction-consistent . Otherwise, it is said to be 

inconsistent. 

Despite having only a few primitives and being governed by two simple rules, under certain 

assumptions, Petri nets can precisely an<l unambiguously <lescribe \iVED-flow semantics due to 
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their explicit representation of states and simple yet powerful model of concurrency. Furthermore, 

one can readily grasp the control-flow logic of WED-flow process models from the plain graphical 

representation of their equivalent Petri nets. 

2.2 The Petri Net Model 

Proposed by Carl Adam Petri in 1962 [Pet62], Petri net is a graphical and mathematical for

malism for modeling and reasoning about the functional behavior of concurrent systems [Mur89]. A 

Petri net is a particular type of graph extended with a state. The underlying graph of a Petri net is 

directed, weighted, and bipartite. A vertex can be of one of two types: a place or a transition. Arcs 

are either from a place to a tra.nsition or from a transition to a place. If an arc connects a place p 

to a transition t, p is said to be an input place oft. If an arc connects a transition t to a place p, 

though, p is said to be an output place oft. The state of a Petri net is called a marking. A marking 

assigns a number of tokens to each place of that Petri net. Transitions are commonly interpreted 

as being events, so their input and output places are interpreted as being pre- and post-conditions 

of these events, respectively. The presence of a token in a place thus means that the condition ( or 

part of it) represented by that place holds true. Graphically, places are represented as circles and 

transitions as rectangles. Arcs are labeled with their weights (except for arcs of weight 1, which are 

usually not labeled). If a marking assigns k tokens to a place, k black dots are drawn inside the 

circle representing that place. 

Definition 2.2.1 (Petri net). A Petri, net is fornially given by a 5-tuple ( P, T, F, w, Mo), where P := 

{p1, ···,Pn} is its finite set of places, T = {ti, ... , tm} is its finite set of transitions, F <;. (PxT)u(TxP) 

is its finite set of arcs, w: F ➔ {l, 2, 3, ... } is the weight function of its arcs, and Alo : P ➔ {O, 1, 2, ... } 

is its initial marking. 

A transition is said to be enabled in a marking if and only if in each of its input places there 

are a number of tokens greater than or equal to the weight of their connecting arc. If a transition 

is enabled, it can fire. Firing a transition consumes and produces tokens according to the following 

rule: from each input place of that transition are removed a number of tokens equal to the weight 

of their connecting arc, and to each output place of that tram;ition are added a number of tokens 

equal to the weight of their connecting arc. At any given time, only one transition can fire in a Petri 

net, and firings of transitions are considered to be instantaneous. 
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(a) Both t 1 and t2 are enabled in this marking, and the choice of which transition fires first is non
deterministic. 

(b) t 1 fires, removing one token from its input place and adding one token to its output place. 
1 1 

(c) t2 fires and t3 becomes enabled as a result. 

Figure 2.1: A sequence of firings of transitions in a Petri net. 

2.3 lviapping p-WED-flow Process Models to Petri Nets 

Now we map a subset of WED-flow to the Petri net model. This subset is derived from the 

programming style used in the development of the PAIS presented in Chapter 4, and from now 

on is referred to simply as p-WED-flow. In short, p-WED-flow captures the control-flow logic of 

WED-flow process models while abstracting away their data-flow perspective. 

First, let W F = (G, c;, CJ) be a p-WED-flow process model, where G is its finite set of WED

triggers, c; E C is its initial WED-condition, and CJ e C is its final WED-condition. Also, let 

A = (a1, ... , an) be its tuple of WED-attributes, C = { c1, ... , en} be its set of WED-conditions, and 

U = { u1, ... , un} be its set of WED-transitions. 

For all 1 ~ k ~ n, we make the following assumptions: 

1. domain( ak) = { true, false}. 

2. The value of ak is initialized with false. 

3. The initial WED-condition Ci tests if the value of ak is false. 

4. The value of ak is true if and only if Uk has already been executed. 
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5. Ck is a conjunction of one or more evaluations of the values of WED-attributes. 

6. Besides Ci, Ck is the only WED-condition to test if the value of ak is false. 

We also assume that G = {(ck,Uk) e C x U I for all!~ k::; n}. so denotes the single initial 

WED-state of W F, in which the value of all WED-attributes is false. 

Now let PN = (P,T,F,w,M0 ) be a Petri net, where: 

• P = {Pk I for all 1 ~ k ::; n} u {PJ} is its finite set of places. Pk, 1 ~ k ~ n, represents the 

WED-condition Ck of W F, and p I represents the final WED-condition c I of W F. 

• T = { tk I for all 1 ~ k ~ n} u { t I} is its finite set of transitions. tk, 1 ~ k ~ n, represents the 

WED-transition Uk of W F, and t I is called the final transition. 

• F = {(Pk,tk) e P x T I for all l ~ k ~ n} u {(tk,Pj) e T x PI the WED-condition Cj 

of W F tests if the value of the WED-attribute ak is true, for all 1 ~ k ~ n, for all 1 ~ j ~ 

n} u { (p I, t I)} is its set of arcs. 

• w is the weight function of its arcs. Here we assume that the cardinality of a place gives 

the number of WED-attribute evaluations of the WED-condition it represents. Then, for all 

1 ~ k ~ n, w((Pk, tk)) = IPkl, and for all 1 ~ j ~ n, w((tk,Pj)) = 1, if (tk,Pj) e F. Also, 

w((P1,t1)) = IPJI. 

• l\!lo is its initial marking. In l\!lo, there is exactly one token in each place, except for Pf, in 

which there are no tokens. 

By the construction of P N and from the assumptions made, it straightforwardly follows that 

a \,\'ED-trigger of W F is represented as a transition and an input place in P N. The input place 

represents the WED-condition and the transition represents the WED-transition of that WED

trigger. respectively. The weight of the arc connecting an input place representing a v\7ED-condition 

to a transition representing a WED-transition is given by the number of \i\'ED-attribute evaluations 

of that WED-condition, and therefore each token put in that input place represents that some WED

attribute evaluation of that WED-condition holds true. Enabling a transition tk, 1 ~ k ~ n, is then 

interpreted as triggering the WED-transition Uk, and firing tk is interpreted as terminating Uk. We 

thus say that tk and Uk are correspondent. The place Pf represents the final WED-condition CJ, 

and since p 1 is an input place of the final transition t f, firing t f is interpreted as terminating an 

instance of W F. 

Now we prove that the Petri net PN is equivalent to the p-vVED-flow }VF. 
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a1 = false 

a1 = false 
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a1 = true and 

a3 = false 

a2 = true and 

a3 = true 

(a) In the initial marking, only t1 is enabled. 

1 2 1 

a1 = /rue and 

a3 = false 

a2 = /rue and 

a3 = true 

(b) t1 fires, adding one token to the input place of t2 and one token to the input place of t3 . 

a1 = false 

a1 = false 

1 2 

a1 = /rue and 

a3 = false 

a2 = true and 

a3 = true 

( c) t2 fires first, adding one token to the input place of t I. 

a,= true and 

a3 = false 

a2 = lrueand 

a3 = true 

(d) t3 fires, adding one more token to the input place of ti , which becomes enabled. 

a1 = false 

1 2 

a1 = true and 

a3 = false 

a2 = true and 
a3 = true 

(e) t I fires, au<l iu the resulting marking there are no tokeus in auy place. This instance is said to be properly 
terminated. 

Figure 2.2: A sequence of firings of transitions in a Petri net equivalent to a p-WED-flow. 

Lemma 2.3.1 (There exists a correspondence between the initial marking Mo and the initial 

WED-state so.). From assumptions (2), (5), and (6), only one WED-attribute eval-uat-ion of each 

t: 

.. 



2.3. MAPPING P-WED-FLOW PROCESS MODELS TO PETRI NETS 11 

WED-condition Ck, 1 ~ k ~ n, is satisfied by the initial WED-state s0 . Also, no WED-attribute 

evaluation of the final WED-condition CJ is satisfied by so. 

By the construction of P N, in Alo there is exactly one token in each place Pk, l ~ k ~ n, and 

there are no tokens in pf. 

Lemma 2.3.2 (There exists a bijection between the set of transitions enabled for the initial marking 

Mo and the set of WED-transitions triggered by the initial WED-state so.). From assumption (6), 

for all I ~ k ~ n, Ck is the only WED-condition besides the initial WED-condition Ci that compares the 

value of ak to false. From assumption (2), in so the value of all WED-attributes is false. Therefore, 

so triggers the WED-transition Uk if and only if Ck has only one WED-attribute evaluation, which 

is the comparison between the value of ak and false. 

By the construction of P N, for all l ~ k ~ n, in Mo there is exactly one token in each place Pk, 

and there are no tokens in pf. Therefore, a transition tk is enabled in Mo if and only if the weight 

of the arc connecting Pk to tk is 1, i.e., Ck has only one WED-attribute evaluation, which is the 

comparison between the value of ak and false. 

Lemma 2.3.3 (Assume that a marking Jvl is correspondent to a WED-state s. The resulting 

marking after a transition tk, l ~ k ~ n, fires is correspondent to the WED-state created after the 

WED-transition Uk terminates.). From assumptions (2), (4), and (6), Uk creates a new WED-state 

in which the value of the WED-attribute ak is updated from false to true. 

By the construction of PN, firing tk results in a new marking in which tokens are added to 

places representing WED-conditions that test if the value of the WED-attribute ak is true. 

Lemma 2.3.4 (Assume that there exists a bijection between the set of transitions enabled for a 

marking !vi and the set of WED-transitions running for a WED-states. Then, there exists a bijection 

between the set of transitions that become enabled after a transition tk, l ~ k ~ n, fires and the 

set of WED-transitions triggered after the WED-transition Uk terminates.). From assumptions (2), 

(4), (5), and (6), for l ~ j ~ n, a WED-transition Uj is triggered after Uk temi-inates if and only if 

ak = true was the single WED-attribute evaluation not being satisfied ·in the WED-condition Cj for 

the last WED-state. 

By the construction of P N, for 1 ~ j ~ n, firing n transition tk puts a token in place Pi if 

and only if the WED-condition Cj tests if the val11e of the WED-attribute ak is true. Therefore, a 

transition ti becomes enabled after tk fires if and only if ak = true was the single WED-attribute 

evaluation not being satisfied in the WED-condition c1 for the last WED-state. 
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Lemma 2.3.5 (In P N, an enabled transition necessarily fires.). Each place of P N is an input 

place of at most one transition, and hence there are no conflicts. 

Theorem 2.3.1 (PN is equivalent to WF.). Using Lemmas 2.3.1 and 2.3.2 as base case, Lemmas 

2.3.3 and 2.3.4 as induction step, and Lemma 2.3.5, it follows from mathematical induction that 

there exists a bijection between the set of all possible sequences of firings of transitions from Mo and 

the set of all possible execution paths from so. 

2.4 Checking the Control-Flow Logic of p-WED-flow Process Mod

els 

Specifying the control-flow logic of a process can be an error-prone task, especially when it 

comes to interacting, parallel processes with a large number of tasks. Therefore, checking WED-flow 

process models is essential for the development of reliable PAISs. In order to check a p-WED-flow 

process model, we analyze its equivalent Petri net. 

Reachability is the fundamental property of Petri nets for reasoning about the functional behav

ior of concurrent systems. Let (P, T, F, w, Mo) be a Petri net. A sequence of firings of transitions re

sults in a sequence of markings. A marking Mn is said to be reachable from the initial marking Mo if 

there exists a sequence u = ( t1, ... , tn) of firings of transitions such that Mo .:!. M1 .::. ... Mn-I ~ Aln

Reachability tree is a data structure used for the reachability analysis of Petri nets. The root node 

of a reachability tree represents the initial marking, and each child node recursively represents a 

marking reachable from the marking represented by its parent node through the firing of a single 

transition. 

From the assumptions made about a p-WED-flow process model, each WED-transition is ex

ecuted at most once, and therefore the reachability tree of its equivalent Petri net is finite. Also, 

by the construction of its equivalent Petri net, it straightforwardly follows that no token is put 

in an input place of a transition that have been already fired, and that firing the final transition 

represents the termination of a p-WED-flow process instance. Fnrthermore, here we assume that a 

p-WED-flow process instance is only considered to be properly terminated if all WED-transitions 

have been already triggered and terminated for that instance when the final WED-state is reached. 

Thus, in order to check if every instance of a p-WED-fl.ow process model properly terminates, we 

should check if each leaf node of the reachability tree of its equivalent Petri net represents a marking 

in which there are no tokens in any place. 



Chapter 3 

The Time WED-flow Model 

It is fair to say that most real-world processes managed by information systems have a final 

deadline. For example, an airline's business process for booking flight tickets should be expected 

to take at most a few tens of minutes to complete, so reserved seats could be released in case the 

client is unable to pay for the order within the final deadline. A college application process, in turn, 

could take a few months to complete. Therefore, in this Chapter we extend the WED-flow process 

modeling approach with the notion of time by specifying a final deadline for each created WED-fl.ow 

process instance. From now on, such a time dependent WED-flow is called Time WED-flow. 

Here we use WED-SQL [PSRl 7) - the standard implementation of the WED-flow process mod

eling approach. WED-SQL is a relational framework built on top of the PostgreSQL database 

management system [posl 7[. PAISs implemented using WED-SQL are distributed: a single trans

action manager called WED-server coordinates the execution of WED-flow process instances, and 

external services hosted on worker nodes called WED-workers perform their tasks. 

The final deadline of a Time WED-flow process instance is a time value specified when it is 

created, which could eveu be a functiou of the value of one of its time ,NED-attributes. 

create wed-instance as default values 

with timeout now() + interval '4 hours'; 

create wed-instance as (name, start_time) 

values ( 'John Doe ' , '2017-01-01 12:00 ' ) 

13 
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with timeout start time + interval '30 minutes' ; 

Listing 3.1: Specifying the final deadline of WED-flow process instances in WED-SQL. The first 

WED-flow process instance created cannot take more than 4 hours from the time it is initialized to 

complete. The second one cannot take more than 30 minutes from the value of the WED-attribute 

start_ time to complete. 

3.1 Handling Timeouts 

The WED-server periodically checks the final deadline of each running WED-flow process in

stance. As soon as the WED-server detects that a Time WED-flow process instance missed its 

final deadline, it (1) aborts instances of WED-transitions running for that Time WED-flow pro

cess instance, (2) promptly interrupts their associated instances of external services running on 

WED-workers, and (3) throws a timeout exception for that Time WED-flow process instance. 

In vVED-SQL, aborting WED-transitions is a trivial and efficient operation because they are 

implemented with PostgreSQL's transactions. Also, WED-workers are connected to the WED

server through a PostgreSQL's communication channel, which could then be used for sending and 

catching signals of needed interruptions. Timeout exceptions, in turn, are handled through the 

WED-flow transactional backward recovery mechanism presented in [FBTP12]. In summary, each 

WED-transition might be associated with a compensation step that semantically compensates it 

and performs needed corrective actions. Furthermore, a detailed execution history of each WED

flow process instance is kept by the WED-server, so those compensation steps can be triggered in 

the reverse order their correspondent WED-transitions were terminated until a so-called stop WED

condition, which can be seen as a dynamic breakpoint, or the initial WED-condition is satisfied. In 

Algorithm 1, we reproduce au excerpt of the vVED-flow backward recovery algorithm presented in 

[FBTP12]. 

Now consider an airline's husiness process for booking flight tickets. A certain client selected 

a flight and reserved seats, but could not pay for the order within the final deadline. Two WED

transitions were successfully terminated, in the following order: select _flight and reserve_ seats. 

Also, the WED-transition pay_ order was running when the final deadline was missed. As a result: 

1. The instance of the WED-transition pay_ order runuiug for this Time vVED-flow process 

instance is aborted. 

s 
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Input: WED-flow process instance i, initial WED-condition Ci, WED-condition Cstap· 

Output: true, if successfully recovered. false, otherwise. 
s +- WED-state of i; 
while s does not satisfy Cstop and s does not satisfy Cinitial do 

t +- WED-transition that created s; 
if C 1 is defined then 
I s +- C 1 (s); 

else 

I return false; 
end 

end 
return true; 

Algorithm 1: WED-flow Backward Recovery Algorithm 
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2. The instance of the external payment processing service associated with that aborted WED

transition is interrupted. 

3. A timeout exception is thrown for this Time WED-flow process instance. The first compensa

tion step to be triggered is the one associated with the WED-transition reserve_ seats. Such a 

compensation step should release reserved seats. When this compensation step terminates, the 

compensation step of the WED-transition sclect_flight is triggered. Actually, there is no need 

to compensate select_flight because it has no side effects. In this case, a stop WED-condition 

should be satisfied after the compensation step of reserve_ seats created a new WED-state. 

Started process Selecled llighl Reserved seals 

Released seats 

Figure 3.1: t1, h, and t3 represents select_flight, reserve_seats, and pay_order, respectively. t21, in 

turn, represents the compensation step of reserve_ seats. 

In order to check the timeliness of a Time vVED-flow process instance, we need an estimate of 

the time it takes to execute each WED-transition , but since no assumption is made on the time 

it takes for a transition to fire, classic Petri nets cannot model the temporal behavior of Time 

WED-flow process models. Time dependent Petri net models, in turn, extend Petri nets with the 

notion of time, and mainly differ from each other on the primitive to which time is assigned (place, 

transition, or token) and on the nature of that time (deterministic, interval, or stochastic) [Wan98J. 
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3.2 The Time Petri Net Model 

Time Petri Net (hereinafter referred to as TPN) is a time dependent Petri net model that 

assigns a time interval to each transition. A transition, then, can only fire within this time interval 

once it is enabled. For example, suppose that a time interval [dmin, dmax], where dmin, dmax E lR.+ 

and dmin ~ dmax, is assigned to a transition t. dmin and dmax are called earliest firing time and 

latest firing time oft, respectively. Unless t is disabled by the firing of another transition, t must 

not fire before dmin units of time have elapsed since it was enabled, and t must fire no later than 

dmax units of time after it was enabled [PZ13]. 

Definition 3.2.1 (Time Petri Net). A TPN is formally given by a 6-tuple (P, T, F, w, Mo, I) such 

that the 5-tuple (P, T, F, w, M0 ) is a classic Petri net and I: T ➔ ~-+ x IR+ is its interval Junction. 

For each t ET, I(t) = (eft(t),lft(t)), where eft(t) and lft(t) are the earliest and latest firing 

times oft, respectively. 

Besides the number of tokens in each place, the state of a TPN comprises the time elapsed since 

each transition was last enabled. 

Definition 3.2.2 (State of a Time Petri Net). The state of a TPN (P,T,F,w,M0 ,I) is given by 

a 2-tuple (M,h), where M: P ➔ {0,1,2, ... } is called a place-marking and h: T ➔ R+ u {#} is 

called atransition-marking. For each t e T, h(t) gives the time elapsed since t was last enabled, if it 

is enabled. h(t) = #, otherwise. 

Now consider a TPN (P,T,F,w,Jvl0 ,I), whose state is given by a 2-tuple (Jvl,h). A transition 

t e T can fire in this state if and only if t is enabled in M and eft(t) ~ h(t) ~ lft(t). In this 

case, t is said to be time-enabled. If t fires , besides the usual changes in the place-marking Jvl, the 

transition-marking h has to be updated with the transitions that become enabled and disabled 

as well. At any given time, only one transition can fire in a TPN, and firings of transitions are 

considered to be instantaneous. Furthermore, the state of this TPN can also change through the 

elapse of time. In this case, for each l ET enabled in Jvl, the elapsed time 8 is added to h(t), given 

that h(t) + 8 ~ lft(t). 

3.3 Checking the Timeliness of Time p-WED-flow Process Instances 

For most real-time systems, failing to meet time constraints could result in catastrophic damage. 

Hence, the ability to decide whether or not a time-critical process can meet its deadlines is essential 
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[2, 5] 

[O, 9] 

(a) In the initial state, both t 1 and t2 arc enabled but not time-enabled. h.(t1 ) = 0, h(t2 ) = 0, and h(t3 ) = #, 

where his the transition-marking of this TPN. 

[2, 5] 

(0, 9) 

(b) After 2 seconds, both t 1 and t2 are time-enabled, and t 1 fires. Now h(t 1 ) = # , h(t2 ) = 2, and h(t3 ) = #. 

[2, 5] 

[O, 9] 

(c) 1 second later, t2 fires and t3 becomes time-enabled as a result. Now h(t1 ) = #, h(t2 ) = #, and h(t3 ) = 0. 

Figure 3.2: A sequence of firings of transition:; in a TPN. The time interval assigned to each transition 

is shown on top of each rectangle. 

to at least alleviate potentially hazardous side effects. Moreover, if time-critical processes compete 

for shared resources, early detecting that some of them are likely to miss their deadlines could 

increase the efficiency of the resource allocation policy in use. Therefore, checking the timeliness 

of Time vVED-flow process instances is essential for the development of safe and efficient PAISs. 

Here we deal with p-WED-flow process models as well, and in order to check the timeliness of a 

Time p-WED-flow process instance, we analyze its equivalent TPN. The structure of this TPN is 

given by the method for mapping a p-WED-flow process model to an equivalent Petri net presented 

in Chapter 2, and its interval function gives best- and worst-case estimates of the time it takes to 

execute each vVED-transition. Such an estimate could be set by a domain specialist or calculated by 

a statistical analysis of the logs of previous exccutio11s. For the timeliness check of a Time p-'WED

flow process instance, we need to calculate lower and upper bounds for the time to take its current 

WED-state to a final WED-state, i.e ., we need to calculate minimum and maximum distances of 

time from the state correspondent tu its current WED-:state Lo a state corre:,;pon<lent to a final 
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WED-state in its equivalent TPN. 

In the reachability tree of a TPN, the root node represents the initial state, and each child node 

recursively represents a state reachable from the state represented by its parent node through the 

firing of a single transition or the elapse of time IPZ13]. Adding up the elapsed times in the path 

from the root node to each other node in this reachability tree thus gives the time taken for the 

initial state to reach that other state. 

Now consider a Time p-WED-flow process instance. In order to calculate the minimum distance 

of time from a state correspondent to its current WED-state to a state correspondent to the final 

WED-state, transitions fire when they become time-enabled. Also, if no transition is time-enabled 

for a certain state, the minimum required time for some transition to become time-enabled is elapsed. 

Analogously, in order to calculate the maximum distance of time from a state correspondent to its 

current WED-state to a state correspondent to the final WED-state, transitions fire as late as they 

can, and if no transition is time-enabled for a certain state, the maximum possible time is elapsed. 



Chapter 4 

SISAUT 

Autopsies determine the cause of death for a death certificate, but the deceased may have chosen 

(and their families may have consented) to donate their bodies for scientific research. On average, 

the University of Sao Paulo (USP) performs 40 autopsies per day as a public service, of which some 

lead to the collection and processing of organs for scientific research. In short, for organs to be 

used in research projects, two interacting, parallel, time-critical processes have to be successfully 

completed: (1) the collection and processing of materials, and (2) the filling of consent forms and 

questionnaires. 

Both processes are initialized when a deceased body is declared of scientific interest. First, 

personal and demographic data are gathered in parallel with the register of body measurements. 

Suitable research projects are then chosen considering the information collected so far. Next, ap

propriate consent forms have to be filled out by family members, and consented research projects 

have to be selected (possibly resolving conflicts among consented research projects). At this point, 

the set of organs to be collected and the processing techniques to be performed have been already 

defined, and the collection of materials is authorized. Family members are also expected to fill out 

specific questionnaires related to those selected research projects. After materials are collected, they 

can be processed, but first their conditions have to be checked. Furthermore, materials can only be 

used in research projects if their processing is completed within 24 hours from the declared time of 

death. 

In this Chapter, we model SISAUT - the autopsy management system that coordinates these 

two processes - using Time vVED-flow. In particular, the SISAUT process model is a Time p-WED

flow process model. vVe underline that we only model the critical path of those processes, although 

other execution paths could exist (e.g., the family did not consent) , because only the critical path 

l9 
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is of interest of a timeliness check. 

Based on the previous description, the WED-transitions encapsulating the execution of tasks of 

these processes are the following: 

1. gather_ data; 

2. choose_projects; 

3. family_ consent; 

4. select consented_ projects; 

5. fill_ out_ questionnaires; 

6. register_ body_ measurements; 

7. collect _materials; 

8. check_ materials; 

9. process_ materials. 

For the sake of simplicity, we refer to each of these WED-transitions as tk, l:,; k:,; 9, where k is the 
number of the WED-transition in the enumeration above. For example, select_ consented_ projects is 
referred to as t4. As a p-WED-flow process model, each of these WED-transitions updates the value 
of a correspondent WED-attribute to true . Here we adopt the convention that the WED-attribute 
whose value is updated to true by the WED-transition tk is referred to as ak. 

The WED-triggers of the interview process are the following: 

• (a1 =false, t1); 

• (a1 = true and a2 =false, t2); 

• (a2 = true and a3 = false, t3); 

• (a3 = true and a4 = false, t4); 

• (a4 = true and a5 = false, ts). 

The WED-triggers of the process for collecting materials are the following: 

• (a4 = true and no= true and a7 = J alse, t7 ). 



The WED-triggers of the process for processing materials are the following: 

• (a1 = true and as= false, ts); 

• (as= true and ag =false, t9 ). 

a,= false 

a7 = lrueand 
a8 = false 

a8 = true and 
il!I = false 

as= true and 
a9 = true 

21 

Figure 4.1: Initial marking of the Petri net equivalent to the p-WED-flow process model of SISAUT. 

create wed-instance as default values 

with timeout time of death - interval '24 hours'; 

Listing 4.1: Instantiating the SISAUT WED-flow process model. 

Since we specify a final deadline for SISAUT instances in terms of a time WED-attribute 

time_ of_ death, we remark that a p-WED-flow might have other non-boolean WED-attributes. 

These vVED-attributes, however, cannot be evaluated in WED-conditions. 

In the following table, we assign minimum and maximum execution times in minutes to each 

WED-transition of the p-WED-flow process model of SISAUT. Such minimum and maximum exe

cution times are the best- and worst-case estimates of the time it takes to perform the task corre

spondent to that WED-transition, respectively. \Ve remark that these execution times are relative 

to the time a ·wED-transitiou is triggered. Furthermore, they are fictitious. 



22 CHAPTER 4. SISAUT 

WED-transition Min. exec. time (min.) Max. exec. time (min.) 

gather_ data (t1) 30 120 

choose_ projects ( t2) 30 120 

family_ consent (ta) 30 1080 

select_ consented_ projects ( t4) 30 120 

fill_ out_ questionnaires (ts) 30 180 

register_ body_ measurements (t5) 30 360 

collect_ materials ( t1) 60 120 

check_ materials (ts) 30 60 

process_ materials ( tg) 30 120 

For some cases, consented projects might have been selected and body measurements might have 

been registered, but materials might have not been collected. For others, only the processing phase 

might be missing. Since each case has its own final deadline dependent on the time of death, and 

the number of health professionals available is limited, it becomes essential to assign a priority to 

each case in order to avoid spending resources for collecting and processing materials of cases that 

are unlikely to meet their deadlines. Therefore, we calculate both best- and worst-case estimates of 

the time it takes to perform the remaining tasks of each case. A low priority could then be assigned 

to a case which is not expected to meet its final deadline by the best-case estimate. Also, a set of 

cases which are expected to meet their deadlines by the best-case estimate but not by the worst-case 

estimate could be prioritized according to how far their worst-case estimates are from their final 

deadlines. 

.. 
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Chapter 5 

Conclusion 

In this work, we have extended the WED-flow process modeling approach with the notion of 

time. The resulting Time WED-flow model is suitable for modeling time-critical processes usually 

found in real-time systems. We also have presented a method for mapping a p-WED-flow process 

model to a Petri net. Then, the control-flow logic of p-WED-flow process models can be checked 

using a standard reachability analysis. We also presented the Time Petri net model for describing the 

temporal semantics of Time p-WED-flow process models. Once more, standard reachability analysis 

techniques can be used, but now for the timeliness check of those Time p-WED-flow process models. 

Also, the practical aspects of the implementation of Time ·wED-flows were focused on WED-SQL, 

aiming to provide a foundation for its implementation of the time perspective of processes. 

A direction for further research is to model the temporal semantics of Time WED-fl.ow using a 

stochastic Petri net model. In this way, we would be able to not only evaluate best- and worst-case 

scenarios. Other direction is to model more classes of vVED-flows using colored Petri nets, which 

increase the expressiveness of the Petri net model, while increasing the cost for checking most of its 

interesting properties. 

23 
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