
A Runtime for Code Offloading on Modern Heterogeneous
Platforms

Rogerio Aparecido Gonc;alves

THESIS SUBMITTED
TO THE

INSTITUTE OF MATHEMATICS AND STATISTICS
OF THE

UNIVERSITY OF SAO PAULO
FOR THE

DOCTORAL DEGREE IN SCIENCE

Program: Computer Science

Advisor: Prof. Dr. Alfredo Goldman

This research is supported by

Fundac;ao Araucaria (projeto DINTER UTFPR/IME-USP),

CAPES-COFECUB (Doutorado SDW 2015, proc. BEX 3401-15-4)

Sao Paulo, August, 2016

A Runtime for Code Offloading on Modern Heterogeneous
Platforms

Committee Members:

This is the original version of thesis written by

(Rogerio Aparecido Gorn;alves), such as

submitted to Committee.

• Prof. Dr. Alfredo Goldman (supervisor) - !ME-USP

Acknowledgements

I would like to thank my Advisor Prof. Alfredo Goldman for the guidance and good discussions

during this period of study. He helped me and gave me good opportunities to learn more about the
working in group and do research. I thank the LSS and CCSL colleagues, for helping me and your
good company during the work in Sao Paulo.

I also thank all the IME professors that participate of DINTER project, for their cooperation and

their commitment to execute the work with our group. I thank UTFPR, our directors and involved
departments (DIRPPG, DIRGRAD, PROPPG) for the support during this project execution. I
thank my colleagues of DACOM for their collaboration in my absence period to do this work.

I'm very grateful to the Inria Compiler Optimization and Runtime Systems Team (CORSE)
that received me at Grenoble in my internship period as Visiting PhD Student. Fabrice Rastello
and people of research group, thank you for your time and your help. I would like to thank my

supervisors of there Professor Jean-Frarn;;ois Mehaut (Universite Grenoble Alpes - UGA, Laboratoire

d'Informatique de Grenoble - LIG, Inria Grenoble Rhone-Alpes) and Professor Henri-Pierre Charles

(Universite Grenoble Alpes - UGA, LIST, CEA Grenoble) to receive me at Grenoble and for all

discussions about the my research. Thank you for help me. I appreciated the mission in Grenoble
and the chance of know the group people.

I thank my family for always support me, my wife Sabrina, my partner in this life journey,

thanks for your love, patience and dedication to me during this study period.
Finally, I would like to thank the Fundai;;ao Araucaria, the Departamento de Ciencia, Tecnologia

e de Ensino Superior do Governo do Estado do Parana (SETI-PR) and State Government of Parana

for the financial support to make possible the DINTER UTFPR-USP project (CAPES registred
DINTER 001-22/2011/CAA III/CGAA/DAV of 30/03/2011). I'm grateful to CAPES for the sand
wich scholarship (Doutorado SWD 2015, BEX 3401/15-4, CAPES-COFECUB Project No. 828/15,
Choosing: Cooperation on Hybrid Computing Clouds for Energy Saving) for the fellowships and the
accomplishment of this work.

Abstract

G0NQALVES, R. A .. A Runtime for Code Offloading on Modern Heterogeneous Plat

forms. 2016. 94 f. Thesis(Doctoral) - Instituto de Matematica e Estatistica, Universidade de Sao

Paulo, Sao Paulo, 2016.

The modern parallel processing platforms increasingly have brought to users multi-core sys

tems with complex memory hierarchies organizations and new features as vectorization support.

Moreover, these platforms congregate heterogeneous elements, from multi-core CPUs to many-cores

GPUs. When these elements are integrated, the power processing of these platforms can are boosted.

However, in the software side there is the need to modernize the code of legacy applications to use

these new resources. Even when this is done, it may happen that the workload overcomes the ca

pacity of multi-core systems usually there is the need to parallelize the applications code to use the

computing power of coprocessors and accelerators devices. Programming for these new platforms

is not a trivial task, either writing new code or transparently translation of legacy code are very

complex tasks. These platforms with accelerators devices and multicore processors, even providing

development kits, require the programmer to explicitly declare all data transfers between device

memories. The programmer should specify the complete structure of grids and blocks of threads to

launch the kernel execution on each specific device. To mitigate this condition, tools and approaches

have been proposed to generate code for these platforms. Among the approaches that have excelled,

one approach uses compilation directives and other approaches try to detect parallelizable code re

gions. In the first approach, compilation directives are used to guide the compilation process, where

code transformations and modifications are applied on annotated regions to obtain a parallell code

version. In the second approach the code translation should occur without modifications on origi

nal code and without programmer intervention. For this outcome, these approaches apply models

and techniques to automatically detect which regions of code are parallelizable. In this thesis, we

describe a runtime related with automatic code parallelization and offloading based on code ver

sioning of parallel loops. The idea is that the 0penMP input code can be generated by compiler

tool or written manually. Our runtime libraries are intercepting some applications calls for 0penMP

runtime using a hooking technique. The decision about offloading have been taken automatically

at runtime using the operational intensity that is obtained applying Roofline rvlodel concepts. We

are considering measures in all levels of memory hierarchy and the data transfers between host and

devices.

Keywords: heterogeneous computing, automatic parallelization, code interception, operational in

tensity, offloading, accelerators devices, 0penMP, GPGPU, tools.

ii

Resumo

GONQALVES, R. A .. Um Ambiente de Execu~ao para Offloading de C6digo em Platafor

mas Heterogeneas Modernas. 2016. 94 f. Thesis (Doctoral) - Instituto de Matematica e Estatfs

tica, Universidade de Sao Paulo, Sao Paulo, 2016.

As plataformas modernas de processamento paralelo cada vez trazem aos usuarios sistemas

multi-core com organizac;oes de hierarquia de mem6ria complexas e novas recursos como o suporte

a vetorizac;ao. Alem disso, essas plataformas re(mem elementos heterogeneos, que vao de CPUs

multi-core a CPUs manycores. Quando esses elementos sao integrados, o poder de processamento

dessas plataformas pode ser potencializado. Entretando, do lado do software ha a necessidade de

modernizac;ao de aplicac;oes de c6digo legado para que usem esses novos recursos. Mesmo quando

isso e feito, pode acontecer que a carga de trabalho ultrapasse a capacidade de sistemas multi-core,

usualmente ha a necessidade de paralelizar o c6digo dessas aplicac;oes para usarem o poder de pro

cessamento de coprocessadores e dispositivos aceleradores. Programar para estas novas plataformas

nao e uma tarefa trivial, quer seja escrever um novo c6digo ou a traduc;ao de c6digo legado de

maneira transparente sao tarefas muito complexas. Estas plataformas com dispositivos aceleradores

e processadores multi-core, mesmo fornecendo kits de desenvolvimento, requerem que o progra

mador declare explicitamente todas as transferencias de dados entre as mem6rias dos dispositivos.

0 programador deve especificar a estrutura completa de grids e blocos de threads para lanc;ar a

execuc;ao de kernels em cada dispositivo. Para amemizar essa condic;ao, ferramentas e abordagens

tern sido propostas para gerar c6digo para essas plataformas. Entre as abordagens que tern se desta

cado, uma usa diretivas de compilac;ao ea outra tenta detectar automaticamente regi6es de c6digo
paralelizaveis. Na primeira abordagem, diretivas de compilac;ao sao usadas para guiar o processo de

compilac;ao, no qual transformac;oes e modificac;oes de c6digo sao aplicadas as regi6es anotadas para

obtenc;ao da versao paralela de c6digo. Na segunda abordagem a traduc;ao de c6digo deveria ocorrer

sem modificac;oes no c6digo original e sem a intervenc;ao do programador. Para se alcanc;ar esses

resultados, trabalhos nessa categoria aplicam modelos e tecnicas para detectar automaticamente

quais regi6es de c6digo sao paralelizaveis. Neste trabalho, apresentamos um runtime relacionado

com paralelizac;ao automatica e offloading de c6digo baseado em versoes de c6digo para lac;os par

alelos. A ideia e que o c6digo de entrada OpenMP seja gerado por uma ferramenta de compilac;ao

ou escrito manualmente. As bibliotecas do runtime sao capazes de interceptar, usando uma tec

nica de hooking, algumas chamadas que as aplicac;oes fazem ao runtime do OpenMP. A decisao de

offioading tern sido tomada automaticamente em tempo de execuc;ao usando a intensidade opera

cional que e obtida aplicando-se conceitos do Modelo Roofline. Estamos considerando medidas em

todos os nfveis da hierarquia de mem6ria e das transferencias de dados entre o host e os dipositivos

aceleradores.

iii

iv

Palavras-chave: computa-;;ao heterogenea, paralelizat;;ao automatica, intercepta-;;ao de c6digo, in

tensidade operacional, offloading, aceleradores, OpenMP, GPGPU, ferramentas.

Contents

List of Abbreviations and Acronyms

List of Figures

List of Tables

1 Introduction

1.1 Research Problem

1.2 Proposed Approach and Methodology

1.3 Objectives

1.4 Main Contributions .

1.5 Thesis Organization

2 Related Works

2.1 Compilation Tools and Runtimes for Offloading

2.2 R.oofline Model

2.3 Performance Counters

2.4 Hooking .

2.5 OpenMP Support for Offloading and Accelerators .

2.6 Final Considerations

3 HOOKOMP: Hooking calls to OpenMP Runtime
3.1 Study of Compilation Directives and Expanded OpenMP Code

3.1.l Parallel Regions: parallel constructor .

3.1.2 Loops: for constructor

3.2 Interceptable OpenMP Code Format ..

3.3 Interception and Offloading Mechanisms

3.4 The runtime input code format

3.5 Application and Runtime Libraries Interaction

3.6 Creating Hooks for OpenMP Functions

3. 7 Final Considerations

4 Offloading Decision using Operational Intensity

4.1 Operational Intensity

4.2 Events Sets and Hardware Restrictions .

4.3 Measuring Chunks

V

vii

viii

X

1

3
4

5

6

6

7

7

9

12

13

13

14

15
15

16

18

33

36

37

38

40

46

47
47
49

50

vi CONTENTS

4.4 Decision Model . . .

4.5 Final Considerations

5 Experiments and Results

5.1 Execution Platform .

5.2 Benchmarks

5.3 Overhead Analysis .

5.4 Offloading and Chunk Size Evaluation Analysis

5.5 Final Considerations

6 Future Work

6.1 Compilation Tool Implementation

6.2 Runtime Improvements .

6.2.1 Modify the strategy of collecting the values of Performance Counters

6.2.2 Consider Data Placement issues .

6.3

6.2.3 Speculative Data Copy to device

6.2.4 Data Synchronization issues . . .

6.2.5 The use of other decision models

6.2.6 Support other accelerators devices and other platforms .

6.2.7 Use of Optimized Vendor Libraries

Final Considerations

7 Conclusions

A Creating Hooks for OpenMP Functions

A.1 Expanded code for parallel region with two loops

A.2 Generic next chunk function .

References

50

54

55

55
57

57

59

62

63

63

64

64

65

65

65

65

65

66

66

67

68

68
70

74

List of Abbreviations and Acronyms

ABI

API

cuBLAS

DVFS

OS

Application Binary Interface

Application Programming Interface
CUDA Basic Linear Algebra Subroutines

Dynamic Voltage and Frequency Scaling

Operating System

vii

List of Figures

2.1 Roofline Graph Example. Adapted from Williams et al. {2009) 10

3.1 Visualization of generated code format that uses static scheduling and loop upper

bound with numeric value . 23

3.2 Visualization of generated code format that uses static scheduling and loop upper

bound with variable . 24

3.3 Visualization of generated code format that uses dynamic scheduling (first format) . 29

3.4 Visualization of generated code format that uses dynamic scheduling (second format) 30

3.5 Two loops inside the same parallel region. 31

3.6 Graphical representation of two loops inside the same parallel region 32

3. 7 Loop iterations execution by threads . . 33

3.8 First format with dynamic scheduling . 34

3.9 Second format with dynamic scheduling

3.10 Structure of loop formats

3.11 Threads executing loop iterations (Version 1)

3.12 Threads executing loop iterations (Current version)

3.13 Use of the alternative functions table

3.14 Application and Runtime Libraries Interaction ..

3.15 Mapping functions libraries called by applications .

4.1 Memory Hierarchy Levels

4.2 Mechanism for measuring chunks

5.1 Xeon E5-2630 v2 (Intel, 2014) ..

35

35

36

37

38

39

39

48

51

56
5.2 Complete platform . 56

5.3 Overhead of decision code. The runtime collect and calculate the decision, but force

the execution in CPU side: no offioading . 58

5.4 Overhead of decision code. The runtime collect and calculate the decision, but force

the execution in CPU side: no offioading

5.5 Chunk_size evaluation. Configuration chunk_size = 16

5.6 Chunk_size evaluation. Configuration chunk_size = 32

5.7 Chunk_size evaluation. Configuration chunk_size = 64

5.8 Chunk_ size evaluation. Configuration chunk_size = 128 .

5.9 Chunk_ size evaluation. Configuration chunk_size = 256 .

5.10 Execution configuration that reaches the offloading decision

viii

58

59

60

60

61

61

62

6.1 Compilation process workflow

6.2 Interleaved measurements strategy (Third version)

LIST OF FIGURES ix

63
64

List of Tables

3.1 Possible combinations for upper bound and chunk_ size definitions .

4.1 Events Sets , , .

5.1 Platform of Execution description .

5.2 Benchmarks useds in experiments .

X

25

49

57

57

Chapter 1

Introduction

There is a growing evolution of parallel processing platforms. The modern platforms have pro

vided new features in multi-core systems as complex memory hierarchies organizations and vector

ization support. Moreover, these platforms are composed by heterogeneous elements as coprocessors

and accelerators devices. In fact, coprocessors and GPUs have a great processing power and the

possibility to explore this potential has made that these elements are used in the composition of

the platforms of the most powerful supercomputers in the world and appear on first positions on

the rank list top500.org (Dongarra et al., 1994, 1996) (Top500, 2013, 2014, 2015, 2016).
In novernber 2010, the chinese supercomputer Tianhe-lA wa.s the first; in the top500 list. It

was using GPUs of Fermi architecture (NVIDIA Tesla 2050) (Glaskowsky, 2009; NVIDIA, 2009;

Patterson, 2009). In the following year it stayed among the first positions in the list. In november

2012, the arnerican supercomputer Jaguar, which occupied the third position in the previous list,

was upgraded with Kepler GPUs (NVIDIA K20x) (NVIDIA, 2012) becoming the Titan, the new

features ensured that it was in the first position. The chinese supercomputer Tianhe-2 reassumed

the ranking first position in november 2013 using Intel Xeon Phi coprocessors (31S1P) (Intel, 2013),
staying in this position until November 2015. This suggests that accelerator devices tend to remain
in the base composition of these heterogeneous hardware platforms.

The quest for high performance in general-purpose and scientific applications, have turned to

the exploration of new resources provided by platforms and their efficient use. In the software side
there is needed to modernize the code of legacy applications to use the new features in the several

processing elements (Intel, 2015b). If the workload overcomes the capacity of multi-core systems

there is the need to parallelize the applications code to use the computing power of coprocessors

and accelerators devices.

Usually, the languages C/C++ and Fortran are used to develop applications on these platforms,
that follow the historical use of these languages in High Performance Computing applications. Many
of the available Software Development Kits have support for C/C++ and Fortran. Among GPUs,
the NVIDIA GPUs use CUDA (NVIDIA, 2015a, 2014a,c, 2015c) and AMD/ ATI GPUs use OpenCL

(Khronos, 2013), that also has been used by the Intel coprocessors (Intel, 2013; Newburn et al.

, 2013).

There are also other approaches that have excelled in the context of parallel computing: the

compilation directives and automatic parallelization. In the first approach, compilation directives
are used to guide the compilation process, where code transformations and modifications are applied

on annotated code regions to obtain a parallel code version for a target platform.

1

2 INTRODUCTION 1.1

In compilation directives category, the OpenMP (Dagum e Menon, 1998) (OpenMP-ARB, 2011,

2013, 2015) (OpenMP API Site, 2012) (Chapman et al., 2007) is the most known and used in

multi-core applications. Multiple compilers have support to OpenMP implementations, such as GCC

(GCC, 2015; GNU Libgomp, 2015c), Intel ice (Intel, 2016a,b) and LLVM clang (Lattner e Adve

, 2004; LLVM Clang, 2015) (LLVM OpenMP, 2015). The OpenMP 4 . 0 specification covers the

code offloading to accelerators devices (OpenMP-ARB, 2013). The GCC libgomp (GNU Libgornp,

2015a,b, 2016a,b) have generated code using the OpenACC standard (OpenACC, 2012, 2015b).

Among the tools that make use of compilation directives to transform and generate code

are OpenMC (Lee e Eigenmann, 2010), hiCUDA (Han e Abdelrahman, 2009) (Han e Abdelrahman,

2011) (hiCUDA Project, 2012), CGCM (Jablin et al., 2011) that optimizes communication and data

transfers, PGI compilers (PGROUP, 2015, 2013, 2010) OpenHMPP (CAPS, 2012) tools and accULL

(Reyes et al., 2012) are compilers that implement the OpenACC standard (OpenACC, 2012, 2015b)

(OpenACC, 2011, 2013, 2015a).

The automatic code parallelization is an approach where the code translation should occur

without modifications on original code and without programmer intervention. For this outcome,

these approaches apply models and techniques to automatically detect which regions of code are

parallelizable. Most of the tools use the Polyhedral Model (Bastoul, 2004) (Benabderrahmane et al.,

2010) (Grosser e Simbiirger, 2014) or equivalent concepts. Some examples of tools in this category

are C-to-CUDA (Baskaran et al., 2010), Par4All (Amini et al., 2012; Par4All Site, 2012), PoLLy

(Grosser e Zheng, 2010; Grosser et al., 2011, 2012), PPCG (Verdoolaege et al., 2013), KernelGen

(Mikushin et al., 2014; Mikushin e Likhogrud, 2012; Mikushin et al., 2013) and Polly-ACC

(Grosser e Hoefler, 2016).

With the goal of facilitate the development and attract users from other contexts and languages,

and for their applications can use the available resources on these platforms, bindings and libraries

have been developed. Among the bindings are PyCUDA and PyOpenCL (Klockner et al., 2012;

PyCUDA, 2012) for Python, and JCuda (JCuda, 2012; Yan et al., 2009) and JOCL (JOCL, 2012)

that are bindings for Java. Besides these options, the manufacturers have invested on own solutions

that facilitate the use of their platforms, Aparapi (Aparapi, 2011) is a API that convert at runtime

Java bytecode to OpenCL, enabling code execution on CPUs and GPUs. The CUDA has been

widely used in heterogeneous platforms with GPUs, which motivates the development of tools

such as CU2CL (CUDA-to-OpenCL) (Martinez et al., 2011) that are the source-to-source compilers,

which do the code translation to other models, in this case OpenCL.

In this context, our work is directly related to the automatic parallelization approach and is

composed of two parts: compilation tool and runtime. The focus this thesis is presents the runtime

whose main goal is to provide support to OpenMP applications, choosing according to the operational

intensity the appropriate code version in the offloading process to other devices at runtime.

The following section discusses the research problem and the context of this work. The pro

posed approach and methodology are described in the Section 1.2. The objectives of this thesis are

presented in Section 1.3 and the main contributions of this work are in the Section 1.4. Finally, the

thesis organization is described in the Section 1.5.

1.1 RESEARCH PROBLEM 3

1.1 Research Problem

Nowadays the programming is not more restricted to Computer Science contexts. Applications

are present in all fields of Science ranging from engineering to medicine. In the context of these

areas, especially in engineering, there are several legacy code applications that were written in C

or Fortran languages and for others platforms such as MP I.

There is a wide gap between the applications needs and the potential for parallel execution

introduced by modern platforms. These platforms bring together different processing elements and

various technologies, which makes these platforms increasingly heterogeneous.

The current scenario has in one side platforms with multi-core systems, coprocessors (Intel

, 2013; Newburn et al., 2013) and GPUs (NVIDIA, 2013) that provide great processing power, and

in the other side legacy code applications that are still used. One of the main challenges of these

modern platforms is the coexistence with other platforms, technologies and programming languages

that are consolidated and widely used.

From the point of view of the applications, whether a new application or legacy code applica

tions, they will always require improvement in performance. Improvements that can be achieved by

exploiting the potential parallelism hidden in their code by using the resources available on these

platforms. But these computing resources are almost inaccessible in some cases, due to the related

complexity to develop new applications or translate existing applications code for these modern

platforms.

This scenario was also described by Asanovic et al. (2009), the authors defend the need for

Structural and Computational Patterns in Parallel Computing. These patterns improve the porta

bility of parallel programming applications, while also allowing specialization of applications with

the same behavior. In some situations it is not a matter of achieving the highest possible perfor

mance, but instead of making the application achieve acceptable performance, benefiting from a

new parallel computing platform (Asanovic et al., 2009).

In the same way this situation is reported as needed for code modernization (Intel, 2015b).

Normally, the legacy code applications have no advantages in the use of new available resources

when executing in these modern platforms. The authors give reasons and present advantages and

a methodology to reach this goal.

Given these new platforms and programming models, there few direct support for the code of

existing applications to be rewritten. The code rewriting process is very expensive in terms of time

and it is often impractical. The coexistence with legacy code applications requires solutions that

support the execution of applications in new or preexisting models and platforms.

Writing new applications or translating legacy code applications for these new platforms is a non

trivial task. In order to facilitate the development and attracting developers from other contexts,

languages bindings and libraries have been developed, enabling the use of accelerators in the widely

used programming languages.

In general, developers for these platforms experience the same difficulties found in other parallel

programming models. The hardware available does not always provide a simple and friendly Appli

cation Programming Interface (API), on contrary it usually requires the learning a new language

and a new development paradigm. The main difficulty in some cases is on the provided parallel

programming model.

Aiming to overcome this difficulty, projects has moved efforts to provide mechanisms that facili-

4 INTRODUCTION 1.2

tate the development of applications. Tools generate code for multi-core or GPUs based on OpenMP

or OpenACC directives that are added in the original code, or discovering the parallelizable regions

automatically. These tools help the developer in the abstraction of solutions and the obtained results

have been satisfactory, but are far from ideal.

Ideally, the connection between these contexts should be made by compilation tools that trans

form and translate the code applications in more efficiently versions that works using new features of

these platforms. Working in code modernization to use the vectorization support in basic platform,

or generating a parallel versions in the cases that the workload exceeds its capacity.

In the context of our runtime, there are versions of the parallelizable code regions and we need to

choose the better or appropriate device to execute. The code offloading decision is taken at runtime

using the operational intensity that is calculated during the part of code execution.

1.2 Proposed Approach and Methodology

Our proposal is related with automatic parallelization and offloading of legacy code applications.

Normally, they are applications that were written in C/C++ and Fortran. Parallelization of this

kind of applications consists in trying to parallelize code that may have not been written considering

a parallel model. For obtain this result our proposal includes a parallelizing compiler (Wolfe, 1996)

that should be able to detect parallelizable regions in the code and generate parallel versions for it.

Moreover, for code offloading we need a runtime to execute the code and choose the besL version of

code considering the available devices on platform.

Thereby our proposal is divided naturally into two basic parts: compilation tool to prepare the

input code with multiple versions for parallel regions, and a runtime that can explore heterogeneous

elements using operational intensity to decide about code offloading. These two parts are described

in following sections, we present the compilation tool work flow idea, which will be discussed in

future works. The focus is on the runtime behavior, how it works intercepting calls to OpenMP

runtime and how to take decisions in the code offloading process.

The main goal of runtime is to provide support to OpenMP code execution that cover the multi

core systems and try code offloading to accelerators devices, as coprocessors or GPUs. The generated

OpenMP code have functions with code versions of parallel loops and a table with pointers to these

alternatives functions. The appropriate version will be chosen possibly doing offloading for other

devices at runtime.

The decision between code offloading or continuing the execution in multi-core CPUs is based

in operational intensity that is calculated using measures of performance counters.

For offloading proposes, the runtime needed to control the execution of threads, and decide when

to make the offloading and what is the better device to execute the code. Initially, the execution

starts with OpenMP code, which will have some of their calls intercepted by the control of the

execution of threads in CPU.

The runtime libraries intercept calls made by application to OpenMP runtime. For hooking

OpenMP calls we developed a library {libhookomp) that is described in Chapter 3.

The interception mechanism used is a hooking technique applied at Application Binary Interface

(ABI) level. Our library can be pre-loaded and it supports the interception of some kinds of calls

to OpenMP runtime. It control the threads execution interacting with the other runtime libraries.

1.4 OBJECTIVES 5

For each parallel region a time of threads is created by OpenMP runtime. During the execution

one thread of OpenMP threads team is registered when it enter in loop. The thread collects the

values of Performance Counters at runtime and take the decision about code offioading.

The offioading is decide by another library (libroofiine} that implements the Roofline Model
(Williams et al., 2009) concepts and it has being used to decide about the code offloading. A

basic concept in the Roofiine Model is the operational intensity, which is defined as the relation

between operations and memory traffic in bytes (number of operations divided by memory traffic)

(Williams et al., 2009).

With these collected performance counters values are calculated the operational intensity, at
tainable performance and the execution time for each considered device. Our decision model takes
t,he decision about the code offloading and choose the better device to execute the code.

Currently, our runtime is able to choose the better device (multi-core or GPU) according the
operational intensity of code. We are getting measures in all levels of memory hierarchy to know
the amount of bytes that are moved to execute the code. As our work try offloading to GPU, it is
needed to consider the data transfers between host memory and GPU global memory.

1.3 Objectives

This work has as main objectives:

Study the use of performance counters and operational intensity on offloading decision

The most tools that try to make the code offioading are compilation tools. They use the size
of data for decide about the offloading. The decision is normally a static decision that is taken in

compilation time for generate the code for the target or using the data sizes during the execution.

This work aims using the operating intensity that is calculated dynamically at run time based

on performance counters.

Provide mechanisms for offloading in heterogeneous platforms

Modern platforms become increasingly heterogeneous, being composed of the various processing
elements, so the exploration and effective use of available resources is needed for performance

improvements.

The study of strategies and mechanisms that can decide about the offloading at run time using

the dynamic behavior of applications execution on this platforms are welcome in this new scenario.

Create a runtime able to decide about code offloading at run time

The libraries of runtime are working transparently, if the input code is prepared with the alter
native functions for devices . The interception library together the roofline library is able to control
the threads and take the offloading decision.

6 INTRODUCTION 1.5

1.4 Main Contributions

Our contribution is in the use of operational intensity and a simple decision model at run time.

The runtime libraries are intercepting the applications calls to OpenMP runtime, controlling the

execution of threads and collecting values of performance counters to calculate the operational

intensity. The main contributions of this work are:

The use of operational intensity in offloading decision at run time

The experiments have shown that the operational intensity can be used in decision about of

floading. Even with some hardware restrictions, it is possible the use of a strategy for get measures

of performance counter values.

The development of runtime library for hooking the OpenMP applications and support

the code offloading

In addition to using the library for offloading, the strategy can be used for control the OpenMP

threads for monitoring and create traces.

The development of runtime library to collect and implements a simple model to make

the decision about offloading

The library that implements Roofline Model concepts use a simple model to make the decision

about the offloading. As the decision is taken at run time overhead of model must be minimum.

1.5 Thesis Organization

In this chapter we introduced our research problem, the context of our proposal, as well as the

objectives and contributions of this work. The related works are in Chapter 2. In the Chapter 3

is showed the method for intercepting calls to OpenMP runtime that was used on hooking library

development of the our runtime. The Chapter 4 describes how to the operational intensity can be

used in making decision on code offloading for accelerators devices. The experiments and results

about the using of our runtime are presented in the Chapter 5. We present the next steps and

future works in the Chapter 6. Finally, in Chapter 7 are discussed some conclusions obtained with

the implementation and experiments with our runtime.

Chapter 2

Related Works

This chapter presents the works that are related to the research developed in this thesis. Most

of the tools that make offioading or generate code to execution of parallel phases on accelerators

devices are in the compilation, optimization and code generation area, are Compilers.

Some compilation tools and runtimes make code offloading to accelerators devices. These in

clude the Par4All (Amini et al., 2012), the PPCG (Verdoolaege et al., 2013), the KernelGen

(Mikushin et al., 2014; Mikushin e Likhogrud, 2012; Mikushin et al., 2013) and the Polly-ACC

(Grosser e Hoeller, 2016). These tools generate parallel code for GPU detecting parallelizable re

gions without the needed to do any modifications in the original code. Some of them have used

compilation directives and other tools try to detect automatically the SCoPs that are targets of

optimization.

The main idea of our approach is that values of performance counters can be collected at run

time and applied to a decision model then this model is able to decide on the code offloading based

on operational intensity. The operational intensity has been used to study the behavior of programs

on platforms, and which optimizations can be applied in the code to improve the performance

(Williams et al., 2009).

The hooking technique that we are using to intercept the OpenMP calls is also used by others

works for logging and trace proposes (Trahay et al., 2011).

The tools StarPU (Augonnet et al., 2010) and Apollo (Sukumaran-Rajam et al., 2014), which
are tools that try to execute code in platforms multi-core with GPUs, also use alternative functions

for the code offioading.

The code offloading to accelerators devices has been covered in OpenMP 4 . 0 specification

(OpenMP-ARB, 2013, 2015) and in the OpenACC standard (OpenACC, 2011, 2013, 2015a). But,

the offloading must be defined explicitly by developer using compilation directives.

2.1 Compilation Tools and Runtimes for Offloading

Most of the works that concern the use of accelerators devices are compilation tools. Many make

the source-to-source translation C or Fortran code to parallel versions to CUDA (NVIDIA, 2015a,

2014a) and OpenCL (Khronos, 2013).

These tools are related with the automatic code parallelization approach. Where these tools ap

ply models and techniques to automatically detect which regions of code are parallelizable. Most of

7

8 RELATED WORKS 2.1

the tools use the Polyhedral Model (Bastoul, 2004) (Benabderrahmane et al., 2010) (Grosser e Simburger

, 2014) or equivalent concepts.

The C-to-CUDA (Baskaran et al., 2010) is a implementation of a transformation system that

generates parallel CUDA code, which is optimized for data accesses, from input sequential C code,

for regular (affine) programs.

Par4All (Amini et al., 2012) is a source-to-source compiler that integrate several tools for

optimize and parallelize sequential code written in C and Fortran languages. It is not based on

Polyhedral Model but it uses an abstract interpretation for array regions (Creusillet e Irigoin, 1996).

The tools are integrated using Python scripts, the main script p4a implements a optimization and

parallelization process flow using the PIPS (Amini et al., 2011) that available in the PYPS binding

for python (Guelton et al., 2011). The Par4All generates code for multi-core (OpenMP), GPUs

and some embedded systems platforms. In the case of the generated GPU code the NVIDIA compiler

(nvcc) and libraries of CUDA SDK are used to generate the final code.

The PPCG (Polyhedral Parallel Code Generation) (Verdoolaege et al., 2013) is other source

to-source compiler that generates OpenMP, CUDA and Open CL code using polyhedral model con

cepts. To extract the model characteristics (iteration domain, accesses relations and schedule), the

PPCG uses the pet (Verdoolaege e Grosser, 2012). It uses the library isl (Integer Set Library)

(Verdoolaege, 2010) to create the representations and apply operations on the polyhedral model.

The PPCG creates a new schedule for the code exploring the tiling transformation, it uses in this

process an algorithm based on PLuTo (Bondhugula, 2012; Bondhugula et al., 2007, 2008) that is

implemented using the is 1 libraries.

The code generated by PPCG is divided em two parts, one is the main code to execute in the

host and other part is the GPU kernels. The loop iterations mapping on grids, blocks and threads

are made according the parameter tile size. Nested loops are considered by pairs, the out most

external (tile loop) iterates on tiles and the inner most (point loop) iterates inside the tiles. The

external loops are mapped to blocks of a grid, while the internal loops are mapped to threads of on

block (Verdoolaege et al., 2013).

The KernelGen (Mikushin et al., 2014; Mikushin e Likhogrud, 2012; Mikushin et al., 2013)

integrates other tools to generate GPU kernels automatically. This tool is based on LLVM projects

(Lattner, 2008; Lattner e Adve, 2004), among the used projects are PoLLy (Grosser et al., 2012)

and the NVPTX backend (NVPTX, 2013) that generates PTX code. The KernelGen is part of the

automatic detection of parallelizable regions approach.

In contrast to the traditional execution model, in which the code runs in the CPU is responsible

for controlling the execution flow launching the execution of kernels and the data transfer between

the host memory and the device memory, the KernelGen model is centered in the GPU, the main
code executes in GPU side.

According the Mikushin et al. (2014) when the application is starting all the control and kernels

are loaded to GPU, because the authors consider that the execution is more efficient in the GPU,

even serial code parts. In this execution model takes advantage of the availability of data in the GPU

memory, the data transfers costs are avoided. However the launch of the others kernels execution

and the code execution in CPU side is made using callbacks that triggers the execution and launch

other functions.

The PoLLy (Grosser e Zheng, 2010; Grosser et al., 2011, 2012) is a polyhedral model implemen-

2.2 ROOFLINE MODEL 9

tation for the LLVM project. PoLLy implements a set of passes for the LLVM optimizer that detects

and translate parts of the code to the polyhedral model representation. In this representation the

analysis and code transformations can be applied and from this representation the LLVM-IR code is

optimized and parallel versions can be generated. PoLLy is able to generate OpenMP code versions

of parallelizable loops. The generated code have the two versions and according of the size of data
the execution is switched.

Polly-ACC (Grosser e Hoefler, 2016) is the most recent work related with PoLLy, it is a het

erogeneous compiler that starts the compilation from a sequential code and automatically generate

a hybrid executable that transparently offloads suitable code regions.

The idea of provide alternative functions have been used by StarPU (Augonnet et al., 2010)

and Apollo (Sukumaran-Rajam et al., 2014), which are tools that try to execute code in platforms

multi-core with GPUs.

2.2 Roofline Model

The operational intensity is a concept well known and has been used to study the behavior of
programs code on platforms, and which optimizations can be applied in the code to improve the

performance.

The original Roofiine Model (Williams et al., 2009) proposes to calculate the operational inten
sity (I) using measures of number of arithmetic instructions (W) and memory traffic (Q) between
Main Memory and the Last Level Cache (LLC). What may be not appropriate for on the current

processors architectures. For multi-core and different organizations of memory is necessary to obtain
measures considering all levels of the memory hierarchy (LLC, L2 and Ll).

The original Roofiine Model (Williams et al., 2009) and the extensions use the Operational

Intensity (I) that is the relation between Work (W) in terms of floating pointing operations and

DRAM traffic in bytes (Q), where Q = Oread + Owrite (Equation 2.1).

w
I=-

Q
(2.1)

With the operational intensity is possible to calculate the Attainable Performance using the
Equation 2.2 .

AP= min{FLOPS,MB x I}

Where:

AP: Attainable Performance in GFlops/sec.

FLOPS: Peak Floating Point Performance.

MB: Peak Memory Bandwidth.

I: Operational Intensity.

(2.2)

The Peak Floating Point Performance and Peak Memory Bandwidth can be obtained from
devices manuals or using benchmarks.

The Roofline Model Graph shows Figure 2.1.

10 RELATED WORKS 2.2

128

64

" u 32 ;
Eu 16 .. "
~~
C. a. 8
" 0 -II j t!) 4 :I .

! 2 ~I
c:("?-

01
1 ~,

:IE I

Peak floating-point performance

,\:LI.::~'-----+--- ,, I _____________ _
C
:I I ,_ ____ ~---.&-1------

--------0--- t -t-1 -------
gl

--------u i--------------
1

1/2
1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

Figure 2.1: Roofline Graph Example. Adapted from Williams et al. {2009}

In this graph when the application code have operational intensity equal 1 this means that the

amount of bytes that were moved in memory hierarchy is equal of the number os floating point

instructions executed in the code.

Operational intensity less than 1 characterizes the code as memory-bound. Otherwise, when the

operational intensity is more than 1 the code is considered compute-bound, i.e have more instructions

than memory operations.

The work of Ofenbeck et al. (2014) shows how to apply the Roofl.ine Model in modern proces

sors. The authors assert that the W is a property of the chosen algorithm and does not depend on

the platform. And Q is dependent of platform features such as cache levels (memory hierarchy), and

in the most cases Q can be only estimated, the exact values have to determined by measurements.

The gemm can be used to exemplify the idea. The code is showed on Code 2.1, the code execute

the C +-- o:AB + (3C.

1 DATA 1YPE •A = (DATA_1YPE *) malloc (NI * NK * sizeof{DATA_TYPE));

2 DATA 1YPE •B = (DATA_1YPE •) malloc (NK * NJ * sizeof(DATA_TYPE));

3 DATA 1YPE •C = (DATA_1YPE •) malloc (NI * NJ * sizeof(DATA_TYPE));

"
s void gemrn{DATA_TYPE * A, DATA_1YPE * B, DATA 1YPE * C) {
a int i , j , k;

1 for (i = 0; i < NI; i++) {
s for (j = O; j < NJ; H+) {
9 Cl i * NJ + j] •= BETA;

10 for (k = D; k < NK; ++k) {

11 C(i * NJ + j] += ALPHA * A(j * NK + k I * B(k * NJ + j] j
12 }

13 }

14 }

115 }

C6digo 2.1: The Sample code gemm

2.2 ROOFLINE MODEL 11

In this code we have three matrices (A, B and C). Each matrix have N 2 elements, considering

NI= NJ= NK. So N 2 elements of DATA_TYPE = double (8 bytes) is 8 x N 2 , that is 24N2

of space in memory to store three structures. The A, B and C are read and only C is read and

written.

The line 9 C is updated with /3 constant (C[i *NJ+ j] = BET A* C[i *NJ+ j]), this line is

executed NI x NJ times, this results in NI x NJ reads and NI x NJ writes to cache. Depending

of cache write policies, at this point only reads (compulsory reads) are made from main memory to

read C elements (NI x NJ reads) or writes to main memory are made (NI x NJ writes to update

C elements with f3 constant multiply).

To complete the operation, at line 11 the C is in cache, and the A and B elements need to be

read. The expanded operation (C[i*NJ+j] = ALPHA*A[i*NK +k]*B[hNJ+j]+C[i*NJ+j])

use the current element of C in cache and read the A and B elements. The value is computed and

stored in C.

In general, looking at the code statically the operation of C f-- aAB + (30 the code read the

matrices A, B and 0, and write elements in C. The amount of bytes on memory traffic between

main memory and the last level cache will be 3 x N 2 x 8 = 24N2 , considering the size of double as

8 bytes. The total of arithmetic operations is 3 multiplies and 1 add.

W(n) = 2N3 + 2N2

Qr= 24N2

Qw = 8N2

Q(n) = Qr +Qw

Q(n) = 32N2

2N3 +2N2

I= 32N2

I = 2(N X N 2
) + 2N2

32N2

I _ 2(N x Jtf) + 2_prf
- 32.N"

I= 2N +2
32

I= N+l
16

In this sample code, N 2'. 15 is enough to the code be classified as compute-bound in the

considered device.

It is correct, but to obtain more accurate measures is necessary to know about the final code

generated to target platform, considering platforms that have different kind of instructions sets.
For example, the multiplication instruction can not exist on a target platform, being necessary to

carry out the operation with successive additions. Which leads to a mapping instruction 1 : N (one

instruction on algorithm level, generate N instructions on target machine code).

Statically can be difficult to know about all the memory access, mainly in loops with unknown

limits. In some cases, it is not known the amount of iterations to be executed by loop. This infor

mation only appear during the execution and when you have the dynamic behavior of code.

The cache policies to write data can be:

Write-Trough. The data is updated in the cache and in the main memory. The performance may

be degraded due to latency Main Memory, as each written in the cache generates a write in

the Memory that is slower.

Write-Around. is a similar to write-through, but write 1/0 is written directly to Main Memory,

bypassing the cache.

12 RELATED WORKS 2.3

Write-back or Copy-back. The data is written directly to cache and at the final the data is updated

on Main Memory.

Konstantinidis e Cotronis (2015) introduced the Quadrant-Split model as a derivation of Roofline

Model and an alternative that provide insights on the performance limiting factors of multiple de

vices to the same kernel in the same graph.

Another approach used by Lorenzo et al. (2013) was named of Dynamic Roofline Model (DyRM)

and divide the code in slices to measure each one, and creates rooflines to each part and combines all

at the final in one graph trying to capture the code behavior in a more dynamic manner. Measuring

parts of the code show the code evolution during the execution (Lorenzo et al., 2014).

The recent works have proposed extensions to original Roofline Model, which consider all lev

els in the memory hierarchy to get the traffic, and calculate the operational intensity counting

other instructions in addition to arithmetic instructions (Aleksandar Ilic e Sousa, 2015; Ilic et al.

, 2014) (Lo et al., 2015). The work of (Caparr6s Cabezas e Piischel, 2014) presents an extension

of the roofline model that provides a more detailed bottleneck analysis considering other hardware

parameters.

To access events and metrics to create the rooflines graphs, the most of works have been used

performance counters that are captured during the program execution. The performance coun

ters values are processed and analyzed using the Roofline Model concepts after the execution and

statically.

2.3 Performance Counters

To calculate the amount of floating point instructions that were executed and the memory

traffic, we must have access to devices performance counters. These counters are available as events

and metrics. To access events and metrics on Intel CPUs we can use the PCM (Intel, 2015c) and

for NVIDIA GPUs the CUPTI can be used (NVIDIA, 2014b, 2015b). In addition to these libraries

of manufacturers there are other tools such as PAPI (Mucci et al., 1999) which help in abstraction
and facilitate the capture and use of performance counters across systems as different processors.

The IA-64 and IA-32 architecture processors have a Performance Monitoring Unit (PMU). This

unit have a set of Model Specific Register (MSRs). The PMU counters and counter control registers

are implemented using these registers. The access is made by special instructions (RDMSR and

WRMSR) and according of the privilege level in which the application is running. The sampling

features have been improved with Precise Event-Based Sampling (PEBS) (Intel, 2015a) in PMU.

The mechanism enables the PMU to capture the architectural state and IP at the completion of

the instruction that caused the event.

In the processors of Intel Sandy Bridge and Ivy Bridge architectures have available 11 hardware

performance counters per core. Of these 3 are fixed counters for core cycles, reference cycles and

core instructions executed. The other 8 are programmable counters with minimal restrictions.

In the processors with enabled Hyper Threading support the 8 programmable counters are

divided and turn into 4 per thread. Since each logical processor is considered by the Operating

System as a physical processor and each thread must maintain the execution context, the measures

per thread will use own hardware counters. Further, when the hardware platform run with non

maskable interrupt (NMI) timer active, one of the four remaining counters can be used for this

2.6 HOOKING 13

control. At the final the number os available counter is 3 per thread. In the use of PAP I is only

guaranteed 3 programmable counters at a given time, in addition to the 3 fixed counters.

Most tools utilizes the same method to obtain the measurements. The code is instrumented

with functions calls that are inserted by programmer to initialization of counters before the region

of interest and after others calls are inserted to retrieve the events and metric values.

The GNU /Linux perf is currently implemented as a kernel module that permits non intrusive

measurements because the application code is not instrumented to make measurements. The events

and metrics are observed by the kernel during the application execution.

In terms of portability, the PAPI is presented as a good option, because it covers CPUs of

different architectures and manufacturers, and in addition it has support for components. It is able

to access the measures of native events available in the perf. It have another component for CUDA

(cuda), which it uses the CUPTI to retrieve counters, metrics and events of NVIDIA GPUs.

2.4 Hooking

The hooking technique that we are using to intercept the OpenMP calls is also used by oth

ers works for many proposes, including debugging and monitoring devices and Operating System

modules, creating logs and traces of runtimes and applications execution (Trahay et al., 2011)

(Mohr et al., 2002). Basically, it can be used to extend functionalities by code injection loading

shared libraries.

The EZTrace (Trahay et al., 2011) intercepts by hooking not only OpenMP libraries. It is a

trace generator for applications of HPC context, including hybrid applications with MPI, OpenMP

and CUDA. The EZtrace generates input files for trace visualization tools.

Mohr et al. (2002) proposes the POMP interface with directives and functions to allow OpenMP

code instrumentation catching events of parallel regions, loops, synchronization and runtime li

braries. But this work does not use interception, it is need to use directives to annotate the code.

2.5 OpenMP Support for Offloading and Accelerators

The OpenMP 4. 0 specification (OpenMP-ARB, 2013, 2015) covers the use of accelerators. The

GNU libgornp (GNU Libgomp, 2015a,b, 2016a,b) implements the support for offloading devices

using the OpenACC (OpenACC, 2011, 2013, 2015a).

The execution model is like a classical launching of GPU kernels, it is host-centric execution

and the host device offloads target regions to target devices. Threads can not migrate from one to

another device.

When a target construct is encountered, the target region demarcated with compilation directive

#pragrna amp target is executed by the implicit device task. The other tasks that encounter

the target construct waits at the end of the construct until execution of the region completes. In

the same way of the directives if the implementation have no support to target device or the target

device does not exist, the generated code for all target regions are executed by the host device.

This execution model behavior and characteristics are the same used in OpenACC.

14 RELATED WORKS 2.6

2.6 Final Considerations

Regarding that generate code for heterogeneous devices, the most part are compilers. The final

code is generated in most of cases separately or code to CPU or to GPU. The works that try to

decide in execution time have considered only the size of data.

The Roofline Model concepts as operational intensity are being used statically, in most cases

they are used in the study of programs behavior during the execution. The results of execution are

processed and the optimizations are applied in the code. The optimized code is executed again to

obtain new results. These works do not use operational intensity dynamically and at run time.

The programming models of OpenMP and OpenACC that cover the offloading for legacy code

need the annotations in the code using compilation directives. The user needs to declare explicitly

the code regions that will be offloaded.

Chapter 3

HOOKOMP: Hooking calls to OpenMP

Runtime

In this chapter are presented the concepts and the study about OpenMP compilation directives

implementation that were used for development of our interception library - HOOKOMP. The main

goal this part of work is provides support to OpenMP applications execution. The idea is that this

part of the model, which is under the responsibility of the proposed runtime, is able to execute the

prepared input code and intercept the application calls to OpenMP runtime.

We have adopted the use of OpenMP code format for runtime input code. This decision satisfies

one of the initial project requirements, that was to generate code for multicore and accelerator

devices. This decision complies with the requirements and it has contributed with a well structured

and well defined code format. The format facilitates the dynamic identification of code blocks such

as parallel regions and loops. These blocks are the structures that are intercepted by our library.

This library works together the libroofline library that is described in the Chapter 4.

The input code format is flexible enough to allow that it can be generated by the compilation

tool or written manually using OpenMP directives. It only needs to be prepared with alternative

functions for parallelizable regions.

The interceptable format is an OpenMP code post directives expansion. This kind of code have

no compilation directives, it is the application code before the linking process. The application code

with calls to defined functions of the OpenMP runtime Application Binary Interface (ABI).

Considering that the application have alternatives versions of parallelizable code regions. Our

runtime will control the execution intercepting the code and getting the measures of the performance

counters. So, it will can decide about the offloading to other devices according the operational

intensity of the considered code. The better device and the appropriate version will be chosen in

the offloading process at runtime. We are considering accelerators devices like CPUs or coprocessors.

3.1 Study of Compilation Directives and Expanded OpenMP Code

The compilation directives is one of the approaches that has excelled in the context of parallel

computing, because annotating code is usually easier than rewriting it. OpenMP implements the

fork-join model, in which multiple threads of execution perform tasks defined implicitly or

explicitly by OpenMP directives (OpenMP-ARB, 2011, 2013, 2015).

15

16 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.1

Compilation directives are used as annotations that provide tips about the original code and

guide the compiler in the parallelization process of candidate regions. These directives are commonly

implemented using the pre-processing directives #pragrna, in C/C++, and sentinels ! $, in the

Fortran language. During the pre-processing, the tokens that compose the directive are replaced

by the expanded code with calls to 0penMP runtime, if the annotated code is analyzed by a compiler

that supports 0penMP (Dagum e Menon, 1998; OpenMP API Site, 2012; OpenMP-ARB, 2011,

2013, 2015), such as GCC (GCC, 2015; GNU Libgomp, 2015a) and LLVM clang (Lattner e Adve,

2004; LLVM Clang, 2015; LLVM OpenMP, 2015). Each directive is expanded in a code with specific

format.

From the annotated blocks, the runtime can generate implicit threads to execute the parallel

regions or assign to some other thread the execution of explicit tasks defined by the programmer

using the task directive.

As we want to intercept 0penMP code, a study about the implementation of compilation direc

tives was made in the libgomp (GNU Libgomp, 2015a,b, 2016a,b, 2015c), the 0penMP implemen

tation for GCC. The library recently had the name changed of GNU 0penMP Runtime Library to

GNU Offloading and Multi Processing Runtime Library and it is able to make code

offloading using 0penACC (OpenACC, 2012, 2015b) (OpenACC, 2011, 2013, 2015a).

We verified the format of code generated by GCC with libgornp library. As loops parallelization

is target of the work, the constructors of parallel region and work sharing (parallel for) were studied

separately and combined. We generated the code in several GCC versions (4.8, 4.9, 5.3, 6.1) to verify

the format. In this text we adopted the GCC 4. 8, because this version presented a more consistent

format for interception.

Furthermore, as one of the future goals of this research is to develop a compilation tool using

LLVM projects, we verified the LLVM PoLLy (Grosser et al., 2011, 2012) support to generating

parallel code for 0penMP target. Currently, only the loop schedule of the runtime type is generated

by PoLLy.

3.1.1 Parallel Regions: para11e1 constructor

Threads are created from annotated code blocks. The master thread executes sequentially until

it finds the first parallel region. The similar fork operation creates a team of threads to execute a

parallel region, the master thread is part of the team. Nested parallel regions are allowed. When all

threads in a team reach the barrier that marks the end of the parallel region, the team is destroyed

and the master thread continues the execution alone until it finds a new parallel region.

Parallel regions are created in 0penMP using the #pragma ornp parallel constructor. This

is the most important directive in 0penMP, it is responsible for indicating parallelizable code regions.

When a parallel region is found, the group of threads that will execute the code in parallel is created.

However, this constructor does not divide the work among the threads, it only creates the threads

for parallel region. The code format of parallel construct is showed in Code 3.1.
I

1

1 #pragma omp parallel
2 {

I 3 body;

4 }

C6digo 3.1: Parallel directive format

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE 17

This directive is implemented with the creation of a outlined function using the source code
contained in body. The libgomp (GNU Libgomp, 2015a,c) uses the functions to delimit the code
region. The two functions related with parallel regions in libgomp ABI are listed in Box 3.1.1,
these functions are called to delimit the parallel regions.

Box 3.1.1: The LibGOMP 'A,BI - F\mctious related with parallel~~e1

void GOMP _parallel_start (void (• fn) (void •) , void •data, unsigned llum_ threads)
void GOMP _parallel_ end (void)

After the code processing, the expanded code assumes the format showed in Code 3.2.

1 / * A new function is created. •/
2 void subfunction (void *data){
3 use data;
4 body;

5 }

6

1 /• Directive is replaced by calls to runtime for create parallel region */
s setup data;
g GOMP _parallel_start (subfunction , &data, mnn threads) ;

10 s u bfunction (&data) ;
11 GOMP _parallel_end ();

C6digo 3.2: Expanded code format for parallel directive

The expanded code generated by GCC for parallel directive is showed in Code 3.3.

1 /* A new function is created. *I
2 main._omp_fn . 0 (struct .omp_data_s.0 * .omp_data_i) {
a return;

4 }

6 main () {
1 int i;

s int D.1804;
g struct . omp_data_s. 0 . omp_data_o .1;

10

11 <bb 2>:

12 .omp_data_o.l. i = i;
13 __ builtin_GOMP _parallel_start (main._omp_fn.0, &.omp_data_o.l, O);
14 main. _omp_fn . 0 (&.omp_data_o. l);
15 __ builtin_ GOMP _parallel_end ();
16 i = .omp_data_o.l. i;
11 D.1804 = 0;
18

19 <LO>:
20 return D.1804;

21 }

C6digo 3.3: Expanded code generated by GOO for parallel directive

18 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.1

A struct omp_data is created to pass arguments for outlined function that implements the

parallel region.

3.1.2 Loops: for constructor

A team of threads is created when a parallel region is reached, but with only a parallel region

constructor all threads will execute the same code. It is necessary distribute and coordinate the

parallel execution. The for constructor is used to share work among the threads of team that

was created in parallel region. The Code 3.4 shows a parallel region with a loop inside, which is

equivalent to combined mode of constructors showed in the Code 3.5.

1 #pragma omp paralle 1
2 {

a #pragma omp for

4 for (i = lb; i <= ub; i++){
r; body;
6 }

7 }

C6digo 3.4: For directive inside a parallel region

1 #pragma omp parallel for

I 2 for (i = lb; i <= ub; i++){
I a body;

4 }

C6digo 3.5: Combined parallel for directive

The work is divided according of the adopted scheduling of loop iterations. The scheduling

type is defined using schedule clause. This clause define how iterations of the associated loops are

divided into contiguous non-empty subsets, called chunks (OpenMP-ARB, 2011, 2013, 2015). The

scheduling is a manner how these chunks are distributed among threads of the team.

The 0penMP allow the use of some scheduling types: static, auto, runtime, dynamic and guided.

In addition, we are considering in our analysis the unspecified type for situations when the schedule

is not specified using the schedule clause.

Using the scheduling type static the iterations set is divided into sub-sets (chunks) according the

chunk_ size value. The chunks are assigned to the threads of team in a round-robin fashion respect
ing the order of the thread number. When the chunk_size value is not specified, the iteration space

is divided into chunks that are approximately equal in size, and at most one chunk is distributed to

each thread. In this case the chunk_ size is defined by number of iterations divided by number of

threads. The schedule clause declaration for this type is schedule (static [, chunk_size]).

In the scheduling type dynamic the iterations are distributed to threads by chunks considering

the availability of each thread. The threads request new chunks to execute when finish the previous

work. Each thread executes a chunk of iterations, then requests another chunk, until there is no more

work to be distributed. The schedule clause declaration for dynamic type is schedule (dynamic [,

chunk_size]). Each chunk contains chunk_size iterations, except for the last chunk, which may

have fewer iterations. When no chunk_size is specified, the default value is 1.

In the scheduling guided the iterations are assigned to threads in chunks as in the dynamic

type. The different behavior in the distribution is determined by the chunk_sizevalue value that

is passed to the 0penMP runtime. If the chunk_size is 1, the size of each chunk is proportional

to the number of unassigned iterations divided by the number of threads in the team, decreasing

to 1. For a chunk_ size with a k value greater than 1, the size of each chunk is determined in

the same way, with the restriction that the chunks do not contain fewer than k iterations (except

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE 19

for the last chunk, which may have fewer than k iterations). When the chunk_size value is not
specified, it defaults to 1. The schedule clause declaration for guided type is schedule (guided [,
chunk_size]).

In the scheduling type auto the decision regarding scheduling is delegated to the compiler and/or
runtime system. The schedule clause declaration for auto type is schedule (auto).

In the same way, in the scheduling runtime the decision about the scheduling is deferred until
run time, and the schedule and chunk_size are taken from the internal control variable run-sched
var (ICV). The schedule clause declaration for runtime type is schedule (runtime). For both
auto and runtime schedules the chunk_ size value must not be specified.

Similarly to processing of parallel constructor, the parallel for directive is also implemented
by creating a new outlined function with the source code of the loop. The format of combined
directive parallel for is showed in the Code 3.6.

1 #pragma omp parallel for num_threads (number_of_threads) schedule ({auto, static
, dynamic, guided, runtime}, {variable/expression I numerical value/constant
})

C6digo 3.6: Combined parallel for directive with schedule, chunk size and number· of lhreds definitions

When the scheduling algorithm is not specified the compiler generates the code using libgomp
ABI functions for static scheduling. The function calls that delimit the parallel region will surround
the outlined function call. The used functions to delimit the parallel code region and construct the
loop format are listed in the Box 3.1.2.

Box 3. 1.2: The LibGOMP

boo! GOMP _loop_static_next(long •, long •)
void GOMP _loop_end_nowait(vold)
void GOMP_parallel_loop_statlc(vold (•)(void•), void •,unsigned, long, long, long,

Jong, unsigned)

void GOMP _parallel_end(void)

According with the libgomp manual (GNU Libgomp, 2015c) the expanded code that replace
the parallel loop declaration is composed of an outlined function and calls to create the parallel
region. The control of loop iterations chunks that are executed by each thread is inside the new
function. The expanded code format is showed in the Code 3.7.

1 void subfunction (void •data) {
2 long _s0, _eO;
3 while (GOMP _loop_static_next (&_s0, &_eO)) {
4 long _el = _eO, i;
5 for (i = _so; i < _el; i++)
s body;
7 }

s GOMP _loop_end_nowait ();
9 }

10

11 /• Directive is replaced. */
12 GOMP _parallel_loop_static (subfunction, NULL, 0, lb, ub+l, 1, 0);
13 subfunction (NULL);
u GOMP _parallel_end ();

20 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.1

- - .J

C6digo 3. 7: Expanded code for parallel for directive

The Code 3.8 and Code 3.9 show the use of static scheduling in two loops. The first loop with

loop upper bound assuming a numerical value and the second one using a variable to define the

upper bound.

1

1 #pragma omp

static)

I
2 for (i = O;

3 // body.

I 4 }

- - -

parallel for schedule (

i < 1024; i++){

C6digo 3.8: Static loop with upper bound using

value

1 n = 1024;

2 #pragma omp parallel for schedule (

static)
3 for (i = O; i < n; i++){

, // body.

Ii }

C6digo 3.9: Static loop with upper bound using

variable

The code that was generated by GCC is showed in Code 3.10 and in the Code 3.11 that are very

similar, but they are differing only in the use of a struct to pass the data in the outlined function

call.

1 main () {

2 f* Variables declaration was suppressed . •/
3

, <bb 2>:

Ii __ builtin_ GOMP _parallel_start (main. _omp_fn .O, OB, O);

8 main._omp_fn.O (OB);

1 __ builtin_ GOMP _parallel_end ();

s return;

9 }

10

ju main._omp_fn .O (void • .omp_data_i} {
12 /• Variables declaration was suppressed. •/
13

1

1,<bb 11>:

15

16 <bb 3>:

11 D.1816 = __ builtin_omp_get_num_threads ();

18 D.1817 = __ builtin_omp_get_thread_num ();

1u q .1 = 1024 / D. 1816;

20 tt .2 = 1024 % D . 1816;

21 if (D.1817 < tt .2)

22 goto <bb 9>;

23 else

•~ goto <bb 10>;
25

26 <bb 10>:

21 D. 18 2 0 = q . 1 • D. 181 7 ;

28 D. 18 21 = D. 18 2 0 + t t . 2 ;

29 D. 18 2 2 = D. 1 8 21 + q . 1 ;

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE

3□ if (D.1821 >= D.1822)
31 goto <bb 5>;
32 else

~ goto <bb 8>;
34

35 <bb 8>:
36 = D.1821;

37

38 <bb 4>:
39 = i + l· I
40 if (i < D.1822)
41 goto <bb 4>;
42 else

43 goto <bb 5>;
44

45 <bb 5>:
46

41 <bb 6>:
48 return;
49

so <bb 9>:
51 t t. 2 = O;

52 q . 1 = q . 1 + 1 ;

53 goto <bb 10 >;
54 }

C6digo 3.10: Expanded code for parallel for directive

The code that was generated by GCC for the Code 3.9 is showed in Code 3.11. - -
1 main () {

2 /* Variables declaration was suppressed. *I
3 struct .omp_data_s .0 . omp_data._o .1;
4

5 <bb 2>:
e n = 1024;
1 .omp_data_o.1.n = n;
s __ builtin_GOMP _parallel_start (ma.in._omp_fn.0, &.omp_data_o.1, 0);
9 main._omp_fn.0 (&.omp_data_o.1);

10 __ builtin_ GOMP _parallel_end ();
11 n = . omp_data_o .1. n;
12 return;

13 }

14

15 main._omp_fn.0 (struct .omp_data_s.0 * .omp_da.ta_i) {
1e /* Variables declaration was suppressed. *I
11 int n [value-expr: .omp_data_i->n];
18

19 <bb 11 >:
20

21 <bb 3>:

21

22 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME

= .omp_data_i->n; 22

23

24

25

26

27

28

D.1821
D.1822 __ builtin_omp_get_num_threads ();

D.1823 = __ builtin_omp_get_thread_num

q.2 = D.1821 / D.1822;

tt .3 = D.1821 % D.1822;
if (D.1823 < tt .3)

goto <bb 9>;
else

goto <bb 10>;
31

l32 <bb 10>:

33 D.1826 = q.2 * D.1823;
34 D.1827 = D.1826 + tt .3;

35 D .18 2 8 = D. 18 2 7 + q . 2 ;
36 if (D .18 2 7 >= D .18 2 8)
37 goto <bb 5 >;
38 else
39 goto <bb 8>;
40

!41 <bb 8>:
42 i = D.1827;

I:: <bb 4>:
45 i = i + 1;
46 if (i <D.1828)

(goto <bb 4>;
48 else

149 goto <bb 5>;

150
5>: i51 <bb

152

6>: j53 <bb
l54 return;
55

56 <bb 9>:
51 tt. 3 = O;

58 q . 2 = q . 2 + 1 j

w goto <bb 10>;
60 }

() j

C6digo 3.11: Expanded code for parallel for directive

The Figure 3.1 is a graphical representation of the Code 3.10.

3.1

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE

<bb 2>:

_bulllin_GOMP _pnmllclJUln'(maln._ompJn.O, OB. 0);

main._ompJn.O (OB);

_buillin_GOMP .J)l!Tllllcl_c(ld 0:

relurn;

<bb II>:

0 .1816 • _bUIIUn_omp_gcLnum_LhrrlU!s ();

0, 1817 • _b11Ut11Lot11p..,aeuhread_num O:
q.l = 10241O.iSICS:

11.2 • 1024 'll, D.1816;

if {D.1817 < t~2)
aoto<bb9>;

ebe
goto <bb ID>;

<bb ID>:

D.1820• q.l • 0.1817;

0.1821 "'0.1820 + tt.2;

O.1822z 0.1821 +q.l;

if (D.1821 >• D.1822)
goto <bb5>:

ellle
goto<bbb;

23

Figure 3.1: Visualization of generated code format that uses static scheduling and loop upper bound with
numeric value

The Code 3.11 can be represented graphically by Figure 3.2.

24 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME

<bb2>:

n a 1024;

.nmp..)blo,, l.n • n:
_ bui11in_OOMP _pmllel_llalt (maln._ompJn,O, &.omp_~o.l, 0);

mnln,_ompJn.O (&.amp_.dola_o, I);

return;

<bbl>:

D, I R2 I • .omp_da1a_l->n;

D, I au-_ bulltin_omp-1clJ1Um_threads 0;

D.1823 • _bUUUo_omp.,aet,_lbrcad_j1wn 0:

q.2• 0.1821 / D.1822:

tt.3 • D.1821 ~ D.1822;

if(D.1823 < u.3)
So!b <bb 9>;

else
a<>1o<bb 10>;

D.1826 • q.2 • D.1823:

D,1821= D,1826+ 11.3;

D.1828 • D.1827 + q.2;

lf(D.1827 >• D.1828)
aoio<bbS>;

else
l"!O <bb 8>;

3.1

Figure 3.2: Visualization of genemted code format that uses static scheduling and loop upper bound with
variable

For unspecified or auto schedule type, the GCC generates the same format that is generated for

static static.

Using the others schedule types runtime, dynamic or guided the format of generated code among

them is the same, but have two formats depending of loop upper bound and chunk_ size definitions.

3.1 STUDY OF COMPILATION DIRECTNES AND EXPANDED OPENMP CODE 25

If the code have numerical values on these definitions the code have a format. Otherwise, if variables
or expressions that need evaluation are used, then the generated code format is another.

1 #pragma omp parallel for schedule (
dynamic)

2 for (i = O; i < 1024; i++){
a // body .
4 }

C6digo 3.12: Dynamic scheduling loop with
upper bound using value

l Il = 1024j

2 #prawna omp parallel for schedule (
dynamic)

I 3 for (i = 0; i < n ; i ++){
1 4 // body.

5 } J
C6digo 3.13: Dynamic scheduling with loop
upper bound using variable

The Table 3.1 summarizes the combinations for upper bound and chunk_ size definitions and
the code format that is generated. We considered when the assumed value is a numerical value or a
constant value as value. And when is a variable or an expression that need of evaluation as variable.

Table 3.1: Possible combinations for upper bound and chunk_size definitions

Upper Bound chunk size Format

value value First

variable value Second

value variable Second

variable variable Second

value unspecified First

variable unspecified Second

The pattern described in the Table 3.1 tells us that the presence of some one definition using a
variable or expression is an enough condition for the second code format to be generated. This is
due to the need for evaluation to discover of the final value assumed by the variables.

For loops using the dynamic, runtime and guided schedule types - «schedule_type», the
GCC and libgomp use the functions listed in Box 3.1.3 to delimit the parallel region code and to
create the first loop format .

Box 3.1.3: The LibGOMP :A.BI - Pu net.ions used on , · , · 'fir ·

void GOMP_parallel_loop_<<schedule_type>>_start (void (•fn) (void•), void •data,
unsigned num_ threads, long start , long end, long I ncr) i

void GOMP _parallel_end (void);
bool GOMP _loop_<<schedule_type>>_next (long •!start, long •lend) i
void GOMP _loop_end_nowait (void);

As it is needed in the second format the evaluation of variable or expression the parallel region
call is used. The functions that used in second format are presented in Box 3.1.4.

Jq·dsn·aw1@1ldo :l!ew-a l!Sl?J8
Z0ts-ism: (ii) :xe:1 dS 'otned o~- 0LB-1>•1£50

00Z9~Z:ilM60C (ii) .. ,a.L iBZ99 ieJSOd ex,eo

11seJ9 '01ned oes - oso-eosso
o rn i ·oeiew op en~
8!J\!l!SJ8A!Un apep!:)

26 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME

e Lib ~ ABJ - Fuud ions used on •. l for second form.at

void GOMP _parallel_start (void (• fn) (void •) , void •data, unsigned num_ threads) ;

void GOMP _parallel_end (void);

void GOMP _parallel _loop_ <<schedule_ type>> _start (void (• fn) (void •) , void •data,

unsigned num_threads, long start , long end, long incr);

boo! GOMP_loop_<<schedule_type>>_next (long •istart, long •iend);

void GOMP _loop_end_nowait (void);

The first format code is showed in Code 3.14.

1 void subfunction (void •data) {

2 long _s0, _e0;

3 while (GOMP _loop_runtime_next (&_so, &_e0)){

, long _ el = _ e0 , i ;

5 for (i = _so; i < _el; i++){

6 body;

7 }

8 }

u GOMP _loop_end_nowait () ;

10 }

11

12 /• The annoted loop is replaced. •/

13 GOMP _parallel_loop _runtime_start (subfunction , NULL, 0, lb , ub+l, 1, 0);

14 subfunction (NULL);
15 GOMP _parallel_end ();

C6digo 3.14: Expanded code for dynamic, runtime and guided schedule in the first format

The second code format is showed in the Code 3.15.

r 1 void su~function (void •da~){

1
2 long1,_s0,_e0;

13 if (GOMP _loop_runtime_start (O, n , 1 , & _ s0 , & _ e0)){ I: do {

6

long _el = _e0;

for (i = _ s0 ; i < _ eO ; i ++) {

1 body;

8 }

9 } while (GOMP_loop_runtime_next (&_s0, &_eO));

10 }

111 GOMP _loop_end () ;

12 }

113

14 /• The annoted loop is replaced. •/

1

15 GOMP _parallel_start (subfunction, NULL,

1a subfunction (NULL);

I 11 GOMP _parallel_ end (~ ~ __

0) j

C6digo 3.15: Expanded code for dynamic, runtime and guided schedule in the second format

'v'OI.LSl.l'v'.LS3 3 'v'Ol.l 'o' ll\l3.L'v'II\I 30 O.Ln.LI.LSNI

Oln'v'd O'l(S 30 30'v'OISl:13AINn

3.1

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE

First format is shown in the Code 3.16.

1 main () {
2 /• Variables declaration was suppressed . •/
3 <bb 2>:

4 __ builtin_GOMP _parallel_loop_dynamic_start (main._omp_fn.0, OB, 0, 0,
1024, 1, 1);

s main . _omp_fn.O (OB) ;
a __ builtin_ GOMP _parallel_end ();
1 return ;
8 }

9

10 main . _omp_ fn.0 (void * .omp_data_i) {
11 /• Variables declaration was suppressed. •/
12 <bb 10> :
13 <bb 3>:
14 D.1818 = __ builtin_ GOMP _loop_dynamic_next (&. is tart O .1 , &. iend0. 2) ;
15 if (D .1818 != 0)
IB goto <bb 8>;
11 else
1s goto <bb 5>;
19

20 <bb 8>:
21 • istart0 . 3 = . istart0 .1;
22 i = (i n t) . i s t a r t 0 . 3 ;
23 .iend0.4 = . iend0 . 2;
24 D.1822 = (int) . iend0 . 4;
25

2a <bb 4>:

27 i = i + 1 ·
'

28 if (i < D.1822)
29 goto <bb 4>;
30 else

31 goto <bb 9>;
32

33 <bb 9>:
34 D.1823 = __ builtin_ GOMP _loop_dynamic_next (&. istart0 .1 , & . iend0. 2) ;
35 if (D.1823 != 0)
36 goto <bb 8>;
31 else
~ goto <bb 5>;
39

40 <bb 5>:
41 __ builtin_ GOMP _loop_end_nowait ();
42

43 <bb 6> :
44 return;
45 }

C6digo 3.16: Expanded code for parallel for directive with dynamic schedule (first format)

27

__ _J

Jq·dsn·aw1@6d:, :l!ew-a 11se.ig
Z0CS-160£ (ll) :xe:1 dS '01ned ovs- 0LS·t,lCS0

00Z9/?Zl9-l60C (l l) :·1a1 l8Z99 1e\S0d ex1eo

t!seJa ·01ned oes - oeo-sosso
0101 ·oeiew op en~
eµ~1SJaA1un apep1::,

28 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME

Second format is shown in the Code 3.17,

I 1 main - (-) {

2 f* Variables declaration was suppressed. *f
3 struct .omp_data_s.0 .omp_data_o.1;

4

6.<bb 2>:

6 n = 1024;
1 . omp _data_ o . 1 . n = n ;

s __ builtin_GOMP _parallel_start (main._omp_fn.0, &.omp_data_o.l , 0) ;

g main._omp_fn.0 (&.omp_data_o.1);

10 __ builtin_GOMP _parallel_end ();

u n = . omp _data_ o . 1 . n ;

12 return;

13 }
14

16 main._omp_fn.0 (struct .omp_data_s.0 * .omp_data_i) {

1e / * Variables declaration was suppressed. *f
11 <bb 10>:

'11s <bb 3>:
19 D.1822 . omp_data_i->n;

(long int) D.1822; 20 D.1823 =
I
21 D.1826 __ builtin_GOMP _loop_dynamic_start

. 2 , &. iend0. 3) ;

if (D.1826 != 0)

124

goto <bb 8>;
else

2s goto <bb 5>;

26

21 <bb 8>:
2s . is tart 0 .4 = . is tart 0 . 2 ;
29 i = (int) . istartO .4;

I
30 . iend0. 5 = . iend0 . 3;

31 D.1830 = (int) .iend0.5;

32

34 i = i + 1 ·
'

35 if (i < D. 1830)

136 goto <bb 4>;
37 else

138 goto <bb 9> ;

39

(0, D.1823 , 1, 1, &. istartO

40 <bb 9>:
1

1

41 D.1831 = __ builtin_ GOMP _loop_dynamic_next (& . ist art 0. 2, &. iend0. 3) ;

4:i if (D.1831 != 0)

goto <bb 8>;
else

goto <bb 5>;

46

41 <bb 5>:

'lf:>llS!l'llS3 3 'lf:>1.1VW3l'lf!N 30 01011.LSNI

Oln'lfd ovs 30 3 □ '1f □ IS~3/\1Nn

Ofl!Jenpe.JE)-59d ap OflSS/WO:J

3.1

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE 29

48 __ builtin_ GOMP _,loop_end_nowait ();
49

50 <bb 6>:
51 return;

I
___ __j

C6digo 3.17: Expanded code for parallel for directive with dynamic schedule (second format)

Figure 3.3 shows the graphical representation for the first format showed in Figure 3.16.

<bh'l>:

_hulhln_OOMP,JW>1llcl.,Jcof,_d)'n,mlc_•_, (o,U1,_n11~,Jh.O, OIi, 0, O, 10l4, I, l~

n11d11,_u111,_0l.ll (08);

_bullll11.,00MP_pnllcL•nJ 0:
return.:

D, I1I1 • _hulltirLOOMP Juoit_d)mm.,_1101 I.1:.la""tl. I. A.ladl.lt.

it(ll.11I1 I• 0)

.f.."°<Mlb,
pcbb,~;

<bbb•

,111"10.3• ·"'""'·' '
I • C••l .111"'10.J;
,ltflll).4 • . lendl.1.2;

D,lttl• (inl) .~rJU;

)&I+ I,

lf(I < D. l~:?.l)
..,<l.b•bi

et..
ll'"O<bb9>,

0 , IUJ • _halllll\.OOMP Juor_clyn:tmk..JtUI (.t.I•-,o.l, A,lrn,JI.J~
lr(l),IDJ la 0)
.1J11D<ltbll>:

,be
-<bb!>;

Figure 3.3: Visualization of generated code format that uses dynamic scheduling (first format)

The graphical representation for second format that was showed in Figure 3 .17 is presented in
the Figure 3.4.

Jq·dsn·awr@lld:l :new-a l!SBJS
l:0£9-1601: (11) :xe:1 , dS 'o,ned oes · 0L6·~1CS0

00l:9/l:l:19·~60C (~I) :·1a1 ~81:99 IBISOd ex,eo

(!seJa '01ned oes -oeo-eosso
o~o~ ·oeiew op en~
eµ~l!SJiit\!Un ilPBP!O

30 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME

<111>2>:

n-= I02-h

_t,uU1u1..0(IMP -11.an,ll<LVllll l•••in-rnorJn.0, &.omp..dal ... o. I. 0):

main._omr_ru,O (& .oh11, ... J :.t'-o, I):

_ builoin_OOMP..l'or•lkl_cnd 0:

n11,0111r-da11_0. 1.~

return;

<bb l>:

I), 1Ml6 ,.. _hulhhl..OOMP_l<>or_d)'••ml<--""' (D, IJ.IK:?.J, I, I. 4 .1»"'111.2. &t.icnJ<J.J~

((O.IJ~~ l- 0)
rn<bl,b; ., ..
p_lM<hb S>J

<hh I>~

.i,11110.4: .U111r10.2:

l=(inl) .i,h1rtlU:

,lclldO.S ~ .ic,kXJ.J:

D. 1130 = l4111J Jt'.1d>.5:

<bb4> :

l= I+ I;

lf(l<ll.11.lO)
p,an<hb-1>;

cl,c
p,h><bb9>;

O. IUI ~_buihln_oo•tP_loor_dynum;.;_ne,1 (A.iala,10.l, A.icndl.3t,

lf(O. IIJI 1~01
.... <bbb;

.i ...
••o<bb.b;

Figure 3.4: Visualization of generated code format that uses dynamic scheduling (second format)

3.1

The study of the expanded code of directives showed that there are at least two loop formats,

which are generated according of the use of variables definitions. Variables that represent the loop

iterations upper bound or the chunk size influence the code generation. If numerical values or

constants are used, the GCC + libgomp generate one format and if values are variables or expressions

that require evaluation for the discover of final value, the second format is generated.

Another interesting point to check is how execution of adjacent loops inside the same parallel

region is made. The Code 3.18 has two loops with different schedules and upper bounds and

chunk_ size definitions, they are sharing the same parallel region.

'lf:lllS ll'lflS3 3 'lf:lllv'W3l'lfW 30 OlnlllSNI Ofl~enpl!IJE)-S9d ep Of;SS/WO:J

o,nvd O\fS 30 30'1f01Sll3t\1Nn

3.1 STUDY OF COMPILATION DIRECTIVES AND EXPANDED OPENMP CODE

1 num_t = 8;
2 #pragma omp parallel num_threads(num_t)
3 {

4 #pragma omp for schedule (runtime)
5 for (i = O; i < 1024 ; i++){
0 / / body _1;
7 }
8

9 #pragma omp for schedule (dynamic, 32)
10 for (j = O; j < n.

'
j++){

11 // body _2;
12 }
13 }

C6digo 3.18: Parallel region code with two loops inside, loops with different configurations

31

In the intermediate representation generated by GCC that is shown in the Code A. l, we can
see that the generated code follows the formats to parallel region, in which an outlined function is
created to handle the code inside the demarcated parallel region. The Figure 3.5 shows the idea, in
the end of the first loop the threads are find an implicit barrier in the call GOMP _loop_end () .

. . : ,-------~ '
1 GOMP _parallel_1tart() J c 1 . ~ - ----J .,2 . . ~----- . ' ' : outJfn1d_tunctlonQ :
: ,-----_- _- _- _- _-_-_-_-___ - :i :

'
I GOMP __parallel_end()] i

·-------·-·-·· .. ·········-···-.....................
... ,

[outlined function]

I GOMP _loop_ «schedule_type» _start())

I GOMP _loop_ «schedult_type>> _next()]

I GOMP Joop_end() l

I GOMP _loop_ «schedule_type>> _start()]

I GOMP _loop_ «schedule_type» _next() J

I GOMP _loop_end_nowalt() J

'
' '
'
'

: ...
L-~

..I

r ••b arrtar .,l
~ I

N -~ : 0
..I

I

l .. ,

'

Figure 3.5: Two loops inside the same parallel region

The difference in comparing with the original format is in the finalization of the first loop.
Instead of the first loop being finalized with the GOMP _loop_end_nowai t () he is finished with
the call to the function GOMP _loop_end (), which has an implicit barrier. All threads will wait the
end of the execution of the first loop and then start the execution of the second loop. The graphical
representation of the code is showed in th Figure 3.6.

32 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME

~

T
<NI:!><
nu.11.!.I ~s:.
,01nrJlal1UL 1.11 • n;

QU•t_L JU• {Wllipal 111111, n1.1 na_1~

t111Liin_Om,1., _,.,-,1lk(jU&N (1na\u_,,.,~,n o, tt ,INftruJ'M""-A I. ftU.J.11).k

w~11\J,i.O i&.11111r_1l .11~ u, I).

_l,u1~11LOOMP ..J'Ol"llcl.,,,J ();

• • .osnr_\bf1...o. I.~

ll,11(17•~

I chltl> t I
I <IJI>: I
I re,,... D.11"7; J

t!XIT

D, 19.ll! ■ _J,ulflln..OO~IP_hw ... l..._,.,,t(O, Ulloi, I,-'•"'""°·'• A,ladl.7)

1110,11~1-01
,-.nctib 1-1>:

'"' ••n<'hl>'>:

cbhl\>:

·· ···.

lltl<0.11;10)
• .,<bb4>; ., ..
Jtlhl<.l'(, lj>;

D. IJ;lf. _. .. ,11-..001-1, .. ~ .. Mllllu,f'I (,\J ,il.h, "' ·" 11•.lt. i).

lffll,!&ll la Ol
f'Ut ~l,b .

dw
a)JIU<hh.b,

····· ·

Di l l46• _ htllr&n...OW.IP_b.lf'..>l>'""'"•'-.. --'•1 ru, 011&.0. ,,J:J. &. , .. .n0'!. k..knJ:J~l)!

lftl), ltlol~ ._ 0)
J&Jt'•<Nl t:>, ...
JPto<bb b;

<hb7>•

l•I+ i:
lfO< D.1150)

JtJIII <MJ1>;
,i..
-•bh I.I>;

D, IUI • _to,llln..OOMP_b~..d)noulc-""'" (,t.1,1,ntl.l, It,....,,)~

lf(D IIJI '•IIJ
ct:'° cbft I!>:

Ffo<bhb,

<htr I>;

Figure 3.6: Graphical representation of two loops inside the same parallel region

3.1

3.2 INTERCEPTABLE OPENMP CODE FORMAT 33

The handling function that was created with the parallel region code contains the code of two
adjacent loops. As can be seen in the code, There were not created two functions, one for each loop.
The function handles both loops inside the same parallel region.

3.2 Interceptable OpenMP Code Format

The interceptable structures in our library are parallel regions and loops. The loops need to
have the schedule type runtime, dynamic or guided. The format for static scheduling only divide
the iterations by number of threads. It do not have an intermediate function in the format that
allows to control how much of code will execute to get measures.

The function GOMP _loop_«schedule_type»_next (...) is the most important in the in
terceptable formats, because this function get the lower and upper index that delimit the sub-set of
iterations - a chunk. In our interception mechanism when the certain percentage of code is reached,
the interception of this function allows that the execution to be stopped. And if the offloading
decision is positive, it allows to set that other threads have no more work to do. The Figure 3.7
shows the schema of threads getting chunks and executing these sub-set of iterations.

chynk

t t
istart iend

I· ~,
chunk._slzo _so - eo

void subfunction (void *data){
long _s0, _ee:

Set of Iterations

while (GOMP_loop_<<schedule_type>>_next (&_se, &_ee)){
long_ el_ =e0,.1 ,
:for (1 = s0; 1 < el: i++):
: ... body; .. ------------- :' (4i,jl,6\ ■B·MN

}
GOMP_loop_end_nowait ();

GOMP_parallel_loop_<<schedule_type>>_start (subtunction, NULL, 8, lb, ub+l, l, 0):
subfunction (NULL);
GOMP_parallel_end ();

Figure 3. 7: Loop iterations execution by threads

Master Thread

' Start para/le/ region I

il il ll
End para/le/ region

l

The threads in the team execute the same outlined function. During the execution each thread
request to runtime more iterations (chunks) to execute.

When we are generating the GCC code using the libgomp we can verify that the code format
for loops are affected by the manner how some variables are defined in the compilation directives
and loop limits. Although, they are equivalent codes, they have different structures and they make
calls to different functions.

The chunk_ size value can be defined putting a numerical value directly in the code. A defined
constant can be used too and during the pre-processing it will have the same effect. An expression
that results in a value after the evaluation or a single variable can be used in this definition. The

34 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.2

same rules are applied to upper bound loops definitions.

The generated code can have two formats according to the definition, the Figure 3.8 shows the

first and the Figure 3.9 the second. In these figures the dynamic can be replaced by runtime or

guided, because they have the same format.

Appllcatlon Call function/operation
Flrat Format

{chunk or loop unMr bound I• a numerical value or a con1tan1l
GDHP ...JI•• alleUaap_dynuic_1 tart (nin . _001p_f n • fl , & • 00lp_da ta_a .1, ◄ , 8 . 1926 , 1, ~) ;

Par"".i Reolon >» t:rHt• and •tart th• t•u, i,1th :rn1t1&.lJ.za tJan ar laap .
lllatl ga..p n~tHII(-), go,np_Joap_i.nH(.. .) , aamp_ tea~start(.. .)

Call tuncllon aa.in . amp_ fn . O(&. a• p data o.J/

I
GOHP_laap_dynuic..next (&,istarte.2, &,iend0.3) ;

Lpop Slut In/rial Chun/I »> .. t the fi.r•t Ht of 1tara t1 ans.
11011p_1ter_dynwc_next_ '(, ••)

ebb 9>:
.istarte . ◄ = ,istarte.2;
1:. (int) .istarte . ◄ ;
,iendB,6 = .iendB . 3;
D.176tl = (int) .iende.s;

<bb 4>:
D, 1761 = (long un1ign1d int) 1;

Execul1on D.1762 = D,1761 • ~,
D.1763 : • ""P-d■to....1•> ■ ;
D,1764 = D,1763 • D, 1762;
·0.1,~ = 1 ;
1 =- 1 • 1;
1f (1 < D,i768)

goto <bb -I>;
ell■

got a <bb 1G>;

NelttChun/1 GDHP _.1aap_dynant1c..next (& • istarta. 2, &.iende . 3) ;
>» aet th• n1xt Ht af 1t1rat1on1,

gomp_iter_dyn .. 1.c_next_ '(,,,)

I
GDHP_laap_end_naws i t ();

loop End Rerum al Function Call »> Finish th• "'°'" •ha••·
gamp_worl(__share enct..nawd t ()

Pwlllel Raglan
llDHP ...Jlarallel_end (J;
i» F1n1sh th• parallel r•g1on. Elld 11o•p_te1J1..end ();

Figure 3.8: First format with dynamic scheduling

In the first format the call to function GOMP _parallel_loop_«schedule_type»_start ()

starts the parallel region. It creates the team of threads and initialize the loop execution controls.

Inside the outlined function GOMP _loop_«schedule_type»_next (...) is used by threads

to get the first chunk. The thread execute this first chunk and after retrieves in loop the next

chunk to execute until have no more work to do. When the thread finishes the loop calling

GOMP _ loop_ end_ nowait{} the loop work share is finished too. The parallel region is ended in

the call GOMP _parallel_end () that deallocates the team of threads.

The same semantic is applied in the second format, but different functions are used. The second

format is showed in the Figure 3.9.

In the second format the parallel region is started with the call GOMP _parallel_start (...)

in this call only the team of threads is created. The loop work share initialization is made in

side the outlined function and the call to GOMP _loop_«schedule_type»_start (...) is used

to retrieves the first chunk. The threads that can get the first chunk execute it and use the

GOMP_loop_«schedule_type»_next (...) to get the next until the finish the loop execution

calling the GOMP _loop_end_nowait (). The parallel region is finished using the same function

GOMP _parallel_end () that deallocates the team of threads.

3.3 INTERCEPTABLE OPENMP CODE FORMAT 35

Application Call function/Operation Second Format
{chunk or loop upper bound Is a \latlable or one exe res1lonl

Pnrallol,l'l o~lon 0OMP_paralle.Lstart (main. omp_fn .a, &..omp_data...o.1, 4) ;
»> cr .. t• and atart th• t••· Start

gomp_teut...start (. ..)
Call function mdn. _o,.p fn . O (&.amp dete_o.JJ Fllno U II/I concu r

0OMPJ00p_dyn&111ic_start (8, 182S, 1, 0.1753, :. . istarte . ?., 1< , iende.a1;
Loop Start lnlrlal Chunk »> CrHt• and •tart wrlc •hare: Loop in.ttJ aJJ Htfon.

>» ••t th• f1r•t Ht of 1t•rat1on•.
g011tp_loop_in1t(,.), gomp_1ter dynamJc_nu:t_ '(...)

<bb 9> :
.1start8. 4 = .istarte.2;
1 = (int) .istarte.~;
.iende . s = . iende.3;
D. 171;8 : (int) .iende. 5;

<bb 4> :
D,1761 = (long unoigned int) 1;

Execul/on 0.17G2 : D,1iG1 • A;
D.1763 = . omp_data..1->a ;
D,17G.ol = D.17133 + D,17G?.;
~0.1764 = 1;
1 = 1 • I;
if (1 < D.1708)

goto <bb • >;
elH

goto <bb 18>;
Next Chunk GDMPJoop_dynamic_next (& . istarte. 2, &.1end9.3) ;

>» let the n_,,t Ht of .1t,rat1on8,
gomp_Jter_dynam1c_nu:t_ '(.••)

GOl'IP Joop_end_nawai t (J;
Loop End Ratum of Function Call »> F1n1•h th• work • hara.

g011tp_work_share ond_nOlil1t ()

Panllol Region IOOMP_paralle-Lend () ;
j » F1n1•h t,,. parallel region. End

11omp_tH11t.•nd (};

Figure 3.9: Second format with dynamic scheduling

The Figure 3.10 summarize the two formats that were identified and that are interceptable by
our library.

[~_F_i_rs_t_F_o_r_m_a_t_~]
~ .. ------- .. .
! [GOMP _parallel_«schedule_typ1>>_1tart() j

outllned_tunctlonQ

[GOMP _parallel_1nd() I
'

................................ ·····················-···
(outlined function]

[GOMP _loop_ «schedule_typ1>> _n1xt() I

[GOMP _loop_ «schedule_typ1» _next() I
'
i [GOMP _loop_end_nowalt()]

~- ·-· ---·-- --

' '

[Second Format]

GOMP _parall1l_1tan() I
outllned_tunctlonQ

[GOMP _parall1l_1nd() I

[outlined function]

[GOMP _loop_ cc1ch1dul1_type» _stan() I

[GOMP _loop_ ccnhedule_type» _next() I

[GOMP _loop_end_nowalt()]

Figure 3.10: Structure of loop formats

36 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.3

3.3 Interception and Offloading Mechanisms

For offloading purposes, the runtime needed to control the execution of threads, and decide

when to make the code offloading and what is the better device to execute the code. Initially, the

execution starts with OpenMP code, which will have some of their calls intercepted by the execution

control of threads in the CPU.

The Figure 3.11 shows the initial version that was using one collector thread to get measures of

performance counters and the others were blocked. This approach proved to be inefficient, because

just only one thread was getting the measures, so for a -period of time the application run in single

thread execution mode. The poor performance was evident in contrast with the normal OpenMP

version that was executing with all threads.

Master thread

l
I Start parallel region

DD D l
: I Start parallel loop I
0

! n1 n n •
~ U i [G11t.P11rform11nce Counters]
~ : [Dec:lslon.11bout·offloadl'!JI. J

: ··············;·············1

Block

. .
t :
I End parallel loop

End parallel region

Master thread

l
Start parallel region I

DDll
I Start parallel loop I

ill ~m~.•~-~
Block

~~~~ 
t_■I j y_' :7 \:' :7 ( :7 
\./ \/: \./ \/' 

I End parallel loop 

I End parallel region 

Master thread 

Start parallel region I 

DDD l 
I Start parallel loop I 

nDD l 
UL_ .. _ No. O"loadlng ...... _, 

Block 

◊ ◊◊ ♦ 

ij ij ~ ' 
End parallel loop 

I End parallel region 

Figure 3.11: Threads executing loop iterations (Version 1) 

The second and current approach uses one thread in the process to collect measures of per

formance counters and the other threads can execute freely. The threads execution mechanism is 

showed in Figure 3.12. 



3.4 

Master thread 

il 
I Start parallel region 

nnn t 
~ J Start parallel loop I 

!1·n1 0 D I ~ j l rc,;;i ·;:,,;;:;o,;:,,"iiiice· co"iiiirii,s] 
: : 1··r:r·······•··-······• ·············· 

M , i r·oec:1s1on •b·aui""arr,ciaciinfl.····1 
~ ! 1

1·v ·-···v ······~······· ··· 
R .• • • •••• • . ; 

E 
s : l : : 

' ' : ? : 
: • ! 
: : : : 
' ' ................................................... 
I End parallel loop 

End parallel region 

THE RUNTIME INPUT CODE FORMAT 

Master thread 

l 
I Start parallel region 

nnit 
I Start parallel loop I 

End parallel loop 

I End parallel region 

Master thread 

I Start parallel region 

DDll 
I Start parallel loop J 

I End parallel loop 

I End parallel region 

Figure 3.12: Thread8 executing loop iterations {Current version} 

37 

For each parallel region a set of threads is created by 0penMP runtime. When the threads start 
the loop execution. One thread is registered to collect measures of performance counters and take 
the decision about the code offloading. 

If the runtime decision is positive for offloading, the other threads are blocked and the appro
priated version /loop index, device} function is launched using the alternative functions table. The 
work shared is defined as completed when the offloading is made. The get a next chunk function 
(G0MP _loop_*_next ( ... ) ) will return false for blocked threads, and all the threads will be ter

minated by the 0penMP runtime. Otherwise, the threads continue the regular execution on 0penMP 
execution model. 

The decision between makes the code offloading or continuing the execution in multi-core CPU 
is returned by the model implemented in libroofline using the operational intensity. 

3.4 The runtime input code format 

The input code used by our runtime is a 0penMP code with a alternative functions table. 
This table is shared with the runtime libraries for the interception control can call the appropriate 
alternate function based on the offloading decision. The Figure 3.13 shows the use of alternative 
functions table. 



38 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.5 

Application 
Sequential 

r .. : ......... : .......... · ...... ·. · .. J 
[parallel region] 

(amp parallel for] 

..................................... , 
! Interception calls l . . ·------------- ....................... ,, 

[ 
.................................... . 
.. oMP,JIValltLend.O, l 

Runtime 

1--·············· .. ··:;~:~~:~/ve ;~~~~~~~ .. ·-················i 
.__ ______ ~ Table 

[llbhookomp] 

{loop_tndex, dev] 

[GPU Kernel] [SIMD] 
,••••••••••••• I 

' ' . ' . ' ............................... 
........................ . . 
' . . . 
• ••-••••••••••••••••• I 

Figure 3.13: Use of the alternative functions table 

The librofline returns the device id together the offloading decision. If the runtime decision 

is positive for offloading the libhookomp switch the execution to a alternative function indexed 

by /loop_ index, dev _ id]. 

Following the idea of code modernization using the vendor libraries. Another possibility is the 

use of optimized functions available in software development kits like a cuBLAS (NVIDIA, 2014d, 
2015d) to create the alternative functions table. 

3.5 Application and Runtime Libraries Interaction 

For hooking OpenMP calls we developed a library (libhookomp) using the LD_PRELOAD technique 

(Linux Man-pages, 2016). This library can be pre-loaded and linked to the code before the OpenMP 

runtime libraries replacing the code of original calls for proxy functions with the same names. It 

supports the interception of some kinds of calls that application makes to the OpenMP runtime. 

This mechanism is used to detect at runtime parallel regions and parallel loops. Then our runtime 

functions can be execute an additional code before or after the original calls to OpenMP runtime, 

according the context execution. The Application and runtime libraries interaction is showed in the 

Figure 3.14. 



3.5 APPLICATION AND RUNTIME LIBRARIES INTERACTION 39 

Application libhookomp libroofline 
RM_twt.countorsQ 

I stllt Pot:formanco count111 j 

RM_1top_1ccum_coun1.,.0 

l {!lop ud O•t fll•r1otffla11c• ~;;;;I 
[amp p11oll1l lor) 

Tl ~'. :: :::::~o::•::: .. f l 
/tpl'I,,,. ~ MkfW ~ 

[ .. ~.~~• 1111 countor■ ., .. .J 
I colculat■ 0potllfonol lntwlt)' j :()MP _loo;::':~l~~•-n•XIQi I 

: B : 

LJ-~ l~=='=OMP=joo=fiP-='-;,.,"£'~==:::::/- -
! Stop and Acumula!o Moaoum .. r-t-t---+~ 

I 

. . ........ l!J!' Declolon About onlaadlna 

1~-----------+-+-+-1-Hr----■-lo_c:ll_oeh_,;_· ~;,~,-Nd-,---,j 

!' ....... Data aync~ranl1~tlan ........ 1 I 

Porollol R1glon-Alt1m1tlv11 v111lon1 

[OP\JK11n1~ .··· .. ···, ,···· :_a) :_c_: :_o_! 
I 

r ............................ _ ... 
[ 

S1qu1ntl1I l 
L., .................................. l 

, ...... .............. ..................... .1 

I Mt1r1do,,'control ........... ..J 
I 

OMP_loo/l_tndO 
1-··iiooiiOMP _, • .., __ n 1 

OMP .,pata//tl.tndC} 
f HDOkOMP_pa,,oJl,LtndO 1 

L RM_dec/1/onO 

: oici,Toi, About Devlen 

op,nMP Runtlm• 

OMP .JWlll"'-•r.t() I' >============~, OMP _loop_ •_alatf(J . 

_ _ J I OMP_1oop_r11n11tne_llUlf} I 
7 ... .! 

rH OMP_loop_ondO 

~H OMP.,pata/,.l_ondO 

Runtime 

I 
I 

Figure 3.14: Application and Runtime Libraries Interaction 

The interaction between applications and libraries is detailed in Figure 3.15. We mapped the 
function calls through the libraries, starting in application code until the OpenMP runtime. 

At111llcatlon II llbtoofflnt Lfn1'edOp1,nMP Runtime 
GCl1P J•re\h\_1tart( ••• 1 GOJIII' J•r1\\e\_1t•tt( • •• 1 ~ ~~:tr:r~!!~!~!b_GCW _para\h\_1t1r-t, 

HOOKW_pt r1l\1\ 1t1rt(l 
HOCMOO lnit() 1"_\Uita ry_ lnlt () 

\lb_Gff_p1n\\1\_1t1rt(tn, llat a, nwa t hre1d1I 

Gaf'tl' _t .. ,_c•ttlH11h1\a_tJJIP>_11 ■1 t f , .,J '°'.,_,..,_••1ct.Hll\'-.tr,IN,_Hat <••• I ~~!~Ea:::I!°'i:!!~~TGW _loep_d~•lc_nut . 

HOOK~_ganerlc nutlhUrt, ltnd, fur,c _Jl"HY, lip) lib GCNl_\ciop_dyna■ic nutl,, , ) 

OCJIII' -'"'-cc1c:h ■dlll1_tyJ1n• _1t1rtl, •,) GCflfl -'"'-ccach•••h_tJ,t» _start l,.,) GET ~IIITIHE_FLWCTION l\lb_GCIIP _ \oop_d,-lc_st•rt, 
•GCMP_toop dynH1c_stlrt'") 

HOO(CMP...,\oo,_uart( , •• ) "'L.~• 11ur•.t♦Uial'_tnit ( I 
HOOkCtlP _g1n•rlc_M1.tU1t1rt, 1en4, func _proay1 If) Ub GCf9i \oop_dyn11dc_1t1r t:( , ,,) 
HCIOJCOO_ng i nry_tha firat_t hrHdlJ 
fn_pro,;)'(htart , itni, Htra) 

11(_, .. iury_NHur••fJ 
AN_,t,,_wid_accueu\tt t() 

"' Ht 1lllitl11M\J11rNtttn(i. I 
fll(clccT, !,o , ... , ott\uduio l , .. I 

H0Ot<IJVII c1\ \_a f f\o■di"L,function( currtnt_\oo_,_ indll, 
btttlr device) 
H001<0111_r1\t1H 1\\_t 11•_thr11d1(J 

IOfll' _\oop_•d (voilll} GOfll1'_\oop_e114 IHU) ~~!~-~~rION(\ib_GCIII _100,_end. 

HOOKCl'I' loop endl) Ifft acu ure 1u1i 1n. finhhf) I 
I 1\119 G(NI _\aop end() 

IMIII' _\..,_1114_a.,..it l_,■UI GCIIP_\..,_N4_11_.it 19'14) Ott lt\lfTUtE_FtllCTIClf(\ib_oatP _\oo,_lftd_nowlt , 
•GCA,, _\oop_1nd_nOW111t•J 

HOOKII¥' _\oop_end tutwltCI .. HOCIUJtl' \ffg tnd(I If'"!, u uure HIilan Unhhll I 
I l\ib Gflll _\oop_end l'fOWlitl) 

OCIIP' Jtrl\\e\_iffllll (H:1.1111 OClll'Jert\\t\_.._. INUI !~~ ;:ft:r;~~~(\ib .. Ootf1Jtr1\\e\_end, 

[H0OKCNP _pr■\\t\_tnd(I 11<\..\l~r•ry ,..,,_I) I 
I I l\ib_GCN' J■ r■\h\_end(J 

Figure 3.15: Mapping functions libraries called by applications 

In this mapping we can see the sequencing of the calls among contexts ( application code until 
OpenMP runtime). That shows important points in hooking mechanism, for example, what is made 
at the beginning of a parallel region or when a loop is started. 

In addition to proxy functions definition contained in 1 ibhookomp we defined initialization 
and shutdown functions for the libraries. When the parallel region is intercepted in the hook li
brary will be started an internal parallel region control using HOOKOMP_parallel_start () and 
HOOKOMP _init () . In the same way, this control will be finalized when the parallel region in appli-



40 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.6 

cation code reach the end where the interception code will call internally the HOOKOMP _parallel_ 

end (). The controls in libroofline will be initialized and finished together this calls using the 

functions RM_library_init () and RM_library_shutdown () where the PAPI libraries and 

its controls are initialized. 

The measures are made by loop and the loop start initialize the loop control in libhookomp that 

initialize the a measure session in libroofline library. The interception of function that gets next 

chunks is made using a generic function that treats the two loops formats. The HOOKOMP _generic_ 

next ( ... ) is prepared to call the next chunk function by a pointer, because in the first format it 

is the GOMP _loop_«schedule_type»_next ( ... ) and in the second format the next chunk is 

retrived together with the loop initialization by function GOMP _loop_«schedule_type»_start 

( ... ) . 
The HOOKOMP _generic_next ( ... ) is very important, because is in this function that the 

threads execution is controlled. The measures are registered and the offloading is made calling the 

alternative function for the current loop. 

3.6 Creating Hooks for OpenMP Functions 

To create hooks for libgomp functions it is need to create a library with proxy functions 

that have the same signature of the available functions via libgomp ABI. The hooking library 

is loaded before of original libgomp during the dynamic linking. So calls to functions of the 

OpenMP runtime are linked to symbols of hooking library. The proxy functions will request to linker 

using dlsym the next symbol that represent the original function pointer. This is the interception 

mechanism used by our runtime is showed by a sample in Code 3.21 that shows the interception 

for GOMP _parallel_start () function. 

1 void GOMP _parallel_start ( void ( * fn) ( void *) , void *data, unsigned 

num_threads) { 

2 PRINT_FUNC_NAME; 
3 

~ /• Retrieve the OpenMP runtime function. •/ 

6 typedef void ( * func _ t) ( void ( * fn) ( void *) , void * , unsigned) ; 

6 func_t lib_GOMP _parallel_start = (func_t) dlsym(R'ILD_NEXT, 11 

GOMP _parallel_start 11 ); 

7 

s lib_GOMP _parallel_start(fn, data, num_threads); 
g } 

C6digo 3.19: Exemplo de cria~ii.o de uma hook para a fun~ii.o GOMP _parallel_start 

The idea is retrieve the pointer for call the original function inside the proxy function after or 

before the execution of some specific code. 

To facilitate the writing of code a macro was defined to retrieve the original functions pointers. 

The macro code is showed in the Code 3.20. 



3.6 CREATING HOOKS FOR OPENMP FUNCTIONS 41 

1 #define GET_RUNTIME_FUNCTION( hook_func_pointer, func_name) \ 
2 do { \ 

3 if (hook_ func _pointer) break; \ 

4 void * __ handle = RTID_NEXT; \ 

s hook_func_pointer = ( typeof ( hook_func_pointer)) ( uintptr _ t) dlsym ( 
__ handle, func_name); \ 

a PRINT_ERROR(); \ 
1 } while (0) 

- ------
C6digo 3.20: Definit;ii.o de macro paro recuperar o ponteiro para a funi;ii.o original 

The same proxy function to GOMP_parallel_start () can be rewritten using the macro. 

The Code 3.21 presents the rewritten function. 
--,--, 

1 void GOMP _parallel_start ( void ( * fn) ( void *) , void *data, unsigned 
num_ threads) { 

2 PRJNT_FUNC_NAME; 

3 f* Retrieve the OpenMP runtime function. *f 
4 GET_RUNilME_FUNCTION( lib_ GOMP _parallel_start, 11 GOMP _parallel_start 11 ); 

5 

, a HOOKOMP _parallel_start () ; 
1 HOOKOMP _ init ( ) ; 

8 

g lib_GOMP _parallel_start(fn, data, num_threads); 
10 } 

C6digo 3.21: Proxy function to parallel region start 

Similarly, a proxy function to GOMP _parallel_end () is defined in the Code 3.22. 

1 void GOMP _parallel_end (void){ 
2 PRJNT_FUNC_NAME; 

a f* Retrieve the OpenMP runtime function. *f 
4 GET_RUNTIME_FUNCTION( lib_ GOMP _parallel_ end, 11 GOMP _parallel_ end 11 ) ; 

5 

a f* In cases of benchmark have two loops inside the same parallel region. 
The second was ignored, because the control had no reinitilized. *f 

1 if(is_hookomp_initialized){ 
s HOOKOMP _parallel_end (); 
9 } 

10 

11 lib_GOMP _parallel_end (); 
12 } 

C6digo 3.22: F'ucntion to intercepts the GOMP _parallel_ end 

The function that starts the parallel region in the loop first format is showed in the Code 3.23. 

It should be noted that both parallel start functions do the same internal controls initializations in 

HOOKOMP. 



42 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 

1 void GOMP _parallel_loop_dynamic_start (void (*fn) (void *), void *data, 

2 unsigned num_ threads, long start , long end, 
3 long incr, long chunk_size){ 

4 PRINT_FUNC_NAME; 

5 / * Retrieve the OpenMP runtime function. *f 
6 GEI'_RUNI'IME_FUNCTION( lib_ GOMP _parallel_loop _ dynamic _start , 11 

GOMP _parallel_loop_dynamic_start 11
); 

7 

s HOOKOMP _parallel_start () ; 
g 

10 / * I n i t i a I i z a t i o n s . * / 
u HOOKOMP _init () ; 
12 HOOKOMP _loop_start( start , end, num_threads, chunk_size); 
13 

u lib_ GOMP _parallel_loop_dynamic_start ( fn, data, num_threads, start , end, 
incr, chunk_size); 

15 } 

C6digo 3.23: Fucntion to intercepts the GOMP _parallel_ loop_ dynamic_ start 

3.6 

In the Code 3.24 is showed the interception function for GOMP _loop_end () . The proxy func

tion finalize the loop controls in HOOKOMP library. 

1 void GOMP _loop_end (void){ 
2 PRINT_ FUNC_ NAME; 
3 /* Retrieve the OpenMP runtime function. *f 
• GEI'_RUNI'IME_FUNCTION(Iib_GOMP _loop_end, 11 GOMP _loop_end"); 

6 HOOKOMP _loop_end(); 

r lib_GOMP _loop_end(); 

s 'IRACE("End of loop: o/cd\n 11
, current_loop_index); 

9 } 

C6digo 3.24: Function to intercepts the GOMP _ loop_ end 

The function to close the loop execution in which the threads continue the execution without 

wait by others threads is presented in the Code 3.25. 

1 void GOMP _loop_end_nowait (void) { 
2 PRINT_FUNC _ NAME; 

3 / * Retrieve t he OpenMP runtime function. */ 
• GEI'_RUNI'IME_FUNCTION(lib_GOMP _loop_end_nowait, 11 GOMP _loop_end_nowait"); 
6 

6 HOOKOMP _loop_end_nowait () ; 
r lib_GOMP _loop_end_nowait(); 
8 

9 'IRACE("End of loop nowait: o/cd\n", current_loop_index); 
10 } 

C6digo 3.25: Function to intercepts the GOMP _loop_ end_ nowait 



3.6 CREATING HOOKS FOR OPENMP FUNCTIONS 43 

The proxy functions as GOMP _loop_dynamic_start ( ... ) because the different number of 

parameters are using the generic functions to the both formats can be supported. The Code 3.26 

shows this use with the encapsulation of the parameters. 

1 bool GOMP _loop_dynamic_start ( long start , long end, long incr , long 

chunk_size, 

2 long *istart, long *iend){ 

3 PRINT_ FUNC _ NAME; 

4 I* Retrieve the OpenMP runtime function. •/ 

s GET_RUNTIME_FUNCTION(lib_GOMP _loop_dynamic_start, 11 

COMP _loop_dynamic_start 11
); 

6 

1 TRACE(" Starting with o/cd threads. \n", omp_get_num_threads ()); 

s /• Initializations . •/ 
9 HOOKOMP _loop_start( start, end, omp_get_num_threads(), chunk_size); 

10 

11 chunk next fn func _proxy; 

12 Params p; 

13 p._o = start j 

14 p. _1 = end; 

1s p. 2 = inc r ; 
1e p._3= chunk_size; 
l 7 

1s p. func_start_next = lib_GOMP _loop_dynamic_start; 

19 p. func_ type = FUN_START_NEXT; 

20 func_proxy = &HOOKOMP _proxy _function_start_next; 

21 boo! result = HOOKOMP _generic_next( is tart , iend, func_proxy, &p); 

22 

23 return result; 

24 } 

C6digo 3.26: Function to intercepts the GOMP _ loop_ dynamic_ start 

Considering the loop formats that were identified some generic functions were created to provide 

support the both, because depending of format the the loop work share initialization and the first 

chunk can be obtained in different points of execution or parallel region initialization or inside the 

loop format function. The Code 3.27 shows a function that is used by function calls for initialize 

the work share and retrieve the first chunk. 

1 / * Proxy function to * _start *I 
2 bool HOOKOMP _proxy _function_start_next ( long• is tart , long• iend, void• 

extra) { 
3 PRINT _FUNC _ NAME; 

4 Params •params = (Params•) extra; 
5 bool result= params->func_start_next(params->_0, params->_l, params->_2 

, params->_3, istart, iend); 

return result; 

8 } _ _J 

C6digo 3.27: Proxy function to .functions that execute loop start and get next chunk 



44 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.6 

For the next chunk functions another proxy function was created, because the different number 
of parametes. This function is showed in the Code 3.28. 

1 bool GOMP _loop_dynamic_next (long •istart, long •iend){ 
2 PRJNT_F'UNC_NAME; 
3 

• /• Retrieve the OpenMP runtime function . •/ 
a GEr_RUNI'IlvIE_FUNCTION(lib_GOMP _loop_dynamic_next, "GOMP _loop_dynamic_next 

II) j 

6 

r chunk next fn func _proxy; 
8 

9 

10 

11 

12 

Params 
p._ 0 = 
p. 1 = 
p. 2 = 
p. 3 = 

Pi 
O; 
O· 
' O; 

O; 
13 p. func next = lib_GOMP _loop_dynamic_next; 
u p. func_type = FUN_NEXT; 
15 func_proxy = &HOOKOMP _proxy _function_next; 
16 bool result = HOOKOMP _generic_next(istart, iend, func_proxy, &p); 
17 

1s return result; 

119 }_ 

C6digo 3.28: Proxy function to functions that get next chunk 

The used functions have a different nwnber os parameters, so it was need to create generic 
functions. The function that support the next chunk functions is showed in the Code 3.29. 

1 /• Proxy function to * _next •/ 
2 bool HOOKOMP _proxy_function_next (long• istart, long• iend, void• extra) { 
3 PRJNT_FUNC_NAME; 
, Params +params = (Para.ms+) extra ; 

5 bool result = params->func_next(istart, iend); 
6 

r return result; 
8 } 

C6digo 3.29: Proxy function to functions that get next chunk 

In the table of alternative functions are stored a structure with pointers to function, list of 
parameters values and types. The runtime is using the library libffi to recreate the target function 
call using these elements. The structure and the function to recreate the call is showed in Code 3.30. 

1 /• Struct to store pointer and arguments to alternative functions. •/ 
2 typedef struct Fune { 
3 void * f j 

" int nargs; 
5 ffi _type** arg_types; 
6 void** arg_ values; 
7 ffi _type• ret _type; 
8 void• ret_ value; 



3.6 

g } Fune; 

10 

11 /* Call the target function. *f 

CREATING HOOKS FOR OPENMP FUNCTIONS 

12 bool HOOKOMP _call_function_ffi(Funu ff) { 
13 PRINT _FUNC _NAME; 
14 ff i _ C i f C i f j 

1s int re t v a 1 = 0 ; 

16 

11 if ( ( retval = ffi_prep _ cif(&cif, FFI_DEFAULT_ABI, ff->nargs, ff-> 
ret_type, ff->arg_types)) != FFI_OK){ 

1s TRACE( 11 Error ffi_prep_cif.\n 11
); 

19 } 

20 else { 
21 TRACE( 11 Calling the target function.\n 11 ); 

22 ffi_call(&cif, FFI_FN(ff->f), ff->ret_value, ff->arg_values); 
23 TRACE( 11 The target function was called. \n 11

); 

24 } 

25 

45 

I 25 return ( retval = FFI_OK); 
27 } - _J 

C6digo 3.30: Function to remake the target function call 

It is in the function listed in the Code 3.31 that the appropriate function is called accord

ing the loop_index and device_id. The element in the alternative functions table is passed to 

H00K0MP_call_function_ffi ( ... ) that will reconstruct the function call. 

1 /* Call the appropriated function. *f 
2 boo! HOOKOMP _call_offloading_function(long int loop_index, long int 

device_id) { 
3 PRINT_FUNC_NAME; 
4 bool retval = false; 

5 

a if( TablePointerFunctions = NULL){ 
1 TRACE(" TablePoin terFunctions is not defined.\ n"); 
s return retval; 
9 } 

10 if((TablePointerFunctions != NULL) && (TablePointerFunctions [loop_index 
][device_id] != NULL) && ((TablePointerFunctions[loop_indexl[ 

device_id l)->f != NULL)){ 
11 TRACE(" Offloading function for loop index: o/cd, device id: o/od. \n 11

, 

loop_index, device_id); 
12 retval = HOOKOMP _call_function_ffi( TablePointerFunctions [ loop_index] [ 

device_idj); 
13 } 

14 else { 

1s TRACE( 11 Offloading function not defined in TablePointerFunctions. \n 11
); 

16 } 

17 

1s return retval; 

- · 1 



46 HOOKOMP: HOOKING CALLS TO OPENMP RUNTIME 3.7 

C6digo 3.31: Function to try call offloading function 

Knowing that such functions can vary depending the loop format, a generic function was created 

to handle the both formats. Practically, all the execution control is made in this function. As a 

percentage of the code must be executed to collect performance counters values to be made, this 

function is very important, because the collector thread retrieves chunks and computes how many 

iterations were executed. The generic function is showed in the Code A.2. The offloading decision 

is taken after to get measures of all event sets ou after reach the percentage of executed code. 

3. 7 Final Considerations 

The developed runtime is able to intercept the applications call to OpenMP runtime, it can 

control the threads execution and make offloading according the operational intensity of code. 

The current version of interception mechanism registry a thread member of OpenMP threads 

team to collect the values of performance counters during the application execution. 

During the experiments this approach proved to be thread scheduling sensitive, because is highly 

dependent of the scheduling made by the system. For some combinations of chunk sizes and number 

of threads, is possible that the thread that is the collector do not finish the measures before the 

work is finished be other threads. Maybe another approach can be solve this problem using all the 

threads to measure the performance counters. 



Chapter 4 

Offloading Decision using Operational 

Intensity 

In this chapter are presented the model and the library that implements the use of operational 

intensity to decide about the offloading - libroofline. This library implements the Roofline Model 

(Williams et al. , 2009) concepts and it is being used to decide about the code offi.oading. 

Make a decision about the code offloading the library calculates the operational intensity, at

tainable performance and estimate the time of execution. As this work targets the offloading for 

GPUs, the time of data transfers to and from device have been considered in the execution time 

estimation, because devices like GPUs have private memory. In this case, it is needed to copy input . 

data to launch a kernel execution and copy output data for retrieve the results. 

The memory traffic is measured in all memory levels. The library collects the values of Perfor

mance Counters at runtime. These measures are collected at runtime using the PAPI (Mucci et al. 

, 1999) . We are using the PAPI to get performance counters because it works across systems as 

different processors and it has components that include the Linux perf and cuda that uses CUPTI 

(NVIDIA, 2013, 2014b). 

4.1 Operational Intensity 

A basic concept in the Roofline Model is the operational intensity. The operational intensity is 

the relation between Work in terms of floating point operations (W) and the number of bytes in 

DRAM traffic (Q) (Williams et al., 2009) and it can be calculated using the Equation 4.1. 

w 
I=-

Q 
(4.1) 

The number of READ and WRITE accesses to the RAM Memory (MEM), Last Level Cache 

(LLC), Level 2 Cache (12), Level 1 (Ll) and the number of Floating Point operations (FP) are 

collected on a code percentage. 

To address the need to make measures at runtime we adopted the PAPI (Mucci et al., 1999). 

The PAP I is widely used and have support for several platforms and components, these features 

that motivated the decision to choose it. 

The PAPI works with two categories of events, the PRESET and NATIVE, that allows you 

to get values of both event types. The number of floating point operations is calculated using 

others 3 native events that are applied in the Equation 4.2 available in PAP I as a preset event 

47 



48 OFFLOADING DECISION USING OPERATIONAL INTENSITY 4.2 

PAPI_DP _OPS. 

W = FP _COMP _OPS_EXE: SSE_SCALAR_DOUBLE+ 

2* (FP _COMP _OPS_EXE: SSE_FP _PACKED_DOUBLE)+ (4.2) 

4 * (SIMD_FP _256: PACKED_DOUBLE) 

As the number of floating point instructions that were executed is available in a preset event, 
the PAPI_DP _ OPS is derived of the 3 natives and it is not necessary to collect these events and 
calculate the total value. Just use the value provided by PAP I. 

The counters with PACKED represent more than one floating point operation each, so it is 
needed multiply for a factor 2 or 4 depending of number operations executed by instructions in 
each category. These instructions are related with vectorization support (AVX), in which floating 
point operations can combine additions and multiplications. In this case, AVX addition instructions 
that work on four doubles are count as four operations (PAPI, 2015). 

All levels in memory hierarchy are being considered, the Figure 4.1 shows the levels. 

~ 

I Global I II_ Memory 
Rr• Ll i-.- u Ill II 

Cacho CMM Qu Qu Qu.c 

~ DRAM . 
<l- QOA'JA.,.TJl:MSN:I 

Care 

II : . 
: Oth.n Co,w : 

UnCol9 '------------·-·······---·-···' -
Figure 4.1: Memory Hierorchy Levels 

Each Q in determined level can be divided in two classes to distinguish the kind or nature of 
accesses. Qwrite represents write accesses and Qread denotes the read accesses. The Equation 4.3 
presents how to Q1evel is calculated. 

Qlevel = Qread + Qwrite (4.3) 

The measured values for all memory levels accesses are used to calculate the total memory traffic 
in bytes ( Q) using the Equation 4.4. 

(4.4) 

The number of reads and writes accesses are accumulated and multiplied by 64 bytes. The value 
CACHE_LINE_SIZE is a parameter to the decision model and it is obtained from the processor 
manual. 

Our model is considering the transfer of data to devices as another level in the memory hierarchy. 
The QnATA_TRANSFER is an additional parameters given by input code (Application). It is the 
amount of bytes of the input and output data structures that are needed to launch the kernel 
execution on device and get the execution results. 



4.2 EVENTS SETS AND HARDWARE RESTRICTIONS 49 

4.2 Events Sets and Hardware Restrictions 

To cover measures in all the levels, we need to collect values for 5 events sets: Main Memory, 

Last Level Cache {LLC}, Level 2 Cache, Level 1 Cache and Floating Point Instructions. We are 

using a combination of native and preset PAP I events. 

We are taking as a basis the event set used in the work of Ofenbeck et al. (2014), in which the 

authors apply the Roofline Model concepts on newer processors and they present a list of native 

events that were used with Intel PCM. We mapped these events to use them with PAP I . The defined 

events sets for the model are presented in Table 4.1. 

Table 4.1: Events Sets 

Set Event Native 

MEM 
UNC_H_IMC_READS ivbep_unc_haO::UNC_H_IMC_READS:cpu=O 

UNC_H_IMC_WRITES ivbep_unc_haO::UNC_H_IMC_WRITES:cpu=O 

PAPI_TOT_CYC UNHALTED_CORE_CYCLES 

LLC 
PAPI_REF_CYC UNHALTED_REFERENCE_CYCLES 

PAPI_L3_DCR OFFCORE_REQUESTS:DEMAND_DATA_RD 

PAPI_L3_DCW L2_RQSTS:RFO_MISS 

PAPI_TOT_CYC UNHALTED_CORE_CYCLES 

L2 
PAPI_REF_CYC UNHALTED_REFERENCE_CYCLES 

PAPI_L2_DCR L2_RQSTS:ALL_DEMAND_DATA_RD 

PAPI_L2_DCW L2_STORE_LOCK_RQSTS:ALL 

UNHALTED_CORE_CYCLES UNHALTED_CORE_CYCLES 

Ll 
UNHALTED_REFERENCE_CYCLES UNHALTED_REFERENCE_CYCLES 

perf::PERF_COUNT_HW_CACHE_LlD:READ perf::PERF_COUNT_HW_CACHE_LlD:READ 

perf: :PERF_COUNT_HW_CACHE_LlD:WRITE perf::PERF_COUNT_HW_CACHE_LlD:WRITE 

PAPI_TOT_CYC UNHALTED_CORE_CYCLES 

FP PAPI_REF_CYC UNHALTED_REFERENCE_CYCLES 

PAPI_DP_OPS FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE + 

2•(FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE) 

+ 4• <SIMD FP 256 :PACKED DOUBLE ) 

We verify the events of the list that can be measured simultaneously. At this point we found 

the first restrictions, the hardware ha.s some restrictions related to number of available counters. 

The hardware supports 11 counters. The processor uses 3 fixed counters to measure core cycles, 

reference cycles and executed instructions. The remaining 8 are programmable counters, which are 

under other restrictions. If hyperthreading (Marr et al., 2002) is enabled the number is divided 

between thread, 4 per thread. If the NMI timer is active more one is used, that remains 3 per 

thread. PAP I assures 3 fixed + 3 programmable counters. Only 3 programmable counters are not 

enough to map all the events simultaneously. 

To overcome this problem it was necessary to design a strategy to make the measures of all 

event sets into sub parts of the region code. We tried to use PAPI in multiplexed mode to collect 

all the events. The multiplexed mode in PAPI performs a round-robin on events set. It is need 

that the program execution time is enough to be divided into intervals that PAP I can switch at all 

events subsets. PAPI uses the !TIMER a.s measurement period and to reduce the overhead swaps 

the subset of events process context switch. Events that are not measured in a particular interval 

are estimated. 

The problem in this approach is that the code fraction that we wanted measure wa.s not enough 



50 OFFLOADING DECISION USING OPERATIONAL INTENSITY 4.4 

to sustain the program execution by N intervals to measure the N subsets of events in multiplexed 
mode. In most cases measured only one or two events, the other events were with zero value. 

We solved this problem making measures by chunks of loop iterations. In each subset of iterations 
(chunk), the library performs measures of an events set. The measures are interleaved on defined 
event sets in round-robin scheduling until that a percentage of executed code is reached. 

4.3 Measuring Chunks 

The measurement of events sets is made by chunks of iterations loop set. During the execution 
of chunk iterations one of the event sets will be measured. We have 5 events sets, so the minimum 
number of chunks needed to collect measures is 5 too. But if the chunk size value allows the 
execution of more chunks to collect measures before reaching the code percentage to be executed, 
the collected values are accumulated and at the end of measuring phase is done the average by the 
number of measurements. 

Chunks have the same number of iterations and the same code that allows separated measures 
for each subset of events. The Figure 4.2 shows the measurement mechanism idea. In the original 
code to get measures for the original loop is needed to surround the for loop with calls to start and 
stop measures. 

The collector thread is registered in the beginning of each loop. This thread needs to measure 
an event set for each chunk that represent the original loop for a subset of iterations. So, it is need 
to measure the chunk and in the same way surrounding the code with start and stop controls. 

Using the hooking technique described in Chapter 3, we are not modifying the code. We do not 
modify the application code or the OpenMP runtime. So, it is not possible to put START_COUNTERS 
and STOP _ACCUM_COUNTERS surrounding the loop code. 

We created one function REGISTRY_MEASURES that is able to start and stop/accumulate the 
measures. A chunk starts the measures and it measuring period finish at the begin of next chunk. 

4.4 Decision Model 

We will use a top-down approach to presenting the decision model. It is a very simple model, 
because at run time we need a model to decide about the offloading quickly. 

Starting with the high level function that returns if the offloading is possible and which is the 
best device for offloading. The offloading decision is taken with basis in Algorithm 1. 



4.4 

vaid subfunctJon (voi d •data) { 
\ang _19, _,e; 
whih (G011P_\oop_«sch,dut,_typ,»_n,xt 1,_,e, ,_,8)){ 

\C!_nf __ el_• _,_e., _ ! ; 
:1cr (i ■ _so; 1 < _el: l++ll l 1-----lmzm:mmmD > :_ bodJj _______ _______ ; l!IIDHtP!IIHHY 

GOHP _\oop_,nd_nowait (I; 

GOHP_paralle\_\oop_<<SChedu\e_type»_surt (1ubfunct1Dn, NULL , I . lb. ubt-1. 1, 8) : 
subtunction (NULLI i 
GOHP _paran,t_,nd 11 : 

DECISION MODEL 

Stt of lttratlon1 

I··· I 
t t 

lawt lend 

I• ...... c,,,. I 

In registered thread execution, a chunks sequence is executed and measures of performance counters are 
collected and accumulated for each eventset. 

51 

t················-·· ·······-----------··· ··············-··· .. ··· .. ······--· ................................................................................................ ............................. ................ , 

1 chunk X chunk Y ~ chunk W i 
i EventSet 1 EllentSet 2 l..:::._j Eveniset 5 j 
' ' 
!,--------------, ,-------------~ re:----:----:----,-------, ! 
: 'lltl!}:11.tG~~:.:·(·"•che411\e_1,,.,._neit l&.i1t1rl, &.lffill)I( "'!~u.t~t"•~\• .. t,,,_.,._,..at l&J.1t1rt, .,._llMIJ( -~;..1~~(_;:-:-c..1cheth1\• .. t1"1".,_M•t (&.1lt1rt, &J.WIJ(: 

i '·W!;· hhrt ; l c 1111111; i• t l( ,.W!t llhrt: l c 11M; ht)( ··w!.- iu1ri : l c il!M1 l♦♦ I( i 
: l l l : 

: } STOP_Am11_C'll\ll'U:IU1 ) SllfJCM_CMTDll1 ) ITO,_ACNI_CU~•nn.s1 : 

i ra,t_\11,_en4_11,walt I); GCNt .. lN,_tn(._MWlt (I: 1C1P .. t11, .. •11a .. MW1U (); i 

l ................................................................................................................................................................. Reglstred thf'ff•~. l 
It is not possible produce the effect START and STOP _ACCUM using the hooking technique to intercept 

GOMP _/oop_runtime_next. 

while (GOMP_loop_<<schedule_type>>_next (&istart, &iend)l{ REGISTRY MEASURES(){ 
REGISTRY_MEASURES; if (meisures_started){ 
for (i = istart; i < iend; i++){ stop_and_accumulate(); 

body; 
} 

} 

} 
start_measures(); 

GOMP_loop_end_nowait (); } 

The HOOKOMP _generic_next will intercept and control the process of measurements (the last call), 

whih (HOOKOHP_oerlttic next (&is tart, &iend) H 

while (HOOKOMP_Qeneric_next (&istl!lrt, &iendl ){ if (measures.started)1 
stop_and_accut1ulatt(); 

for (i = istart; i < iend; i++l{ } 
body; ~ 

start_■usuraa(); 

} for (1 • istart; i c iend; i++l{ 

} 
body; 

GOMP_loop_end_nowait (); 
} 

} 
GOHP _ 'loop_end_nowai t ll ; 

The first chunk starts the measures and stop at the begin of next chunk. 

Figure 4.2: Mechanism for measu.ri.ng chunks 

Algorithm 1 RM _decision_about_of !loading() 

1: INPUT: * better device index 

2: OUTPUT:* better _device_index,offload_decison 

3: offload decision +- true 

4: if (offload_decision +- RM_check_all_eventsets_was_collected()) then 

5: oi +- RM _get_ operational_ intensity() 

6: better _device_index +- RM_get_better_device_to_execution(oi) 

7: else 

8: better device_index +- 0 

9: end if 

10: return of fload_decision 

Our model verify if all event sets were collected and try to decide about the better device to 

execute the code based on operational intensity. If have a positive decision for offloading it returns 

to hook library the better device id. The hook library that is controlling the threads execution and 



52 OFFLOADING DECISION USING OPERATIONAL INTENSITY 4.4 

is able to choose the appropriate code in table of alternative functions. Otherwise, returns that the 
better device is a CPU ( device: 0) and the execution of multicore version continues to be made by 
the OpenMP threads. 

The operational intensity that is used as reference in the model is calculated considering the 
memory hierarchy levels of processor side. How it is calculated is presented in the Algorithm 2. 

Algorithm 2 RM get operational intensity() 
1: INPUT:0 

2: OUTPUT:! 
3: If- 0.0 
4: WrO.O 

5: Q, QMEM, QLLc, QL2, QL1 f- 0.0 
6: W f- work() 

7: Q£1 f- Q1e11e1(I DX _Ll) 
8: QL2 f- Qu + Qlevet(IDX _L2) 
9: QLLc f- QL2 + Q1e11e1(IDX_LLC) 

10: QMEM ,(- QLLc + Q1e11e1(IDX_MEM) 
11: Q f- QMEM 

12: J f- ~ 
13: return I 

The better device to execute the code is chosen using the Algorithm 3. For each selected de
vice, the attainable performance is calculated based on the Equation 4.5 considering values for 
performance, memory bandwidth and the calculated operational intensity. 

Algorithm 3 RM _get_ better_ device_ to_ execution() 
1: INPUT:! 
2: OUTPUT:dev 
3: lapu f- RM _get_ operational_ intensity_ in_ GPU() 
4: dev -<- 0, 

5: Texec-<- DBL_MAX 
6: AP, AP' f- 0.0 

7: W f- work() 

8: ford= Oto NUM DEVICES - 1 do 
9: Idev f- select(!, lapu) 

10: AP' -<- RM_ attainable _performance(d, Idev) 
11: T~ec r RM_execution_time(d, W, AP') 
12: if (T~xec < Texec) then 
13: (Texec, AP, dev) f- (T~ec• AP', d) 
14: end if 

15: end for 

16: return dev 

The device with the better execution time is chosen and its id is returned for the offloading 



4.4 DECISION MODEL 53 

decision. The attainable performance is calculated using the Equation 4.5 for each device and the 

better device is chosen. 

AP= MIN(FLOPSdev, (MBdev * I)) (4.5) 

The attainable performance calculus is implemented in the Algorithm 4. The values of per

formance (FLOPS) and Memory Bandwidth (MB) can be retrieved from device manuals or can 

be calculated using benchmarks. In this model we are using both sources to define parameters to 

represent these values. 

Algorithm 4 RM_ attainable _performance() 

1: INPUT:dev, I 

2: OUTPUT:AP 

3: AP r MIN(FLOPSdev, (MBdev * I)) 

4: return AP 

After obtaining the value of the attainable performance, the model calculates the time execu

tion in each device using the Equation 4.6. The execution time (Tezec) is calculated applying the 

computing time (Tcomp) and the data transfers time of Algorithm 7. 

Texec r T comp +RM_ time_ data_ transfers( dev) (4.6) 

The Algorithm 5 calculates the execution time. It is considering the computing time added to 

time spends in data transfers, if executions in the current device needs to transfer data from main 

memory to device memory, for example. 

Algorithm 5 RM execution time() 

1: INPUT:dev, W, P 

2: OUTPUT:Texec 

3: T~xec r RM_ computing_ time{W, P) 

4: Texec r T~xec +RM_ time_ data_ transfers( dev) 

5: return Texec 

The computing time is calculated using the Equation 4. 7 with the number of operations (W) 

and the calculated attainable performance on device (AP= P). 

w 
Tcomp ~ p (4.7) 

The time spent in computations is calculated using the Algorithm 6. The parameters are the 

number of point floating operations (W) and the performance of device (P). 

Algorithm 6 RM computing time() 

1: INPUT:W,P 

2: OUTPUT:Tcomp 

3: Tcomp r 1 
4: return Tcomp 

As our work tries the offloading to GPU, it is needed to also consider the data transfers between 



54 OFFLOADING DECISION USING OPERATIONAL INTENSITY 4.5 

host memory and GPU global memory. These transfers between host and GPU may be considered 
as one more cache level to launch kernels execution on GPU, and in some way align logically the 
architectures to compare the attainable performance with the calculated operational intensity. The 
QDATA_TRANSFER is used to calculate the time of data transfers to device, and it is defined on 
the Equation 4.8. 

QDATA_TRANSFER = QDATA_TRANSFER_WRITE+ 

QDATA_TRANSFER_READ 
(4 .8) 

The data transfers directions are treated separately, with different latencies. If the host send 
data to device (H2D) the transfer is considered as WRITE and if the host receive data from device 
(D2H), as READ. The data transfer time is calculated using the Algorithm 7, the different latency 
rates are considered. 

Algorithm 7 RM time data transfer() 
1: INPUT:dev 
2: OUTPUT:Tcomp 
3: TDATA TRANSFER +- 0.0 
4: if (Typedev <> Tcpu) then 
5: DW +- QDATA_TRANSFER_WRITE * BYTES_TO _GB 
6: DR+-QDATA TRANSFER READ*BYTES_TO_GB 
7: TDATA TRANSFER WRITE-+-LAT_Wdev+(DW/EF_MB_Wdev) 
8: TDATA=TRANSFER=READ +- LAT -~ev + (DR/EF _MB_Rdev) 
9: TDATA TRANSFER f-TDATA TRANSFER READ+ TDATA TRANSFER WRITE 10: end if - - - -

11: return TDATA_TRANSFER 

The Algorithm 8 presents the estimative for operational intensity in GPU. The operational 
intensity is calculated considering the data transfers as an other memory hierarchy level. 

Algorithm 8 RM get operational intensity in GPU() 
1: INPUT:0 
2: OUTPUT:! 
3: I+- 0.0 

4: W+-0.0 

5: Qtotal, Qdata_transfer f- 0.0 
6: W +- work{) 
7: Q +- Q_ total() 

8: Qdata_transfers +- Qdata_transfer _read+ Qdata_transfer _write 
9· I+- w ' QtotaL+Qdata tranf•r• 

10: return I -

4.5 Final Considerations 

Currently, our runtime is able to choose the more appropriate device (multi-core or GPU) 
according the operational intensity of the code. We are getting measures in all levels of memory 
hierarchy to know the amount of bytes that are moved to execute the code. 



Chapter 5 

Experiments and Results 

In this chapter we describe our execution platform, the benchmarks used in the experiments 

and we present the obtained results with these experiments. We executed some experiments using 

the Polybench (Pouchet et al., 2012) benchmark suite. 

According with the presented discussion in the Chapter 3 the input code expected by our runtime 

is a OpenMP prepared with a alternative functions table. For this we modified the benchmarks 

used in the experiments preparing each one using the OpenMP and adding the CUDA version. Our 

OpenMP with offloading version was created manually based on these others versions, basically we 

join the OpenMP and CUDA versions and mounting the table of pointers to alternative functions. 

The versions of GPU and others targets can be found in Polybench GPU (Grauer-Gray et al. 

, 2012b) and Polybench ACC (Cavazos et al., 2012). 

We executed experiments to verify the Overhead of our runtime and Offloading decision and 

performance. 

5.1 Execution Platform 

The Execution Platform used in experiments is a machine equipped with 2 Intel Xeon (R) 

processors (CPU E5-2630 v2 @ 2.60GHz). Each processor has 6 cores, which results in 24 threads 

(2 x 6 cores x 2 threads). The memory of system has 64GB of RAM, Ll cache of 32KB data, 32KB 

instruction per core, 12 cache of 256KB per core and 13 cache with 24MB accessible by all cores. 

The processor architecture is presented in the Figure 5.1. 

55 



56 EXPERIMENTS AND RESULTS 

1 lnllll 
Ql'llinll 

PMON 
Block: llJ 

ltlQPf~IOOPI m ..,.) E 

DOIi 

(Up lo) l1WII DOR a-.. 

0 PCU 
("-1 

C(lltroilefl UbOi( 

,...1:.LL..LJW;O:;-;UboX:=-7 :' 
I'.> (liworated IO) t~J";tem Co~ 

Rll'Cllffling IQPCII Clrl,:i 
Iii liwfa) Cail-) 

111111 
Cbox: LLC Coherence engine 
HA: Home Agent {Coher. Pro1ocols) 
IMC: lnlegrated Memory Controller 

Figure 5.1: Xeon ES-2690 v2 {Intel, 2014} 

5.2 

This machine has also 2 NVIDIA GPUs Tesla K4 De, one of which was used in the experiments. 
The Figure 5.2 presents a. complete schema. of the available platform. 8 

Ql'l II PC» 

~ ~ 
~ -~- ~ C:•o:li• VB 

(15MIIJ 

~ ~ 
Memory ConU'DUw 

QI'/ 

~ VB ~ 
~ 

Sh•rd 

~ L:! 
cuhc VB 
(1SMII) 

G G 
Procnaor 

Main Memory 
DRAM 

(64 GB) 

2 Xeon ES-2630 v2 
and 

2 Tesla K40c (GKUO) 

Figure 5.2: Complete platform 

Global Memory 
(12GB) 

Detailed informations about the platform are presented in Table 5.1. 



5.3 BENCHMARKS 57 

Table 5.1: Platform of Execution description 

Component Description 

CPU 2 Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz. 2 x 6 cores x 2 threads = 24 threads. 

11 cache: 32KB data, 32KB instruction per core, 12 cache: 256KB per core, L3 cache: 

24 MB accessible by all cores, QPI: 6.4GT /sec 

RAM 64GB 

2 GPUs Device [0,1): "Tesla K40c", (15) Multiprocessors, (192) CUDA Cores/MP: 2880 

CUDA Cores, Total amount of global memory: 11520 MBytes (12079136768 bytes), 

12 Cache Size: 1572864 bytes, Total number of registers per block: 65536, Warp 

size: 32, Max. number of threads per MP: 2048, Max. number of threads per block: 1024 

5.2 Benchmarks 

The benchmarks used in the experiments were prepared using the Polybench 3.2 (Pouchet et al., 

2012) OpenMP and CUDA versions. The versions of GPU and others targets can be found in Poly

bench GPU (Grauer-Gray et al., 2012b) and Polybench ACC (Cavazos et al., 2012; Grauer-Gray et al. 

, 2012a). Our OpenMP with offloading version was created manually based on these others versions, 

basically we join the OpenMP and CUDA versions and create the table of alternative functions. 

The Table 5.2 shows the list of used benchmarks. 

Table 5.2: Benchmarks useds in experiment., 

Name Application Versions 

gemm Matrix-multiply O = alpha.A.B + beta.C SEQ, OMP, OMP+OFF 
CUDA 

For each of versions (OMP, CUDA, OMP+OFF) was executed the sequential version (SEQ) for 

comparison. 

5.3 Overhead Analysis 

To analyze the overhead of our runtime libraries and its impact of the offloading decision in per

formance, we execute the gemm (Pouchet et al., 2012), a matrix-multiply (0 = alpha.A.B.+beta.G). 

In this experiment the runtime was forced to decide for not offloading of code. The benchmarks 

were executed with num_threads in {1, 2, 4, 8, 10, 12} to compare with the original version (SEQ) 

and OpenMP version (OMP). As our version of OpenMP with offloading is denoted in experiments 

as OMP+OFF. 

The Figure 5.3 and Figure 5.4 show the results for gemm benchmark in an experiment in which 

the runtime was forced to decide to not do code offloading. The chunk_ size was defined as 32 for 

Figure 5.3 and 64 for Figure 5.4. Each configuration was executed 30 times to calculate the mean 

and standard deviation values. 



58 EXPERIMENTS AND RESULTS 5.4 

No Offloading (force use of CPU}, chunk_size: 32 

I •-• OM'•OI' ... 

10 ---,z- -_.,_ 
Figure 5.3: Overhead of decision code. The runtime collect and calculate the decision, but force the execution 
in CPU side: no offloading 

The overhead of our runtime is relatively small either for single thread as for the other configu
rations when compared with OMP version. 

No Offloading (force use of CPU), chunk_size: 64 

I •-... 

_.,_ 
Figure 5.4: Overhead of decision code. The runtime collect and calculate the decision, but force the execution 
in CPU side: no offloading 

The obtained overhead is of 1.25% on average when executing in single thread mode. And the 
difference between OMP and OMP+OFF is minimal when executing other configurations. 



5.4 OFFLOADING AND CHUNK SIZE EVALUATION ANALYSIS 59 

5.4 Offloading and Chunk Size Evaluation Analysis 

Some executions allowing offloading are shown on Figures 5.5, 5.6, 5.7, 5.8 and 5.9. The runtime 

use the operational intensity to decide on the use of the accelerator. 

The second experiment targets the chunk_ size evaluation. What is the influence of chunk_ size1 

in the offloading decision? The size of dimensions was LARGE_ DAT AS ET = 2048. The Figure 

5.5 shows the results for execution with chunk_size = 16, in this case the execution reached the 

offloading decision point only up to 10 threads. Taking the decision positive for offloading and made 

the offloading to GPU. 

:c 

7.5e+10 

j5.0o+l0 

J 
2.5e+10 

0.0.•00 

Offloading Analysis for gemm (Number of Threads with chunk_size = 16) 

I 

10 12 14 11 
Number of Thread• 

ti 20 

OMP 
■oMMlFF 

22 

Figure 5.5: Chunk_size evaluation. Configurotion chunk_size = 16 

24 

Still considering the Figure 5.5, in others executions between 12 and 24 threads, the thread that 

collects the performance counters values does not reach the decision point. The work is finish by 

others threads favored in system scheduling, then the offloading does not occur. 

The same situation happen in execution described by Figure 5.6 for execution with chunk_size = 
32, the work is finished by others threads when the program is using more than 10 threads. 

1subset of loop iterations 



60 EXPERJMENTS AND RESULTS 

:c: 

7.5e+10 

f 5.o.+10 

J 
2.s.+10 

Offloading Analysis for gemm (Number of Threads with chunk_size = 32) 

I 

10 12 14 
Number ol Thread• 

11 

OMP 

■OMP+OFF 

Figure 5.6: Chunk_size evaluation. Configuration chunk_ size= 32 

5.4 

With the data dimensions size and a fixed chunk_ size value, if the number of threads is increas
ing will exist more threads to share and consume the work. So, it is possible that the collector thread 
had no enough time to get the values for all defined events sets. But if this situation happened is 
because the data size is no enough to offloading purposes. 

The Figure 5.7 shows the values for chunk_size = 64. In this execution only 4 threads reachs 
the offloading decision point. In the executions with 6 threads, the work was finished by the others 
threads in in 8 of 10 executions and the decision point was not reached. Then the offloading decision 
was taken and the offloading made only for 2 executions of experiment. 

Offloading Analysis for gemm (Number of Threads with chunk_size = 64) 

:c 

7.5e+10 I 

j5.De+10 

I 
2 Se• 1D 

O.o.+00 I 
10 12 14 11 18 20 22 24 

Number of Thrlad1 

Figure 5. 7: Chunk_size evaluation. Configuration chunk_ size= 64 

The values for chunk_size = 128 is shown in Figure 5.8. The number of threads which reached 
the decision point and made the offloading was only 2 threads. 



5.4 OFFLOADING AND CHUNK SIZE EVALUATION ANALYSIS 

Offloading Analysis for gemm (Number of Threads with chunk_size = 128) 

1.o.+11 ------- - ----------------------~ 

..... I 

2,S.+10 

O.Oo+OO L ' 
1 10 12 14 

Number of Threads 
1B 11 

OMP 

■OMP+OFF 

-lo - 22 

Figure 5.8: Chunk_size evaluation. Configuration chunk_ Bize = 128 

24 

61 

The Figure 5.9 represents the execution with the last tested configuration, the chunk _size = 

256. Just the execution with one thread is able to do the collect and make the decision, because 

the chunk_ size = 256 is proportionally big considering the dimensions of data. With two or more 

threads the work is consumed quickly by the threads and the collector thread have not enough 

chunks of the loop iterations set to get measures on all events sets. 

7.S.+10 

2.S.+10 

0.0.+00 

Offloading Analysis for gemm (Number of Threads with chunk_size = 256) 

10 12 14 1B 
Number of Threads 

1B 

OMP 

■OMP•OFF 

20--22 

Figure 5.9: Chunk_size evaluation. Configuration chunk_Bize = 256 

The Figure 5.10 summarizes the configurations that reaches or not the decision point during 

the execution. 



62 EXPERIMENTS AND RESULTS 5.5 

Executions that reach the offloading decision 
12 

l2 

1D - - - 10 

- - - - - - - . . - - - - - - - - - - - - - - - - - - - - -

- - - - - . - - - - - - - - - - -- - - -

- - - - - - - - - - -

- - - - - - - - - -

'1 N . , .. • !l ~ :'I j,_ J:j!:ijr N • • • .! - !II IJ:jt t i· " :11.i!I .. N .... l ::l~:1 ~ , ~ ~ m·I ~ - l11 ~ UillHl 018 llle l6lei 10 16 lG 1632 Jl 32 32 JZ 32 32 32 32 llll UU ..c M 6'6'M'4 MMM lWM MM UI >1,Ulf-2 >I , , , llf''P ,2 r,s ,,.,~ ..... "'IS , 5fSf' 

Number of Threads 

•sum_WOlk_finish_belare_offlolld_declslon • som_reach_oflload_decision_point 
msum_declded_by_offloadlng ♦sum_made_lhe offloading 

Figure 5.10: Execution configuration that reaches the ojfioading decision 

During these executions, the decrease in the number of threads is related to the increase of 
chunk size. An rate is followed like a pattern. 

The relation between the number of threads and the size chunk is (10, 16), (8, 32), (4, 64), (2,128), 
(1,256). The values in the Figure 5.10 was calculated adding the flag about the offloading occur
rence. Being 10 executions for each configuration, the O is no made offloading and 10 is o number 
of execution that took the decision. 

5.5 Final Considerations 

The experiments results showed that the number of threads in CPU and the chunk size value 
are crucial. We can see this in the Figure 5.10, if the number of threads is increasing the number 
os times that the collector thread reached the decision point is decreased. 



Chapter 6 

Future Work 

In this chapter are presented the future works related with our thesis project. As mentioned 

previously our approach is related with automatic parallelization and it is divided into two parts: 

compilation tool to prepare the input code with multiple versions for parallel regions, and a runtime 

that can explore heterogeneous elements using operational intensity to decide about code offloading. 

The runtime part is the focus of this thesis and it was described in the Chapters 3 and 4. The 

compilation tool will be developed as future work together with other improvements to runtime. 

6.1 Compilation Tool Implementation 

To build the compilation tool that detects parallelizable regions and create the input code to 

runtime, we use the LLVM (Lattner e Adve, 2004) compiler infrastructure. As we want to serve 

as legacy code applications, in specific various applications written in Fortran and C, languages 

supported by the GCC compiler and clang (LLVM Clang, 2015). In the cases of Fortran code 

the DragonEgg plugin (DragonEgg, 2013) can be used in the translation of GCC intermediate code 

(GIMPLE) to LLVM intermediate representation (LLVM-IR). This step of the compilation process 

allows bringing code written in different languages to LLVM-IR. When the code is compiled with 

clang the LLVM-IR is created directly. The Figure 6.1 shows the work flow of compilation process. 

Sources In 
programming 

languagea 
supported by 

GCC 

Sourcea In 
programming 

languages 
■upported by 

clang 

GCC 
(Dragon Egg) 

clang 

LLVM 
IR 

Compilation 
[ PoLLy] 

Control ~ 

~ 
EJ (openMP] 8 

LLVM Tools and Infrastructure 

Figure 6.1: Compilation process workflow 

Binary Code 
Code Veraionlng 

+ 
Embedded IR Code 

Intermediate Representation 
Ions 

The compilation tool will find parallelizable regions as loops, and will apply code optimiza,-

63 



64 FUTURE WORK 6.2 

tions and transformations in this regions to generate parallel versions. In this phase, the PoLLy 
(Grosser e Zheng, 2010; Grosser et al., 2011, 2012) can be used to detect parallel regions. Parallel 
regions will be extracted and placed inside functions. The modules containing these functions will 
be used to generate versions, as code versioning. 

The prepared code for the runtime will be a OpenMP code with an alternative devices functions 
table. For each parallel loop there will be a handler function for every considered device on the 
platform. That includes a version able to retrieve the intermediate code for compilation at runtime. 

The format of input code is very simple, which allows the runtime to accept generated code by 
the compilation tool, or code written manually for OpenMP applications that have defined the table 
of alternatives functions. 

6.2 Runtime Improvements 

6.2.1 Modify the strategy of collecting the values of Performance Counters 

The current approach of measurements strategy collects the values of performance counters dur
ing the execution of a code percentage. A detected problem is that depending of threads scheduling 
on the system, the other threads, which are not collecting the counters, can finish their work before 
the collector thread have the values to make the decision. 

An alternative approach would be switch between the threads registering the thread that make 
the collect of events set needed to model calculations. The Figure 6.2 shows the idea of interleaved 
measurements strategy. 

Master thread 

D 

··--·······--------------. ------. ' ' i : . ' : : : ? : : : : : 
t .............................................. : 
I End pa-;:;,,1/el loop J 
End parallel region I 

Master thread 

l 
I Start parallel region 

DDll 
I Start parallel loop I 

il il ll 
◊ l';.==_,s_1_0_""=•::."•::.'::.d•::.t:J=•_Ton':::.===

I Offloading to Device xxxx 
·• .... l ··· ... ~·· \ ./ • ·.,,_/' 

End parallel loop 

I End parallel region 

Master thread 

ll 
Start parallel region I 

DDD l 
I Start parallel loop J 

[ End pa~I loop ] 

I End parallel region I 
Figure 6.2: Interleaved measurements strategy {Third version) 



6.2 RUNTIME IMPROVEMENTS 65 

6.2.2 Consider Data Placement issues 

The decision model in the current version, calculates the execution time and the offloading 

decision for each parallelizable loop, considering that the data are always in host memory. Because 

it use the time of input and output data transfers to make the decision. 

Assuming that the code has two adjacent loops that are using the same data, or the second loop 

uses the results of the first. If model decided to make the offloading of the first loop, the data were 

transferred to device memory. The decision of launching the execution of second kernel in the same 

device that run the first kernel or if it is better to launch it on another device or return execution 

to the CPU, must consider the data placement trying to minimize the data transfer. 

If the better execution time is related to do not move the data from memory device that run 

the first kernel, the second kernel must also have their execution launched on the same device for 

it can take advantage in the sharing of resident data. 

6.2.3 Speculative Data Copy to device 

In the current version, the data that is used by the kernel are transfered on demand, when the 

decision is taken in favour of the offloading. The idea is to copy data to memory of device before of 

the decision, in a speculative way. 

Data copies can be made at the beginning in overlap with the measurement session execution. 

In this case, if the decision is positive for code offloading the data would be residents in device 

memory. 

6.2.4 Data Synchronization issues 

The current version of runtime re-execute the code launching the kernel on GPU when it has a 

positive decision for offloading. Besides of data copy issues (copy on demand or in advance), the 

synchronization of data that were updated by OpenMP threads during the session of measurements 

may be useful in some context. 

6.2.5 The use of other decision models 

The interface between the libraries (interception and library that implements the decision model 

using of operational intensity) allows the model to be modified or replaced by another model. 

The function that intercepts the next chunk retrieval by collector thread is implemented with an 

unique entry point for the measures controls, the function registry_measures () (Section 4.3) 

that can allow the replacement of the model. 

6.2.6 Support other accelerators devices and other platforms 

In the current version we have offloading support only for GPUs, but it is possible that the input 

code has versions using OpenCL to try the offloading to other devices. We have interests on provide 

support for devices as FPGAs (Bacon et al., 2013) and Intel Xeon Phi co-processors (Intel, 2013). 

An another interesting platform is the Juno ARM (ARM, 2016) that includes the big.LITTLE 

scheduling and power management. This platform have two ARM processors (Cortex-A57 and 

Cortex-A53 MP Core) that share the same main memory and a Mali GPU. The Cortex-A57 is 



66 FUTURE WORK 6.3 

dual core and Cortex-A53 is a quadcore actually, but the number of cores can vary. Normally, the 
Operating System (OS) (Distro Linaro Linux) detects 6 cores that can be used at the same time. 

The OS implements a module that switches between CPUs based on frequency (cpufreq) like 
a Dynamic Voltage and Frequency Scaling (DVFS). The main idea is start the execution in low 
power core and If the workload increase the OS switch the execution for the powerful processor. 
The processors share the same main memory, which is good for avoiding data transfers. 

6.2. 7 Use of Optimized Vendor Libraries 

Standard libraries with optimized versions of functions can be used to mount the alternative 
functions table. Optimized manufacturers or vendor libraries have been made available for the 
efficient use of target platforms and making the modernized code (Intel, 2015b). The NVIDIA 
CUDA Basic Linear Algebra Subroutines (cuBLAS) (NVIDIA, 2015d) is a complete standard BLAS 
library for GPUs. 

6.3 Final Considerations 

In this chapter it was presented the possible improvements in the runtime and the idea of process 
flow of compilation tool to generate the input code. 

In cases that the collector threads have no enough time the collect all event sets, the problem 
is related to scheduling on system, but depend of the data size. If the data is very small, probably 
the offloading must not be made. We need to execute more experiments with benchmark that use 
data with bigger dimensions and try to implement the interleaved measures. 



Chapter 7 

Conclusions 

Considering the runtime and the experiments results. We can conclude that the operational 

intensity can be used at runtime to take decisions about the code offloading to device accelerators. 

The use of it proved to be appropriate for rapid decisions at runtime, in accordance com a original 

idea of Roofline Model of give insights about the performance and about the code behavior. 

We are considering all levels of memory hierarchy and data transfers between host memory and 

device memory. The data transfers are measured and considered on the decision in an attempt 

to cover data transfers and to align the different architectures through the levels of the memory 

hierarchy. 

Our runtime need of improvements and adjusts in the precision of measures and in the model 

of decision, because the hardware have limitations to measure events and we are using five events 

sets to get measures of performance counters. 

The measures are made on a minimum percentage of the code for that all events sets have 

collected values. The chunk_ size becomes a problem, our measures are made by chunks of loops 

iterations and the OpenMP runtime not allow modifications in the number of threads and in the 

chunk_ size after the start of parallel region. So, it is not possible to adjust the chunk_ size to make 

quick measures over small chunks and after increase to desired value to execution. If the chunk_ size 

is too large, it can make the measurements suffer a delay until all event sets are measured. 

67 



Appendix A 

Creating Hooks for OpenMP Functions 

In this appendix are available some expanded codes of OpenMP directives. It is a complementary 
material for the Chapter 3, which presents a study about the OpenMP directives and how their 
implementation is made. 

A.I Expanded code for parallel region with two loops 

In the intermediate representation generated by GCC that is shown in the Code A.l, we can 
see that the generated code follows the formats to parallel region, in which an outlined function is 
created to handle the code inside the demarcated parallel region. 

1 main () { 
2 /* Variables declaration was suppressed. *f 
3 <bb 2>: 
• num_t = 8; 
5 • omp _data_ o . 1 . n = n ; 
e num_t.10 = (unsigned int) num_t; 
1 __ builtin_GOMP _parallel_start (main._omp_fn.0, &.omp_data_o.1, num_t.10) 

s main._omp_fn.0 {&.omp_data_o.1); 
9 __ builtin_ GOMP _parallel_end (); 

10 n = .omp_data_o.1.n; 
11 D.1807 = 0; 

13 <LO>: 
u return D.1807; 
15 } 

16 

11 main._omp_fn.O {struct .omp_data_s.0 * .omp_data._i) { 
1s f* Variables declaration was suppressed. *f 
19 

20 <bb 16>: 
21 

22 <hb 3>: 

1

23 D.1836 = __ builtin_GOMP _loop_runtime_start 
iend0. 7}; 

68 

(0, 1024, 1, &.istart0.6, &. 



EXPANDED CODE FOR PARALLEL REGION WITH TWO LOOPS 69 

24 if (D.1836 != 0) 

25 goto <bb 14>; 

25 else 

27 goto <bb 5>; 

28 

29<bb 14>: 

30 . is t a r t O . 8 = . is tart O . 6 ; 

31 i=(int) .istartO.8; 

32 . iendO . 9 = . iendO . 7; 

33 D. 18 4 0 = ( i n t ) . i end O . 9 ; 

34 

35 <bb 4>: 

36 i = i + 1 j 

37 if ( i < D . 18 4 0) 

38 goto <bb 4>; 

39 else 

40 goto <bb 15 >; 

41 

42 <bb 15>: 

43 D.1841 = __ builtin_ GOMP _loop_runtime_next (&. is tart O. 6, &. iendO. 7) ; 

44 if (D .1841 != 0) 

45 goto <bb 14>; 

46 else 

47 goto <bb 5 >; 

48 

49 <bb 5>: 

so __ builtin_GOMP _loop_end (); 

51 

s2 <bb 6>: 

53 D.1842 = . omp_data_i->n; 

54 D.1843 = (long int) D.1842; 

55 D.1846 = __ builtin_GOMP_loop_dynamic_start (0, D.1843, 1, 32, &.istartO 

. 2, &. iendO. 3) ; 

56 if (D.1846 != 0) 

n goto <bb 12>; 

58 else 

s9 goto <bb 8>; 

60 

61 <bb 12>: 

62 . istartO .4 = . istartO .2; 

63 j = (int) . istartO .4; 

64 . iendO . 5 = . iendO . 3; 

65 D.185O = (int) . iendO .5; 

66 

e1 <bb 7>: 

68 j = j + l · 
' 

69 if (j < D. 185O) 

70 goto <bb 7>; 

71 else 



70 APPENDIX A 

n goto <bb 13>; 
73 

74 <bb 13>: 
111 D.1851 = __ builtin_ GOMP _loop_dynamic_next (&. is tart O. 2, &. iendO. 3) ; 
76 if (D.1851 != 0) 
" goto <bb 12>; 
78 else 
19 goto <bb 8>; 
80 

81 <bb 8>: 
82 __ built in_ GO MP_ loop_ end_ nowait () ; 
83 

84 <bb 9>: 

~ rn: 

C6digo A.1: Parallel Regions code with two different loops definitions inside 

A.2 Generic next chunk function 

An generic function was created to handle the both loops formats, because we detected two 
formats that are generated according some code features. The generic function is showed in the 
Code A.2. 

1 bool HOOKOMP _generic_next{long• ista.rt , long• iend, chunk next fn fn_proxy 
, void• extra) { 

2 PRINT_F1.JNC_NAME; 
3 

4 /• The first thing is stop the last chunk measure.•/ 
11 if ( registred_ thread_ executing_function_next = ( long int) pthread _self() 

){ 
6 RM_registry _measures() ; 
7 } 

8 

9 bool result = false; 
10 

11 /• Registry the thread which will be execute and get measures. •/ 
12 if (!thread_ was _registred_ to_ execute_measures) { 
13 /• Calculate the max iterations need to measures. •/ 
u max_loops_iterations_for_measures = (( total_of_iterations * 

percentual_of_code) / 100); 
15 

16 HOOKOMP _registry _the_first_thread (); 
17 } 

18 

19 /• If is not getting measures execute directly. •/ 
20 if ( ! is_executing_measures_section){ /• Call directly. •/ 
21 result = fn_proxy ( istart , iend, extra); 
22 } 



GENERIC NEXT CHUNK FUNCTION 71 

23 else{ /• Measuring session. •/ 

24 if( reg is tred_ thread_ executing_function_next = ( long int) pthread _self 

() ){ /• Registered thread. •/ 

2s if(executed_loop_iterations < max_loops_iterations_for_measures){ /• 

No reached the percentual. •/ 

26 result = fn_proxy(istart, iend, extra); 

21 / / No more work to do. 

2s if(!result){ 

29 /• The shared work finish before the decision. •/ 

30 reach_offload_decision_point = false; 

31 } 

32 else { 

33 /• Update the number of iterations executed by this thread. •/ 

34 exec u t e d _ 1 o op _ it er at ions += ( * i end - * i s t a r t ) ; 

35 /• Starting the registry on RM library. Is necessary partial 

measures each chunk. 

36 Switching to do not get measures considering control code. •/ 

37 RM_registry _measures() ; 

38 } 

39 } 

40 else{ /• Offloading decision. •/ 

41 TRACE( 11 IH<XX<CMPJ: Trying to make decision about offloading. \n 11
); 

42 

43 

44 

45 

46 

47 

48 

49 

50 

SI 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

/• Reach the offloading decision point.•/ 

reach_offload_decision_point = true; 

long better_ device = 0; 

'TRACE( 11 Defining additional parameters. \n"); 

/• N: total of iterations, Number of executed iterations 

percentual) , last chunk_size. •/ 

RM _set_ aditional_parameters ( total_ of_ iterations , 

executed_loop_iterations, (•iend - •istart), 

q_ data_ transfer_ write , q_ data_ transfer _read, 

type_of_data_allocation); 

RM_print_counters_ values_csv (); 

'TRACE( 11 Getting decision about offloading. \n"); 

if ( (decided_ by_ offloading = RM_ decision_about_ offloading(& 

better _device)) I= O){ 

/• Launch appropriated function. •/ 

TRACE( 11 Trying to launch appropriated function to loop o/cd on 

device: o/'cd.\n", current_loop_index, better_device); 

if ( ( made_ the_offloading = HOOKOMP _call_offloading_function ( 

current_loop_index, better_device)) = O){ 

TRACE( "The function offloading was not done. \n 11
); 

} 



72 APPENDIX A 

62 else{ 
63 TRACE( "The offloading was done launching of appropriated 

64 

65 

66 

67 

68 

69 

71 

72 

73 

74 

76 

76 

77 

78 

79 

80 

81 

} 
} 
else { 

function to loop o/<rl on device: o/<rl. \n 11
, current_loop_index, 

better_ device) ; 

TRACE( 11 Is not possible decide about offloading. \n 11
); 

} 

TRACE( 11 After decision about offloading. \n 11
); 

I* Continue execution. *I 
if ( ! ( decided_ by_ offloading && made_ the_ offloading)) { 

TRACE( 11 II-ICXI<av1P): [CONTINUE) Calling next function after 
offloading decision about.\n 11

); 

result = fn_proxy(istart, iend, extra); 
} 

/* Mark that is no more in section of measurements. *I 
is_executing_measures_section = false; 
executed_loop_iterations = 0; 

82 / * Release all blocked team threads. •/ 
83 if(number_of_blocked_threads > O){ 
84 HOOKOMP _release_all_team_threads (); 
85 } 

86 } 

87 

88 } 

89 else { /* Others threads. *I 
90 I* If decide by offloading: block the other threads to wait. *I 
91 if (decided_ by_ offloading){ 

93 

94 

95 

96 

97 

98 

99 

00 

sem_ wait(&mutex_ verify _number_of_blocked_threads); 

if(number_of_blocked_threads < (number_of_threads_in_team - 1)) { 
number_ of_ blocked_ threads++; 

sem_post(&mutex_ verify _number_of_blocked_threads); 
TRACE( 11 [HXi<av!PJ: Thread [%IuJ will be blocked.\n 11

, (long int) 
pthread_self ()); 

sem_ wait(&sem_blocks_other _ team_threads); 
TRACE( 11 !I-KXl((MP): Thread [%lu J is waking up of block. \n", (long 

int) pthread_self()); 
01 } 

02 } 

oa TRACE(" [H(X)KCMPJ: Other thread in execution, verifying if made by 
offloading: o/<rl\n 11

, made_the_offloading); 



GENERJC NEXT CHUNK FUNCTION 73 

10s f* After the wakeup of blocked or while the offloading was not made. 

*I 
10s if ( ! made_ the_ offloading){ 

101 TRACE( 11 [HCX)I<OMP] : IOIBERS/WAKE UP] Calling next function out of 

measures section after wake up.\n 11
); 

10s result = fn_proxy(istart, iend, extra); 

109 } 

110 else{ f* Indicates have no more work to do. *f 
111 result = false; 

112 } 

113 } 

114 

115 } 

us TRACE(" [HOOKOMP]: Leaving the %s. \n", __ FUNCTION_); 

111 return result; 

118 } 

C6digo A.2: The generic function to handle the next chunk functions 



References 

Aleksandar Ilic e Sousa (2015) Frederico Pratas Aleksandar Ilic and Leonel Sousa. CARM: 
Cache-Aware Performance, Power and Energy-Efficiency Roofline Modeling. Em Compiler, Ar
chitecture and Tools Conference (CATC 2015), CATC'15. Intel. Cited on page 12 

Amini et al. (2011) Mehdi Amini, Corinne Ancourt, Fabien Coelho, Beatrice Creusillet, Serge 
Guelton, Franc;ois lrigoin, Pierre Jouvelot, Ronan Keryell and Pierre Villalon. PIPS is not (just) 
Polyhedral Software. Em International Workshop on Polyhedral Compilation Techniques (IM
PACT' 11 }, Chamonix, France, paginas 1-6. Cited on page 8 

Amini et al. (2012) Mehdi Amini, Beatrice Creusillet, Stephanie Even, Ronan Keryell, Onig 
Goubier, Serge Guelton, Janice Onanian Mcmahon, Franc;ois-Xavier Pasquier, Gregoire Pean and 
Pierre Villalon. Par4All: From Convex Array Regions to Heterogeneous Computing. Em IMPACT 
2012: 2nd International Workshop on Polyhedral Compilation Techniques HiPEAC 2012, Paris, 
France. URL: https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733. 2 pages. Cited on 
page 2, 7, 8 

Aparapi (2011) Aparapi. Aparapi. API for data parallel Java, sep 2011. URL: https://code. 
google.com/p/aparapi/. Cited on page 2 

ARM (2016) ARM. Juno ARM Development Platform, January 2016. URL: https://www.arm. 
com/products/tools/development-boards/versatile-express/juno-arm-development-platform. 
php. Cited on page 65 

Asanovic et al. (2009) Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt 
Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, 
David Wessel and Katherine Yelick. A View of the Parallel Computing Landscape. Commu
nications of the ACM, 52(10):56-67. ISSN 0001-0782. doi: 10.1145/1562764.1562783. URL: 
http://dl.acm.org/citation.cfm?id=1562783. Cited on page 3 

Augonnet et al. (2010) Cedric Augonnet, Samuel Thibault and Raymond Namyst. StarPU: 
a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines. Research 
Report RR-7240, INRIA. URL: https://hal.inria.fr/inria-00467677. Cited on page 7, 9 

Bacon et al. (2013) David Bacon, Rodric Rabbah and Sunil Shukla. FPGA Programming for 
the Masses. Queue, 11(2):40:40-40:52. ISSN 1542-7730. doi: 10.1145/2436696.2443836. URL: 
http://doi.acm.org/10.1145/2436696.2443836. Cited on page 65 

Baskaran et al. (2010) Muthu Manikandan Baskaran, J. Ramanujam and P. Sadayappan. Au
tomatic C-to-CUDA code generation for affine programs. Em Proceedings of the 19th joint Eu
ropean conference on Theory and Practice of Software, international conference on Compiler 
Construction, CC'l0/ETAPS'lO, paginas 244-263, Berlin, Heidelberg. Springer-Verlag. ISBN 3-
642-11969-7, 978-3-642-11969-9. doi: 10.1007 /978-3-642-11970-5 _14. URL: http://dx.doi.org/ 
10.1007/978-3-642-11970-5_14. Cited on page 2, 8 

Bastoul (2004) Cedric Bastoul. Code generation in the polyhedral model is easier than you 
think. Em PACT'13 IEEE International Conference on Parallel Architecture and Compilation 
Techniques, paginas 7-16, Juan-les-Pins, France. Cited on page 2, 8 

74 



REFERENCES 75 

Benabderrahmane et al. {2010) Mohamed-Walid Benabderrahmane, Louis-Noel Pouchet, Al

bert Cohen and Cedric Bastoul. The Polyhedral Model is More Widely Applicable Than 

You Think. Em Proceedings of the 19th Joint European Conference on Theory and Prac

tice of Software, International Conference on Compiler Construction, CC'lO/ETAPS'lO, pagi

nas 283-303, Berlin, Heidelberg. Springer-Verlag. ISBN 3-642-11969-7, 978-3-642-11969-9. doi: 

10.1007 /978-3-642-11970-5_16. URL: http://dx.doi.org/10.1007 /978-3-642-11970-5_16. Cited on 

page 2, 8 

Bondhugula (2012) Uday Bondhugula. Pluto - an automatic parallelizer and locality optimizer 

for multicores {@online}, 2012. URL: http://pluto-compiler.sourceforge.net/. Cited on page 8 

Bondhugula et al. (2007) Uday Bondhugula, J. Ramanujam and P. Sadayappan. PLuTo: A 

Practical and Fully Automatic Polyhedral Parallelizer and Locality Optimizer. Technical Report 

OSU-CISRC-10/07-TR70, The Ohio State University. Cited on page 8 

Bondhugula et al. (2008) Uday Bondhugula, Albert Hartono, J. Ramanujam and P. Sadayappan. 

A practical automatic polyhedral parallelizer and locality optimizer. SIGPLAN Not., 43(6):101-

113. ISSN 0362-1340. doi: 10.1145/1375581.1375595. URL: http://doi.acm.org/10.1145/1375581. 

1375595. Cited on page 8 

Caparr6s Cabezas e Pilschel {2014) Victoria Caparr6s Cabezas and Markus Piischel. Extending 

the Roofline Model: Bottleneck Analysis with Microarchitectural Constraints. Em 2014 IEEE 

International Symposium on Workload Characterization (IISWC), paginas 222-231. doi: 10.1109/ 

IISWC.2014.6983061. Cited on page 12 

CAPS {2012) CAPS. OpenHMPP Directives, November 2012. URL: http://www.caps-entreprise. 

com/openhmpp-directives/. Cited on page 2 

Cavazos et al. {2012) John Cavazos, Scott Grauer-Gray, Robert Searles, William Killian, Lifan 

Xu and Sudhee Ayalasomayajula. Poly Bench/ ACC The Polyhedral Benchmark Suite Target

ing Multicore CPUs, GPUs, and Accelerators, May 2012. URL: http: / /cavazos-lab.github.io/ 

PolyBench-ACO/. Cited on page 55, 57 

Chapman et al. {2007) Barbara Chapman, Gabriele Jost and Ruud van der Pas. Using OpenMP: 

Portable Shared Memory Parallel Programming {Scientific and Engineering Computation). The 

MIT Press. ISBN 0262533022, 9780262533027. Cited on page 2 

Creusillet e Irigoin {1996) Beatrice Creusillet and Franr;ois Irigoin. Interprocedural Array Region 

Analyses. Languages and Compilers for Parallel Computing, paginas 46-60. Cited on page 8 

Dagum e Menon (1998) Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard 

API for Shared-Memory Programming. IEEE Computational Science and Engineering, 5(1):46-

55. ISSN 1070-9924. doi: 10.1109/99.660313. URL: http://dl.acm.org/citation.cfm?id=615255. 

615542. Cited on page 2, 16 

Dongarra et al. (1994) Jack J Dongarra, Hans W Meuer and Erich Strohmaier. TOP500 Super

computer Sites. Technical Report, RUM 37 /94, University of Mannheim, June 30, 1994. URL: 

www.netlib.org/benchmark/top500/lists/rum3894.ps. Cited on page 1 

Dongarra et al. {1996) Jack J Dongarra, Hans W Meuer and Erich Strohmaier. TOP500 Super

computer Sites. Technical Report, RUM 48/96, University of Mannheim, November 18, 1996. 

URL: http:// www.netlib.org/utk/people/JackDongarra/pdf/top500_96l1.pdf. Cited on page 1 

DragonEgg {2013) DragonEgg. DragonEgg - Using LLVM as a GOO backend, September 2013. 

URL: http://dragonegg.llvm.org/. Cited on page 63 

GCC (2015) GCC. Gee, the gnu compiler collection, 2015. URL: https://gcc.gnu.org/. Cited on 

page 2, 16 



76 REFERENCES 

Glaskowsky (2009) Peter N. Glaskowsky. NVIDIA's Fermi: The First Complete GPU Computing 
Architecture. Whitepaper, NVIDIA. URL: http://www.nvidia.com/content/PDF /fermi_ white_ 
papers/P.Glaskowsky _NVIDIA%27s_Fermi-The_First_ Complete_ GPU _Architecture.pd£. 
Cited on page 1 

GNU Libgomp (2015a) GNU Libgomp, GNU Offloading and Multi Processing Runtime Library: 
The GNU OpenMP and OpenACC Implementation. Technical Report, GNU. URL: https: 
//gcc.gnu.org/onlinedocs/gcc-5.2.0/libgomp.pdf. Cited on page 2, 13, 16, 17 

GNU Libgomp (2015b) GNU Libgomp. GNU Offloading and Multi Processing Runtime Library: 
The GNU OpenMP and OpenACC Implementation. Technical Report, GNU libgomp. URL: 
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/libgomp.pdf. Cited on page 2, 13, 16 

GNU Libgomp (2016a) GNU Libgomp. GNU Offloading a.nd Multi Processing Runtime Library: 
The GNU OpenMP and OpenACC Implementation. Technical Report, GNU libgomp. URL: 
https://gcc.gnu.org/onlinedocs/gcc-6.1.0/libgomp.pdf. Cited on page 2, 13, 16 

GNU Libgomp (2016b) GNU Libgomp. GNU Offloading and Multi Processing Runtime Library: 
The GNU OpenMP and OpenACC Implementation. Technical Report, GNU libgomp. URL: 
https://gcc.gnu.org/onlinedocs/gcc-5.4.0/libgomp.pdf. Cited on page 2, 13, 16 

GNU Libgomp (2015c) GNU Libgomp. GNU libgomp, GNU Offloading and Multi Process
ing Runtime Library documentation (Online manual), Aug 2015c. URL: https:// gcc.gnu.org/ 
onlinedocs/libgomp /. Cited on page 2, 16, 17, 19 

Grauer-Gray et al. (2012a) S. Grauer-Gray, Lifan Xu, R. Searles, S. Ayalasomayajula and 
J. Cavazos. Auto-tuning a high-level language targeted to gpu codes. Em Innovative Paral
lel Computing {lnPar), 20121 pa.ginas 1-10. doi: 10.1109/lnPar.2012.6339595. Cited on page 57 

Grauer-Gray et al. (2012b) Scott Grauer-Gray, Will Killian and Louis-Noel Pouchet. Poly
Bench/GPU Implementation of PolyBench codes for GPU processing, March 2012b. URL: 
http://web.cse.ohio-state.edu;-pouchet/software/polybench/GPU/. Cited on page 55, 57 

Grosser e Hoefler (2016) Tobias Grosser and Torsten Hoefler. Polly-ACC Transparent Com
pilation to Heterogeneous Hardware. Em Proceedings of the 2016 International Conference on 
Supercomputing, ICS '16, paginas 1:1-1:13, New York, NY, USA. ACM. ISBN 978-1-4503-4361-9. 
doi: 10.1145/2925426.2926286. URL: http://doi.acm.org/10.1145/2925426.2926286. Cited on page 
2, 7, 9 

Grosser e Simbiirger (2014) Tobias Grosser and Andreas Simblirger. Polyhedral.info, Fev 2014. 
URL: http://polyhedral.info/. Cited on page 2, 8 

Grosser e Zheng (2010) Tobias Grosser and Hongbin Zheng. Polly - Polyhedral Transformations 
for LLVM. LLVM Developer Meeting 2010. Cited on page 2, 8, 64 

Grosser et al. (2011) Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simburger, Armin 
Grosslinger and Louis-Noel Pouchet. Polly - polyhedral optimization in llvm. Em Proceedings 
of the First International Workshop on Polyhedral Compilation Techniques (IMPACT), volume 
2011. URL: http: //perso.ens-lyon.fr/christophe.alias/impact20l1/impact-07.pdf. Cited on page 2, 
8, 16, 64 

Grosser et al. (2012) Tobias Grosser, Armin Groesslinger and Christian Lengauer. POLLY -
Performing Polyhedral Optimizations On A Low-level Intermediate Representation. Parallel 
Processing Letters, 22(04):1250010. ISSN 0129-6264. doi: 10.1142/S0129626412500107. URL: 
http://www.worlclscicntific.com/doi/abs/10.1142/S0129626412500l07. Cited on page 2, 8, 16, 64 



REFERENCES 77 

Guelton et al. {2011) Serge Guelton, Mehdi Amini, Ronan Keryell and Beatrice Creusillet. PyPS 

a programmable pass manager. The 24th International Workshop on Languages and Compilers 

for Parallel Computing, September 2011. URL: https://hal-mines-paristech.archives-ouvertes.fr/ 

hal-01087303. Poster. Cited on page 8 

Hane Abdelrahman (2009) Tianyi David Han and Tarek S Abdelrahman. hi CUDA: A High-level 

Directive-based Language for GPU Programming. Em GPGPU-2: Proceedings of 2nd Workshop 

on General Purpose Processing on Graphics Processing Units, paginas 52-61, New York, NY, 

USA. ACM. ISBN 978-1-60558-517-8. doi: http://doi.acm.org/10.1145/1513895.1513902. Cited on 

page 2 

Han e Abdelrahman {2011) Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: High

Level GPGPU Programming. IEEE Transactions on Parallel and Distributed Systems, 22(1): 

78-90. ISSN 1045-9219. doi: 10.1109/TPDS.2010.62. URL: http://doi.ieeecomputersociety.org/ 

10.1109/TPDS.2010.62. Cited on page 2 

hiCUDA Project (2012) hiCUDA Project. The hicuda project site, oct 2012. URL: http: 

//www.eecg.utoronto.ca;-tsa/hicuda/ . Cited on page 2 

Ilic et al. (2014) Aleksandar Ilic, Frederico Pratas and Leonel Sousa. Cache-aware Roofline Model: 

Upgrading the Loft. IEEE Computer Architecture Letters, 13(1) :21-24. ISSN 1556-6056. doi: 

10.1109/L-CA.2013.6. Cited on page 12 

Intel {2015a) Intel. Intel(r) 64 and IA-32 Architectures Software Devel-

oper's Manual. Volume 3B:System Programming Guide, Part 2. Manual, In

tel. URL: http ://www.intel.com/content/dam/www/public/us/en/ documents/manuals/ 

64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf. Cited on page 12 

Intel (2015b) Intel. What is Code Modernization?, July 2015b. URL: https://software.intel.com/ 

en-us/articles/what-is-code-modernization. [Online; posted by Michel P. at 08-July-2015J. Cited 

on page 1, 3, 66 

Intel {2016a) Intel. Openmp* support, Jan 2016a. URL: https://software.intel.com/pt-br/node/ 

522678. Cited on page 2 

Intel (2016b) Intel. IntelA@ OpenMP* Runtime Library Interface. Technical Report, Intel. 

URL: hLl,ps: / / www .openrnprtl.org/sites/ default/files/resources/libomp _ 20160322 _ manual. pdf. 

OpenMP* 4.5. Cited on page 2 

Intel (2015c) Intel. Intel(r) Performance Counter Monitor - A better way to 

measure CPU utilization, June 2015c. URL: https://software.intel.com/en-us/articles/ 

intel-performance-counter-rnonitor. Cited on page 12 

Intel (2014) Intel. Intel(r) Xeon(r) Processor E5 v2 and E7 v2 Product Families Uncore Per

formance Monitoring Reference Manual. Technical Report, Intel. URL: http://www.intel.com/ 

content/www /us/en/processors/xeon/xeon-e5-2600-v2-uncore-manual.html. Cited on page viii, 56 

Intel (2013) Intel. The intel(r) xeon phi(tm) 5110p coprocessor, jan 2013. URL: http://www. 

intel.com.br/ content/ www /br/pt/processors/xeon/xeon-phi-detail.html. Cited on page 1, 3, 65 

Jablin et al. (2011) Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, 

Stephen R. Beard and David I. August. Automatic CPU-GPU Communication Management 

and Optimization. Em Proceedings of the 32nd ACM SJGPLAN Conference on Programming 

Language Design and Implementation, volume 46 of PLDI '11, paginas 142-151, New York, NY, 

USA. ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993516. URL: http://doi.acm.org/ 

10.1145/1993498.1993516. Cited on page 2 



78 REFERENCES 

JCuda (2012) JCuda. Jcuda site, June 2012. URL: http://www.jcuda.org/. Cited on page 2 

JOCL (2012) JOCL. Joel site, June 2012. URL: http://www.jocl.org/documentation/ 
documentation.html. Cited on page 2 

Khronos (2013) Khronos. OpenCL-The open standard for parallel programming of heterogeneous 
systems, January 2013. URL: http://www.khronos.org/opencl/. Cited on page 1, 7 

Klockner et al. {2012) Andreas Klockner, Nicolas Pinto, Yunsup Lee, B Catanzaro, Paul Ivanov 
and Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time 
Code Generation. Parallel Computing, 38(3):157-174. ISSN 0167-8191. doi: 10.1016/j.parco. 
2011.09.001. Cited on pa.ge 2 

Konstantinidis e Cotronis {2015) Elias Konstantinidis and Yiannis Cotronis. A Practical 
Performance Model for Compute and Memory Bound GPU Kernels. Em 2015 23rd Euromicro 
International Conference on Parallel, Distributed, and Network-Based Processing, paginas 651-
658. IEEE. ISBN 978-1-4799-8491-6. doi: 10.1109/PDP.2015.51. URL: http://ieeexplore.ieee. 
org/lpdocs/epic03/wrapper.htm?arnumber=7092788. Cited on pa.ge 12 

Lattner {2008) Chris Lattner. LLVM and Clang: Next generation compiler technology. Em The 
BSD Conference, Ottawa, Canada. Cited on pa.ge 8 

Lattner e Adve {2004) Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for 
Lifelong Program Analysis & 'Transformation. Em Proceedings of the International Symposium on 
Code Generation and Optimization, number c in CGO '04, paginas 75-86, Palo Alto, California. 
IEEE Computer Society. ISBN 0-7695-2102-9. doi: 10.1109/CGO.2004.1281665. URL: http: 
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1281665. Cited on pa.ge 2, 8, 16, 63 

Lee e Eigenmann {2010) Seyong Lee and Rudolf Eigenmann. OpenMPC: Extended OpenMP 
Programming and Tuning for GPUs. Em Proceedings of the 2010 ACM/IEEE International 
Conference for High Performance Computing, Networking, Storage and Analysis, SC '10, paginas 
1-11, Washington, DC, USA. IEEE Computer Society. ISBN 978-1-4244-7559-9. doi: 10.1109/SC. 
2010.36. URL: http://ieeexplore.ieee.org/1pdocs/epic03/wrapper.htm?arnumber=5644879. Cited 
on pa.ge 2 

Linux Man-pages (2016) Linux Man-pages. The Linux man-pages project, March 2016. URL: 
https://www.kernel.org/doc/man-pages/. Cited on page 38 

LLVM Clang (2015) LLVM Clang. clang: a C language family frontend for llvm, August 2015. 
URL: http://clang.llvm.org/. Cited on page 2, 16, 63 

LLVM OpenMP {2015) LLVM OpenMP. OpenMP(r): Support for the OpenMP language, 
August 2015. URL: http://openmp.llvm.org/. Cited on page 2, 16 

Lo et al. {2015) YuJung Lo, Samuel Williams, Brian Van Straalen, TerryJ. Ligocki, MatthewJ. 
Cordery, NicholasJ. Wright, MaryW. Hall and Leonid Oliker. Roofline Model Toolkit: A 
Practical Tool for Architectural and Program Analysis. Em Stephen A. Jarvis, Steven A. 
Wright and Simon D. Hammond, editors, High Performance Computing Systems. Perfor
mance Modeling, Benchmarking, and Simulation, volume 8966 of Lecture Notes in Computer 
Science, paginas 129-148. Springer International Publishing. ISBN 978-3-319-17247-7. doi: 
10.1007 /978-3-319-17248-4_ 7. URL: http://dx.doi.org/10.1007 /978-3-319-17248-4_ 7. Cited on 
pa.ge 12 

Lorenzo et al. {2013) 0 G Lorenzo, T F Pena, JC Cabaleiro, JC Pichel and FF Rivera. DyRM: 
A Dynamic Roofline Model Based on Runtime Information. Em 2013 International Conference 
on Computational and Mathematical Methods in Science and Engineering, paginas 965-967. ISBN 
978-84-616-2723-3. URL: http://citius.usc.es/investigacion/publicacions/listado/490. Cited on pa.ge 
12 



REFERENCES 79 

Lorenzo et al. (2014) 0. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C. Pichel and F. F. Rivera. 

3DyRM: a dynamic roofline model including memory latency information. The Journal of Super

computing, 70(2):696-708. ISSN 0920-8542, 1573-0484. doi: 10.1007 /s11227-014-1163-4. URL: 

http://link.springer.com/10.1007 /sll227-014-1163-4. Cited on page 12 

Marr et al. (2002) Deborah T. Marr, David L. Binns, Frank adn Hill, Glenn Hinton, David A. 

Koufaty, J. Allan Miller and Michel Upton. Hyper-threading technology architecture and mi

croarchitecture. Intel Technology Journal, 6(1):04-15. ISSN 1535766X. URL: http://www.ece. 

cmu.ed u;-ece7 42 / fl 2 /Ii b / exe/ fetch. php ?media=marr _ hyperthread02. pdf. Cited on page 49 

Martinez et al. (2011) G. Martinez, M. Gardner and Wu chun Feng. CU2CL: A CUDA

to-OpenCL Translator for Multi- and Many-Core Architectures. Em Parallel and Distributed 

Systems (ICPADS), 2011 IEEE 17th International Conference on, paginas 300 -307. doi: 

10.1109/ICPADS.2011.48. Cited on page 2 

Mikushin et al. (2014) D. Mikushin, N. Likhogrud, E.Z. Zhang and C. Bergstrom. Kernel Gen -

The Design and Implementation of a Next Generation Compiler Platform for Accelerating Nu

merical Models on GPUs. Em Parallel Distributed Processing Symposium Workshops (IPDPSW), 

2014 IEEE International, paginas 1011-1020. doi: 10.1109/IPDPSW.2014.115. Cited on page 2, 7, 

8 

Mikushin e Likhogrud (2012) Dmitry Mikushin and Nicolas Likhogrud. Kernelgen - a toolchain 

for automatic gpu-centric applications porting. URL: http:/ /hgpu.org/?p=8313. Cited on page 2, 

7, 8 

Mikushin et al. (2013) Dmitry Mikushin, Nikolay Likhogrud and Eddy Zheng Zhang. KERNEL

GEN - the design and implementation of a next generation compiler platform for accelerating 

numerical models on GPUs. Technical Report, Rutgers. Cited on page 2, 7, 8 

Mohr et al. {2002) Bernd Mohr, Allen D. Malony, Sameer Shende and Felix Wolf. Design and 

Prototype of a Performance Tool Interface for OpenMP. The Journal of Supercomputing, 23(1): 

105-128. ISSN 0920-8542, 1573-0484. doi: 10.1023/ A:1015741304337. URL: http://dx.doi.org/ 

10.1023 / A: 10157 41304337. Cited on page 13 

Mucci et al. (1999) Philip J. Mucci, Shirley Browne, Christine Deane and George Ho. PAPI: 

A Portable Interface to Hardware Performance Counters. Em In Proceedings of the Department 

of Defense HPCMP Users Group Conference, paginas 7-10. URL: http://citeseerx.ist.psu.edu/ 

viewdoc/summary?doi=l0.1.1.117.6801. Cited on page 12, 47 

Newburn et al. (2013) Chris J. Newburn, Rajiv Deodhar, Serguei Dmitriev, Ravi Murty, Ravi 

Narayanaswamy, John Wiegert, Francisco Chinchilla and Russell McGuire. Offload Compiler 

Runtime for the Intel(r) Xeon Phi(tm) Coprocessor, paginas 239-254. Springer Berlin Heidelberg, 

Berlin, Heidelberg. ISBN 978-3-642-38750-0. doi: 10.1007 /978-3-642-38750-0 _18. URL: http: 

//dx.doi.org/10.1007 /978-3-642-38750-0_18. Cited on page 1, 3 

NVIDIA (2013) NVIDIA. NVIDIA CUDA C Programming Best Practices Guide. Technical 

Report, NVIDIA. Cited on page 3, 47 

NVIDIA {2015a) NVIDIA. CUDA C Best Practices Guide. Technical Report, NVIDIA. URL: 

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide. Version 7.5. Cited on page 1, 7 

NVIDIA (2014a) NVIDIA. CUDA C Best Practices Guide. Technical Report, NVIDIA. URL: 

http://docs.nvidia.com/ cuda/pdf/CUDA _ C _Best_ Practices_ Guide.pdf. Design Guide, DG-

05603-001 Version 6.5. Cited on page 1, 7 

NVIDIA (2014b) NVIDIA. CUPTI User's Guide (CUDA Performance Tools Interface). Technical 

Report, NVIDIA. URL: http://docs.nvidia.com/cuda/cupti. DA-05679-001 v6.0. Cited on page 12, 

47 



80 REFERENCES 

NVIDIA (2014c) NVIDIA. CUDA C Programming Guide. Technical Report PG-02829-001, 
NVIDIA. URL: http://docs.nvidia.com/cuda/pdf/CUDA_ C _Programming_ Guide.pdf. Design 
Guide v6.5, posted at 2014-08-01 13:24:15. Cited on page 1 

NVIDIA {2015b) NVIDIA. CUPTI User's Guide. Technical Report February, NVIDIA. URL: 
http://docs.nvidia.com/cuda/cupti. "DA-05679-001 v6.0". Cited on page 12 

NVIDIA (2015c) NVIDIA. CUDA C Programming Guide. Technical Report PG-02829-001, 
NVIDIA. URL: http://docs.nvidia.com/cuda/pdf/CUDA_ C_Programming_ Guide.pdf. Design 
Guide v7.5. Cited on page 1 

NVIDIA (2014d) NVIDIA. cuBLAS-XT: Accelerate BLAS calls with multiple GPUs, May 2014d. 
URL: http://developer.nvidia.com/cublasxt. Cited on page 38 

NVIDIA (2015d) NVIDIA. cuBLAS: NVIDIA CUDA Basic Linear Algebra Subroutines, Novem
ber 2015d. URL: https://developer.nvidia.com/cublas. Cited on page 38, 66 

NVIDIA (2009) NVIDIA. Whitepaper: Nvidia's next generation cuda(tm) compute architecture: 
Fermi(tm). Technical Report Version 1.1, NVIDIA. URL: http://www.nvidia.com/ content/PDF / 
fermi_ white_papers/NVIDIA_Fermi_ Compute_Architecture_ Whitepaper.pdf. Cited on page 1 

NVIDIA (2012) NVIDIA. NVIDIA's Next Generation CUDA Compute Architecture: Kepler 
GKllO. Technical Report, NVIDIA Corporation. URL: http://www.nvidia.com/content/PDF / 
kepler/NVIDIA-Kepler-GKllO-Architecture-Whitepaper.pdf. Cited on page 1 

NVPTX (2013) NVPTX. User Guide for NVPTX Back-end, July 2013. URL: http://llvm.org/ 
docs/NVPTXUsage.html. Cited on page 8 

Ofenbeck et al. {2014) Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros Cabezas, Daniele G. 
Spampinato and Markus Piischel. Applying the Roofline Model. Em 2014 IEEE International 
Symposium on Performance Analysis of Systems and Software (ISPASS) 2014, Monterey, CA, 
USA, March 23-25, 2014, pa.ginas 76-85. doi: 10.1109/ISPASS.2014.6844463. URL: http:// dx. 
doi.org/10.1109/ISPASS.2014.6844463. Cited on page 10, 49 

OpenACC {2011) OpenACC. OpenACC Application Programming Interface. Version 1.0., 
November 2011. URL: http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pclf. Cited 
on page 2, 7, 13, 16 

OpenACC (2013) OpenACC. OpenACC Application Programming Interface. Version 2.0, June 
2013. URL: http://www.openacc.org/sites/default/files/OpenACC.2.0a_l.pdf. Cited on page 2, 7, 
13, 16 

OpenACC {2015a) OpenACC. OpenACC Application Programming Interface. Version 2.5, Oc
tober 2015a. URL: http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf. Cited on page 
2, 7, 13, 16 

OpenACC (2012) OpenACC. OpenACC Directives for Accelerators Site, March 2012. URL: 
http://www.openacc-standard.org/. Cited on page 2, 16 

OpenACC (2015b) OpenACC. OpenACC Directives for Accelerators, September 2015b. URL: 
http://www.openacc.org/. Cited on page 2, 16 

OpenMP API Site (2012) OpenMP API Site. The OpenMP(r) API Specification for Parallel 
Programming, January 2012. URL: http://openmp.org. Cited on page 2, 16 

OpenMP-ARB (2011) OpenMP-ARB. OpenMP Application Program Interface Version 3.1. 
Technical Report, OpenMP Architecture Review Board (ARB). URL: http://www.openmp.org/ 
mp-documents/OpenMP3.l.pdf. Cited on page 2, 15, 16, 18 



REFERENCES 81 

OpenMP-ARB (2013) OpenMP-ARB. OpenMP Application Program Interface Version 4.0. 

Technical Report, OpenMP Architecture Review Board (ARB). URL: http://www.openmp.org/ 

mp-documents/OpenMP4.0.0.pdf. Cited on page 2, 7, 13, 15, 16, 18 

OpenMP-ARB (2015) OpenMP-ARB. OpenMP Application Program Interface Version 4.5. 

Technical Report, OpenMP Architecture Review Board (ARB). URL: http: / /www.openmp.org/ 

mp-documents/openmp-4.5.pdf. Version 4.5. Cited on page 2, 7, 13, 15, 16, 18 

PAPI (2015) PAPI. Counting floating point operations on intel sandy bridge and ivy bridge, April 

2015. URL: http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops. Cited on page 48 

Par4All Site (2012) Par4All Site. Par4All Developer Guide, September 2012. URL: http://www. 

par4all.org/documentation/developers-guide/. Cited on page 2 

Patterson (2009) David Patterson. The top 10 innovations in the new nvidia fermi architecture, 

and the top 3 next challenges. NVIDIA Whitepaper, pa.ginas 3-10. Cited on page 1 

PGROUP (2015) The Portland Group PGROUP. PGI Accelerator Compilers with OpenACC 

Directives, December 2015. URL: http://www.pgroup.com/resources/accel.htrn. Cited on page 2 

PGROUP (2013) The Portland Group PGROUP. PGI(r) Compiler Reference Manual. Parallel 

Fortran, C and C++ for Scientists and Engineers, September 2013. URL: http:/ /www.pgroup. 

com/resources/docs.htm. Cited on page 2 

PGROUP (2010) The Portland Group PGROUP. PGI User's Guide, December 2010. URL: 

http://www.pgroup.com/resources/docs.htm. Release 11.0. Cited on page 2 

Pouchet et al. (2012) Louis-Noel Pouchet, Uday Bondugula and Tomofumi Yuki. PolyBench/C 

the Polyhedral Benchmark suite, March 2012. URL: http:/ /web.cse.ohio-state.edu;-pouchet/ 

software/poly bench/. Cited on page 55, 57 

PyCUDA (2012) Site PyCUDA. PyCUDA Site, June 2012. URL: http://documen.tician.de/ 

pycuda/. Cited on page 2 

Reyes et al. {2012) Ruyman Reyes, Ivan L6pez-Roddguez, Juan J. Fumero and Francisco 

de Sande. accULL: An OpenACC Implementation with CUDA and OpenCL Support. Em 

Christos Kaklamanis, Theodore Papatheodorou and Paul G. Spirakis, editors, Proceedings of the 

18th International Conference on Parallel Processing (Euro-Par 2012), volume 7484 of Euro

Par'12, pa.ginas 871-882, Berlin, Heidelberg. Springer-Verlag. ISBN 978-3-642-32819-0. doi: 

10.1007 / 978-3-642-32820-6_86. URL: http://dx.doi.org/10.1007 /978-3-642-32820-6 _86. Cited on 

page 2 

Sukumaran-Rajam et al. (2014) Aravind Sukumaran-Rajam, Juan Manuel Martinez, Willy 

Wolff, Alexandra Jimborean and Philippe Clauss. Speculative Program Parallelization with Scal

able and Decentralized Runtime Verification. Em Borzoo Bonakdarpour and Scott A. Smolka, 

editors, Runtime Verification, volume 8734, paginas 124-139, Toronto 1 Canada. Springer. doi: 

10.1007 /978-3-319-11164-3\_ll. URL: https://hal.inria.fr/hal-01070610. Cited on page 7, 9 

Top500 (2013) Top500. TOP500 List of Supercomputers Site, 2013. URL: http://www.top500. 

org/. Cited on page 1 

Top500 (2014) Top500. TOP500 List of Supercomputers Site, 2014. URL: http://www.top500. 

org/. Cited on page 1 

Top500 (2015) Top500. TOP500 List of Supercomputers Site, 2015. URL: http://www.top500. 

org/. Cited on page 1 



82 REFERENCES 

Top500 {2016) Top500. TOP500 List of Supercomputers Site, 2016. URL: http://www.top500. 
org/. Cited on page 1 

Trahay et al. {2011) Franc;ois Trahay, Franc;ois Rue, Mathieu Faverge, Yutaka Ishikawa, Ray
mond Namyst and Jack Dongarra. EZTrace: a generic framework for performance analysis. Em 
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), New
port Beach, CA, United States. URL: https://hal.inria.fr/inria-00587216. Poster Session. Cited 
on page 7, 13 

Verdoolaege {2010) Sven Verdoolaege. isl: An Integer Set Library for the Polyhedral Model. Em 
Komei Fukuda, Jorisvander Hoeven, Michael Joswig and Nobuki Takayama, editors, Proceedings 
of the Third International Congress Conference on Mathematical Software - !CMS 2010, volume 
6327 of ICMS'10, paginas 299-302, Berlin, Heidelberg. Springer-Verlag. ISBN 3-642-15581-2, 
978-3-642-15581-9. doi: 10.1007 /978-3-642-15582-6_ 49. URL: http:/ /dl.acm.org/citation.cfm? 
id=l888390.1888455. Cited on page 8 

Verdoolaege e Grosser {2012) Sven Verdoolaege and Tobias Grosser. Polyhedral Extraction 
Tool. Em Second Int. Workshop on Polyhedml Compilation Techniques {IMPAGT'12}, Paris, 
France. Cited on page 8 

Verdoolaege et al. (2013) Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio 
G6mez, Christian Tenllado and Francky Catthoor. Polyhedral Parallel Code Generation for 
CUDA. ACM Trans. Archit. Code Optim., 9(4):54:1-54:23. ISSN 1544-3566. doi: 10.1145/ 
2400682.2400713. URL: http://dl.acm.org/citation.cfm?doid=2400682.24007l3. Cited on page 2, 7, 
8 

Williams et al. (2009) Samuel Williams, Andrew Waterman and David Patterson. Roofline: An 
Insightful Visual Performance Model for Multicore Architectures. Communications of the ACM, 
52(4):65. ISSN 00010782. doi: 10.1145/1498765.1498785. URL: http://dl.acm.org/ft_gateway. 
cfm?id=1498785&type=html. Cited on page viii, 5, 7, 9, 10, 47 

Wolfe (1996) Michael Wolfe. Parallelizing compilers. ACM Comput. Surv., 28(1):261-262. ISSN 
0360-0300. doi: 10.1145/234313.234417. URL: http://doi.acm.org/10.1145/234313.234417. Cited 
on page 4 

Yan et al. (2009) Yonghong Yan, Max Grossman and Vivek Sarkar. Jcuda: A programmer-friendly 
interface for accelerating java programs with cuda. Em Proceedings of the 15th International 
Euro-Par Conference on Parallel Processing, Euro-Par '09, paginas 887-899, Berlin, Heidelberg. 
Springer-Verlag. ISBN 978-3-642-03868-6. doi: 10.1007 /978-3-642-03869-3 _ 82. URL: http:// 
www.cs.rice.edu;-{}vs3/PDF /Yan-Grossman-Sarkar-Europar-2009.pdf. Cited on page 2 


	Untitled_20012023_161018.pdf
	Rogério Aparecido Gonçalver pt2.pdf
	Rogério Aparecido Gonçalver pt2 (1).pdf



