• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2012.tde-22012014-080625
Documento
Autor
Nombre completo
Marcelo Hashimoto
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Cesar Junior, Roberto Marcondes (Presidente)
Bruno, Odemir Martinez
Morimoto, Carlos Hitoshi
Papa, João Paulo
Torres, Ricardo da Silva
Título en portugués
Detecção de objetos por reconhecimento de grafos-chave
Palabras clave en portugués
correspondência de pontos-chave
detecção de objetos
isomorfismo de grafos
reconhecimento estrutural de padrões.
Resumen en portugués
Detecção de objetos é um problema clássico em visão computacional, presente em aplicações como vigilância automatizada, análise de imagens médicas e recuperação de informação. Dentre as abordagens existentes na literatura para resolver esse problema, destacam-se métodos baseados em reconhecimento de pontos-chave que podem ser interpretados como diferentes implementações de um mesmo arcabouço. O objetivo desta pesquisa de doutorado é desenvolver e avaliar uma versão generalizada desse arcabouço, na qual reconhecimento de pontos-chave é substituído por reconhecimento de grafos-chave. O potencial da pesquisa reside na riqueza de informação que um grafo pode apresentar antes e depois de ser reconhecido. A dificuldade da pesquisa reside nos problemas que podem ser causados por essa riqueza, como maldição da dimensionalidade e complexidade computacional. Três contribuições serão incluídas na tese: a descrição detalhada de um arcabouço para detecção de objetos baseado em grafos-chave, implementações fiéis que demonstram sua viabilidade e resultados experimentais que demonstram seu desempenho.
Título en inglés
Object detection by keygraph recognition
Palabras clave en inglés
graph isomorphism
keypoint correspondences
object detection
structural pattern recognition
Resumen en inglés
Object detection is a classic problem in computer vision, present in applications such as automated surveillance, medical image analysis and information retrieval. Among the existing approaches in the literature to solve this problem, we can highlight methods based on keypoint recognition that can be interpreted as different implementations of a same framework. The objective of this PhD thesis is to develop and evaluate a generalized version of this framework, on which keypoint recognition is replaced by keygraph recognition. The potential of the research resides in the information richness that a graph can present before and after being recognized. The difficulty of the research resides in the problems that can be caused by this richness, such as curse of dimensionality and computational complexity. Three contributions are included in the thesis: the detailed description of a keygraph-based framework for object detection, faithful implementations that demonstrate its feasibility and experimental results that demonstrate its performance.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese.pdf (97.59 Mbytes)
Fecha de Publicación
2014-02-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.