
Algorithms and Data Structures
for Component-Hypertrees of Gray-Level Images

Alexandre Morimitsu

Text presented
to the

Institute of Mathematics and Statistics
of the

University of São Paulo
as a

requirement
to

obtain the title
of

PhD in Sciences

Program: Computer Science
Advisor: Prof. Ronaldo Fumio Hashimoto

During the development of this study the author received financial support from CAPES

São Paulo, March 2021

Algorithms and Data Structures
for Component-Hypertrees of Gray-Level Images

This version of the thesis contains corrections and modifications suggested by the
Judging Committee during the defense of the original version of this manuscript,

performed on January 22nd, 2021. A copy of the original version is available in the
Institute of Mathematics and Statistics of the University of São Paulo.

Jugding Committee:

• Prof. Dr. Ronaldo Fumio Hashimoto - IME-USP

• Prof. Dr. Thierry Géraud - EPITA

• Prof. Dr. Nicolas Passat - URCA

• Prof. Dr. Silvio Jamil Ferzoli Guimarães - PUC-MG

• Prof. Dr. Paulo André Vechiatto de Miranda - IME-USP

Resumo

MORIMITSU, A. Algoritmos e Estruturas de Dados para Hiperárvores de Componentes
de Imagens em Níveis de Cinza. 2021. Tese (Doutorado) - Instituto de Matemática e Estatís-
tica, Universidade de São Paulo, São Paulo, 2021.

Esta tese tem como foco o estudo de hiperárvores de componentes, que consistem em grafos
utilizados para armazenar imagens em níveis de cinza de forma hierárquica. Neste grafos, nós re-
presentam componentes conexos de uma imagem extraídos a partir de um conjunto de vizinhanças
crescentes, enquanto arcos são utilizados para organizar os nós de acordo com relações de inclusão.
Neste texto, o objetivo principal consiste na elaboração de algoritmos e estruturas de dados efi-
cientes para a construção, o armazenamento e a manipulação de hiperárvores de componentes.
Mais especificamente, as principais contribuições podem ser resumidas nos seguintes itens: (i) a
teoria por trás de hiperárvores de componentes é revisada e expandida, e as propriedades mais
importantes são destacadas e provadas. Estas propriedades são então usadas no desenvolvimento de
algoritmos e estruturas de dados otimizados, que reduzem consideravelmente o consumo de tempo
e memória comparados com abordagens anteriores; (ii) o impacto da escolha das vizinhanças é ana-
lisada e uma nova família de vizinhanças baseadas em hierarquia de partições é proposta, resultando
em algoritmos ainda mais rápidos; (iii) uma forma eficiente de computar variações de atributos é
fornecida, possibilitando a elaboração de aplicações que focam na extração de objetos compostos
de um conjunto de objetos menores; (iv) uma análise experimental é realizada, mostrando que a
estratégia proposta é mais rápida e eficiente do que outras abordagens e (v) uma abordagem para
segmentação de palavras é desenvolvida, mostrando um exemplo de aplicação onde variação de
atributos pode ser particularmente útil.
Palavras-chave: Morfologia Matemática, operadores conexos, componentes conexos, árvores de
componentes, hiperárvores de componentes, conectividade baseada em dilatação, hierarquia de par-
tições.

i

ii

Abstract

MORIMITSU, A. Algorithms and Data Structure for Component-Hypertrees of Gray-
Level Images. 2021. Thesis (Ph.D.) - Institute of Mathematics and Statistics, University of São
Paulo, São Paulo, 2021.

This thesis focuses on the study of component-hypertrees, which are graphs that store gray-level
images in a hierarchical way. In such graphs, nodes represent connected components of an image
extracted from multiple increasing connectivities, while arcs are used to organize these nodes ac-
cording to an inclusion relation. In this research, the main goal is to develop efficient algorithms and
data structures for component-hypertree construction, storage and manipulation. More specifically,
our main contributions can be summarized as follows: (i) the theory behind component-hypertrees is
reviewed and expanded, with some important properties being highlighted and proved. Using these
properties, optimized algorithms and data structures are developed, resulting in implementations
that considerably decrease time consumption and memory usage when compared to previously ex-
isting strategies; (ii) the impact of the choice of connectivities used to extract connected component
is studied and a new family of neighborhoods based on a hierarchy of partitions is proposed, leading
to the development of even faster algorithms; (iii) an efficient way of computing attribute variation
is explained, allowing the development of applications that extract nodes comprised of clusters of
smaller objects; (iv) an experimental analysis is conducted, to show that the proposed strategy is
faster and more efficient than previously existing approaches and (v) a word segmentation tool is de-
veloped, to showcase an example of an application where attribute variation is particularly suitable.

Keywords: Mathematical Morphology, connected operators, connected components, component-
trees, component-hypertrees, dilation-based connectivity, hierarchy of partitions.

iii

iv

Contents

List of Abbreviations ix

List of Symbols xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Overview . 1
1.2 Related Works . 2

1.2.1 Strategies to Build the Component Tree . 2
1.2.2 Efficient Computation of Attributes . 2
1.2.3 Connectivity Used to Obtain the CCs . 3
1.2.4 Other Types of Graphs Used to Represent Images 3

1.3 Text Organization . 4

2 Theoretical Background 5
2.1 Sets and Partitions . 5
2.2 Images . 5
2.3 Neighborhood Relations . 6
2.4 Graphs . 7

2.4.1 General Definitions . 7
2.4.2 Trees and Directed Acyclic Graphs . 8
2.4.3 Images as Graphs . 8

2.5 Connectedness in Images . 9
2.5.1 Binary Images . 9
2.5.2 Gray-Level Images . 9

2.6 Connectedness in Increasing Neighborhoods . 11
2.7 Component-Hypertrees . 12

3 Algorithmic Background 15
3.1 Representing Forests as Arrays . 15
3.2 Labeling Connected Components in Binary Images 15
3.3 Labeling Connected Components in Gray-Level Images 20
3.4 Canonical Elements and Representatives . 24

v

vi CONTENTS

3.5 Ordered parent Construction . 25
3.6 Unordered parent Construction . 26
3.7 Parent Change Properties . 27

4 Proposed Method 39
4.1 Component-Hypertree Construction . 39

4.1.1 General Algorithm . 39
4.2 Compact Component-Hypertrees . 40

4.2.1 Compact Nodes . 40
4.2.2 Compact Arcs . 42
4.2.3 Equivalence between Complete-Hypertrees and Compact-Hypertrees 42
4.2.4 Arc Redundancy . 47
4.2.5 Properties of Compact Arcs . 48

4.3 Minimal-Hypertrees . 50
4.4 Which Compact Arcs are Minimal Arcs . 51

4.4.1 Vertical Arcs . 51
4.4.2 Backward Arcs . 52
4.4.3 Horizontal Arcs . 52
4.4.4 Diagonal Arcs . 52

4.5 Algorithm for Minimal Hypertree Construction . 54
4.5.1 Algorithm for Compact Node Allocation . 54
4.5.2 Algorithm for Minimal Arc Allocation . 58
4.5.3 Algorithm for Arc Allocation . 60
4.5.4 Arcs Allocated by the Algorithm are Minimal Arcs 63

4.6 Parent and Composite Nodes in Minimal-Hypertrees 64
4.6.1 Parent Nodes in Minimal-Hypertrees . 65
4.6.2 Composite Nodes in Minimal-Hypertrees . 66

4.7 Choice of Neighborhoods . 69
4.7.1 Dilation-generated Neighborhoods . 70
4.7.2 Neighborhoods Based on Hierarchies of Partitions 75
4.7.3 Pyramidal Hierarchy . 75

4.8 Attributes . 77
4.8.1 Statistical Measures of Clusters of Nodes . 78
4.8.2 Attributes Between Nodes . 78

5 Experiments 81
5.1 Analysis . 81

5.1.1 Complexity Analysis . 81
5.1.2 Experimental Results . 82
5.1.3 Memory Consumption . 84

5.2 Applications . 85
5.2.1 Segmentation of Words in an Image Containing Text 85
5.2.2 Segmentation of Oriental Ideograms . 87

CONTENTS vii

6 Conclusion 91
6.1 Perspective Works . 91
6.2 Final Words . 92

Bibliography 93

viii CONTENTS

List of Abbreviations

CC Connected component
DAG Directed Acyclic Graph
pixel Picture element
SE Structuring element

ix

x LIST OF ABBREVIATIONS

List of Symbols

α Threshold (gray-level)
A Neighborhood relation
A Sequence of neighborhood relations
β Threshold (gray-level)
B Structuring element of a generating sequence
C Connected component
d Dimension of an image
Df Domain of a gray-level image f
E Set of arcs of a graph
E Sequence of sets of arcs
f Gray-scale image
g Generic function
G Graph
η Number of calls of parentUpdate

H Partition
H Sequence of partitions
H Function that returns the element with highest depth in L
θ Composition of downsamplings
Θ Computation complexity
i Neighborhood index
K Number of gray-levels
κ Attribute
K Set of gray-levels
L Set of pixels used in dilation-generated neighborhoods
λ Threshold (gray-level)
` Generic index
M Node
n Size of a sequence A
N Node
ν Enumeration of a set
N Set of natural numbers

xi

xii LIST OF SYMBOLS

o Origin of a structuring element
O Computational complexity (worst case)
π Path in a graph
p Pixel
P Set of pixels
P Power set
q Pixel
r Representative/canonical element
R Region
ρ Downsampling
R Binary relation
R Set of real numbers
s Element of a set
S Set
S Structuring element
t Scale of downsampling
v Vertex of a graph
V Set of vertices of a graph
ω Weight (graph)
W Dilation of elements of a generating sequence
x Coordinate
X Binary image
y Coordinate
Z Set of integer numbers
⊥ Parent of root nodes in arrays representing trees
∅ Empty set

List of Figures

2.1 An example of a 1d gray-level image and its level sets. 6
2.2 A graphic illustration of an image represented as a vertex-weighted graph. 8
2.3 Example of the set of connected components of the level sets of a gray-level image. . 9
2.4 Examples of a complete component-tree, a component-tree and a max-tree. 10
2.5 Analysis of the connected components of the level sets of an image when a new pair

of neighboring pixels is added. 12
2.6 An example of a complete component-hypertree. 13
2.7 Illustration of all nodes that include a given nodeN in a complete component-hypertree. 14

3.1 A graphical representation of the union-find structure as a forest graph. 16
3.2 Illustration showing how different ways of implementing the union can affect the

union-find representation. 22
3.3 A compact way of representing the union-finds of each level set of the input image. . 23
3.4 Unordered parent construction. 27
3.5 Graphical illustration of the assumptions used for Sec. 3.7. 28
3.6 Representing the array parentj−1 from Fig. 3.5 as multiple union-finds uf λj−1. 28
3.7 Example showing how the parent array changes when a new parent is assigned to a

node. 29
3.8 Example showing how the reconstruction of the nodes of the parent array changes

when a change in parenthood relation happens. 30
3.9 Update from uf α to uf (α,1), seen as a two-step process where we first remove the arc

pointing to the previous parent and then we add the new parent arc. 31
3.10 Update of the union-finds by connecting two neighboring pixels for all gray-levels

where they were originally disconnected. 32
3.11 Example showing how paths to the root node are affected when a change in parent-

hood relation happens. 33
3.12 Example highlighting the changes in parenthood relation when using Alg. 12. 34
3.13 Simulation of the parentUpdate procedure. 35

4.1 Visualization of the nodes for the proof of the third case in Prop. 4.1. 41
4.2 A complete component-hypertree with the compact nodes highlighted. 41
4.3 The compact-hypertree of the complete component-hypertree from Fig. 4.2. 42
4.4 A component-tree and its respective complete component-tree. 43
4.5 An example of the parents of a node N in a compact-hypertree and in the corre-

sponding complete-hypertree. 43

xiii

xiv LIST OF FIGURES

4.6 An example of how connected components merge as the neighborhood increases. The
inclusion relation of these CCs can be represented as a sideways component-tree. . . 44

4.7 An example of the composite nodes of a node N in a compact-hypertree and in its
corresponding complete-hypertree. 44

4.8 Redundant arcs in compact-hypertrees. 47
4.9 Four types of arcs in compact-hypertrees. 49
4.10 The minimal-hypertree of f and A. 51
4.11 Schematic example showing the occurence of diagonal composite arcs. 53
4.12 Schematic example showing the occurence of double arcs. 53
4.13 Comparison between the parentUpdate procedure and the connect procedure. . 56
4.14 Marking of new nodes using the updated connect procedure from Alg. 17. 58
4.15 Marking nodes and arcs using the connect procedure from Alg. 19. 62
4.16 Allocation of new nodes and arcs for the step i = 2 running Alg. 22. 62
4.17 Allocation of new nodes and arcs for the step i = 3 running Alg. 22. 63
4.18 Schematic example showing the occurence of diagonal parent arcs. 65
4.19 An example showing how Alg. 23 can be used to find the parents of a node N in

minimal-hypertrees. 66
4.20 Patterns that indicate the occurrence of diagonal composite arcs in complete-hypertrees

and their respective representation in compact-hypertrees. 67
4.21 Left: a generic example showing patterns where diagonal composite arcs occur. Right:

the respective minimal-hypertree, with the redundant composite arcs represented as
dashed arrow. 67

4.22 Example showing missing redundant composite arcs in minimal-hypertrees. 68
4.23 Example of generating sequences and their respective generated sequences. 71
4.24 Example showing how intersections of the dilation of pixels can be used to find

neighboring pixels. 72
4.25 An example showing that the intersection of the dilation of two pixels can happen

outside of the domain of the image. 72
4.26 A schematic example showing that, for symmetric SEs W, if the intersection (p ⊕

W)⊕ (q ⊕ S) 6= ∅, then the middle point of p and q is always in the intersected area. 73
4.27 Illustration showing that the intersection of the dilation of two pixels happens inside

the domain for a rectangular non-symmetric SE. 73
4.28 Example of a minimal-hypertree built from a neighborhood defined using hierarchy

of partitions. 76
4.29 Computation of horizontal distance. 79

5.1 Comparison of times using different types of neighborhoods. 83
5.2 Computation of horizontal spacing using the pyramidal approach. 84
5.3 Extraction of letters, words and lines of text using different thresholds for the variance

of the distance of merged nodes. 84
5.4 Left: average number of nodes for each representation for up to 50 neighborhoods.

Right: the same experiments but for the average number of arcs. 85

List of Tables

5.1 Segmentation of words using our method. 87
5.2 Extraction of Oriental ideograms using our method for texts with horizontal orientation. 89
5.3 Extraction of Oriental ideograms using our method for texts with vertical orientation. 90

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Overview

In the field of Computer Vision and Image Processing, there are multiple ways of storing and
manipulating digital images. Many of them rely on processing pixels of the image individually or in
small windows, but these strategies have the downside of not taking into consideration the content
of the image.

To avoid the drawback of these approaches, in the last two decades, connected operators have
received increasing attention in the Mathematical Morphology community. One of the main con-
tributing factors was the introduction of the component-tree [SOG98, Jon99], a structure that
organizes connected components (CCs) of the level sets of an image hierarchically according to
their inclusion relation.

Since the introduction of component-trees, numerous related works were published and, in par-
ticular, Passat and Naegel [PN11] proposed in 2011 a structure they called the component-hypertree.
It consists of a graph that combines CCs from component-trees built using increasing connectivities,
generating a structure that not only takes into consideration inclusion relation between CCs ob-
tained from the same component-tree, but also relates CCs extracted using different connectivities.
This property is useful in applications where objects of interest consist not only of individual CCs,
but also of clusters of smaller objects, since both of them can be treated as nodes of component-
hypertees. For instance, in text extraction applications, letters, words, and lines of text all become
nodes of component-hypertrees, and computation of attributes in these nodes is sufficient to cate-
gorize them into each of these classes of objects.

Hence, component-hypertree is a rich representation that keeps information about both the
content and the connectivity of the pixels of an image. However, contrary to component-trees,
it has not been widely studied. For this reason, our main goal is to expand the theory about
component-hypertrees. In particular, in this thesis, we mainly focus on the following issues related
to construction of component-hypertrees:

• Construction of component-hypertrees can be time-consuming, since it needs to extract con-
nected components of the input image according to multiple connectivities. Hence, we investi-
gate algorithms used for component-tree construction and analyze how can they be generalized
to build component-hypertrees efficiently.

• Although many connected components need to be stored in a component-hypertree, many of
them are repeated. Therefore, we investigate properties of these connected components and
investigate how we can design an optimized data structure to store component-hypertrees
without loss of information.

• Finally, we investigate the advantages of using component-hypertrees instead of component-
trees. For that, we present some attributes that analyzes how connected components merge
as the connectivity increases that can only be obtained in component-hypertrees.

1

2 INTRODUCTION 1.2

In the final sections of this manuscript, we show some theoretical and experimental results to
show the efficiency of the proposed approaches to tackle the issues above mentioned.

1.2 Related Works

The main focus of this text is about theory and algorithms for component-trees and component-
hypertrees, but it also includes themes such as shape analysis using attribute computation and
different types of connectivities. Thus, in this section, we briefly recall some publications related to
these topics, since they are the foundations of our study.

Historically, acquisition, analysis and characterization of shapes have been studied for a long
time. One of the earliest related work consisted of the study proposed by Gray [Gra71], which
focused on studying local properties of discrete binary images. These properties can be used to
obtain efficient ways of computing metrics like area and perimeter of binary shapes. Additionally,
Gray’s paper also empathizes the importance of the connectivity used, showing some topological
problems that arise with the choice of the connectivity.

As the theory evolved, analysis of shapes in more complex scenarios, such as gray-scale images
or color images, were performed. In particular, this led to the development of connected filtering
and, in the late 1990s, to the concept of component trees [SOG98, Jon99], in which shapes (CCs)
of a grayscale image are hierarchically represented in the form of a tree.

Component trees introduced an efficient way of computing metrics in CCs and performing
connected filtering. Thus, with the introduction of component trees, numerous related works were
proposed. Among these works, some problems that were dealt with include, but are not limited to:

1. Strategies to build the component tree;

2. Efficient computation of attributes;

3. Connectivity used to obtain the CCs;

4. Other types of trees used to store an image hierarchically.

Below, we review some of the most relevant works related to these topics.

1.2.1 Strategies to Build the Component Tree

Different strategies to build the component-tree were proposed. Salembier et al. [SOG98] origi-
nally proposed the usage of a flooding strategy. In their approach, a component-tree is built from
its root, and new nodes are created as we flood the image.

An alternative strategy was proposed by other authors later by using a merge strategy in-
stead [NC06, BGL+]. Under this approach, pixels are ordered according to their gray-levels before
construction of the tree begins. Then, the pixels are processed following this order and merged
together into CCs according to a union-find [Tar75] based algorithm.

A different approach was used in order to allow parallel construction of component-trees. This
requires an algorithm to merge two disjoint component-trees and was first presented by Wilkinson
et al. [WGH+08]. An alternative version of this algorithm using merges of trees 1-D images was
proposed by Matas et al. [MDA+08].

A detailed comparison of the performance of these various component tree algorithms can be
found in the paper published by Carlinet and Géraud [CG14].

1.2.2 Efficient Computation of Attributes

One of the biggest advantages of using component-trees is that it allows fast computation of some
attributes, thanks to the inclusion order the nodes satisfy. While some attributes are straightforward
to compute, there are some incremental attributes that require more complex strategies.

1.2 RELATED WORKS 3

For instance, Passat et al. [PNR+11] used the component-trees to compute, for each node,
a pseudo-distance that analyzed the similarity of each node to a given binary shape in order to
perform segmentation. Neumann and Matas [NM12] were able to compute attributes like perimeter
(using 4-connectivity) and horizontal and vertical crossings. Climent and Oliveira [CO15] developed,
based on Gray’s metrics, patterns to compute the number of holes in the nodes of the tree. Silva
et al. [SAMH16] later extended this idea to compute Gray’s bit-quads in component-trees, allowing
efficient computation of all attributes proposed by Gray.

In general, any attribute that can be efficiently computed in a component-tree can also be
efficiently computed in component-hypertrees. For instance, in the original paper that introduced
component-hypertrees [PN11], Passat and Naegel showed how to generalize their pseudo-distance to
perform image segmentation. Additionally, in a previous publication [MAH15], we showed an imple-
mentation of a way of computing variation of attributes in a non-optimized component-hypertree.

1.2.3 Connectivity Used to Obtain the CCs

When extracting connected components of an image, it is common to use simple connectivities
such as 4-connectivity or 8-connectivity. However, it is worth noting that there exist other types of
connectivities [Ser98, BNG02, SW09], that can be used to define more general types of connectivities.
They include concepts such as dilation-based connectivities and mask-based connectivities.

Regarding component-trees, in 2007, Ouzounis and Wilkinson [OW07a] proposed an algorithm
to build a component tree using mask-based connectivity. A mask is another image that is used to
both join originally disjoint CCs (according to a default connectivity) or divide a node into smaller
subnodes. This algorithm builds the tree of a d dimensional image by running a typical algorithm
construction in a d + 1-dimensional image consisting of the mask image stacked on the original
image.

Mask-based connectivity was also the choice of Passat and Naegel [PN11] for their component-
hypertree. By contrast, for our algorithm published in ISMM 2015 [MAH15], a specific family of
dilation-based connectivity was chosen instead, in order to have desired properties that allow the
development of faster algorithms. It is worthy of note, however, that mask-based connectivities are
more general than our dilation-based connectivity.

1.2.4 Other Types of Graphs Used to Represent Images

As stated before, in this text we focus mainly on using component-hypertrees to represent
gray-level images, but there are many other different ways of storing images using graphs.

A type of tree closely related to component-trees is the tree of shapes [MG00]. Nodes of a tree
of shapes are connected components of both lower and upper level sets of the input image with
their holes filled. These nodes are usually called shapes, and they are also organized according to
their inclusion relation. However, although tree of shapes store nodes representing shapes from both
upper and lower level sets, shapes obtained from opposite sets must have different connectivities
(e.g., 4-connectivity and 8-connectivity) to avoid topological inconsistencies.

To avoid this problem, Song proposed the level lines tree [Son07], which is essentially a tree of
shapes built using 6-connectivity (for 2-dimensional images). Contrary to 4 and 8-connectivities,
this choice allows both upper and lower shapes to use the same connectivity, in spite of the fact
that 6-connectivity is not commonly as used as 4 and 8-connectivities.

One more example closely related to component-trees is the α-tree [Soi07]. In this representation,
adjacent pixels of a given image are merged into the same region if the difference between their
gray-levels is lower than a given threshold α. Thus, coarser partitions are then obtained by using
increasing values of α, and the regions of these partitions can be stored in a tree.

Another graph-based structure consists of the binary partition tree [SG00]. In this structure,
an initial partition of the image is given and neighboring regions are then merged together based
on a predefined criterion, progressively defining coarser partitions. Hence, this structure can be

4 INTRODUCTION 1.3

modeled as a tree, where leaves give the initial partition whereas the intermediate nodes show how
the elements of these partitions are merged.

Finally, when gray-level images are replaced by multivalued images, the concept of component-
trees can be generalized into component-graphs [PN14, PNK19]. This strategy also led to new
results on tree of shapes for multivalued images, proposed by Carlinet [CG15]. It is important to
note that, since values of pixels in multivalued images may not follow a total order, the underlying
graph may consist of a directed acyclic graph instead of a tree.

In the field of hierarchical models, recent efforts were geared towards the design of strategies
allowing to gather information provided by several trees, such as component-hypertrees. However,
contrary to component-trees, component-hypertrees were not as widely adopted. In fact, since the
original work proposed by Passat and Naegel [PN11], not many other studies were published in this
regard, aside from our own paper published in 2015 [MAH15] that aimed at developing an efficient
algorithm for component-hypertree construction for dilation-based connectivities.

To fill this gap, in the years that led to the writing of this thesis, we published three papers
aiming at further developing the theory behind efficient computation of component-hypertrees. The
first paper [MAS+19b] presents an efficient way of storing component-hypertrees, using a graph that
avoids storing repeated nodes and reduces redundancy of arcs. The second one [MAS+19a] explains
how to perform attribute computation in this optimized structure in a fast way and, finally, the
last published paper [MPAH20] explains how the choice of the neighborhood affects computational
complexity of the component-hypertree building algorithms and shows how properties of some
types of connectivities can be used to design neighborhoods particularly suited for fast component-
hypertree computation.

1.3 Text Organization

This text is organized as follows. The background is divided into two parts, where Chap. 2
explains the theoretical background and Chap. 3 contains the algorithmic background. Our main
contributions start in Chap. 4, where we explain in more details the concepts behind the papers
published during the writing of this thesis, that are used for efficient component-hypertree construc-
tion, storage and manipulation. Additionally, we also present some properties and proofs that did
not fit in the published papers, to give some insights on the choice of the data structure used and
how the underlying algorithms work. To validate the efficiency of the proposed methods, complex-
ity analysis and experimental results are presented in Chap. 5. A conclusion and topics for future
researches are proposed in Chap. 6.

Chapter 2

Theoretical Background

In this chapter, we start introducing the background that will be later used to present the
proposed method. The background is divided into two chapters and, in this first one, we introduce
the theoretical background, presenting concepts and properties that are used to formally define
component-hypertrees, the main object of study of this thesis.

2.1 Sets and Partitions

In mathematics, a set represents a collection of elements. Given a set S, the number of elements
of a set S is denoted by |S| and an empty set is denoted by ∅.

If we are interested in listing all elements of a set S, then the concept of enumerated sets can be
used. An enumerated set consists of a pair (S, ν), in which S is a set and ν : {1, . . . , |S|} ⊂ N∗ → S
is a bijective function. This function ν is called an enumeration of S. The list

(
ν(1), . . . , ν(|S|)

)
contains all elements of S and will be called a sequence. A sequence composed of two objects is
called an ordered pair.

Given two sets S and S′, a binary relation R over S and S′ is a set of ordered pairs (s, s′) where
s ∈ S and s′ ∈ S′. In other words, R ⊂ S × S′, where S × S′ = {(s, s′) : s ∈ S, s′ ∈ S′} denotes the
Cartesian product of S by S′.

Given a set S and a binary relation R defined as R ⊂ S × S, we say that R is a symmetric
relation if, for any (s, s′) ∈ R, we have (s′, s) ∈ R. In this case, we also represent the elements of
R as unordered pairs {s, s′}. In this text, when the elements of a binary relation R are unordered
pairs, it is clear by context that R is a symmetric relation.

Let S and S′ be two sets. If for any s ∈ S′ we have that s ∈ S, then we say that S′ is a subset
of S and we write S′ ⊆ S. If S′ is a subset of S and |S′| < |S|, then we write S′ ⊂ S. In particular,
if S and S′ are sequences and S′ ⊆ S, we say that S′ is a sub-sequence of S and, in this case, the
elements of S′ must appear in the same order they appear in S.

The set containing all possible combinations of subsets of a given set S is called the power set
of S and denoted by P(S). Finally, given a set S, a partition of S consists of a collection H, where:

1. For any R ∈ H, R 6= ∅.

2. For any R,R′ ∈ H such that R 6= R′, R ∩R′ = ∅.

3.
⋃
R∈H

R = S.

2.2 Images

For the purposes of this text, gray-levels images are used. A gray-level image is defined as a
mapping f : Df → K, in which Df ⊂ Zd and K = {0, . . . ,K − 1}. In particular, d > 0 and K > 0

5

6 THEORETICAL BACKGROUND 2.3

are integer numbers indicating the number of dimensions and gray-levels of f , respectively. The
elements of Df are called pixels and the gray-level of a pixel p is the value returned by f(p).

If K = 2, then f is a binary image. In binary images, pixels satisfying f(p) = 1 are called
foreground pixels, while the remaining ones are called background pixels. Any binary image can be
represented by its set of foreground pixels X = {p ∈ Df : f(p) = 1}. From now on, we use the set
representation when referring to binary images.

Gray-level images can be transformed into binary images using a technique known as threshold-
ing. Let f be a gray-level image and λ an integer number. Then, the binary image Xλ(f) obtained
from thresholding f using λ is defined as follows:

Xλ(f) = {p ∈ Df : f(p) ≥ λ} (2.1)

The binary image returned by Eq. (2.1) is known as the upper level set of f at level λ. An
example showing the upper level sets of a gray-level image is given in Fig. 2.1.

1 3 4 0 3 2 0 4

0 1 2 3 4 5 6 7 8

3

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 5 8

2 8

Figure 2.1: Top: an example of an 1d image with Df = {0, 1, 2, 3, 4, 5, 6, 7, 8} and K = {0, 1, 2, 3, 4}. The
numbers inside the squares represent the gray-levels of each pixel of f . Bottom: the upper level sets of Xλ(f),
where non-white pixels represent foreground pixels and white pixels represent background pixels. In this case,
the numbers inside each level set represent the foreground pixels of Xλ(f).

Naturally, there is a dual way of obtaining binary images consisting of changing the operation
to ≤ that generates the lower level set of f at level λ. Since these definitions are dual, in this text,
only upper level sets are taken into consideration, but all properties valid in this text are also valid
for lower level sets in its dual form.

2.3 Neighborhood Relations

To relate pixels of an image, the concept of neighborhood relation is used. Given an image with
domain Df , a neighborhood relation (or simply neighborhood) is a binary relation over Df ×Df .

Thus, let A ⊂ Df ×Df denote a neighborhood. If p is related to q, then we write (p, q) ∈ A and
say that p is a A-neighbor of q. If A is a symmetric neighborhood (in other words, (p, q) ∈ A ⇔
(q, p) ∈ A), then we say that p and q are A-neighbors.

There are different ways of defining neighborhoods of digital images. Most classical neighbor-
hoods are defined using distance measures. For example, a commonly used distance measure for
digital images consists of the taxicab distance d1, defined as:

2.4 GRAPHS 7

d1(p = (p1, . . . , pd), q = (q1, . . . , qd)) =
d∑
`=1

|p` − q`| (2.2)

Another distance commonly used is the Chebyschev distance, which is defined as:

dChev(p = (p1, . . . , pd), q = (q1, . . . , qd)) =
d

max
`=1
|p` − q`| (2.3)

Using these definitions, one can define neighborhood relations A(d1) and A(dChev), as follows:

A(d1)={{p, q} : p ∈ Df , q ∈ Df , d1(p, q) = 1} (2.4)

A(dChev)={{p, q} : p ∈ Df , q ∈ Df , dChev(p, q) = 1} (2.5)

The neighborhood A(d1) defines the classical 2d-connected neighborhoods and A(dChev) defines
(3d − 1)-connected neighborhoods in d-dimensional images. For example, for d = 2, A(d1) defines
4-connected neighborhood and A(dChev) defines 8-connected neighborhood.

Alternatively, the dilation operator from Mathematical Morphology can be used to define neigh-
borhoods. In this case, the neighborhood relations are referred as dilation-based neighborhoods.
These neighborhoods belong to the class of dilation-based connectivity class [BNG02].

To define this type of neighborhood, let f be a gray-level image with domain Df , P ⊆ Df and
S ⊂ Zd. Then, the dilation of P by S is denoted by P ⊕S and defined as the Minkowski sum of P
by S:

P ⊕ S = {p+ s : p ∈ P, s ∈ S} (2.6)

The set S in Eq. (2.6) is known as a structuring element (SE). In this text, given a SE S, we
assume that the element (0, . . . , 0) = 0d is always in S. We call this element the origin and denote
it by o.

Given any structuring element S, a neighborhood relation A(S) can be defined, as follows:

A(S) = {(p, q) : p ∈ Df , q ∈ {p} ⊕ S} (2.7)

It is not difficult to prove that classical neighborhoods can be defined using dilation-based
neighborhoods by choosing the proper structuring element. For the examples provided, given a
pixel p ∈ Df , if S is defined as S = {s ∈ Zd : d1(s, p) = 1}, then A(S) defines the neighbors of
p using (2d)-connected neighborhoods. If S = {s ∈ Zd : dChev(s, p) = 1}, then A(S) defines the
neighbors of p using (3d − 1)-connected neighborhoods.

Given a structuring element S, the reflection of S is denoted by S̆ and defined as follows:

S̆ = {−s : s ∈ S} (2.8)

If a structuring element S satisfies S = S̆, we say that S is a symmetric SE. In this case, the
following property holds:

Proposition 2.1. Let S be a symmetric SE and A(S) be the neighborhood relation defined using
Eq. (2.7). Then, A(S) is a symmetric neighborhood.

2.4 Graphs

2.4.1 General Definitions

A graph G is a pair G = (V, E), where V is the set of elements (or vertices) and E ⊆ V × V is a
binary relation on V × V . The graph G is called a directed graph if E is not a symmetric relation,
and a undirected graph otherwise. In the directed case, the elements of E are called arcs, while in
the undirected case, these elements are called edges.

8 THEORETICAL BACKGROUND 2.5

A path in a graph G = (V, E) is a sequence of vertices (v1, . . . , vLP) such that every v` ∈ V (for
1 ≤ ` ≤ LP) and every pair (v`, v`+1) ∈ E (for 1 ≤ ` < LP). A path between two elements v, v′ ∈ V
of a graph G is denoted by π(G, v, v′).

If there is path from v to v′ in G, we say that v is connected to v′ in G and, if E is symmetric,
then v′ is also connected to v, and we simply say that v and v′ are connected. Given an undirected
graph G = (V, E), a connected component (CC) C of G is a maximal set of connected pixels, that
is, for any v, v′ ∈ C, v and v′ are connected in G. In this text, defining CCs only for undirected
graphs is sufficient.

If a path starts and ends at the same vertex, this path is called a cycle, and a graph without
cycles is called an acyclic graph. A cycle in a directed graph is commonly called a directed cycle,
while a directed graph without cycles is called a directed acyclic graph, or DAG.

Given a graph G, a subgraph G′ of G is a graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E .
Given G = (V, E) and a set V ′ ⊂ V , the vertex-induced subgraph G′ = (V ′, E ′) is the subgraph of
G such that E ′ ⊆ E is composed of all the arcs (v, v′) ∈ E satisfying v, v′ ∈ V ′. In this case, the
notation G′ = G[V] is used.

2.4.2 Trees and Directed Acyclic Graphs

Let G = (V, E) be a DAG. In this case, vertices of V are also called nodes.
If (v, v′) ∈ E , then we say that v is a child of v′ and v′ is a parent of v. Given a node v ∈ V ,

we denote its set of children (in G) as child(G, v) and if v has no child, (child(G, v) = ∅), then v is
called a leaf. The set of parents of a node v is given by the mapping par(G, v) and, if v does not
have any parent (that is, par(G, v) = ∅), then v is a root node.

Given two nodes v, v′ ∈ V such that v is connected to v′ in G, then v is a descendant of v′ and
v′ is an ancestor of v. In this way, set of descendants of v in G is denoted by desc(G, v) and its set
of ancestors is denoted by anc(G, v).

If a DAG G = (V, E) satisfies |V | = |E| + 1 and there is a node vr such that any other v ∈ V
is connected to vr, then G is a tree. In particular, vr is the root of G. Given a tree G = (V, E)
and a node v ∈ V , the subtree (of G) rooted in v consists of the subgraph G′ induced by the set
V ′ = {v} ∪ desc(G, v). Note that {vr} ∪ desc(G, vr) = V .

In a tree, the depth of a node v is denoted by depth(G, v) and defined as the number of arcs in
the path from v to the root node. If v is a root, then depth(G, v) = 0. A graph composed of one or
more trees is called a forest.

2.4.3 Images as Graphs

Graphs can be used to represent binary images: given a binary image X and a neighborhood
A, it is possible to represent X and A using the graph G = (X,A).

To represent gray-level images, we introduce the concept of weighted graphs. A graph G is a
vertex-weighted graph if it is composed of a triple G = (V, E , ω), where ω : V → R is a function
that assigns a numerical weight to each vertex. If a gray-level image f and a neighborhood A are
given, then they can be represented as the weighted graph (Df ,A, f). An example is provided in
Fig. 2.2.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

Figure 2.2: A graphic illustration of an image represented as a vertex-weighted graph G = (V = Df , E =
A, ω = f). The top row represents the gray-levels and the bottom row shows the domain of the image and
the neighborhood relations, with pixels represented as vertices and neighboring pixels presented as arcs of the
graph.

2.5 CONNECTEDNESS IN IMAGES 9

2.5 Connectedness in Images

With the concepts of images and graphs defined, we now introduce notions of connectedness in
images.

2.5.1 Binary Images

Let X be a binary image and A a symmetric neighborhood. We say that two pixels p, q ∈ X
are A-connected (or simply connected when A is clear from context) if they are connected in the
graph G = (X,A). Additionally, the set of A-connected components (A-CCs) of X, denoted by
CC(X,A), is defined as the set of CCs of the graph G = (X,A):

CC(X,A) = {C : C is a CC of G = (X,A)}. (2.9)

An example is given in Fig. 2.3.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 84 5

2 8

Figure 2.3: The sets CC(Xλ(f),A) extracted from the level sets of the weighted graph from Fig. 2.2. Each
A-CC is represented by a colored horizontal bar.

The set of A-CCs of X satisfies the following property:

Proposition 2.2. The set CC(X,A) forms a partition of X.

Proposition 2.2 guarantees that, for any p ∈ X, there is exactly one A-CC that contains p. In
particular, let CC(X,A, p) denote the A-CC of X that contains p. Then, it can defined as:

CC(X,A, p) =

{
C ∈ CC(X,A) such that p ∈ C , if p ∈ X;

∅ , otherwise.
(2.10)

2.5.2 Gray-Level Images

Let f be a gray-level image and A a symmetric neighborhood. The set of A-connected compo-
nents (A-CCs) of f is denoted by CC(f,A) and is defined as follows:

CC(f,A) =
⋃
λ∈K

CC(Xλ(f),A). (2.11)

We say that two pixels p and q are A-connected in f if and only if, for all level set Xλ(f) where
p and q are foreground pixels, p and q are A-connected. An equivalent way of stating that two pixels
are connected is given in Prop. 2.3.

10 THEORETICAL BACKGROUND 2.5

Proposition 2.3. Let f be a gray-level image, A a neighborhood and p, q ∈ Df . Then, p is A-
connected to q if and only if there is a path π = (p = p1, . . . , pLP = q) from p to q such that, for all
1 ≤ ` ≤ LP , f(p`) ≥ min{f(p), f(q)}.

Additionally, the set of A-CCs of f satisfies this important property:

Proposition 2.4. Let K > α > λ ≥ 0. Then, for any image f and any symmetric neighborhood
A, the A-CCs of f are decreasing, that is:

CC(Xα(f),A, p) ⊆ CC(Xλ(f),A, p), ∀p ∈ Df (2.12)

An implication of Prop. 2.4 is that the set of A-CCs of any image f can be represented as a
hierarchy based on inclusion relation. There are multiple ways of representing this hierarchy. One
possible way consists of defining a graph using the following sets of vertices:

RC(f,A) = {(C, λ) : C ∈ CC(Xλ(f),A), λ ∈ K}, (2.13)

Then, thanks to Prop. 2.4, we can organize them according to their gray-levels. More specifically,
we can define a binary relation as follows:

RE(f,A) = {((C,α), (C ′, λ)) ∈ RC(f,A)×RC(f,A) : C ⊆ C ′ and α = λ+ 1} (2.14)

Then, this hierarchy can be represented as the graph CCT (f,A) = (RC(f,A), RE(f,A)). This
graph CCT is a tree and will be called the complete component-tree. An example is given in the
leftmost column of Fig. 2.4.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

4 5 6

41 2

2 8

0 1 2 3 4 5 6 7 8

5

0 1 2 3 4 5 6 7 8

0 1 20 1 2 4 5 6

4 5 6

8

8

8

8

4 5

2

1 2

1 2

2 8

4 51 2

4 5 6

0 1 2

0 1 2 3 4 5 6 7 8

Figure 2.4: Top: an image f with symmetric neighborhood A. Bottom, from left to right: the complete
component-tree, the component-tree and the max-tree of f using A. The numbers inside the node indicated
the elements that each node contains, and the colored bars indicate the A-CCs that each node represents.

An alternative way of representing the hierarchy of A-CCs of an image f is to consider only the
set of A-CCs of f . In this case, the binary relation linking the A-CCs is defined as follows:

CE(f,A) =(C,C ′) ∈ (CC(f,A)× CC(f,A)) : C ⊂ C ′ and
6 ∃C ′′ ∈ CC(f,A) such that C ⊂ C ′′ ⊂ C ′ (2.15)

Let CT = (CC(f,A), CE(f,A)) be a graph where CC(f,A) is the set of vertices and CE(f,A)
is the set of edges. This graph CT is a tree known as the component-tree of f (and A). An example
of component-tree is depicted in the middle column of Fig. 2.4.

2.6 CONNECTEDNESS IN INCREASING NEIGHBORHOODS 11

Finally, a third way of representing the hierarchy of A-CCs consists of representing the nodes
of the component-tree in a compact way. For that, let cnp : CC(f,A) → P(Df) be the following
mapping:

cnp(C) = C \
(⋃
C′∈child(CT,C)

C ′) (2.16)

Then, the max-tree of f and A is the graph MT = (MC(f,A),ME(f,A)), where:

MC(f,A) = {cnp(C) : C ∈ CC(f,A)} (2.17)

ME(f,A) = {(cnp(C), cnp(C ′)) : (C,C ′) ∈ CE(f,A)} (2.18)

An example of a max-tree is given in the rightmost column of Fig. 2.4.
Given a max-tree MT = (MC(f,A),ME(f,A)), the A-connected components of f can be

reconstructed from their respective nodes N ∈MC(f,A) using the following operation:

rec(MT,N) = N ∪
(⋃
N ′∈child(MT,N)

rec(MT,N ′)
)

(2.19)

In particular, using Eq. (2.19) one can prove that:

Proposition 2.5. Let f be a gray-level image, A a symmetrical neighborhood, CT be the component-
tree of f (using A) and MT be the max-tree of f (using A). Additionally, let C be a node of CT
and N = cnp(C) be a node of MT . Then, rec(MT,N) = C.

2.6 Connectedness in Increasing Neighborhoods

With the concepts of connectedness in images defined, let us now consider the case where
increasing neighborhoods are taken into consideration. First, let us restrict to the case of two
increasing symmetric neighborhoods A, A′ where A′ = A ∪ {p, q}. Then, the following properties
are valid:

Proposition 2.6. Let X be a binary image and A,A′ be two neighborhoods satisfying A′ = A ∪
{p, q}. If p and q are A-connected, then CC(X,A) = CC(X,A′).

Proposition 2.7. Let X be a binary image, p′ ∈ X and A,A′ be two neighborhoods satisfying
A′ = A ∪ {p, q}. If p and q are not A-connected, then:

CC(X,A′, p′) =

{
CC(X,A, p′) , if p′ 6∈ CC(X,A, p) and p′ 6∈ CC(X,A, q);
CC(X,A, p) ∪ CC(X,A, q) , otherwise.

(2.20)

An example is given in Fig. 2.5. As an implication of Prop. 2.7, one can observe that the difference
between A and A′, at every gray-level where p and q belong to disjoint CCs Cp, Cq ∈ CC(f,A), is
that they are now merged into a single component Cp ∪Cq in CC(f,A′). All other A′-CCs remain
the same as they did in CC(f,A).

12 THEORETICAL BACKGROUND 2.7

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 80

1 2 4 5 6 8

1 2 4 5 6 8

1 2 8

2 8

0

4 5

40

1 3 4 0 3 2 2 0 4

1 2 3 5 6 7 8

4

4

4

1 2 5 6 8

1 2 5 6 8

1 2 8

2 8

0

5

1 2 3 5 6 7 80

4

Figure 2.5: Comparison between CC(Xλ(f),A) and CC(Xλ(f),A′), where A′ = A ∪ {p = 2, q = 4}.
Different CCs are represented using different colors. Note that all A′-CCs that are not A-CCs are merges of
two originally disjoint components: one containing p and the other containing q.

Now, suppose the more general case A1 ⊂ A2. Given a binary image X and p, q ∈ X, it is plain
that if p and q are A1-connected, than p and q are also A2-connected, since all arcs from A1 that
create the path from p to q also exist in A2. Hence:

Proposition 2.8. Let X be a binary image and A1,A2 be two neighborhoods satisfying A1 ⊂ A2.
Then, for any A1-CC C, there exists a A2-CC C ′ such that C ⊆ C ′.

In other words, given a fixed binary image X, when two or more increasing neighborhoods are
taken into consideration, there also exist inclusion relations between CCs of X obtained from these
different neighborhoods.

2.7 Component-Hypertrees

Component-hypertrees [PN11] can be seen as extensions of component-trees for multiple in-
creasing neighborhoods. In this sense, suppose a gray-level image f is given but, instead of a single
neighborhood A, an increasing sequence of symmetric neighborhoods A = (A1, . . . ,An) is given,
expressly Ai ⊆ Ai+1 for any 1 ≤ i < n and all of these Ai (1 ≤ i ≤ n) are symmetric.

Then, connected components of the level sets of f can be extracted using different neighbor-
hoods. Similar to complete component-trees, these CCs form a set of vertices VCCH(f,A), defined
as follows:

VCCH(f,A) =
⋃

0≤λ<K
1≤i≤n

{(C, λ, i) : C ∈ CC(Xλ(f),Ai)}. (2.21)

Given a node N = (C, λ, i) ∈ VCCH(f,A), we refer to the elements stored in N as follows:

• CC(N) = C;

• f(N) = λ;

• adj(N) = i.

Arcs of component-hypertrees are determined by the inclusion relation of the nodes. However,
contrary to component-trees, these arcs can indicate two different types of inclusion relations: they
can link two nodes from the same component-tree or link nodes from consecutive component-trees.
Hence, the set of arcs is divided into two sets E↑CCH and E→CCH .

The first set refers to arcs from the same component-tree, and is defined as follows:

E↑CCH(f,A) = {((C, λ, i), (C ′, λ′, i′)) : C ⊆ C ′, λ = λ′ + 1, i = i′}. (2.22)

2.7 COMPONENT-HYPERTREES 13

An arc from the set E↑CCH(f,A) will still be called a parent arc. In this way, if e = (N,N ′) is a
parent arc, then N is a child node of N ′ and N ′ is a parent node of N .

The second set of arcs links nodes from consecutive component-trees and is defined as:

E→CCH(f,A) = {((C, λ, i), (C ′, λ′, i′)) : C ⊆ C ′, λ = λ′, i = i′ − 1}. (2.23)

Arcs from the set E→CCH(f,A) will be called composite arcs. If e = (N,N ′) is a composite arc,
we say that N is a partial node of N ′ and N ′ is a composite node of N .

Naturally, the two sets of arcs can be combined into one:

ECCH(f,A) = E↑CCH(f,A) ∪ E→CCH(f,A). (2.24)

Finally, a graph GCCH(f,A) using these sets of vertices and arcs can be defined:

GCCH(f,A) = (VCCH(f,A), ECCH(f,A)) (2.25)

This graph GCCH(f,A) defines the complete component-hypertree (or simply complete-hypertree)
of f using A. It is worth mentioning that component-hypertree is simply a denomination given by
the original authors for this particular structure. This means that component-hypertrees are not hy-
pertrees in the context of hypergraphs. In fact, component-hypertrees are actually directed acyclic
graphs. An example is provided in Fig. 2.6.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 2.6: An example of a complete component-hypertree. Parent arcs are represented using black arrows,
while composite arcs are represented using blue arrows.

To simplify the notation, we may denote a complete component-hypertree simply as GCCH
when the input image f and sequence A are clear from the context. Thus, given a complete hy-
pertree GCCH = (VCCH , ECCH), let N ∈ VCCH . Just like before, the parent of N is denoted by
par(GCCH , N) and its set of children by child(GCCH , N). Analogously, the composite of N is de-
noted by comp(GCCH , N) and its set of partial nodes by part(GCCH , N). It is important to note
that, using the terminology defined for general DAGs, composites arcs are also considered parent
arcs, but from now on we are limiting the definition of parent arcs of component-hypertrees to arcs
linking two nodes with same neighborhood index, while composite arcs link nodes with the same
gray-level.

With this distinction in mind, it can be proved that the following property is valid:

Proposition 2.9. Let GCCH = (VCCH , ECCH) be a complete component-hypertree and N ∈ VCCH .

14 THEORETICAL BACKGROUND 2.7

Then, if par(GCCH , N) 6= ∅ and comp(GCCH , N) 6= ∅, then

par(GCCH , comp(GCCH , N)) = comp(GCCH , par(GCCH , N)) (2.26)

Proposition 2.9 implies the following result:

Proposition 2.10. Let GCCH = (VCCH , ECCH) be a complete component-hypertree, N = (C, λ, i) ∈
VCCH and λ′ and i′ two values satisfying one of the two conditions below:

1. 0 ≤ λ′ < λ < K and n ≥ i′ ≥ i ≥ 1;

2. 0 ≤ λ′ ≤ λ < K and n ≥ i′ > i ≥ 1.

Then, there is exactly one node N ′ = (C ′, λ′, i′) satisfying C ⊆ C ′.

An example of Prop. 2.10 is shown in Fig. 2.7.

Figure 2.7: Left: the previous complete-hypertree, with the node N = (C = {2}, λ = 4, i = i) and all nodes
that contain it, highlighted. Right: An alternative way of visualizing the nodes that contain N , organized in
a way that show that there is exactly one node for each neighborhood index and gray-level.

Finally, it is not difficult to show that some subgraphs of the complete-hypertree are complete
component-trees. For example, given the complete-hypertree of a gray-level image f and a sequence
A = (A1, . . . ,An), the subgraph induced by the set of vertices V = {N : adj(N) = i} corresponds
to the complete component-tree of f using Ai.

Thus, given a component-hypertree GCCH , we denote by G([λ→λ′],[i→i′])
CCH the subgraph of GCCH

induced by the vertices N satisfying λ ≤ f(N) ≤ λ′ and i ≤ adj(N) ≤ i′. Hence, for any 1 ≤ i ≤ n,
G([0→K−1],[i→i])
CCH consists of the complete component-tree of f using Ai. In Fig. 2.6, this would consist

of a column of the hypertree with a fixed neighborhood index i.
It is also worth noting that a structure analogous to a component-tree can be obtained from the

CCs of a binary image considering a sequence of neighborhoods, namely, G([λ→λ],[1→n])
CCH is a forest

that organizes the CCs of Xλ(f) according to their inclusion relation. In Fig. 2.6, they consist of
rows of the hypertree with a fixed gray-level λ.

With the concept of component-hypertree defined, we now presented all the theoretical def-
initions needed for explaining the proposed method. Now, we change focus and review known
algorithms for component-tree construction. Our goal is to use properties of these algorithms to
design an efficient way of computing and storing component-hypertrees.

Chapter 3

Algorithmic Background

In this chapter, we present the algorithmic background required for understanding the pro-
posed method. Here, we recall known algorithms and data structures used for component-tree
computation, showing how to implement them and also explaining some good properties that these
algorithms satisfy. Understanding all these properties will be crucial for obtaining efficient ways of
computing component-hypertrees, which is one of the main goals of this thesis.

To explain these concepts, we follow a bottom-up approach, starting from the simplest cases
and then moving towards more advanced ones. Hence, we begin by explaining how to store and
compute connected components of images in the simplest case: binary image and, at the end of the
chapter, we will have a way of efficiently computing CCs for gray-level images considering any type
of neighborhood.

3.1 Representing Forests as Arrays

To begin this chapter, we recall an efficient way of storing rooted trees and forests using arrays.
This will be useful later so we have an efficient way of storing component-trees.

Thus, let f be a gray-level image with domain Df and G = (V, E) be a directed forest, where
V ⊆ Df . Then, it is possible to create a mapping g : V → V that represents the arcs of E , as
follows:

(p, q) ∈ E ⇔ g(p) = q (3.1)

In terms of data structure, this means that any rooted tree G = (V ⊆ Df , E) can be stored
using an array ar, in which ar[p] = q if and only if (p, q) ∈ E . In particular, given an array ar storing
a forest, we denote the graph that ar represents by G(ar).

For implementation purposes, it is useful to assign a value to ar[pr], in which pr is a root node.
In this text, if pr is a root, then we write ar[pr] = ⊥. In this way, ar can be seen as a mapping
V →

(
V ∪ {⊥}

)
, where:

ar[p] =

{
q if (p, q) ∈ E ;
⊥ , if p is a root node. (3.2)

For convenience, for any gray-level image f , we also set f(⊥) = −1. This choice simplifies the
implementation of some of the algorithms that appear later on this chapter. Additionally, if an
array ar represents a forest, then we apply the nomenclature of forests directly to the array ar. For
example, p connected to q in ar means that p is connected to q in G(ar).

3.2 Labeling Connected Components in Binary Images

Before moving to the algorithm for component-tree construction, we start with the simpler case
of extracting CCs in binary images. This can be done by using union-find [Tar75], which is a data

15

16 ALGORITHMIC BACKGROUND 3.2

structure that can be used to represent disjoint sets. It can be thought as a forest, where each tree
stores a disjoint set and the roots of these trees are used to represent said sets. An example is
depicted in Figure 3.1.

0

1

2

4 5

6 8

Figure 3.1: An union-find structure represented as a forest. Roots are represented as double circles. For
visualization purposes, all elements that belong to the same tree are presented using the same color. In this
case, we have 3 different disjoint sets {0, 1, 2}, {4, 5, 6} and {8}, each represented with a different color.

Representing A-CCs of a binary image X using forests is possible based on two properties of
connectedness: the first one is the transitive property: if p is A-connected to q and q is A-connected
to r, then the path from p to q combined to the path from q to r forms a path from p to r, and p
is also A-connected to r.

Additionally, if A is a symmetric neighborhood, then connectedness is also commutative, since
if there is a path from p to q, then the reverse path from q to p also exists. In this case, given a
binary image X and a symmetric neighborhood A, let C ∈ CC(X,A) and r ∈ C. If we know all
pixels that are A-connected to r, then C can be obtained since, for any p, q ∈ X with p 6= q such
that p is A-connected to r and q is also A-connected to r, then p is A-connected to q. By definition,
C is a maximal set where any p, q ∈ C is pair-wise connected, so a way of obtaining C consists
simply of finding all pixels A-connected to r.

In other words, a single element r ∈ C can be used to represent C, if all other elements of
X that are A-connected to r are known. This relation can be represented in a forest G = (X, E),
where p ∈ X is connected to r if and only if there is a path from p to r in G. Then, each tree of G
represents a A-CC, that can be reconstructed by gathering all pixels in each tree. Additionally, two
pixels are A-connected if and only if they belong to the same tree, or in other words, they have the
same root. This root node is also commonly referred as the canonical element.

Given these definition and properties, now we concentrate on how to implement an algorithm to
compute an union-find. First, since a union-find represents a forest, it can be stored using an array
uf : X →

(
X ∪ ⊥

)
by employing Eq. (3.2). In our implementation, ⊥ acts as a way of representing

canonical elements, namely, an element r ∈ X is canonical if and only if uf[r] = ⊥.
To implement the union-find, 3 basic operations need to be defined: makeset, find and union.
The makeset procedure initializes uf with every element disjoint from each other (see Alg. 1).

Algorithm 1 Initialization of the union-find.
1: procedure makeset(X)
2: for p ∈ X do
3: uf[p]← ⊥;
4: return uf;

The second operation, find, given an element p ∈ X, returns the root of the tree that contains
p. This is presented in Alg. 2.

Algorithm 2 find procedure, which given a pixel p ∈ X, returns its root node.
1: procedure find(uf, p)
2: while uf[p] 6= ⊥ do
3: p← uf[p];
4: return p;

3.2 LABELING CONNECTED COMPONENTS IN BINARY IMAGES 17

Finally, the union procedure receives two elements p, q ∈ X and, if they belong to disjoint trees
(that is, find applied to p and q return different roots), then these two trees are merged. To do so,
it makes the root of the tree containing p point to the root of the tree containing q (the order is
not relevant in this case, it could be in the opposite direction as well, unless we want an optimized
version of the union procedure). Informally, it can be thought as “hanging” the subtree rooted in
p on the subtree rooted in q, creating a merged tree where q is the new root.

If p and q already belong to the same subtree, no changes are performed. See Alg. 3.

Algorithm 3 union procedure, which returns an updated uf with p and q in the same tree.
1: procedure union(uf, p, q)
2: rP ← find(uf, p);
3: rQ← find(uf, q);
4: if rP 6= rQ then . if true, p and q belong to different sets
5: uf[rP]← rQ;
6: return uf;

Given a binary image X and any symmetric neighborhood A, one can make use of Alg. 4 to
build an union-find that stores CC(X,A). This is a very well-known algorithm used for labeling
CCs of binary images.

Algorithm 4 Labeling A-CCs of X using the disjoint set structure.
1: procedure ccLabeling(X,A)
2: uf← makeset(X);
3: for {p, q} ∈ A do
4: uf← union(uf, p, q);

At the end of Alg. 4, for any A-CC C of X, there is a canonical element rC of uf that represents
C and, for any canonical element r of uf, there is a corresponding A-CC Cr of X. When this
happens, we say that uf stores the A-CCs of X, or that uf stores CC(X,A).

Since each disjoint set is represented by (the root of) a forest, it is important to have a mapping
that reconstruct the CCs. Hence, we define a mapping rec as:

rec(uf, p) = {p} ∪ desc(uf, p) (3.3)

Simply put, rec(uf, p) can be thought as the set of nodes contained in the tree rooted in p.
Although Alg. 4 is a very well-known algorithm, for our purposes, it is useful to explain why the

algorithm is correct, since the correctness of our proposed algorithms can be proven using similar
approaches. Hence, our aim is now to explain why uf, at the end of Alg. 4, stores CC(X,A). But
in order to do that, some preliminary definitions are necessary.

First, we need a way of referring to the variables of the algorithm. In particular, in Line 3 of
Alg. 4, the pairs of A-neighbors are processed in a specific order, which defines an enumeration of
A. Hence, let Aalg = (a1, . . . , a|A|) be the sequence generated from the enumeration of A defined
by the processing order of the neighboring pairs in Alg. 4.

Additionally, let Ajalg be defined as follows:

Ajalg =


∅ if j = 0;
j⋃
`=1

a` , otherwise.
(3.4)

In other words, Ajalg denotes the set of processed neighbors after the first j loops of Alg. 4. From
that, we define ufj as the union-find resulting from processing all pairs in Ajalg. If j = 0, we define
uf 0 as the initialized array using the makeset procedure.

18 ALGORITHMIC BACKGROUND 3.2

With these definitions in mind, our final objective is to prove that ufj stores CC(X,Ajalg), for
any 0 ≤ j ≤ |A|. Then, when j = |A|, since A|A|alg contains exactly the elements of A, then uf|A|
stores CC(X,A|A|alg) = CC(X,A).

This idea can be proved by induction in j. However, before showing the final proof, we analyze
how the array uf j−1 is updated to produce ufj . There are two cases to consider: we first analyze
the case when aj = (pj , qj) is composed of elements that are Aj−1

alg -connected.

Proposition 3.1. Let X be a binary image, A a symmetric neighborhood and suppose Alg. 4 is
called, where Aalg is obtained from an enumeration of A defined by the processing order of the
neighboring pixels in Line 3. In particular, suppose that aj = (pj , qj), uf j−1 stores CC(X,Aj−1

alg)

and that pj and qj are Aj−1
alg -connected. Then, uf j−1 = ufj.

Proof. If pj and qj are Aj−1
alg -connected, then they belong to the same CC C ∈ CC(X,Aj−1

alg). By
hypothesis, this means that pj and qj have the same root in uf j−1. In this case, the union procedure
does not make any modifications to uf j−1, and we have that uf j−1 = ufj .

If pj and qj are not Aj−1
alg -connected, then:

Proposition 3.2. Let X be a binary image, A a symmetric neighborhood and suppose Alg. 4 is
called, where Aalg is obtained from an enumeration of A defined by the processing order of the
neighboring pixels in Line 3. In particular, suppose that aj = (pj , qj), uf j−1 stores CC(X,Aj−1

alg)

and that pj and qj are not Aj−1
alg -connected. Then, if ufj is the updated array after calling union

for (pj , qj), then for any r ∈ X:

1. If r was not a canonical element in uf j−1, r is not a canonical element in ufj;

2. Let rPj = find(ufj−1, pj). If r = rPj, then r was a canonical element in uf j−1 representing
the connected component rec(ufj−1, rPj). However, rPj is not a canonical element in ufj;

3. Let rQj = find(ufj−1, qj). If r = rQj, then r was a canonical element in uf j−1 representing
the connected component rec(ufj−1, rQj) and rQj is still a canonical element in ufj represent-
ing the connected component rec(ufj , rQj) = rec(ufj−1, rPj) ∪ rec(ufj−1, rQj);

4. If r is a canonical element in uf j−1 but r 6= find(ufj−1, pj) and r 6= find(ufj−1, qj), then r is
still a canonical element of ufj, where rec(ufj−1, r) = rec(ufj , r).

Proof. Note that the effect of calling union for (pj , qj) is making ufj [rPj] = rQj , where rPj =
find(ufj−1, pj) and rQj = find(ufj−1, qj). For all other elements p ∈ X, ufj [p] = ufj−1[p]. Hence:

1. The only element that had its parent change in ufj (compared to uf j−1) is rPj , which was a
canonical element in uf j−1. Hence, all non-canonical elements p in uf j−1 have the same parent
in ufj , that is, ⊥ 6= ufj−1[p] = ufj [p].

2. As explained in the previous item, ufj [rPj] = rQj 6= ⊥. Hence, rPj is not canonical in ufj .

3. For the element rQj , we have that ufj [rQj] = ufj−1[rQj]. Since rQj was canonical in uf j−1,
then ufj [rQj] = ⊥, implying that rQj is a canonical element.

Additionally, by definition, rec(ufj , rQj) = {rQj} ∪ desc(ufj , rQj). All previous descendants
of rQj in uf j−1 are still descendants of rQj in ufj , since all paths that existed in uf j−1 also
exist in ufj . Additionally, there was no path from rPj to rQj in uf j−1 (because rPj 6= rQj and
they were both roots of different trees), but there is one in ufj . Hence, rPj and its descendants
of are now descendants of rQj as well, so desc(ufj , rQj) ⊇ desc(ufj−1, rQj) ∪ rec(ufj−1, rPj).

Finally, to prove that desc(ufj , rQj) = desc(ufj−1, rQj) ∪ rec(ufj−1, rPj), suppose by contra-
diction that there is an element p′ ∈ desc(ufj , rQj) that is neither in desc(ufj−1, rQj) nor

3.2 LABELING CONNECTED COMPONENTS IN BINARY IMAGES 19

desc(ufj−1, rQj). Then, there is path from p′ to rQj in ufj and, there are two possibilities:
this path does not use the arc (rPj , rQj) or it does.

Remember that all paths that do not use the arc (rPj , rQj) exist in uf j−1 as well. Hence,
if the path does not use (rPj , rQj), then the same path from p′ to rQj already existed in
uf j−1, implying p′ ∈ desc(ufj−1, rQj), which is a contradiction. If the path uses the arc
(rPj , rQj), by the same argument, the path from p′ to rPj exists in uf j−1, implying p′ ∈
desc(ufj−1, rPj), which is also a contradiction. Thus, we conclude that such p′ does not exist
and desc(ufj , rQj) = desc(ufj−1, rQj) ∪ rec(ufj−1, rPj).

4. As explained before, the only canonical element of uf j−1 that is not canonical in ufj is rPj , for
any canonical element r 6= rPj , r is canonical in ufj . Additionally, since r 6= rPj nor r 6= rQj ,
then desc(ufj , r) = desc(ufj−1, r), since no arcs were added or removed in the subtree of r.
Hence, if the descendants of r are the same, rec(ufj , r) = rec(ufj−1, r).

With these two propositions proved, we can now prove the correctness of Alg. 4:

Proposition 3.3. Let X a binary image, A a symmetric neighborhood and suppose Alg. 4 is called,
where Aalg is obtained from an enumeration of A defined by the processing order of the neighboring
pixels in Line 3. Finally, let ufj be the array uf after calling union to the first j elements of Aalg.
Then, for any 0 ≤ j ≤ |A|, ufj contains the CC(X,Ajalg).

Proof. This proposition can be proved using induction in j.
The base case is j = 0. In this case, A0

alg = ∅, which means there are no pairs of neighboring
pixels and uf is the array returned by the makeset procedure, where each pixel represent a disjoint
set, which is correct by construction.

Now, suppose by induction hypothesis that, for any indices less than j, the statement in the
proposition is correct. Let us prove that the proposition will still be true when union is called for
aj = (pj , qj).

Let rPj and rQj be the canonical elements of pj and qj in uf j−1, respectively. There are two
possibilities: either rPj = rQj or rPj 6= rQj .

If rPj = rQj , by induction hypothesis, pj and qj belong to the same CC of CC(X,Aj−1
alg). Note

that Ajalg = Aj−1
alg ∪ {pj , qj}, which means Prop. 2.6 can be used, implying that CC(X,Ajalg) =

CC(X,Aj−1
alg). On the other hand, since rPk = rQk, then thanks to Prop. 3.1, ufj = ufj−1. Putting

everything together, we have that uf j−1 stores CC(X,Aj−1
alg), ufj = ufj−1 and CC(X,Ajalg) =

CC(X,Aj−1
alg). Hence, ufj also stores CC(X,Ajalg).

If rPj 6= rQj , then pj and qj are in different CCs of CC(X,Aj−1
alg). In particular, Prop. 2.7

and Prop. 3.2 are valid. To prove the proposition, we need to show that any Ajalg-CC can be
reconstructed by a canonical element of ufj and, for each canonical element r, its reconstruction
generates a valid Ajalg-CC. We will only prove the proposition one way, since the opposite way
should follow the same ideas in reverse.

Initially, let C ∈ CC(X,Ajalg), where neither rPj ∈ C nor rQj ∈ C. Using Prop. 2.7, C =

CC(X,Ajalg) = CC(X,Aj−1
alg). By the induction hypothesis, there is a canonical element r represent-

ing C in uf j−1 such that C = rec(ufj−1, r). Finally, thanks to Prop. 3.2, rec(ufj−1, r) = rec(ufj , r),
because r can not be rPj or rQj . Then, C = rec(ufj , r), and this proves the proposition for all
components C ∈ CC(X,Ajalg) where neither rPj nor rQj are in C.

A consequence of Prop. 2.7 is that there is only one Ajalg-CC that is not covered in the pre-
vious case: the component C ′ = CC(X,Ajalg, rPj) = CC(X,Ajalg, rQj) = CC(X,Aj−1

alg , rPj) ∪
CC(X,Aj−1

alg , rQj). Using Prop. 3.2, then rec(ufj , rQj) = rec(ufj−1, rPj) ∪ rec(ufj−1, rQj) and, by
inductive hypothesis, rec(ufj−1, rPj) = CC(X,Aj−1

alg , rPj) and rec(ufj−1, rQj) = CC(X,Aj−1
alg , rQj).

20 ALGORITHMIC BACKGROUND 3.3

Hence, rec(ufj , rQj) = C ′ and this finishes the proof, since it includes all possible cases of choices
of Ajalg-CCs.

Corollary 3.1. For any binary image X and symmetric neighborhood A, Alg. 4 builds a union-find
uf that stores the A-CCs of X.

Proof. This can be easily proved by applying Prop. 3.3 for j = |A|, since A|A|alg = A.

Thus, we conclude that, after finishing Alg. 4, uf stores the A-CCs of X. In particular, this
implies the following property:

Proposition 3.4. Let X be a binary image, A a neighborhood and uf the union-find that stores
CC(X,A). Then, given any p, q ∈ X, p and q are A-connected if and only if find(uf, p) =
find(uf, q).

It is worth of note that the find procedure can be optimized by performing a technique known
as path compression, which shortens the path between every visited element to its root.

More precisely, suppose find(uf, p) is called. Then, for every element p′ on the path from p to
its root rP , we set uf[p′]← rP . This shortens the path between p′ to rP and, if the find procedure
is called to any of these elements p′ later, then this second call is faster because the path linking p′

to rP only has one arc.
This idea is presented in Alg. 5.

Algorithm 5 find procedure with path compression.
1: procedure findComp(uf, p)
2: rP ← p;
3: while uf[rP] 6= ⊥ do
4: rP ← uf[rP];
5: p′ ← p;
6: while uf[p′] 6= rP do
7: pNext← uf[p′];
8: uf[p′]← rP ;
9: p′ ← pNext;

10: return rP ;

There is also an optimized version of the union procedure that performs balanced merges of
disjoint sets to ensure that the depth of each tree does not increase by more than 1. This optimization
will be skipped in this text because it is not relevant to the proposed theory.

3.3 Labeling Connected Components in Gray-Level Images

Now, we consider the problem of finding an efficient way of storing CCs of gray-level images.
This problem has been object of many studies in the field, such as [NC06, BGL+]. There are different
approaches to tackle this problem. In this text, we explain the approach based on the union-find
structure, that uses a single array that can be used to efficiently store and reconstruct CCs of
gray-level images.

However, understanding the properties of this array and why the algorithms proposed in these
papers work is crucial for developing the proposed method. So, in this section, instead of showing
the solution proposed in [NC06] and [BGL+] and explaining why it works, we use a proof by
construction approach, showing what properties are important and how their algorithms are built
to satisfy these properties.

First off, given a gray-level image f and a symmetric neighborhood A, a natural way of storing
the A-CCs of f would be to compute the union find uf λ of every level set Xλ(f), λ ∈ K. In this

3.3 LABELING CONNECTED COMPONENTS IN GRAY-LEVEL IMAGES 21

sense, let G = (Df ,A). Then, each uf λ contains the CCs of the induced subgraph G[Xλ(f)]. For
simplicity, we denote this subgraph as Gλ = (Vλ = Xλ(f), Eλ).

Instead of computing each of these union-finds individually, we recall that Prop. 2.4 states that
the set of A-CCs of f is decreasing. This implies that, for any pair of pixels (p, q) where p and q
are A-connected in Xλ(f) they are also A-connected in Xλ−1(f), for 0 < λ < K. Hence, if uf λ was
already computed, there is no need to compute uf λ−1 from scratch, since all connectivity relations
existing in uf λ are also valid in uf λ−1. Thus, to compute uf λ−1 from uf λ, we can call the union
procedure only to the pairs of neighbors (p′, q′) ∈

(
Eλ−1 \ Eλ

)
, or more specifically, the pairs of

neighboring pixels that exist in Gλ−1 that do not exist in Gλ.
In particular, this set of arcs (p, q) ∈ (Eλ−1 \ Eλ) can be characterized as follows:

Proposition 3.5. For any {p, q} ∈ (Eλ−1 \ Eλ), at least one of the following is true:

1. f(p) = λ− 1 and f(q) ≥ λ− 1;

2. f(p) ≥ λ− 1 and f(q) = λ− 1.

Proof. By definition, Vλ = Xλ(f) ⊆ Xλ−1(f) = Vλ−1. Hence, any p ∈ Vλ−1 satisfies f(p) ≥ λ − 1.
Then, for any {p, q} ∈ Eλ−1 with f(p) 6= λ − 1 and f(q) 6= λ − 1, (p, q) ∈ Eλ and, for any
(p, q) ∈ (Eλ−1\Eλ), at least one of them has gray-level λ−1, that is, f(p) = λ−1 or f(q) = λ−1.

Combining these ideas, a first idea to compute and store the union-finds of f and A are presented
in Alg. 6.

Algorithm 6 Naive way of obtaining CC(f,A).
1: procedure buildUFs(f,A)
2: for K > λ ≥ 0 do
3: if λ = K − 1 then
4: uf λ ← makeset(Df);
5: else
6: uf λ ← copy of uf λ+1;
7: for (p, q) ∈ A where

(
f(p) = λ and f(q) ≥ λ

)
or
(
f(q) = λ and f(p) ≥ λ

)
do

8: uf λ ← union(uf λ, p, q);

It should be simple to prove that Alg. 6 works, but it is not very efficient in terms of memory
usage, since it has to store K union-finds. Additionally, the resulting union-finds can vary vastly
according to how the union procedure link the nodes. Figure 3.2 shows two possible results when
using this strategy for the same image, but varying the order in which neighboring pixels are
processed.

22 ALGORITHMIC BACKGROUND 3.3

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5

Figure 3.2: Two possible outputs of Alg. 6, depending on how the union procedure is implemented. Colors
are defined according to the root of each tree. It is easy to notice that, in the implementation on the left,
different CCs can have the same root, while in the implementation on the right this does not happen.

To optimize memory usage, we observe the following: by definition, for any λ ∈ K, if r is
canonical in uf λ, then C = rec(uf λ, r) is a A-CC of Xλ(f). If the sub-tree of r is always the same
for any 0 ≤ α < λ, then rec(uf α, r) = rec(uf λ, r) = C and, in particular, rec(uf 0, r) = C. This
means that, under these conditions, uf 0 can reconstruct any CC from any uf λ, λ ∈ K, as long as
we know which elements were canonical at some point.

To enforce this condition, we observe that, in the original union procedure (Alg. 3), whether
we performed uf[rP]← rQ or uf[rQ]← rP at Line 5 was irrelevant. However, in this case, since the
roots of the trees have different gray-levels, we can modify the union procedure to always enforce
uf[rP] = rQ if f(rP) ≥ f(rQ) or uf[rQ] = rP , otherwise. This idea is presented in Alg. 7:

Algorithm 7 union procedure which forces a gray-level order between linked elements.
1: procedure unionOrdered(f , uf, p, q)
2: rP ← find(uf, p);
3: rQ← find(uf, q);
4: if rP 6= rQ then
5: if f(rP) ≥ f(rQ) then
6: uf[rP]← rQ;
7: else
8: uf[rQ]← rP ;
9: return uf;

If we do so, given a canonical element r from uf λ, we guarantee that rec(uf λ, r) = rec(uf λ−1, r).
The formal proof of this idea is explained in more details later, but the basic idea is based on the
fact that all arcs added to uf λ−1 point towards an element with gray-level λ− 1. Since all elements
p ∈ rec(uf λ, r) satisfy f(p) ≥ λ, none of them can have a new child node and we conclude that
rec(uf λ, r) = rec(uf λ−1, r).

When using Alg. 7 to compute the union-finds, we obtain the results shown in Fig. 3.3 (left).
Because all CCs can be recovered from uf 0, we only need to store uf 0, or to put it another way,
only a single array is needed to store all CCs of a gray-level image. In general, instead of uf 0, this
array is usually called parent in the literature. An example is shown in Fig. 3.3 (right).

3.3 LABELING CONNECTED COMPONENTS IN GRAY-LEVEL IMAGES 23

6

1

3 7

0

4

2 8

5

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5

Figure 3.3: Left: the union-finds obtained using Alg. 6 but forcing unions according to Alg. 7. Right:
representation of the parent array, with nodes reallocated according to their gray-levels. Nodes with double
circles represent pixels that were canonical elements in at least one uf λ, 0 ≤ λ < K and can be used to
reconstruct CCs.

In order to prove correctness of the algorithms, we need to analyze some properties of the parent
arrays. First of all, by construction, it is plain that the hierarchy of the union-finds are ordered
according to the gray-levels of the elements.

Proposition 3.6. For any λ ∈ K, if uf λ[p] = q, then f(p) ≥ f(q).

Additionally, Alg. 7 can only change a union-find by connecting a root of a tree to another root,
implying that, if the input is a forest, then the output is also a forest. Since the initial union-find
(built calling makeset) is a forest, then:

Proposition 3.7. For any λ ∈ K, uf λ is a forest.

In fact, since every root is pointing towards an artificial element ⊥, any uf λ can be thought as
a tree, where ⊥ is an artificial root that is the parent of all canonical elements of uf λ.

For any p ∈ Df , uf λ[p] can only be modified when p is a canonical element. By definition, once
uf λ[p] 6= ⊥, then p can not become a canonical element anymore. Hence:

Proposition 3.8. For any 0 < α < λ < K, given a pixel p ∈ Df , if uf λ[p] 6= ⊥, then uf λ[p] =
uf α[p].

Combining the previous proposition with Prop. 3.6, one can prove that:

Proposition 3.9. Let λ ∈ K and r be a canonical element of uf λ. Then, for any 0 ≤ α < λ < K,
rec(uf λ, r) = rec(uf α, r).

Note that, under the conditions of Prop. 3.9, if r is canonical in uf λ, then rec(uf λ, r) is a A-CC
of Xλ(f), and this CC can still be obtained from uf α. The only caveat is that r may not be canonical
in uf α, so this CC can only be obtained if it is possible to know that r was a canonical element at
some point.

To tackle this problem, we note that, if r was canonical, then there exists a gray-level λ ∈ K
such that uf λ[r] = ⊥. In particular, let β ∈ K be the lowest gray-level where uf β[r] = ⊥. If β = 0,
then r is canonical in uf 0 and it is easy to know that r is a canonical element. If β > 0, then r is
not canonical in uf 0 but uf 0 = uf β−1[r] = q 6= ⊥. By Prop. 3.6, f(q) ≥ f(r), but since uf β[r] = ⊥,
then f(q) 6= f(r). Then:

Proposition 3.10. Let 0 < β < K be the lowest gray-level where the pixel r is a canonical element
of uf λ. Then, f(uf 0[r]) > f(r).

24 ALGORITHMIC BACKGROUND 3.4

Using a similar argument, for non-canonical elements, we have that:

Proposition 3.11. Let q ∈ Df be a pixel that is not a canonical element in any uf λ, λ ∈ K. Then,
f(uf 0[q]) = f(q).

Combining the two previous propositions, we have that:

Proposition 3.12. An element r ∈ X is a canonical element (namely, there exists λ ∈ K where r
is canonical in uf λ) if and only if f(r) > f(uf 0[r]).

Finally, this means that all canonical elements of all uf λ (λ ∈ K) can be obtained from uf 0 by
comparing the gray-levels of the pixels. Additionally, for any of these canonical elements r ∈ Df ,
rec(uf f(r), r) represents a A-CC of f , and since rec(uf f(r), r) = rec(uf 0, r), all of these CCs can
also be obtained from uf 0. In other words, we can conclude that:

Proposition 3.13. All A-CCs of f are stored in parent = uf 0.

From this point onward, the array uf 0 will be called parent.

3.4 Canonical Elements and Representatives

For union-finds of binary images, there was a clear mapping between connected pixels in binary
images and having the same canonical elements in union-finds (Prop. 3.4). Following the properties
of the parent array that we saw in Sec. 3.2, to define a similar concept for gray-level images and
the parent array, we say that r ∈ Df is a canonical element of parent if f(r) > f(parent[r]) or
parent[r] = ⊥, that is, r is the root node. Thanks to Prop. 3.10, this definition is equivalent of
saying that r is canonical in parent if and only if there is a λ ∈ K such that r is canonical in uf λ.

Since parent represents multiple union-finds, it is possible that a pixel p ∈ Df have different roots
depending on which union-find uf λ is taken into consideration. Hence, we define the representative
of p at level λ as the canonical element r returned by find(uf λ, p). Thanks to Props. 3.10 and 3.11,
this element can be found in the parent array using Alg 8.

Algorithm 8 Returns the representative of p in parent with level λ.
1: procedure findRep(f, parent, p, λ)
2: while parent[p] 6= ⊥ and f(parent[p]) ≥ λ do
3: p← parent[p];
4: return p;

In other words, Alg. 8 returns the last element of the path π(parent, p,⊥) (where ⊥ represents
an artificial root of parent that is an ancestor of all nodes) that has gray-level higher than or equal
to λ. Representatives can be used to allocate nodes of component-trees, thanks to the following
property:

Proposition 3.14. Let f be a gray-level image, A be a symmetric neighborhood and parent be an
array storing CC(f,A). Then, for any λ ∈ K and p ∈ Xλ(f):

CC(Xλ(f),A, p) = rec(parent, findRep(f, parent, p, λ)) (3.5)

Using the concept of representatives, we say that two pixels p, q ∈ Df are comparable in parent
if and only if findRep(parent, f, p, λ) = findRep(parent, f, q, λ) for all 0 ≤ λ ≤ min{f(p), f(q)}.

Since representatives can be thought as elements of paths, testing if two pixels p ∈ Df and
q ∈ Df are comparable is equivalent to test if all representatives (of p and q) are common ancestors
of both p and q. It is easy to see that, once a representative r is a common ancestor of p and q, all
representatives that are ancestors of r are also common ancestors of p and q. Hence, let β ∈ K be the
highest gray-level where both p and q are foreground pixels in Xβ(f), namely, β = min{f(p), f(q)}.
Then:

3.5 ORDERED PARENT CONSTRUCTION 25

Proposition 3.15. Let f be a gray-level image, A a symmetric neighborhood and parent an array
representing a forest. Suppose two pixels p, q ∈ Df are given and let β = min{f(p), f(q)}. Then, p
and q are comparable in parent if and only if findRep(f, parent, p, β) = findRep(f, parent, q, β).

Using this property, one can prove that:

Proposition 3.16. Let f be a gray-level image, A a symmetric neighborhood and parent be an array
storing CC(f,A). Then, p and q are connected in f if and only if p and q are comparable in parent.

A consequence of parent containing all the information about connectedness of pixels is that,
by construction, parent already contains all inclusion relations between the CCs, that is to say,
given a gray-level image f and a neighborhood A, all arcs of the component-tree of f and A can
be obtained from the parent array.

More precisely, the following proposition is valid:

Proposition 3.17. Let f be a gray-level image, A a symmetric neighborhood relation and CT (f,A) =
(VCT , ECT) be the component-tree of f using A. Then, for any arc e = (C,C ′) ∈ ECT , there is an
arc (r, parent[r]) where C = rec(parent, r), C ′ = rec(parent, r′) and
r′ = findRep(f, parent, parent[r], f(parent[r])).

Proof. If e = (C,C ′) is an arc of the component-tree, that means that C ⊂ C ′ and there is no other
A′-CC between them. We proved that all A-CCs are stored in parent, so there are two distinct
canonical elements in parent that can reconstruct C and C ′ which, by the assumptions of this
proposition, are r and r′, respectively.

To prove the proposition, we first show that r′ in an ancestor of r in parent. To do that, suppose
by contradiction that r′ is not an ancestor. Then, either r′ is a descendant of r or they are unrelated.

If r′ was a descendant of r, since rec(parent, r) = {r}∪desc(parent, r), then r′∪desc(parent, r′) =
rec(parent, r′) ⊂ desc(parent, r), in other words, rec(parent, r) = C ⊃ C ′ = rec(parent, r′), which is
a contradiction.

If they are not related, that is to say, neither r is descendant of r′ nor r′ is a descendant of r,
then r /∈ desc(r′). This means r 6∈ rec(parent, r′) = C ′, which implies that C 6⊂ C ′, and that is also
a contradiction.

Hence, r′ must be an ancestor of r in parent. If r′ = parent[r] or r′ is the representative of
parent[r], there is nothing to prove, since it already satisfies the conditions of the proposition. Then,
suppose by contradiction that r′ is not the representative of parent[r]. This implies that, in the path
from r to r′ in parent, there must exist at least one canonical element r′′ 6= r′.

However, this would imply that rec(parent, r′′) represents a valid A-CC C ′′ ∈ VCT . Since r ∈
desc(r′′) and r′′ ∈ desc(r′), then we would have rec(parent, r) ⊂ rec(parent, r′′) ⊂ rec(parent, r′), or
C ⊂ C ′′ ⊂ C ′, which implies that (C,C ′) 6∈ ECT , which is a contradiction. Hence, such element r′′

can not exist and r′ = findRep(f, parent, parent[r], f(parent[r])), as desired.

Using a similar approach, it is also possible to prove that all such arcs in the parent array are
present in the component-tree. In this sense, this means that there is an equivalence in terms of
information retained by a component-tree and its parent array.

3.5 Ordered parent Construction

We now describe how the ideas explained in this section are adapted and optimized to obtain
the union-find based algorithm for efficient component-tree construction used in the literature.

For that, given a neighborhood A and two pairs of neighboring pixels a = (p, q), a′ = (p′, q′) ∈ A,
we define the ≺ relation as follows:

a = (p, q) ≺ a′ = (p′, q′)⇒ min{f(p), f(q)} ≥ min{f(p′), f(q′)} (3.6)

26 ALGORITHMIC BACKGROUND 3.6

Given a gray-level image f and a neighborhood A, let (A)alg = {a1, . . . , a|A|} be a sequence
obtained from an enumeration of A, where the elements of (A)alg satisfy the following relation:

a` = (p`, q`) ≺ a`+1, 1 ≤ ` < |A| (3.7)

By doing so, if G = (f,A), we guarantee the arcs of G[Xλ(f)] are processed before the arcs of
G[Xλ−1(f)] for any 0 < λ < K. Then, max-tree construction can be implemented using Alg. 9.

Algorithm 9 Computing the A-CCs of f using a max-tree.
1: procedure buildParent(f,A)
2: parent← makeset(Df);
3: (A)alg ← A ordered according to the ≺ relation;
4: for (p, q) ∈ (A)alg do
5: parent← unionOrdered(f, parent, p, q);

Another optimization that can be performed is to add path compression using an additional
union-find zpar. This array zpar consists simply of the parent array with the paths compressed. The
idea is to use zpar to find the representatives of p and q inside the calls of the unionOrdered
procedure quickly, but not compressing the paths of parent to keep Prop. 3.8 valid. This idea is
presented in Algs. 10 and 11.

Algorithm 10 Ordered max-tree construction with path compression.
1: procedure buildParentZPar(f,A)
2: parent← makeset(Df);
3: zpar← makeset(Df);
4: (A)alg ← A ordered according to the ≺ relation;
5: for (p, q) ∈ (A)alg do
6: (parent, zpar)← unionZpar(parent, zpar, p, q);

Algorithm 11 union procedure with path compression for the parent array.
1: procedure unionZpar(parent, zpar, p, q)
2: rP ← findComp(zpar, p); . Path compression applied only in zpar
3: rQ← findComp(zpar, q);
4: if rP 6= rQ then
5: if f(rP) ≥ f(rQ) then
6: parent[rP]← rQ;
7: zpar[rP]← rQ;
8: else
9: parent[rQ]← rP ;

10: zpar[rQ]← rP ;
11: return (parent, zpar);

This implementation that uses path compression seems to be the most common implementation
for merge-based component-tree construction. In fact, it can be shown that this strategy is very
efficient and it can be performed in quasi-linear time, assuming the ordering step can be performed
in linear time.

3.6 Unordered parent Construction

As stated above, the union-find based strategy that uses path compression is a very efficient
way of computing component-trees when ordering the arcs of A according to Eq. (3.7) is possible.

3.7 PARENT CHANGE PROPERTIES 27

However, when ordering is not possible, a different approach is required. In the literature, the
unordered strategy has been used mainly for parallel construction of component-trees [OW07b],
where partitions of the domain of image are processed separately, and a final step is used to join
the component-trees of the partitions.

Similar to the last section, instead of presenting the algorithm, we first show the properties that
we want the algorithm to have and then build the algorithm to satisfy these properties.

To begin with, we start comparing differences that may arise from an ordered and a non-ordered
implementation. A good property of an ordered algorithm (e.g., Alg. 9) is that each pixel has its
parent changed only once (from ⊥ to a pixel), and the ordering guarantees that this change is
always performed to the correct parent node. However, this property can not be guaranteed in an
unordered construction. An example is given in Fig 3.4.

0

3 2 0

1 2 3

1

3

2

0

1

0 1 2 3

0

2

1

3

0 1 2 3

2

1

3

0

0 1 2 3

Figure 3.4: Unordered parent construction, where the sequence Aalg is not ordered. In the figure, parentj

stores Ajalg-CCs (1 ≤ j ≤ 3). Note that, to update parent2 to parent3, the parents of the pixels 1 and 2 needs
to be reassigned.

As it can be seen in the figure, in a non-ordered strategy, the parent of a node may change
multiple times to keep the comparability relations consistent.

3.7 Parent Change Properties

In this section, we analyze how to develop an unordered algorithm for component-tree con-
struction that perform changes in the parent array consistently based on the processed pairs of
neighbors.

For that, we first analyze how the connected components change when a new pair of neighboring
pixels is processed. Suppose a gray-level image f and a symmetric neighborhood A are given and we
want an algorithm to build parent, the array that stores CC(f,A), without relying in an ordering
of the elements of A. Thus, let Aalg = {a1, . . . , a|A|} be obtained from an enumeration of A and
suppose Aalg defines the order that our algorithm will use to process the pairs of pixels. From

Aalg, we define Ajalg as the set of the j first neighbors of Aalg, or to put it another way, =
j⋃
`=1

a`.

Finally, suppose that the first j− 1 pairs were processed, resulting in an array parentj−1 that stores
CC(f,Aj−1

alg), and that we want to update parentj−1 to parentj , where parentj stores CC(f,Ajalg).
An example is shown in Fig. 3.5.

28 ALGORITHMIC BACKGROUND 3.7

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

1 2 4 5 6 8

1 2 4 5 6 8

1 2 8

2 8

0

4 5

1 2 3 4 5 6 7 80

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 80

1 2 4 5 6 8

1 2 4 5 6 8

1 2 8

2 8

0

4 5

5

6

1

3 7

0

4

2 8

?

Figure 3.5: Assumptions used for this section: a gray-level f and two neighborhoods Aj−1alg , A
j
alg are given,

where Ajalg = Aj−1alg ∪ aj and aj = {pj = 5, qj = 4}. The array parentj−1 that stores CC(f,Aj−1alg) is given
and we want to compute parentj, an array updated from parentj−1, that stores CC(f,Ajalg).

We recall from Sec 2.6 that, comparing CC(f,Aj−1
alg) to CC(f,Ajalg), the only differences are in

the CCs that were extracted from gray-levels λ where pj and qj are not Aj−1
alg -connected.

Thus, let β be a gray-level where pj , qj ∈ Xβ(f) but are not Aj−1
alg -connected. Then, from

Prop 2.7, we saw that the (Aj−1
alg -) connected components Cβp = CC(Xβ(f),Aj−1

alg , pj) and Cβq =

CC(Xβ(f),Aj−1
alg , qj) become a single (Ajalg-) connected component Cβ = Cβp ∪ Cβq .

Since we want parentj to store the Ajalg-CCs of f , we need a canonical element rβ in parentj

that reconstructs Cβ for every β where pj and qj are originally disconnected in Xβ(f). As explained
before, the parent array can be seen as multiple union-finds, one for each gray-level. In this sense,
let uf λj−1 denote the union-find of parentj−1 at level λ induced by parentj−1, that is, G(uf λj−1) is the
subgraph of G(parentj−1) induced by Xλ(f). Since parentj−1 stores CC(f,Aj−1

alg), then uf λj−1 stores
CC(Xλ(f),Aj−1

alg). An example is shown in Fig. 3.6.

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5 5

6

1

3 7

0

4

2 8

Figure 3.6: Representing the array parentj−1 from Fig. 3.5 as multiple union-finds uf λj−1.

3.7 PARENT CHANGE PROPERTIES 29

Looking at each union-find uf λj−1 individually, each of them stores the Aj−1
alg -CCs of f . Hence,

analyzing Prop. 2.7 in this context, what we want are updated union-finds uf λj where, for each uf λj ,
the canonical elements r of uf λj satisfy:

rec(uf λj , r) =

{
rec(uf λj−1, r) if pj , qj 6∈ rec(uf λj−1, r)

rec(uf λj−1, rPλ) ∪ rec(uf λj−1, rQλ) otherwise,
(3.8)

where rPλ and rQλ are the canonical elements of pj and qj in uf λj−1, respectively.
Naturally, we still also want all these updated union-finds to be represented by a single array

parentj . Otherwise, one could simply call the union procedure for each union-find uf λj−1 individually,
but this strategy does not guarantee that Prop. 3.8 would still hold. The main problem is that, in
order to keep the union-finds representable by a single array, a change in an arc of uf βj−1 must be
reflected in uf λj−1, for all 0 ≤ λ < β.

For instance, consider the example of Fig. 3.5 and suppose β = 3 and that rPβ = 5 and rQβ = 4

are the canonical elements of pj = 5 and qj = 4 in uf βj−1 respectively. To connect pj to qj at level

β, we add the arc (rPβ, rQβ) to uf βj−1, generating an updated union-find uf (β,1)
j−1 . Then, for all

0 ≤ λ < β, the arc (rPβ, rQβ) is also added, generating updated union-finds uf (λ,1)
j−1 , where the

previous parent of rPj is overwritten when uf λj−1[rPj] 6= ⊥. As a consequence, all these updated

union-finds can be represented by a single array parent(j−1,1) = uf (0,1)
j−1 . An illustration of this process

in shown in Fig. 3.7.

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 85

6

1

3 7

0

4 5

2 8 2 8

Figure 3.7: Update from uf λj−1 to uf (λ,1)j−1 for aj = {pj = 5, qj = 4}. Note that, for β = 3, rPβ = 5 and
rQβ = 4 were originally disconnected, so the arc (rPβ = 5, rQβ = 4) is added to connect pj and qj at uf βj−1.
Then, this change is propagated to the other union-finds where rPβ is a foreground pixel to keep the parent
array consistent.

From Fig. 3.7, some properties can be observed. First of all, for any λ satisfying β < λ < K,
uf (λ,1)
j−1 = uf λj−1 . This happens because, in the example, β indicates the highest gray-level where pj

is a foreground pixel, and for any λ > β, this arc can not be assigned because rPλ does not exist.
As a consequence, for every gray-level where pj is a foreground pixel, then pj is now connected

to qj , as desired. However, a side effect is that, for every gray-level λ where uf λj−1[rPλ] 6= ⊥, we
may have overwritten its previous parent p′, and now this connectivity relation between rPλ and
p′ is lost. For example, in Fig. 3.7, this happens between the pixels rPλ = 5 and p′ = 6, for all
gray-levels 0 ≤ λ ≤ 2.

On the bright side, since rPβ is a canonical element of uf βj−1, then uf βj−1[rPβ] = ⊥, and no
connectivity relations were lost at level β. Hence, for the gray-level β, all connectivity relations of
uf βj−1 were preserved and pj and qj become connected. Therefore, uf (β,1)

j−1 now stores the Ajalg-CCs
of Xβ(f), as desired.

On the other hand, the gray-levels 0 ≤ λ < β need to be fixed. We recall that we want,
for each uf (λ,1)

j−1 , to update them and have a canonical element r representing rec(uf λj−1, rPλ) ∪
rec(uf λj−1, rQλ). It is important to emphasize that, from Eq. (3.8), rPλ and rQλ need to be the

canonical elements of pj and qj in uf λj−1, and not of uf (λ,1)
j−1 .

30 ALGORITHMIC BACKGROUND 3.7

Hence, let us check what happens to the reconstruction of rPλ and rQλ in uf (λ,1)
j−1 . For the case

shown in Fig. 3.7, their reconstructions are presented in Fig. 3.8.

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5 5

6

1

3 7

0

4

2 8

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5

6

1

3 7

0

4

2 8

5

Figure 3.8: Update from uf λj−1 to uf (λ,1)j−1 for aj = {pj = 5, qj = 4}, where rPλ and rQλ are, respectively,
the canonical elements of pj and qj in uf λj−1. On the right, we compare how the reconstruction of rPλ and
rQλ changes from uf λj−1 to uf (λ,1)j−1 . Note that the union of the reconstructions of rPλ and rQλ is the same
before and after the update.

The key property to observe in Fig. 3.8 is that, although the reconstructions of rPλ and rQλ
change in uf (λ,1)

j−1 when compared to uf λj−1 (for 0 ≤ λ < β), the union of these reconstructions

remains unaltered. Hence, for any uf (λ,1)
j−1 , adding the arc (rPλ, rQλ) (or (rQλ, rPλ) depending on

the gray-levels of rPλ and rQγ , but assume without loss of generality that (rPλ, rQλ) is added) still
creates an updated union-find where rQ represents the CC rec(ufλj−1, rPλ) ∪ rec(ufλj−1, rQλ).

More formally, this idea can be stated as the following proposition:

Proposition 3.18. Let parent be an array seen as multiple union-finds uf λ, for λ ∈ K. Additionally,
let p, q be two pixels and suppose rPλ (resp. rQλ) is the canonical element of p (resp. q) in uf λ.
Finally, let β ∈ K be a gray-level where p and q are disconnected in uf β and suppose that, for all
0 ≤ α ≤ β, uf (α,1) is the union-find updated from uf α by changing the parent of rPβ to rQβ. Then,
rec(uf (α,1), rPα) ∪ rec(uf (α,1), rQα) = rec(uf α, rPα) ∪ rec(uf α, rQα).

Proof. To start the proof we note that, since α < β, then rPβ and rQβ exist in uf α. Additionally,
since uf α and uf β are originated from the parent array, then uf β is a subgraph of uf α. In particular,
this implies that the subtree of rPβ is the same in uf α and uf β . A consequence of uf β being a
subgraph of uf α is that rPα (resp. rQα) is either rPβ (resp. rQβ) or one of its ancestors.

The update from uf α to uf (α,1) can be seen as a two-step process, where we first remove the
previous arc (rPβ, p

′) and then add (rPβ, rQβ) (see Fig. 3.9). The removal of (rPβ, p
′) has the effect

of removing the subtree of rPβ from the subtree of its previous parent p′, while the addition of the
arc has the effect of adding the subtree of rPβ into the subtree of rQβ .

With this idea in mind, we analyze the possible cases from rPα and rQα. First, we analyze
the case when rPα 6= rPβ and rPβ is not a descendant of rQα in uf α, which is the case shown
in Fig. 3.9. Then, the change of arc makes rPβ become a child of rQβ and, consequently, a de-
scendant of rQα in uf (α,1). Hence, we have rec(uf (α,1), rQα) = rec(uf α, rQα) ∪ rec(uf α, rPβ),
while rec(uf (α,1), rPα) = rec(uf α, rPα) \ rec(uf α, rPβ). Using these properties, we conclude that

3.7 PARENT CHANGE PROPERTIES 31

rec(uf (α,1), rPα)∪rec(uf (α,1), rQα) =
(
rec(uf α, rPα)\rec(uf α, rPβ)

)
∪
(
rec(uf α, rQα)∪rec(uf α, rPβ)

)
=

rec(uf α, rPα) ∪ rec(uf α, rQα).
There are two other cases to consider: if rPα = rPβ , then rPα becomes a descendant of rQα

in uf (α,1). From this part, a similar proof to the last case can be used, with the difference that the
subtree of rPα in uf (α,1) is included in the subtree of rQα. Since the proof is similar, it will be
omitted here.

The last case happens when rPβ is a descendant of rQα in uf α. Then, this implies that p and
q were already connected or, equivalently, that rPα = rQα. Hence, in this case, rec(uf α, rPα) ∪
rec(uf α, rQα) = rec(uf α, rPα) = rec(uf α, rQα).

The removal of the arc (rPβ, p
′) has the effect of removing the subtree of rPβ from the subtree

of rPα, while the addition of (rPβ, rQβ) adds it to the subtree of rQα. But since rPα = rQα, we
are essentially removing and adding the subtree of rPβ in the subtree of rPα = rQα, that is, the
elements of the subtree do not change, which finishes the proof of the proposition.

Figure 3.9: Update from uf α to uf (α,1), seen as a two-step process where we first remove the arc pointing
to the previous parent p′ of rPβ and then we add the arc (rPβ , rQβ). In this figure, the triangles indicate the
subtree rooted in the nodes indicate by the circles.

Note that this idea can be applied multiple times: if we update uf(α,1) to uf(α,2) using the same
strategy or, more generally, uf(α,k) to uf(α,k+1), the same properties are valid.

In this way, an idea to finish the update from parentj−1 to parentj is to repeat the same process
over and over, finding the next gray-level β where pj and qj are disconnected (in decreasing order of
gray-levels, to make sure that already correct union-finds do not change), and add the arc (rPβ, rQβ)
or (rQβ, rPβ) to connect them. The continuation of Fig. 3.8 using this approach is presented in
Fig 3.10. It is worth noting that the updates performed in the parent array may make a root node
to a non-root node (for example, the node 6 pointing to the node 7 in the bottom right in Fig 3.10).

32 ALGORITHMIC BACKGROUND 3.7

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5

6

1

3 7

0

4

2 8

5

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6 8

1 2 4 5 6 8

1 2 4 8

2 8

5

6

1

3 7

0

4

2 8

5

Figure 3.10: Update of the union-finds (and its respective parent arrays), by connecting rPβ and rQβ for
all gray-levels β where they are disconnected. At the end, all canonical elements of uf (λ,3)j−1 store Ajalg-CCs of
Xλ(f), for all λ ∈ K, which means parent(j−1,3) stores the Ajalg-CCs of f .

Using these ideas, we can develop a first version of an algorithm that updates parentj−1 to
parentj . These ideas are presented in Alg. 12.

Algorithm 12 Algorithm that, given a pair {pj , qj}, updates a given array parent = parentj−1 to
parentj , where pj and qj are comparable in parentj .
1: procedure parentUpdateNaive(f , parent, pj , qj)
2: parentj−1 ← copy of parent;
3: for K > β ≥ 0 do
4: if findRep(f, parent, pj , β) 6= findRep(f, parent, qj , β) then . pj and qj are

disconnected
5: rPβ ← findRep(f, parentj−1, pj , β); . Canonical element of pj in uf βj−1

6: rQβ ← findRep(f, parentj−1, qj , β); . Canonical element of qj in uf βj−1

7: unionOrdered(f , parent, rPβ , rQβ);

Although Alg. 12 can be used to update parentj−1 to parentj , there are still some optimizations
that can be performed. First of all, it is possible not to store parentj−1, and find the representatives
rPλ and rQλ in parent directly instead. Naturally, we need some additional properties to show how
to perform this optimization.

Another optimization consists of not testing all gray-levels λ at Line 3 of Alg. 12. For example,
in gray-levels λ where pj and qj are already connected in uf λj−1 or one of them is not a foreground
pixel, there is no need to connect them.

With these ideas in mind, we now focus on finding properties to implement an optimized algo-
rithm. We recall that, given a pixel pj , the canonical element rPλ of pj in uf λj−1 can be found in
parentj−1 by calling findRep(f, parentj−1, p, λ), that is to say, rPλ is the last canonical element in
the path from pj to the root node ⊥ in parentj−1 satisfying f(rPλ) ≥ λ.

Hence, to obtain the canonical elements rPλ and rQλ of uf λj−1 in uf (λ,k)
j−1 for any λ ∈ K and any

valid value of k, we need to observe how paths change when the parent of a node is modified. For
that, an illustration is provided in Fig 3.11.

3.7 PARENT CHANGE PROPERTIES 33

Figure 3.11: Update from parent(j−1,k) to parent(j−1,k+1) by connecting rPβ to rQβ, where the two column
in the left show the paths from p′ = parent(j−1,k)[rPβ] to ⊥ and rQβ to ⊥ and the two columns in the right
show the same paths after the update. Green nodes are ancestors of pj and blue nodes are ancestors of qj.
Note that, before and after the change or arc, the paths from p′ to ⊥ and rQβ to ⊥ are unaltered.

It should be clear from Fig. 3.11 that the following property holds:

Proposition 3.19. Suppose Alg. 12 is running and let parent(j−1,k) denote the state of parent array
after k calls of unionOrdered. Suppose that the (k + 1)-th call of unionOrdered updates the
parent of rPβ from p′ to rQβ, namely, parent(j−1,k)[rPβ] = q′ but parent(j−1,k+1)[rPβ] = rQβ. Then,
π(parent(j−1,k), p′,⊥) = π(parent(j−1,k+1), p′,⊥) and
π(parent(j−1,k), rQβ,⊥) = π(parent(j−1,k+1), rQβ,⊥).

From Prop. 3.19, it is easy to prove that:

Proposition 3.20. Suppose Alg. 12 is running and let parent(j−1,k) denote the state of parent
array after k calls of unionOrdered. Suppose that the (k + 1)-th call of unionOrdered up-
dates the parent of rPβ from p′ to rQβ. Then, π(parentj−1, p′,⊥) = π(parent(j−1,k+1), p′,⊥) and
π(parentj−1, rQβ,⊥) = π(parent(j−1,k+1), rQβ,⊥).

Proof. By applying Prop. 3.19 multiple times, it is easy to see that
π(parent(j−1,`), p′,⊥) = π(parent(j−1,k+1), p′,⊥) and
π(parent(j−1,`), rQβ,⊥) = π(parent(j−1,k+1), rQβ,⊥) for any ` ≤ k. In particular, for ` = 0,
parent(j−1,0) = parentj−1 and the property is proved.

Propositions 3.19 and 3.20 are defined assuming an arc from rPβ to rQβ , but it is easy to see
that the analogous properties would be valid for the case where rPβ becomes the parent of rQβ .

Under the assumptions of Prop. 3.20, since the paths from p′ to ⊥ and rQβ to ⊥ are the same
in parent(j−1,k+1) and parentj−1, we can obtain any canonical element of pj or qj with gray-level
λ < β. For instance, by definition, rPλ is the last canonical element in the path from pj to ⊥ in
parentj−1 with gray-level higher than or equal to λ. If β ≤ f(pj) and λ ≤ f(pj), then both rPλ and
rPβ are in this path and, in particular, rPλ is an ancestor of rPβ when λ < β. Hence, rPλ can also
be seen as the last canonical element in the path from parentj−1[rPβ] = p′ to ⊥ in parentj−1, and
this path is the same in parentj−1 and parent(j−1,k+1).

Since the values of β from Alg. 12 are obtained using a decreasing order, this strategy can be
applied. Hence, we can save memory by, instead of storing the entire parentj−1 array, storing only
the variables p′ and rPβ from the previous loop and using the updated parent array to find the
canonical elements of pj and qj .

For the other optimization, we first note the two pixels pj and qj are not Aj−1
alg -connected if and

only if they have different representatives at level min{f(pj), f(qj)} (Props. 3.15 and 3.16). Also,
the highest possible gray-level where pj and qj can be disconnected is also min{f(pj), f(qj)}, since
one of them would not be a foreground pixel at a higher gray-level. Hence, in our previous examples,

34 ALGORITHMIC BACKGROUND 3.7

the highest possible value for β is β = min{f(pj), f(qj)}. For our purposes, since we assume that
the neighborhood A is symmetric, f(pj) ≥ f(qj) can always be enforced by swapping the labels of
the variables pj and qj when that condition is not true. Hence, we now assume that f(pj) ≥ f(qj),
implying that the first value for β is β = f(q). We refer to this first value as β1.

The lowest value for β that needs to be considered is the lowest gray-level where pj and qj are
disconnected. Note that, given a gray-level λ ∈ K, if c 6= ⊥ is an ancestor of both pj and qj in uf λj−1,
then c is also an ancestor of pj and qj in uf αj−1, for any f(c) < α < λ, since uf λj−1 is a subgraph of
uf αj−1.

If pj and qj have a common ancestor c 6= ⊥, this means that they have the same canonical
element in uf f(c)

j−1 . Hence, let c
′ be the first common ancestor of pj and qj in parent. This implies

that, at any level λ > f(c′), pj and qj are disconnected in uf λj−1, and the lowest possible gray-level
where they are disconnected is f(c′) + 1. Therefore, we can restrict the range of values of β to the
interval]f(c′), f(q)].

It is important to note that, even inside this range, some gray-levels can be skipped. This
property is explained in Prop. 3.21.

Proposition 3.21. Suppose Alg. 12 is running and let parent(j−1,k) denote the state of parent
array after k calls of unionOrdered. In particular, assume that the k-th call of unionOrdered
assigned parent(j−1,k)[rPβk] = rQβk . Then, for any 0 ≤ λ ≤ βk such that rPλ = rPβk ,
rec(parent(j−1,k), rQλ) = rec(parentj−1, rPλ) ∪ rec(parentj−1, rQλ).

Proof. A side effect of assigning parent(j−1,k)[rPβk] = rQβk is that it makes rPβk a descendant of rQλ
for all 0 ≤ λ < βk and, therefore, rec(parent(j−1,k), rQλ) = rec(uf kj−1, rQλ)∪rec(uf kj−1, rPβk). When
rec(uf kj−1, rPβk) = rec(uf kj−1, rPλ), then rec(parent(j−1,k), rQλ) = rec(uf kj−1, rQλ)∪rec(uf kj−1, rPλ),
namely, rQλ already represents the Ajalg-CC that merges the disjoint components containing pj and
qj at level λ and is already correct.

In other words, a single call of unionOrdered can correct multiple union-finds. For the example
presented in Figs. 3.8 and 3.10, the ranges of gray-levels corrected by each update of the parent
array is shown in Fig. 3.12.

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

Figure 3.12: The changes of parenthood relation from Alg. 12 applied to the examples shown in Fig. 3.8
and 3.10, with the range of gray-levels corrected by each change highlighted.

The final step to develop our optimized algorithm is to understand which gray-levels can be
skipped. For that, in the context of Prop. 3.21, we need to find, for each step k, the highest gray-
level α such that rPα 6= rPβk . However, this can be easily done in the parent array: any ancestor of
rPβk has gray-level higher than βk and, therefore, α = f(parent(j−1,k)[rPβk]). Then, when the change
parent(j−1,k)[rPβk] ← rQβ is performed, all gray-levels from]α, β] are now correct, and we repeat
this process again until we correct all gray-levels where pj and qj were originally disconnected.

Putting all these ideas together, one can write an optimized algorithm for constructing the
parent array using an unordered strategy, using the following approach:

3.7 PARENT CHANGE PROPERTIES 35

Algorithm 13 Updating the parent array to, given a pair (p, q), make p and q comparable. This
algorithm assumes f(p) ≥ f(q), and the algorithm is called initially with cur = p and other = q.
1: procedure parentUpdate(f , parent, cur, other)
2: rcur ← findRep(f, parent, cur, f(other)); . f(other) ≤ f(cur)
3: rother ← findRep(f, parent, cur, f(other));
4: if rcur 6= rother then . If cur and other are disconnected
5: par ← parent[rcur]; . Previous parent of rcur
6: parent[rcur]← rother; . Corrects the interval [f(par) + 1, f(rother)]
7: parentUpdate(f , parent, rother, par); . Recursion to correct gray-levels λ ≤ f(par).

To give some context about Alg. 13, the name of the variables were changed to be independent of
pj and qj . In this sense, the paths in {π(parent, pj ,⊥), π(parent, qj ,⊥)} are classified as the current
path (cur) and the other path (other), and we always make a canonical element from the current
path (rcur) point to the canonical element of the other path (rother) at Line 6. Thus, this makes all
gray-levels in the interval]f(par), f(other)] correct and the algorithm is recursively called to correct
the gray-levels lower than or equal to α = f(par), as discussed above. An example is provided in
Fig. 3.13.

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

Figure 3.13: Simulation of the optimized algorithm parentUpdate, showing that it performs the same
changes as parentUpdateNaive, but skips unnecessary gray-levels and does not store parentj−1.

To finish the proof of correctness of Alg. 13, we have to prove that Alg. 13 finishes and that the
assignment at Line 6 is correct (in other words, it generates a decreasing parent array and links the
correct canonical elements). The first part is done in Prop. 3.22.

Proposition 3.22. Suppose Alg. 13 is called and let parentUpdatek denote the k-th call of
parentUpdate. Additionally, let curk (resp. otherk, rcurk , rotherk and park) denote the value of
cur inside parentUpdatek. Then, there exist a k′ ∈ Z, k ≥ 1 such that rcurk′ = rotherk′ .

Proof. We first observe that, for any k ≥ 1, we have that f(par) < f(rotherk) by construction,
since par is the parent rcurk and rcurk is, by definition, the last element in the path from cur to ⊥
with gray-level λ ≥ f(otherk) = f(rotherk). Since otherk = park−1 for any k > 1, this implies that
f(otherk) decreases as k increases.

Since the number of gray-levels is finite, then in the worst case, f(otherk) has a finite amount
of values until either the condition rcurk = rotherk is true or f(otherk) 6∈ K. This can only happen
if otherk is not a pixel of the domain of the image and, in the parent array, this can only happen
if otherk = ⊥ (we recall that, in Sec. 3.1, we set f(⊥) = −1). When this happens, then we have
rcurk = ⊥ = rotherk , as desired, and the algorithm finishes.

The proof that Alg. 13 generates a decreasing array is done in Prop 3.23.

Proposition 3.23. Suppose Alg. 13 is called and let parentUpdatek denote the k-th call of
parentUpdate. Additionally, let curk (resp. otherk, rcurk , rotherk and park) denote the value of
cur inside parentUpdatek. Then, f(rcurk) ≥ f(rotherk).

36 ALGORITHMIC BACKGROUND 3.7

Proof. Let k ∈ Z satisfy k ≥ 1. Note that rcurk and rotherk are the representatives of curk and
otherk at level f(otherk) and, therefore, f(rcurk) ≥ f(otherk) and f(rotherk) ≥ f(otherk). But
since rother is the representative of otherk at level f(otherk), then f(rother1) ≤ f(q). That means
f(rotherk) = f(otherk) and we conclude that f(rcurk) ≥ f(otherk) = f(rotherk), as desired.

To prove the last part, we need some additional properties. First, we adapt Prop. 3.20 to the
context of Alg. 13:

Proposition 3.24. Suppose Alg. 13 is running. Let parentUpdatek denote the k-th call of par-
entUpdate, curk (resp. otherk, rcurk , rotherk and park) denote the value of cur inside
parentUpdatek and suppose that parentUpdatek receives an array parent(j−1,k−1) and up-
dates it to parent(j−1,k) at Line 6. Then, π(parent(j−1,k), otherk,⊥) = π(parentj−1, otherk,⊥) and
π(parent(j−1,k), park,⊥) = π(parentj−1, park,⊥).

Using this property, one can prove that the variables rcurk and rotherk are always in the path
π(parentj−1, pj ,⊥) or π(parentj−1, qj ,⊥). More specifically, the variables rcurk and rotherk are always
alternating and in different paths. This is proved in Prop. 3.25.

Proposition 3.25. Suppose Alg. 13 is running. Let k ∈ Z, let parentUpdatek denote the k-th
call of parentUpdate, curk (resp. otherk, rcurk , rotherk and park) denote the value of cur inside
parentUpdatek and suppose that parentUpdatek receives an array parent(j−1,k−1) and updates
it to parent(j−1,k) at Line 6. Then:

1. If k is odd:

(a) curk ∈ π(parentj−1, pj ,⊥);

(b) rcurk ∈ π(parentj−1, pj ,⊥);

(c) otherk ∈ π(parentj−1, qj ,⊥);

(d) rotherk ∈ π(parentj−1, qj ,⊥);

2. If k is even:

(a) curk ∈ π(parentj−1, qj ,⊥);

(b) rcurk ∈ π(parentj−1, qj ,⊥);

(c) otherk ∈ π(parentj−1, pj ,⊥);

(d) rotherk ∈ π(parentj−1, pj ,⊥);

Proof. This property can be proved by induction.
For the base case k = 1, curk = pj and otherk = qj , so they are in the paths π(parentj−1, pj ,⊥)

and π(parentj−1, pj ,⊥), respectively. The variable rcurk is either curk or an ancestor, so rcurk ∈
π(parentj−1, pj ,⊥). For the same reason, we have that rotherk ∈ π(parentj−1, qj ,⊥), as desired.

Now, suppose k > 1 and that the proposition is valid for any k′ < k. Additionally, without loss
of generality, assume that k is odd.

By definition, curk = rotherk−1
and rcurk is the canonical element of curk at level f(otherk)

obtained from parent(j−1,k−1). Hence, both curk and rcurk are in the path π(parentk−1
j−1 , curk,⊥) =

π(parentk−1
j−1 , rotherk−1

,⊥).
According to Prop. 3.24, π(parent(j−1,k−1), rotherk−1

,⊥) = π(parentj−1, rotherk−1
,⊥) and, apply-

ing the induction hypothesis, we have that rotherk−1
∈ π(parentj−1, pj ,⊥). Thus,

π(parentj−1, rotherk−1
,⊥) ⊆ π(parentj−1, pj ,⊥), and curk, rcurk ∈ π(parentj−1, rotherk−1

,⊥) implies
that curk, rcurk ∈ π(parentj−1, pj ,⊥), as desired.

Using the fact that otherk = park−1, otherk, rotherk ∈ π(parentj−1, qj ,⊥) can be proved. Since
the proof is similar to the one used for curk and rcurk , it will be skipped.

3.7 PARENT CHANGE PROPERTIES 37

Finally, to prove the correctness of our algorithm, we need to prove Prop. 3.26.

Proposition 3.26. Suppose Alg. 13 is running. Let k ∈ Z, let parentUpdatek denote the k-th
call of parentUpdate and suppose that parentUpdatek receives an array parent(j−1,k−1) and
updates it to parent(j−1,k) at Line 6. Then, rcurk and rotherk are the canonical elements of pj and qj
in parentj−1 at level f(otherk).

Proof. Let k ≥ 1 and, without loss of generality, assume that k is odd. By construction, rcurk is the
canonical element of curk in parent(j−1,k−1) at level f(otherk), that is,
rcurk ∈ π(parent(j−1,k) − 1, curk,⊥). From Prop. 3.25, we have that curk ∈ π(parentj−1, pj ,⊥),
implying that π(parentj−1, curk,⊥) ⊆ π(parentj−1, pj ,⊥). Therefore, rcurk can also be seen as the
last canonical element in π(parentj−1, pj ,⊥) with gray-level higher than or equal to f(otherk),
namely, the canonical element of pj in parentj−1 at level f(otherk). Hence, rcurk = rPf(otherk).

Using an analogous proof, we conclude that rotherk = rQf(otherk), as desired.

Combining the properties seen in this Chapter, we can prove that Alg. 13 is correct: thanks to
Props. 3.21 and 3.26, the k-th call of Alg. 13 corrects the gray-levels in the interval
]f(park), f(otherk)] =]f(otherk+1), f(otherk)]. Supposing that η calls of parentUpdate are per-
formed and c is the first common ancestor of pj and qj , the pixels that we want to connect, then these
calls combined correct the interval]f(otherη), f(other1)] =]f(c), f(qj)], which comprises exactly the
interval of gray-levels where pj and qj were originally disconnected.

38 ALGORITHMIC BACKGROUND 3.7

Chapter 4

Proposed Method

In this chapter, we explain the main concepts developed in this thesis. Based on the two last
chapters, we explain how to define a memory-efficient way of storing component-hypertrees and also
how to develop fast algorithms to build this optimized structure. It is worth noting that the theory
and algorithms presented in this chapter are the foundation of 3 papers [MAS+19b, MAS+19a,
MPAH20] that were published during the development of this Ph.D.

4.1 Component-Hypertree Construction

4.1.1 General Algorithm

Based on the properties and algorithms seen in the last two chapters, one can build an algorithm
for component-hypertree construction, as follows: given a gray-level image f and a sequence of
increasing symmetric neighborhoods A = (A1, . . . ,An), the most natural idea for building the
component-hypertree of f using A consists of computing, for each neighborhood Ai (1 ≤ i ≤ n),
its respective array parenti and use it to allocate the corresponding component-tree. Then, nodes
from consecutive component-trees can be linked according to the inclusion relation of the nodes. A
template showing this idea is shown in Alg. 14.

Algorithm 14 Complete component-hypertree construction.
1: procedure buildHypertree(f , A = (A1, . . . ,An))
2: parent1 ← makeset(Df);
3: Compute parent1 using any algorithm for component-tree construction;
4: Allocate the complete component-tree of f and A1 based on parent1;
5: for 2 ≤ i ≤ n do
6: Compute parenti by updating parenti−1 calling parentUpdate for all Ai-neighbors.
7: Allocate nodes based on canonical elements of parenti.
8: Allocate parent arcs of nodes allocated at step i based on the arcs of parenti.
9: for all nodes N of the complete component-tree of Ai−1 do

10: Find N ′ satisfying adj(N) = i, CC(N) ⊆ CC(N ′) and f(N) = f(N ′);
11: Allocate the composite arc (N,N ′);

It is easy to note that, although this implementation works, it is not very efficient memory-wise
because a complete component-hypertree stores multiple nodes representing the same CC. In this
regard, just like there exist compact ways of representing component-trees, we want efficient ways of
storing component-hypertrees that can be quickly computed and minimize the amount of redundant
information stored.

Hence, in this chapter, we explain how the previous background of component-trees, combined
with modified algorithms specifically designed to tackle this problem, can be used in the development
of algorithms and data structures for efficient component-hypertree computation and storage.

39

40 PROPOSED METHOD 4.2

Similar to the previous chapters, the proposed method is divided into two parts: first, we in-
troduce the theoretical definitions and properties that we want our optimized hypertree to satisfy
and later we introduce our proposed algorithms for efficient component-hypertree construction,
explaining how they are related to these theoretical concepts.

4.2 Compact Component-Hypertrees

Based on the reduction from complete component-trees to (non-complete) component-trees, we
define the concept of compact component-hypertrees. In the compact representation of component-
hypertrees, each CC is represented only by one node, and arcs are mapped only from arcs of the
complete representation that linked nodes representing different CCs. To formally define compact-
hypertree, we first need to introduce the concepts of compact nodes and compact arcs.

4.2.1 Compact Nodes

Let f be a gray-level image, A a sequence of increasing symmetric neighborhood and CCH =
(VCCH , ECCH) the complete component-hypertree of f and A. Then, given any node N ∈ VCCH ,
the compact node of N is the node N ′ returned by the mapping cn : VCCH → VCCH , defined as
follows:

cn(N) = N ′ ∈ VCCH : CC(N ′) = CC(N) and
∀M ∈ VCCH such that CC(M) = CC(N ′) = CC(N), (4.1)
f(M) ≤ f(N ′) and adj(M) ≥ adj(N ′)

In other words, given a node N ∈ VCCH , the compact node N ′ = cn(N) is the node N ′ of
the complete-hypertree representing the same CC as N with the highest gray-level and the lowest
neighborhood index.

A question that may arise from this definition is whether cn(N) is well-defined, namely, if cn(N)
is unique. This is proved in Prop. 4.1:

Proposition 4.1. Let f be a gray-level image, A a sequence of increasing neighborhoods and
GCCH = (VCCH , ECCH) the complete hypertree of f and A. Additionally, let N ∈ VCCH be an
arbitrary node and let MN = {MN ∈ VCCH : CC(MN) = CC(N)}. Finally, suppose M,M ′ ∈ MN

are two nodes satisfying the following conditions:

• Among all nodes of MN with the highest possible gray-level, M is the node with the lowest
neighborhood index.

• Among all nodes of MN with the lowest possible neighborhood index, M ′ is the node with the
highest gray-level.

Then, M and M ′ are the same node.

Proof. First, we observe that |MN | ≥ 1 since N ∈ MN . If |MN | = 1, then there is only one choice
for M and M ′, which is M = M ′ = N , which already proves the proposition.

Suppose then that |MN | > 1. By assumption, M has the highest possible gray-level and M ′ has
the lowest possible neighborhood index. Hence, adj(M ′) ≤ adj(M) and f(M) ≥ f(M ′).

Now, suppose by contradiction that M 6= M ′. Then, there are 3 possible cases:

1. adj(M) = adj(M ′): note that, since M 6= M ′, this implies that f(M) > f(M ′). But then, M ′

is not the node with highest gray-level among all nodes with the smallest neighborhood index
because M exists, satisfies adj(M) = adj(M ′) and has higher gray-level than M ′, which is a
contradiction. In other words, assuming M 6= M ′ leads to a contradiction and, therefore, M
and M ′ must be the same node.

4.2 COMPACT COMPONENT-HYPERTREES 41

2. f(M) = f(M ′) and adj(M ′) < adj(M): the proof is very similar to the last case and will be
omitted.

3. f(M) > f(M ′) and adj(M ′) < adj(M): this case is illustrated in Fig. 4.1.

By definition, this implies that CC(M) is a Aadj(M)-CC of Xf(M)(f), or in other words,
any p ∈ CC(M) satisfies f(p) ≥ f(M). Using the same argument, CC(M ′) is a Aadj(M ′)-
CC of Xf(M ′)(f). Since CC(M) = CC(M ′) = CC(N ′), we can combine these arguments
and conclude that CC(N ′) is also a Aadj(M ′)-CC of Xf(M)(f), that is, there exists a node
N ′ = (C, f(M), adj(M ′)) ∈ VCCH where C = CC(N ′), which is a contradiction, since we
found a node N ′ with the same gray-level as M but with lower neighborhood index that also
has a higher gray-level compared to M ′. Hence, assuming M 6= M ′ leads to a contradiction
and, therefore, M and M ′ must be the same node.

For all possible cases, a contradiction was obtained. Therefore, we conclude that M = M ′ and the
proposition is proved.

neighborhood index

g
ra

y-le
v
e
l

Figure 4.1: Visualization of the nodes for the proof of the third case in Prop. 4.1.

Since the cn mapping is defined, the set of compact nodes can be defined as:

VCH =
⋃

N∈VCCH

cn(N) (4.2)

Figure 4.2 depicts an example that highlights the compact nodes of a complete hypertree.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 4.2: A complete component-hypertree with the compact nodes highlighted.

42 PROPOSED METHOD 4.2

4.2.2 Compact Arcs

With the concept of compact nodes defined, given an arc e = (N,N ′) ∈ ECCH with CC(N) 6=
CC(N ′), the compact arc of e is defined as:

ce(e = (N,N ′)) = (cn(N), cn(N ′)) (4.3)

The set of compact arcs is defined as:

ECH =
⋃

e=(N,N ′)∈ECCH

CC(N)6=CC(N ′)

cn(e) (4.4)

Finally, we define the compact component-hypertree of f and A as the graph GCH = (VCH , ECH).
An example is given in Fig. 4.3.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 4.3: The compact-hypertree of the complete component-hypertree from Fig. 4.2. Black arrows repre-
sent parent arcs, while blue arrows represent composite arcs.

Given a complete hypertree GCCH = (VCCH , ECCH) and its respective compact-hypertree GCH =
(VCH , ECH), we say that an arc e ∈ ECH is a parent (resp. composite) arc if e = ce(e′) and e′ ∈ ECCH
is a parent (resp. composite) arc. In Fig. 4.3, parent arcs are drawn as black arrows, while composite
arcs are drawn as blue arrows.

It is not difficult to prove the following properties:

Proposition 4.2. Let GCH = (VCH , ECH) be a compact-hypertree and e = (N,N ′) ∈ ECH be a
parent arc. Then f(N) > f(N ′).

Proposition 4.3. Let GCH = (VCH , ECH) be a compact-hypertree and e = (N,N ′) ∈ ECH be a
composite arc. Then adj(N) < adj(N ′).

4.2.3 Equivalence between Complete-Hypertrees and Compact-Hypertrees

Now that compact-hypertrees have been formally defined, we show that, in terms of information
stored, compact-hypertrees and complete component-hypertrees are equivalent. For that, we need to
prove that all non-compact nodes and non-compact arcs can be recovered only from the information
stored in the compact-hypertree.

For that, suppose a gray-level image f and a sequence of increasing symmetric neighborhoods
A = (A, . . . ,An) is given. Let GCCH = (VCCH , ECCH) be the complete-hypertree of f and A and

4.2 COMPACT COMPONENT-HYPERTREES 43

GCH = (VCH , ECH) be the corresponding compact-hypertree. Then, given a node N ∈ VCH , suppose
we want to find all nodes M ∈ VCCH such that cn(M) = N .

In component-trees, repeated CCs can be found by comparing the gray-level of N with the
gray-level of its parent NP . In that case, for any f(N) < λ < f(NP), there existed a node N ′

satisfying CC(N ′) = CC(N) and f(N ′) = λ that was removed. To give an example, Fig. 4.4 shows
the component-trees used in Sec. 2.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8

4 5 6

41 2

2 8

0 1 2 3 4 5 6 7 8

5

0 1 2

0 1 2 3 4 5 6 7 8

0 1 2 4 5 6

4 5 6

8

8

8

8

4 5

2

1 2

1 2

Figure 4.4: A component-tree and its respective complete component-tree. Note that repeated CCs from the
complete representation can be obtained from the (non-complete) component-tree by comparing gray-level of
nodes.

This idea can also be applied to compact-hypertrees, if we know all neighborhoods where CC(N)
is allocated and also the parent of N for all these neighborhoods. In this regard, let pari(N)
denote the parent of N at neighborhood index i, that is, (N, pari(N)) is a compact arc where
(CC(N), CC(pari(N)) is a parent arc of the component-tree of f using Ai.

Supposing we know all these values i where CC(N) exist, then we know that all ancestors
N ′ = (C, λ, i) of N satisfying f(N) < λ < f(pari(N)) satisfy CC(N ′) = CC(N). An example is
provided in Fig. 4.5.

Figure 4.5: Left: part of a compact-hypertree, that shows all arcs leaving from a node given node N .
In particular, the parents of N for different neighborhoods are presented. Right: the respective part of the
complete component-hypertree, showing nodes that include CC(N). Nodes with the same color represent the
same CC. In this regard, all red nodes represent CC(N) and they can be recovered using the parents of N
from the compact representation.

To find all the values of i where CC(N) is a Ai-CC, an analogous idea can be applied. Within
a fixed gray-level β ∈ K, CCs from consecutive neighborhoods are increasing. In this sense, if we
organize the CCs of Xβ(f) (obtained from A) according to their inclusion relation, we would have
a component-tree (or component-forest). An example is given in Fig. 4.6.

44 PROPOSED METHOD 4.2

0 1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 4.6: From top to bottom: a binary image X (foreground pixels are dark); a sequence A =
(A1,A2,A3); the CCs of X using A; and these CCs organized according to their inclusion relation in a
sideways component-tree. Note that the pink CC is repeated, but represented only once, and the non-allocated
node can be inferred from the tree by comparing the neighborhood index of the pink node with its “parent”,
just like a regular component-tree extracted from level sets.

In this component-tree, given a nodeM and its “parent” (which is the composite ofM according
to our definitions) M ′, we know that CC(M) exists for any index i′ satisfying adj(M) ≤ i′ <
adj(M ′). Then, for all gray-levels λ ∈ K where CC(N) is a component of Xλ(f), we know that
nodes representing CC(N) with neighborhood index i′ satisfying adj(N) < i′ < adj(compλ(N))
were removed from the compact-hypertree (see Fig. 4.7), where compλ(N) denotes the composite
node of N at level λ.

Figure 4.7: The analogous of Fig. 4.5, but for composite nodes.

More formally, this property can be stated as the following proposition:

Proposition 4.4. Let f be a gray-level image, A a sequence of increasing symmetric neighborhoods,
GCCH = (VCCH , ECCH) be the complete-hypertree of f and A and GCH = (VCH , ECH) be its respec-
tive compact-hypertree. Additionally, let N ∈ VCH be a compact node and suppose there exists a node
N ′ ∈ VCCH satisfying cn(N ′) = N and let f(N ′) = λ. Then for any adj(N ′) < i < adj(compλ(N)),
there is a node M = (CC(M), λ, i) ∈ VCCH such that cn(M) = N .

From these ideas, it can be shown that the parents and composites of a compact node N satisfy
some properties. First of all, it can be proved that gray-levels of the parent nodes of a fixed node
N are increasing, or more specifically:

Proposition 4.5. Let f be a gray-level image, A a sequence of increasing symmetric neighborhoods,
GCCH = (VCCH , ECCH) be the complete-hypertree of f and A and GCH = (VCH , ECH) be its respec-
tive compact-hypertree. Then, given a node N ∈ VCH , for any 1 ≤ i < i′ ≤ n such that pari(N) and
pari′(N) exist, f(pari(N)) ≤ f(pari′(N)).

Proof. Suppose by contradiction that there exists 1 ≤ i < i′ ≤ n such that pari(N) and pari′(N)
both exist but f(pari(N)) > f(pari′(N)).

Let us analyze the nodes in the context of the complete-hypertree GCCH . Let M ∈ VCCH be
the node satisfying CC(pari(N)) ⊆ CC(M) at gray-level f(pari(N)) and neighborhood index i′,
that is to say, M = (CC(M), f(pari(N)), i′). Using Prop. 2.10, we know that this node exists and
is unique and, in particular, this implies CC(N) ⊂ CC(pari(N)) ⊆ CC(M).

Since e = (N, pari′(N)) ∈ ECH , then e is a compact arc of an arc of the complete-hypertree,
implying that there exists a node N ′ ∈ VCCH with adj(N ′) = i′ and CC(N ′) = CC(N). Addi-
tionally, by construction, CC(pari′(N)) is the parent of CC(N) in the component-tree CT (f,Ai′).

4.2 COMPACT COMPONENT-HYPERTREES 45

Hence, CC(N), CC(M) and CC(pari′(N)) are all nodes of CT (f,Ai′), and both CC(M) and
CC(pari′(N)) are ancestors of CC(N) in CT (f,Ai′).

On the one hand, since CC(pari′(N)) is the parent of CC(N), there is no Ai′-CC included
between CC(N) and CC(pari′(N)), and the only possibility left is that CC(pari′(N)) ⊆ CC(M).
On the other hand, since component-tree are decreasing, then f(M) = f(pari(N)) > f(pari′(N))
implies that CC(M) ⊆ CC(pari′(N)). The condition CC(M) = CC(pari′(N)) can not be true
because pari′(N) is a compact node, but M represents the same CC and has higher gray-level.

Finally we conclude that assuming f(pari(N)) > f(pari′(N)) leads both to CC(pari′(N)) ⊂
CC(M) and CC(pari′(N)) ⊃ CC(M), which is a contradiction. Hence, f(pari(N)) > f(pari′(N))
can not happen and the proposition is proved.

The analogous of Prop. 4.5 is shown in Prop. 4.6.

Proposition 4.6. For any 0 ≤ λ < λ′ < K such that compλ(N) and compλ′(N) exist,
adj(compλ(N)) ≤ adj(compλ′(N)).

Using these propositions, one can use the following strategy to recover repeated nodes not
allocated by the compact-hypertree: given a node N , because of Prop. 4.6, we know compλ(N) is
increasing, in other words, the highest neighborhood index returned by adj(compλ(N)) is obtained
from the highest possible value of λ. By definition, N is a compact node and is already allocated
at the highest gray-level where CC(N) exists, so the highest possible value for λ is f(N).

Also by definition, we know that N also has the smallest possible neighborhood index where
CC(N) exists. Then, we know that nodes representing CC(N) at level f(N) on the complete
hypertree exist for all adj(N) ≤ i < adj(compf(N)(N)). From that, we have all neighborhood
indices i where CC(N) exist, and we know that removed nodes existed, for each of these values of
i, in the interval]f(pari(N)), f(N)]. These ideas can be observed in Figs. 4.5 and 4.7 for f(N) = 3
and adj(N) = 1.

To implement the ideas discussed in this section, it is important to know how to obtain pari(N)
from compact-hypertrees. Let par(GCH , N) (or simply par(N) when the hypertree used is clear
from context) be the set of all parent nodes of N in the compact-hypertree GCH = (VCH , ECH).
This means that, for any N ′ ∈ par(N), (N,N ′) ∈ ECH is a parent arc. For convenience, suppose
that the elements of par(GCH , N) are organized in an increasing order, based on their neighborhood
indices.

In the simplest case, if we want to obtain pari(N) and there is a node N ′ ∈ par(GCH , N) with
adj(N ′) = i, then, pari(N) = N ′. However, we can not guarantee that this property is always true
because we are storing compact arcs, and if the parent of N in CT (f,Ai) is originally a non-compact
arc, then its compact arc will have neighborhood index lower than i.

To decide which of the parent nodes with neighborhood index lower than i is the correct parent,
Prop 4.7 can be applied.

Proposition 4.7. Let f be a gray-level image, A a sequence of increasing symmetric neighborhoods,
GCCH = (VCCH , ECCH) be the complete-hypertree of f and A and GCH = (VCH , ECH) be its respec-
tive compact-hypertree. Additionally, let N ∈ VCH , 1 ≤ i ≤ n and M,M ′ ∈ par(GCH , N) be two
compact nodes satisfying 1 ≤ adj(M) < adj(M ′) ≤ i. Then, pari(N) 6= M .

Proof. First, we note that since M,M ′ ∈ par(GCH , N) and N,M and M ′ are compact nodes imply
that CC(N) ⊂ CC(M) and CC(N) ⊂ CC(M ′).

Then, From Prop. 4.5, we know that f(M) ≤ f(M ′). If f(M) = f(M ′), then CC(M) and
CC(M ′) are nodes of the (sideways) component-tree of Xf(M)(f) using A. In particular, since they
intersect at CC(N) and adj(M) < adj(M ′), then CC(M ′) is an ancestor of CC(M). We remind
that CC(M) can only exist in neighborhood indices i′ satisfying adj(M) ≤ i′ < adj(compf(M)(M)),
but since CC(M ′) is an ancestor of CC(M), then adj(compf(M)(M)) ≤ adj(M ′) ≤ i. Thus, CC(M)
is a connected-component only in the neighborhood indices in the interval [adj(M), i[and can not
represent a Ai-CC, that is, pari(N) 6= M , as desired.

46 PROPOSED METHOD 4.2

If f(M) < f(M ′), for CC(M) to be a adj(M ′)-CC, there must exist a node N ′ in the complete-
hypertree satisfying CC(N ′) = CC(M) and adj(N ′) = adj(M ′). In particular, sinceM is a compact
node, the highest gray-level where CC(M) can exist is f(M), implying that f(N ′) ≤ f(M).

Putting everything together, CC(M ′) and CC(N ′) are nodes of the component-tree of f us-
ing Aadj(M ′) satisfying CC(N) ⊂ CC(M ′) and CC(N) ⊂ CC(M) = CC(N ′). Since f(N ′) ≤
f(M) < f(M ′), then CC(N ′) must be an ancestor of CC(M ′), or putting it another way, CC(N) ⊂
CC(M ′) ⊂ CC(N ′). But in this case, there is no direct arc from CC(N) to CC(N ′) and
(CC(N), CC(N ′)) is not a parent arc at neighborhood index adj(M), implying pari(N) 6= (M).

From Prop. 4.7, we can prove that:

Proposition 4.8. Let f be a gray-level image, A a sequence of increasing symmetric neighborhoods,
GCCH = (VCCH , ECCH) be the complete-hypertree of f and A and GCH = (VCH , ECH) be its respec-
tive compact-hypertree. Suppose N ∈ VCH , 1 ≤ i ≤ n is a neighborhood index where pari(N) exists
and let M be the node of par(GCH , N) with the highest neighborhood index that satisfies adj(M) ≤ i.
Then, pari(N) = M .

Proof. On the one hand, to build the compact-hypertree, all parent arcs of the complete-hypertree
were mapped into compact (parent) arcs. Hence, the set par(GCH , N) contains all parents of N ,
implying pari(N) ∈ par(GCH , N).

On the other hand, a consequence of Prop. 4.7 is that, among all nodes M ′ of par(GCH , N)
satisfying adj(M ′) ≤ i, only the node M in par(N) with the highest neighborhood index can be
pari(N). Additionally, any node M ′ of par(GCH , N) satisfying adj(M ′) > i can not be pari(N)
because, for any of these nodes, CC(M ′) is not a Ai-CC.

Hence, among all nodes of par(GCH , N), M is the only choice that does not lead to a contra-
diction and, therefore, M is the correct node.

Proposition 4.8 implies that, if we want pari(N) but there is no node N ′ ∈ par(GCH , N) satis-
fying adj(N ′) = i, we need to look for the node satisfying adj(N ′) ≤ i with highest neighborhood
index. Using a similar approach, one can prove that compλ(N) is the node N ′ ∈ comp(N) with the
lowest gray-level f(N ′) ≥ λ.

Thus, with the ideas presented in this section, it is possible to recover all non-compact nodes of
complete-hypertrees. From these nodes N , we can recover all non-compact arcs using pari(N) and
compλ(N).

Although non-compact nodes and arcs can be recovered, compact component-hypertrees already
contain all inclusion relations of the connected components of their respective complete component-
hypertrees. This property holds thanks to Prop. 4.9:

Proposition 4.9. Let GCCH = (VCCH , ECCH) be a complete component-hypertree and GCH =
(VCH , ECH) be its respective compact-hypertree. Then, given two nodes N,N ′ ∈ VCCH such that
there is a path from N to N ′ in GCCH , there is also a path from cn(N) to cn(N ′) in GCH .

Proof. For this proposition, we only give an idea of the proof by showing how to transform a path
in the complete hypertree to a path in the compact representation.

Let π(GCCH , N,N ′) = (N = N1, . . . , NLP = N ′) be a path linking N to N ′ in GCCH . Then, any
pair e` = (N`, N`+1) is an arc of the complete hypertree. To obtain a path from cn(N) to cn(N ′)
in GCH , it suffices to concatenate the arcs ce(`) for all 1 ≤ ` < LP with N` 6= N`+1.

In particular, this property holds even for subgraphs of GCH , as shown by Prop. 4.10.

Proposition 4.10. Let GCCH = (VCCH , ECCH) be a complete component-hypertree and GCH =
(VCH , ECH) be its respective compact-hypertree. Suppose N,N ′ ∈ VCCH and that there is a path
from N to N ′ in GCCH . Then, there is a path from cn(N) to cn(N ′) in G([0→K−1],[1→adj(N ′)])

CH .

4.2 COMPACT COMPONENT-HYPERTREES 47

Proof. By construction, if there is a path π from N to N ′ in GCCH , then f(N) ≥ f(N ′) and
adj(N) ≤ adj(N ′). Additionally, any node M ∈ π must satisfy f(N) ≥ f(M) ≥ f(N ′) and
adj(N) ≤ adj(M) ≤ adj(N ′), since any arc in the complete hypertree either decreases the gray-
level or increases the neighborhood index.

Hence, if we convert this path π to a path π′ in the compact-hypertree, for all nodes M ′ ∈ π′,
there exists a node M ∈ π such that M ′ = cn(M). Since M ′ is the compact node of M , then
f(M ′) ≥ f(M) and adj(M ′) ≤ adj(M), that is, f(M) ≤ f(M ′) < K and 1 ≤ adj(M ′) ≤ adj(M).

In particular, the node of π with the lowest gray-level is N ′, and the node of π with highest
neighborhood index is also N ′. Therefore, all nodes M ′ ∈ π′ satisfy 0 ≤ f(N ′) ≤ f(M ′) < K and
1 ≤ adj(M ′) ≤ adj(N ′), and all of these nodes M ′ are in G([0→K−1],[1→adj(N ′)])

CH .

This property is particularly useful if we want to build an algorithm to build compact component-
hypertrees. We recall from Sect. 2.7 that the notation G([0→K−1],[1→i])

CH refers to a subgraph of
the component-hypertree GCH restricted to the nodes with gray-levels in the interval [0,K − 1]
and neighborhood indices in the interval [1, i]. What we want is an incremental algorithm that
receives a gray-level image f and a sequence of neighborhoods A = (A1, . . . ,An), and constructs
the compact-hypertree GCH of f and A as follows: first, we construct G([0→K−1],[1→1])

CH , which is the
max-tree of f and A1. Then, the algorithm iterates on the neighborhood indices 2 ≤ i ≤ n, where
it updates G([0→K−1],[1→i−1])

CH to G([0→K−1],[1→i])
CH . Finally, at the end of step n, we will have built

G([0→K−1],[1→n])
CH , which is precisely the compact-hypertree of f and A.

4.2.4 Arc Redundancy

Although compact-hypertrees present an efficient way of storing CCs without repetition, it turns
out that there are still redundant information regarding inclusion relation of CCs in the arcs, that
is, even if some of the arcs were removed, all inclusion relations between CCs of the hypertree
would still be preserved. In the field of graphs, this operation of removing unneeded arcs is known
as transitive reduction.

Some examples are provided in Fig. 4.8, where the dotted red, blue and black arrows represent
redundant arcs. They are redundant because there are other longer paths that give the same in-
clusion relation or, in other words, if they were removed from the compact-hypertree, no inclusion
relations between nodes would be lost.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 4.8: Redundant arcs in compact-hypertrees. Dotted arcs show redundant arcs, while paths with the
same color of these arcs show longer paths that gives the same information about inclusion relation. In terms
of types of arcs, red arrows are arcs of type 1, blue arrows are arcs of type 2 and black arrows are arcs of
type 3.

48 PROPOSED METHOD 4.2

Upon inspection, it is possible to find 3 types of redundant arcs in compact-hypertrees. These
types are listed below:

• Type 1 (red dotted arc in Fig. 4.8): Redundant arcs e = (N,N ′) where all paths from N to
N ′ passes through at least one node M with adj(M) > adj(N) and adj(M) > adj(N ′).

• Type 2 (blue dotted arc in Fig. 4.8): Redundant composite arcs e = (N,N ′) that are not of
type 1, that is, there exists at least one path from N to N ′ in the compact-hypertree in which,
for all nodes M in this path, adj(M) ≤ max{adj(N), adj(N ′)}).

• Type 3 (black dotted arc in Fig. 4.8): Redundant parent arcs e = (N,N ′) that are not of type
1, that is, there exists at least one path from N to N ′ in the compact-hypertree in which, for
all nodes M in this path, adj(M) ≤ max{adj(N), adj(N ′)}).

Given a compact-hypertree GCH = (VCH , ECH), we denote by E1
CH (resp. 2 and 3) the set of

redundant arcs of GCH of type 1 (resp. 2 and 3).
An implication of these definitions is presented in Prop. 4.11:

Proposition 4.11. Let GCH = (VCH , ECH) be a compact-hypertree and e ∈ ECH be an arc. Then,
if e ∈ E2

CH or e ∈ E3
CH , there is a path π(GCH , N,N ′) = (N = N1, . . . , NLP = N ′) from N to N ′

where adj(N`) ≤ max{adj(N), adj(N ′)}, for all 1 ≤ ` ≤ LP .

In other words, if an arc e = (N,N ′) is of type 2 or 3, the longer path linking N to N ′ is
restricted to G([0→K−1],[1→i′])

CH , where i′ = max{adj(N), adj(N ′)}. Hence, if we follow the strategy of
developing an algorithm for component-hypertree construction that iterates on the neighborhood
indices 1 ≤ i ≤ n and allocates only compact nodes N satisfying adj(N) ≤ i and arcs that link
allocated nodes, then at the end of step i′ it is already possible to know if the arc e = (N,N ′) is a
redundant arc of type 2 or 3. For arcs of type 1, any longer path linking N to N ′ passes through
an arc M where adj(M) > i′, and it is not possible to know, at the end of step i′, that e is a
redundant arc. For this reason, in the proposed algorithm for component-hypertree construction
that is presented later in this chapter, we opted to keep redundant arcs of type 1 in the component-
hypertree, since removing them would require a post-processing step at the end of every step i, to
check if arcs allocated in previous steps became redundant.

4.2.5 Properties of Compact Arcs

To better understand which arcs are redundant, we now analyze some properties of compact
arcs, In particular, arcs of compact-hypertree can be divided into 4 types of arcs:

1. Vertical arcs: parent arcs e = (N,N ′) where adj(N) = adj(N ′).

2. Backward arcs: parent arcs e = (N,N ′) where adj(N) > adj(N ′).

3. Horizontal arcs: composite arcs e = (N,N ′) where f(N) = f(N ′).

4. Diagonal arcs: arcs e = (N,N ′) where adj(N) < adj(N ′) and f(N) > f(N ′).

An illustration showing the types of arcs of compact-hypertrees is provided in Fig. 4.9

4.2 COMPACT COMPONENT-HYPERTREES 49

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 4.9: Four types of arcs in compact-hypertrees: vertical arcs (in black), backward arcs (in brown),
horizontal arcs (in dark blue) and diagonal arcs (diagonal parent arcs are displayed in gray, while diagonal
composite arcs are drawn in light blue).

There are no other types of arcs in compact-hypertrees. To prove that, we show below that the
existence of any other type of arc would lead to a contradiction.

Proposition 4.12. Let GCH = (VCH , ECH) be a compact-hypertree. Then, there is no arc e =
(N,N ′) ∈ ECH with f(N) = f(N ′) and adj(N) = adj(N ′).

Proof. Suppose by contradiction that e exists. Then, CC(N) ⊂ CC(N ′), f(N) = f(N ′) and
adj(N) = adj(N ′). However, this implies that both CC(N) and CC(N ′) are Aadj(N)-CCs of
Xf(N)(f) with CC(N) ⊂ CC(N ′). Since the elements of any set of CCs of any level sets are
disjoint, this is not possible (in fact, this implies that CC(N) is a not even a valid connected com-
ponent, since it does not include elements in CC(N ′) \CC(N) and, therefore, is not a maximal set
of connected pixels). Hence, this arc e can not exist.

Proposition 4.13. Let GCH = (VCH , ECH) be a compact-hypertree. Then, there is no arc e =
(N,N ′) ∈ ECH with f(N) = f(N ′) and adj(N) > adj(N ′).

Proof. Suppose by contradiction that the arc e exists. On the one hand, this implies that CC(N) ⊂
CC(N ′).

On the other hand, let us consider the inclusion relations between CC(N) and CC(N ′) without
considering the arc e. There are two possibilities for CC(N) and CC(N ′): either CC(N)∩CC(N ′) =
∅ or CC(N) ∩ CC(N ′) 6= ∅. Note that CC(N) ∩ CC(N ′) = ∅ contradicts CC(N) ⊂ CC(N ′)
immediately, and there is nothing more to prove in this case.

If CC(N) ∩ CC(N ′) 6= ∅, then there is a pixel p ∈ CC(N) ∩ CC(N ′). By definition, every
pixel q 6= p in CC(N ′) is Aadj(N ′)-connected to p. However, since adj(N ′) < adj(N) and the
neighborhoods are increasing, this also implies that all of them are also Aadj(N)-connected to p, or
more specifically, CC(N ′) ⊆ CC(N). Note that this also contradicts CC(N) ⊂ CC(N ′).

Hence, in either cases, we have a contradiction because CC(N) ⊂ CC(N ′) can not be satisfied
and, therefore, this arc e can not exist.

Proposition 4.14. Let GCH = (VCH , ECH) be a compact-hypertree. Then, there is no arc e =
(N,N ′) ∈ ECH with f(N) < f(N ′).

Proof. Suppose by contradiction that the arc e exists. On the one hand, this implies that CC(N) ⊂
CC(N ′).

50 PROPOSED METHOD 4.3

On the other hand, by definition, CC(N) is a Aadj(N)-CC of Xf(N)(f) and N is a compact
node. This means that f(N) is the highest gray-level where CC(N) exists or, in other words, there
exists at least one pixel p ∈ CC(N) satisfying f(p) = f(N).

Using the same argument, CC(N ′) must be a Aadj(N ′)-CC of Xf(N ′)(f). By definition, this
implies that any p′ ∈ CC(N ′) satisfies f(p′) ≥ f(N ′). Since f(N) < f(N ′), any pixel p ∈ CC(N)
with f(p) = f(N) is not in CC(N ′), which implies that CC(N) 6⊆ CC(N ′) , which contradicts the
property CC(N) ⊂ CC(N ′).

What led to this contradiction was the assumption that the arc e existed. Hence, there are no
such arcs e in the compact-hypertree.

Propositions 4.12 to 4.14 cover all other possible cases of compact arcs and, therefore, the only
types of compact arcs existing in compact-hypertrees are the ones presented in Fig. 4.9.

With that in mind, let us show some important properties of the arcs that actually exist
in compact-hypertrees. These properties are important in the development of the algorithm for
hypertree-construction.

Proposition 4.15. Let GCH = (VCH , ECH) be a compact-hypertree. Then, any node N ∈ VCH has
at most one vertical arc leaving from N .

Proof. Note that vertical arcs are parent arcs that link two nodes with the same neighborhood
index. Hence, if there were two vertical arcs (N,N ′) and (N,N ′′), that would imply that N has two
different parents at neighborhood index adj(N), which is not possible because that would imply
that N has two different parents in the component-tree using the neighborhood Ai.

Proposition 4.16. Let GCH = (VCH , ECH) be a compact-hypertree. Then, any node N ∈ VCH has
at most one horizontal arc leaving from N .

Proof. The proof is similar to the last proposition and will be omitted.

Proposition 4.17. Let GCH be a compact-hypertree. Then, in G([0→K−1],[1→i])
CH = (V 1→i

CH , E1→i
CH), any

node N that is not a root and satisfies adj(N) = i has exactly one parent node and no composite
nodes.

Proof. It is clear that N has no composite nodes in G([0→K−1],[1→i])
CH because for all composite arcs

e = (N,N ′), adj(N ′) > adj(N) = i, which implies that N ′ 6∈ V 1→i
CH .

In the case of the parent node, we first note that, if N is a compact node and is not a root, then
there is always a node N ′ with adj(N ′) = adj(N) such that CC(N) ⊂ CC(N ′) (in the worst case
scenario, N ′ is a root itself). Hence, N has at least one parent.

Suppose that N has more than one parent. Since N is a compact node, then N does not
belong to G([0→K−1],[1→i−1])

CH or, in other words, there are no nodes M in the complete hypertree
G([0→K−1],[1→i−1])
CCH where CC(M) = CC(N). Hence, any (compact) parent arc e ∈ E leaving from
N in the compact-hypertree must be obtained from an parent arc from GiCCT = G([0→K−1],[i→i])

CCH ,
which is the complete component-tree using neighborhood Ai.

If there were two or more parent arcs leaving from N , this means that there are multiple paths
linking N to the root node in GiCCT , that is, GiCCT would not be a (component) tree, which is a
contradiction. Therefore, N has exactly one parent node.

4.3 Minimal-Hypertrees

Ideally, in an implementation focused on saving the most possible amount of memory, we would
like to remove all types of redundant arcs. However, this optimization would not be as useful, neither
in time consumption nor in memory allocation, if we first allocate the arcs and then remove them
later. The problem with this approach is that the removal step would take time and we would still
use extra memory to allocate redundant arcs before removing them.

4.4 WHICH COMPACT ARCS ARE MINIMAL ARCS 51

To have an efficient algorithm, we need an implementation that can efficiently allocate arcs
only if they are not redundant. In practice, due to the way the hypertree construction algorithm
is designed, it is not possible to predict all types of redundant arcs. This happens because the
proposed algorithm is designed to iterate on the neighborhood indices and never remove nodes or
arcs. We recall that, for every redundant arc there is a longer path that gives the same information
regarding the inclusion relation. In particular, if e = (N,N ′) is a redundant arc of type 1, any longer
path linking N to N ′ will pass through a node M with adj(M) > max{adj(N), adj(N ′)}. In other
words, we can only know that e is a redundant arc at the step i = adj(M), but the arc e needs
to be allocated at step i′ = max{adj(N), adj(N ′)} < adj(M), otherwise, the partially constructed
hypertree allocated at step i′ would have this inclusion relation missing. For this reason, redundant
arcs of type 1 are allocated by our algorithm, but since redundant arcs of types 2 and 3 do not have
this problem, it is possible to not allocate redundant arcs of types 2 and 3. Thus, we say that an
arc e ∈ ECH is a minimal arc if and only if e 6∈ E2

CH ∪ E3
CH .

The graph GMH = (VCH , EMH), where EMH = ECH \
(
E2
CH ∪ E3

CH

)
is called the minimal-

hypertree of GCH . An example is provided in Fig. 4.10.

0

1 3 4 0 3 2 2 0 4

1 2 3 4 5 6 7 8 3 4 5 6 7 820 1 3 4 5 6 7 820 1

Figure 4.10: The minimal-hypertree of f and A.

It is plain that a minimal-hypertree keeps all inclusion relations between nodes of the compact-
hypertree, since only arcs that give redundant information about inclusion relation are removed.
In turn, this implies the inclusion relations of the CCs of complete hypertrees are also preserved.
Hence, minimal-hypertrees are ??

To efficiently compute these minimal representations, we need a way of characterizing minimal
and non-minimal arcs. According to the properties that non-minimal arcs satisfy, it is possible to
detect them and create an efficient algorithm for minimal-hypertree construction that does not
allocate them.

4.4 Which Compact Arcs are Minimal Arcs

Using the properties from the previous sections, we can categorize each type of compact arc as
a minimal or a non-minimal arc.

4.4.1 Vertical Arcs

All vertical arcs of compact-hypertrees are minimal arcs. We prove this property below:

Proposition 4.18. Let GCH = (VCH , ECH) and e = (N,N ′) ∈ ECH be a vertical arc (that is to
say, adj(N) = adj(N ′)). Then, e is a minimal arc.

52 PROPOSED METHOD 4.4

Proof. Suppose by contradiction that e is not minimal. Then, using Prop. 4.11, there should be a
path π = π(GCH , N,N ′) = (N = N1, . . . , NLP = N ′) from N to N ′ where π 6= e and, for all nodes
N` of this path π, adj(N`) ≤ max{adj(N), adj(N ′)} = adj(N) = adj(N ′).

From this property, we know that (N1, N2), the first arc in the path π, can not be a composite
arc, since that would imply adj(N2) > adj(N1) = adj(N). For the same reason, it can not be a
diagonal parent arc either.

Hence, the first arc (N1, N2) of the path must be a parent node where adj(N2) ≤ adj(N1).
However, thanks to Prop. 4.17, N has only one parent node with neighborhood index less than or
equal to adj(N) which, in this case, can only be the arc e.

Hence, every path that connects N to N ′ must start with the arc e. Since GCH is a DAG, there
is no possible way to continue this path and return back to N ′. Hence, we conclude that π = e,
which is a contradiction. Therefore, e must be a minimal arc.

4.4.2 Backward Arcs

All backwards arcs of compact-hypertrees are minimal arcs. More formally:

Proposition 4.19. Let GCH = (VCH , ECH) and e = (N,N ′) ∈ ECH be a backward arc (that is to
say, adj(N) > adj(N ′) and f(N) > f(N ′)). Then, e is a minimal arc.

Proof. Analogous to the previous case.

4.4.3 Horizontal Arcs

All horizontal arcs of hypertrees are minimal arcs. We prove this property below.

Proposition 4.20. Let GCH = (VCH , ECH) and e = (N,N ′) ∈ ECH be a horizontal arc (that is to
say, f(N) = f(N ′)). Then, e is a minimal arc.

Proof. Suppose that e is not minimal. Then, using Prop. 4.11, there should be a path π =
π(GCH , N,N ′) = (N = N1, . . . , NLP = N ′) from N to N ′ where π 6= e and, for all nodes N`

of this path π, adj(N`) ≤ max{adj(N), adj(N ′)} = adj(N ′).
From this property, we know that (N1, N2), the first arc in the path π, can not be a parent arc,

since that would imply f(N2) < f(N1) = f(N) = f(N ′), and there is path from N2 to N ′ because
there are no arcs in the compact-hypertree that increase the gray-level (Prop. 4.14). For the same
reason, it can not be a diagonal arc either.

Hence, the first arc (N1, N2) of the path must be a composite arc where f(N1) = f(N2).
However, thanks to Prop. 4.16, N has at most one horizontal arc which, in this case, can only be
the arc e.

Hence, every path that connects N to N ′ must start with the arc e. From this point, since GCH
is a DAG, there is no path from N ′ back to N , and we conclude that π = e, which is a contradiction.
Therefore, e must be a minimal arc.

4.4.4 Diagonal Arcs

In this case, whether or not a diagonal arc is a minimal arc depends on some additional prop-
erties.

First, we investigate when a parent diagonal arc exists in compact-hypertrees.

Proposition 4.21. Let GCCH = (VCCH , ECCH) be a complete hypertree and GCH = (VCH , ECH) be
its compact representation. Suppose e = (N,N ′) ∈ ECH is a parent diagonal arc. Then, there is a
parent arc e′ = (M,N ′) ∈ ECCH where cn(M) = N .

Proof. Let π = π(GCCH , N,N ′) = (N = N1, . . . , NLP = N ′) be a path fromN toN ′ in the complete
hypertree that ends with a parent arc, or more specifically, eLP−1 = (NLP−1, NLP) ∈ ECCH is a
parent arc. If CC(NLP−1) = CC(N), then cn(NLP−1) = N , and e′ = eLP−1 is the desired arc.

4.4 WHICH COMPACT ARCS ARE MINIMAL ARCS 53

Suppose that CC(NLP−1) 6= CC(N). Then, since paths in the complete hypertrees follow an
inclusion relation, we have that CC(N) ⊆ CC(NLP−1) ⊆ CC(N ′), but we assumed CC(NLP−1) 6=
CC(N) and CC(NLP−1) 6= CC(N ′) because assuming CC(NLP−1) = CC(N ′) would contradict
the fact that N ′ is a compact node. Hence, CC(N) ⊂ CC(NLP−1) ⊂ CC(N ′). An implication of
this result is that CC(N) is not a Ai-CC of Xλ(f) for any i ≥ adj(NLP−1) = adj(N ′) and any
0 ≤ λ ≤ f(NLP−1) = f(N ′) + 1 (if it was, then we would have CC(N) ⊂ CC(NLP−1) ⊆ CC(N),
which is impossible).

On the other hand, the existence of e implies that there should exist a parent arc e′′ = (M,M ′) ∈
ECCH such that ce(e′′) = e which, in turn, implies cn(M ′) = N ′. Since N ′ is a compact node, then
f(M ′) ≤ f(N ′) and adj(M ′) ≥ adj(N ′) and, since e′′ is a parent arc, then f(M) ≤ f(N ′) + 1 and
adj(M) = adj(M ′) ≥ adj(N ′). However, as explained above, CC(N) is not a valid CC under these
parameters, so cn(M) 6= N . Hence, there is no parent arc e′′ ∈ ECCH that satisfies ce(e′′) = e.

In summary, assuming CC(NLP−1) 6= CC(N) implies that e 6∈ ECH , which is a contradiction.
Therefore, we conclude that CC(NLP−1) = CC(N), and e′ = (NLP−1, N

′) = (M,N ′).

Using a similar proof, one can show the analogous property from diagonal composite arcs:

Proposition 4.22. Let GCCH = (VCCH , ECCH) be a complete hypertree and GCH = (VCH , ECH) be
its compact representation. Suppose e = (N,N ′) ∈ ECH is a composite diagonal arc. Then, there is
a composite arc e = (M,N ′) ∈ ECCH where cn(M) = N .

An example showing a configuration of the complete-hypertree that generates a diagonal com-
posite arc is given in Fig. 4.11.

Figure 4.11: Occurence of diagonal composite arcs. On the left, we show the configuration of a complete-
hypertree that generates a diagonal composite arc, where nodes with the same color represent the same CC.
The respective compact-hypertree is shown on the right.

Note that these two propositions are not exclusive, so it is possible to have a diagonal arc in
compact-hypertrees that is both a parent and a composite arc. When this happens, we call it a
double arc. An example is given in Fig. 4.12.

Figure 4.12: Occurence of diagonal double arcs. On the left, we show the configuration of a complete-
hypertree that generates a diagonal double arc, where nodes with the same color represent the same CC. The
respective compact-hypertree is shown on the right.

A direct consequence of the definition of double arcs is stated in the proposition below:

Proposition 4.23. Let GCH = (VCH , ECH) be a compact-hypertree and e = (N,N ′) ∈ ECH a double
arc. Then, for any other arc e′ = (N,M) ∈ ECH , f(M) < f(N ′) or adj(M) > adj(N ′).

Double arcs are very important because of the following property:

54 PROPOSED METHOD 4.5

Proposition 4.24. Let GCH = (VCH , ECH) be a compact-hypertree and e = (N,N ′) ∈ ECH a
diagonal arc. Then, e is minimal if and only if e is a double arc.

Proof. There are two parts to this proof:

1. If e is not a double arc, then e is not minimal.

For this proof, let GCCH = (VCCH , ECCH) be the complete hypertree of GCH and suppose e is
a diagonal parent arc but not a diagonal composite arc. Then, there is no composite arc e′ =
(M,N ′) ∈ ECCH such that ce(e′) = e, or, in other words, for any path π = π(GCCH , N,N ′) =
(N = M1, . . . ,MLQ = N ′) from N to N ′ in the complete hypertree that ends with a composite
arc, CC(MLQ−1) 6= CC(N), since CC(MLQ−1) = CC(N) would imply e′′ = (MLQ−1,MLQ =
N ′) is a composite arc of the complete-hypertree where ce(e′′) = e. Additionally, since N ′ is
a compact node, we also know that CC(MLQ−1) 6= CC(N ′).

The fact that the elements N,MLQ−1, N
′ are in a path implies that CC(N) ⊂ CC(MLQ−1) ⊂

CC(N ′) or, in other words, there is a path from N to MLQ−1 and from MLQ−1 to N ′ in
the complete hypertree. As explained before, inclusion relations in compact-hypertree are
preserved, so this implies that there is also a path from N to cn(MLQ−1) and a path from
cn(MLQ−1) to N ′ in GCH and, therefore, the combination of these two paths makes e a
non-minimal arc.

The arguments when e is only a diagonal composite arc are similar and will be omitted.

2. If e is a double arc, then e is minimal.

Thanks to Prop. 4.23, any path starting from N that does not use the arc e either goes
to a node M with adj(M) > adj(N ′) or f(M) < f(N ′). In the first case, a node with
adj(M) > max{adj(N), adj(N ′)} was reached and, even if there is a path from M to N ′ now,
this only implies that e is a redundant node of type 1, but that still means that e is a minimal
arc.

In the second case, if f(M) < f(N ′), then there is no arc that goes to a node with higher
gray-level (Prop. 4.14), so there is no possible path from M to N ′, and e is also a minimal
arc in this case.

Hence, we conclude that e is minimal.

4.5 Algorithm for Minimal Hypertree Construction

Now that the definitions and properties of minimal arcs are presented, we focus on developing
an efficient algorithm for minimal-hypertree construction.

As explained before, the subgraph G([0→K−1],[1→i])
MH contains all inclusion relations of CCs existing

in G([0→K−1],[1→i])
CCH , for any 1 ≤ i ≤ n. Thus, given a gray-level image f and a sequence of increasing

symmetric neighborhoods A = (A1, . . . ,An), a way of building the minimal-hypertree consists of
updating, for each 1 ≤ i ≤ n, the subgraph G([0→K−1],[1→i−1])

MH to G([0→K−1],[1→i])
MH by allocating the

corresponding new compact nodes and minimal arcs. Then, at the end of step n, G[0→K−1],[1→n]
MH =

GMH has all inclusion relations of GCCH , as desired.
Fast ways of computing parenti were already presented at Chap. 3. Hence, we now focus on

allocating the nodes and arcs of the minimal-hypertree. First, we focus on efficient allocation of
compact nodes.

4.5.1 Algorithm for Compact Node Allocation

To allocate compact nodes efficiently, we need a fast algorithm that can detect “new” nodes, or
more specifically, for every step 1 ≤ i ≤ n, we want to find nodes that represent Ai-CC that are
not Ai−1-CC.

4.5 ALGORITHM FOR MINIMAL HYPERTREE CONSTRUCTION 55

Allocating nodes at step i = 1 is easy since, at the end of the step, the minimal-hypertree is
simply a component-tree, and all nodes are “new” nodes, since there were no nodes allocated before
that. Any algorithm for component-tree allocation can be used here and, in essence, we simply
allocate one node for each canonical element of parent = parent1.

For steps i > 1, allocating a new node for each canonical element of parent = parenti is not a good
strategy, because there could exist a node with neighborhood index i − 1 that already represents
the same CC. Hence, we need an efficient way of detecting repeated and new nodes in the parent
array. In this text, the proposed approach is to change the parentUpdate procedure slightly to
mark occurrences of new nodes. For reference, the parentUpdate procedure is presented again
below as Alg. 15.

Algorithm 15 The parentUpdate procedure from Chap. 3.
1: procedure parentUpdate(f , parent, cur, other)
2: rcur ← findRep(f, parent, cur, f(other)); . f(other) ≤ f(cur)
3: rother ← findRep(f, parent, cur, f(other));
4: if rcur 6= rother then . If cur and other are disconnected
5: par ← parent[rcur]; . Previous parent of rcur
6: parent[rcur]← rother; . Corrects the interval [f(par) + 1, f(rother)]
7: parentUpdate(f , parent, rother, par); . Recursion to correct gray-levels λ ≤ f(par).

The first modification that we need to do is to change parentUpdate to visit all canonical
elements that can possibly represent new nodes. This first modification is shown in Alg. 16.

Algorithm 16 Connect procedure, a modification of parentUpdate that visits all canonical
elements that can represent new nodes.
1: procedure connect(f , parent, cur, other) . Assumes f(cur) ≥ f(other)
2: rcur ← findRep(f, parent, cur, f(cur));
3: rother ← findRep(f, parent, other, f(other));
4: if rcur 6= rother then
5: par ← parent[rcur];
6: if par 6= rother then . If parR = otherR, curR and otherR are connected
7: if f(par) ≥ f(rother) then . Assumes f(⊥) = −1
8: connect(f , parent, par, rother);
9: else

10: parent[rcur]← rother;
11: connect(f , parent, rother, par); . Skips one recursive call

The main difference of Alg. 16 compared to parentUpdate is that this version sets rcurk
as the representative of curk at level f(curk) instead of f(otherk). In this sense, the rcurk that
parentUpdate returns is found by using multiple calls of connect at Line 8: while we do not
have the correct element, we make recursive calls of connect setting curk+1 = park, until we have
f(parent[rcurk]) < f(otherr), which is the element returned by parentUpdate. At this point, the
algorithm behaves exactly like Alg. 15, and it updates the parenthood relationship. An example is
given in Fig. 4.13.

56 PROPOSED METHOD 4.5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

6

1

3 7

0

4

2 8

5

Figure 4.13: Comparison between the parentUpdate procedure and the connect procedure.

Suppose that Alg. 16 receives an array (parenti)j−1 and updates it to an array (parenti)j . Then,
compared to parentUpdate, we have the additional property that we visit all canonical elements
in the paths π((parenti)j−1, pj , c) and π((parenti)j−1, qj , c), with the exception of c, the first common
ancestor of pj and qj . Note that this does not happen in Alg. 13, where we skip directly to the
correct representative.

In other words, for any canonical element r in these paths, there is always a step k where
rcurk = r. For component-tree computation purposes, this property is not needed and may slow
down the algorithm. However, it can be useful for finding all the Ajalg-CCs that were not A

j−1
alg -CCs.

We recall from Prop. 2.7 that all new CCs are merges of two disjoint CCs, one containing pj ,
and the other containing qj . From the properties of the algorithms, we know that the new CCs are
restricted to gray-levels f(qj) ≤ λ < f(c), where f(pj) ≥ f(qj) and c is the first common ancestor
of pj and qj . Using these properties, we obtain Prop. 4.25.

Proposition 4.25. Let (parenti)j−1 and (parenti)j be two arrays where (parenti)j is obtained by
updating (parenti)j−1 calling connect for the pair {pj , qj} ∈ Ai. Additionally, assume that pj and
qj are not comparable in (parenti)j−1 and let c be the first common ancestor of pj and qj. Then, all
nodes of (parenti)j that represent CCs that did not exist in (parenti)j−1 are canonical elements r of
(parenti)

j satisfying f(qj) ≤ f(r) < f(c) and p, q ∈ rec((parenti)j , r).

4.5 ALGORITHM FOR MINIMAL HYPERTREE CONSTRUCTION 57

In fact, it can be proved that all of these elements represent new CCs.

Proposition 4.26. Let (parenti)j−1 and (parenti)j be two arrays where (parenti)j is obtained by
updating (parenti)j−1 calling connect for the pair {pj , qj} ∈ Ai. Additionally, assume that pj and
qj are not comparable in (parenti)j−1 and let c be the first common ancestor of pj and qj. Then,
all canonical elements r of (parenti)j satisfying f(qj) ≤ f(r) < f(c) and pj , qj ∈ rec((parenti)j , r)
represent new nodes.

Proof. In (parenti)j−1, canonical elements that represented nodes containing both pj and qj need
to contain both pj and qj in their subtrees or, in other words, they need to be common ancestors
of pj and qj . Since c is the first common ancestor, all other canonical element r′ of (parenti)j−1

satisfying pj , qj ∈ rec((parenti)j−1, r′) are ancestors of c, which implies that f(r′) ≤ f(c). Thus, for
all canonical elements r of (parenti)j that satisfies f(qj) ≤ f(r) < f(c) and p, q ∈ rec((parenti)j , r)
represents a new CC, since there were no nodes in this range of gray-levels that contained both pj
and qj in (parenti)j−1.

To find canonical elements of (parenti)j that satisfies the conditions of Prop. 4.26, we can
actually look at the canonical elements of (parenti)j−1 that are visited during a call of the connect
procedure. But before proving that, we need an additional property about the connect procedure:

Proposition 4.27. Let (parenti)j−1 and (parenti)j be two arrays where (parenti)j is obtained by
updating (parenti)j−1 calling connect for the pair {pj , qj} ∈ Ai. If (parenti)j [p] 6= (parenti)j−1[p]
for a certain pixel p, then f((parenti)j [p]) > f((parenti)j−1[p]).

Proof. Suppose (parenti)j [p] 6= (parenti)j−1[p]. Then, the change of parenthood relation can only
happen at Line 10 and, at that point, we have that (parenti)j−1[p] = par and was modified to
(parenti)j [p] = rother. By construction, Line 10 can only be executed when f(par) > f(rother) and,
therefore, f((parenti)j−1[p]) > f((parenti)j [p]).

Now, we can prove that any canonical element of (parenti)j is also canonical in (parenti)j−1:

Proposition 4.28. Let (parenti)j−1 and (parenti)j be two arrays where (parenti)j is obtained by
updating (parenti)j−1 calling connect for the pair {pj , qj}. Then, any canonical element r of
(parenti)j is also a canonical element in (parenti)j−1.

Proof. Let r be a canonical element of (parenti)j , namely, f((parenti)j [r]) < f(r) and suppose by
contradiction that r is not canonical in (parenti)j−1, that is, f((parenti)j−1[r]) = f(r). Consequently,
we have that f((parenti)j−1[r]) > f((parenti)j [r]), implying that (parenti)j−1[r] 6= (parenti)j [r] and
a change of parenthood relation happened.

However, if a change of parenthood occurred, then according to Prop. 4.27, we have
f((parenti)j [r]) > f((parenti)j−1[r]), which is a contradiction. Thus, r is a canonical element in
(parenti)j−1 and the proposition is proved.

Using Prop. 4.28, a possible way of finding all canonical elements that represent new nodes is to
find all canonical elements r of (parenti)j−1 that represented nodes containing either pj or qj that
are still canonical in (parenti)j and satisfy f(c) < f(r) ≤ f(qj).

Hence, the proposed way of allocating compact arcs is to mark all canonical elements visited
during each call of the connect procedure that represent new CCs. If the marked element is still a
representative in parenti, then it represents a new CC and is allocated by our proposed algorithm.

The modified version of connect that marks new nodes is presented in Alg. 17.

58 PROPOSED METHOD 4.5

Algorithm 17 Updated connect that marks new nodes in newNodesList.
1: procedure connect(f , parent, cur, other, changed, newNodesList)
2: rcur ← findRep(f, cur, f(cur), parent);
3: rother ← findRep(f, other, f(other), parent);
4: if rcur 6= rother then
5: par ← findRep(f, parent[rcur], f(parent[rcur]), parent);
6: if changed then
7: newNodesList = newNodesList ∪ {rcur}; . Set of new nodes
8: if par 6= rother then
9: if f(par) ≥ f(rother) then

10: connect(f , parent, par, rother, changed, newNodesList);
11: else
12: parent[rcur]← rother;
13: connect(f , parent, rother, par, True, newNodesList);

Allocation of new nodes based on Alg. 17 is given in Alg. 18. An example is provided in Fig. 4.14.

Algorithm 18 Allocation of new nodes using newNodesList.
1: procedure allocateNodes(f , parent, newNodesList, i)
2: for p ∈ newNodesList do
3: if p =findRep(f , parent, p, f(p)) then
4: Allocate node N = (p, f(p), i);

6 6 6

2 8 2 8 2 8

1 4 5 1 4 5 1 4 5

3 7 3 7 3 7

0 0 0

newNodesList = {4, 6, 0} newNodesList = {4}

Figure 4.14: Marking new nodes using the updated connect procedure from Alg. 17. In this figure, the
complete component-hypertree is shown overlayed with the arrays parenti, to highlight that the elements in
newNodesList represent Ai-CCs (marked in gray) that are not Ai−1-CCs. These marked elements are then
used to allocate new nodes using Alg. 18.

4.5.2 Algorithm for Minimal Arc Allocation

Now that allocation of nodes has been explained, we focus on allocation of minimal arcs. In this
sense, let Gialg = (V i

alg, E ialg) be the graph built by the algorithm up to step i, namely, V i
alg is the

set allocated nodes and E ialg is the set allocated arcs by the algorithm from steps 1 to i. Our goal

is to build Gialg in a way that it matches G([0→K−1],[1→i])
MH , for any 1 ≤ i ≤ n.

From Sec. 4.4, we concluded that the following arcs of compact-hypertrees are minimal arcs:

• Vertical arcs;

4.5 ALGORITHM FOR MINIMAL HYPERTREE CONSTRUCTION 59

• Backward arcs;

• Horizontal arcs;

• Double arcs.

On the other hand, the following arcs were redundant arcs:

• Diagonal parent arcs that are not composite arcs;

• Diagonal composite arcs that are not parent arcs.

The ideas behind the algorithm for minimal arc allocation are explained below. In the following,
any compact node N satisfying adj(N) = i is called a new node, while nodes with adj(N) < i are
called old nodes.

Regarding vertical and backward arcs, we have the following properties:

Proposition 4.29. Let 1 < i ≤ n and suppose that G([0→K−1],[1→i])
MH is given. Then, the new vertical

arcs and backward arcs that did not exist in G([0→K−1],[1→i−1])
MH are all parent arcs of new nodes.

Proposition 4.29 should be easy to prove, since if there existed any vertical or backward arc
that was not a parent arc of a new node, then that arc would link two old nodes, implying that an
inclusion relation was missing in G([0→K−1],[1→i−1])

MH .
As a consequence of Prop. 4.29, a way of making sure that Gialg has all the new vertical and

backward arcs consists of allocating, for each new node N , the arc (N, pari(N)). Following this
approach, it is still not clear if we are allocating more arcs than needed, but we can be sure that
all new vertical and backwards are allocated.

The other types of minimal arcs (horizontal and double arcs) are composite arcs, that is, they
link old nodes to new nodes. In particular, all minimal arcs existing in G[0→K−1],[1→i]

MH are mapped
from arcs of G[0→K−1],[1→i]

CCH , in other words, any new minimal arc e′ = (N,N ′) linking and old
node to a new node necessarily comes from an arc e = (M,M ′) of the complete hypertree satisfying
e′ = ce(e) and, sinceN ′ is a new compact node, we have that adj(N ′) = i, implying that adj(M ′) = i
and, by consequence, adj(M ′) = i− 1.

Hence, to allocate any of these minimal arcs, we need an efficient way of finding these old nodes
that store Ai−1-CCs. For that, we make use of an additional structure lastNodei : Df → V i

alg, that
maps each pixel p ∈ Df to the last allocated node (in other words, the node N satisfying adj(N) ≤ i
with highest neighborhood index) that had p as its representative. In this way, at the end of step
i, all nodes storing Ai-CCs can be obtained by accessing lastNodei[r], where r is any canonical
element of parenti.

As a reminder, in the parent array, composite arcs can be found using the findRep function.
In the complete hypertree, a node N = (C, λ, i − 1) (where C = rec(parenti−1, r) and r is the
representative of N) has a composite arc to the node N ′ = (C′, λ, i) (where C′ = rec(parenti, r′)
and r′ = findRep(f, parenti, r, λ)). From now on, given a node N , its representative is denoted by
rep(N).

In this context, let (N,N ′) be a new horizontal arc with rep(N) = r and rep(N ′) = r′. Then, the
following properties need to be satisfied: adj(N) < i, adj(N ′) = i, f(N) = f(N ′), r is a canonical ele-
ment of parenti−1 and r′ is a canonical element of parenti such that r′ = findRep(f, parenti, r, f(N)).

There are two possibilities here: either r = r′ or r 6= r′. If r = r′, then this arc does not exist in
any parent array, since there are no arcs (r, r) in the arrays. This means that these horizontal arcs
need to be allocated manually. So, in order to guarantee that all of these arcs are added to E ialg, for
all new nodes M ′, we find the respective node M = lastNode[rep(N)] and allocate all arcs (M,M ′)
manually. Because of Prop 4.28, that states that any canonical element of parenti is also a canonical
element of parenti−1, we can be assured that all of these nodes M ′ actually exist.

If r 6= r′, then this implies that f(parenti−1[r]) < f(r) but f(parenti[r]) = f(r), which means
that r is not a canonical element of parenti. This implies that the parent of r changed at step i

60 PROPOSED METHOD 4.5

or, in other words, parenti−1[r] 6= parenti[r]. In this case, to ensure that all of these horizontal arcs
are added, we can add to E ialg all arcs (M,M ′) where rep(M) = r and the parent of r changed in
parenti. Again, we may be adding more arcs than needed, but we can be sure that we included all
horizontal arcs.

Finally, let us analyze the case of double arcs. Let e = (N,N ′) be a new double arc with
r = rep(N) and r′ = rep(N ′). Since f(N) > f(N ′), then r 6= r′.

Now, we remind that e is both a parent and a composite diagonal arc. For a parent arc to be
a diagonal arc, it must link an old node to a new node and, for a composite arc to be a diagonal
arc, we need to have f(parenti−1)[r] < f(parentir) or, in other words, the parent of r changed at
step i. Since we already included all arcs pointing from old nodes to new nodes that had a change
in parenthood relation, then all double arcs are included in E ialg.

4.5.3 Algorithm for Arc Allocation

From the previous section, we showed that all minimal arcs in E ialg \ E
i−1
alg are included in the

following set of arcs:

1. Parent arcs of new nodes;

2. Composite arcs (N,N ′) from old to new nodes where rep(N) = rep(N ′);

3. Parent arcs (N,N ′) where rep(N) = r and parenti−1[r] 6= parenti[r].

Now, we analyze how we can check those conditions using the data structures and algorithms
that were already presented. For that, we will modify the connect procedure to include a second
set parentUpdateList that marks nodes that need to have their parent updated and, later, we will
modify the node allocation step to include the composite arcs that can not be obtained from the
parent array.

These ideas are detailed below:

1. Parent arcs of new nodes: since these nodes are represented by canonical elements in the set
newNodesList of the connect procedure, marking these nodes for parent update is easy, we
just add the same elements to the set parentUpdateList.

2. Case 2 above: for this case, for every node N ′ allocated at step i with r = rep(N), we find the
last allocated node N that had adj(N ′) < i and r = rep(N ′) using lastNodei[r] and manually
allocate the arc (N,N ′).

3. Case 3 above: a change in parenthood relation can only happen in the connect procedure.
In particular, it happens at Line 12 in Alg. 16, so a way of keeping track of nodes that had
their parent changed is to add to the set parentUpdateList the element rcur every time that
line is called in the connect procedure.

A way of efficiently implementing these ideas is to allocate the new nodes, adding the composite
arcs with same representatives as stated in case (2) above. At this point, lastNodei can be updated,
since all new nodes are already allocated, and we can use it to map the representatives to their
respective newly allocated nodes.

Then, all pixels in the set parentUpdateList can now be used to allocate the new remaining
arcs from cases (1) and (3) above. In theory, for all r ∈ parentUpdateList from case (1), the
arcs (lastNodei[r], lastNodei[r′]) can be allocated as parent arcs, where r′ is the representative of
parenti, or more specifically, r′ = findRep(f, parenti, parenti[r], f(parenti[r])). For for all pixels
r ∈ parentUpdateList satisfying case (3) above, the arcs (lastNodei−1[r], lastNodei[r′]) can be allo-
cated as double arcs, where r′ is the representative of parenti[r].

However, we do not need to differentiate, in the set parentUpdateList, which pixels come from
which case. It turns out that, for all pixels r ∈ parentUpdateList from case (3) above, lastNodei−1[r] =

4.5 ALGORITHM FOR MINIMAL HYPERTREE CONSTRUCTION 61

lastNode[r], and there is no need to differentiate lastNodei and lastNodei−1. In both cases, the arc
that needs to be allocated is the arc (N,N ′) = (lastNodei[r], lastNodei[r′]). To differentiate parent
arcs from double arcs, it suffices to check if adj(N) = i (vertical or backward arc) or adj(N) < i
(double arc). Additionally, because there is no need to differentiate lastNodei from lastNodei−1, a
single mapping lastNode, representing lastNodei at step i, can be used to save memory.

Using these ideas, the updated algorithms are shown below as Algs. 19, 20 and 21.

Algorithm 19 Updated connect that marks new nodes in newNodesList and new arcs in
parentUpdateList. To simplify the algorithm, it assumes that these two lists are global variables.
1: procedure connect(f , parent, cur, other, changed)
2: rcur ← findRep(f, cur, f(cur), parent);
3: rother ← findRep(f, other, f(other), parent);
4: if rcur 6= rother then
5: par ← findRep(f, parent[rcur], f(parent[rcur]), parent);
6: if changed then
7: newNodesList = newNodesList ∪ {rcur} . Global variable
8: parentUpdateList = parentUpdateList ∪ {rcur} . Global variable
9: if par 6= rother then

10: if f(par) ≥ f(rother) then
11: connect(f , parent, par, rother, changed);
12: else
13: parent[rcur]← rother;
14: parentUpdateList = parentUpdateList ∪ {rcur} . Global variable
15: connect(f , parent, rother, par, True);

Algorithm 20 Updated allocateNodes. First, it allocates new nodes based on the elements of
newNodesList. Then, for each new node N , it allocates horizontal arcs (N ′, N), where rep(N ′) =
rep(N). Finally, lastNode is updated.
1: procedure allocateNodes(f , parent, newNodesList, i)
2: for p ∈ newNodesList do
3: if p =findRep(f , parent, p, f(p)) then
4: Allocate node N = (p, f(p), i);
5: if lastNode[p] 6= ∅ then . equivalent to i > 1
6: Add composite arc (lastNode[p], N);
7: lastNode[p]← N ;

Algorithm 21 Allocation of minimal arcs based on parentUpdateList.
1: procedure updateNewArcs(f , parent, lastNode, parentUpdateList);
2: for p ∈ updateParentList do
3: N ← lastNode[p], N ′ ← lastNode[parent[p]];
4: if f(N) < f(N ′) then
5: Add parent arc (N,N ′);
6: if adjIndex(N) < adjIndex(N ′) then
7: Add composite arc (N,N ′);

Finally, using these algorithms, we can build the minimal-hypertree using Alg 22.

62 PROPOSED METHOD 4.5

Algorithm 22 Component-hypertree construction template.
1: procedure buildHypertree(f , A = (A1, . . . ,An))
2: parent← makeset(Df);
3: for p ∈ Df do
4: lastNode[p]← ∅;
5: for 1 ≤ i ≤ n do
6: newNodesList = ∅; . Assumes newNodesList is a global variable
7: parentUpdateList = ∅; . Assumes parentUpdateList is a global variable
8: for {p, q} ∈ Ai do
9: if f(p) ≥ f(q) then

10: connect(f , parent, p, p′, False);
11: else
12: connect(f , parent, p′, p, False);
13: allocateNodes(f , parent, newNodesList, i);
14: updateNewArcs(f , parent, lastNode, parentUpdateList);

Examples running these algorithms are presented in Figs. 4.15, 4.16 and 4.17.

6 6 6

2 8 2 8 2 8

1 4 5 1 4 5 1 4 5

3 7 3 7 3 7

0 0 0

newNodesList = {4, 6, 0}
parentUpdateList = {1, 4, 6, 0, 8}

newNodesList = {4}
parentUpdateList = {8, 4}

Figure 4.15: Marking nodes and arcs using the connect procedure from Alg. 19. In this figure, the complete
component-hypertree is shown overlayed with the arrays parenti, highlighting the new nodes (in gray) and
the parent arcs (in red) that need to be allocated in the minimal-hypertree. New nodes are represented by
canonical elements in newNodesList and red arcs are arcs (r, parent[r]), where r ∈ parentUpdateList.

3 7

0

6

4 51

2 8

0

6

4

Figure 4.16: Allocation of new nodes and arcs for the step i = 2 running Alg. 22.

4.5 ALGORITHM FOR MINIMAL HYPERTREE CONSTRUCTION 63

3 7

0

6

4 51

2 8

0

6

4 4

Figure 4.17: Allocation of new nodes and arcs for the step i = 3 running Alg. 22.

It is worth noting that, in Figs. 4.16 and 4.17, the nodes N satisfying adj(N) = 1 store non-
canonical pixels as well. This is not done explicitly in the algorithms, but is needed for reconstruction
and attribute computation. To do so, we add all pixels p ∈ Df to the node Np = lastNode1[r], where
r is the representative of p in parent1, that is, r = findRep(f, parent1, p, f(p)). For nodes N with
adj(N) > 1, this is not necessary, because all of these nodes are merges of nodes from A1, and
pixels of their CCs can be recovered using the inclusion relations of the component-hypertree.

4.5.4 Arcs Allocated by the Algorithm are Minimal Arcs

In Sec. 4.4, we showed some properties that minimal arcs satisfy, and allocated in our algorithm
all arcs that satisfied said properties. In other words, we can guarantee that every minimal arc
is allocated by the algorithm. Now, in this section, we prove that all allocated arcs are actually
minimal arcs, or more formally, that E ialg ⊆ E

([0→K−1],[1→i])
MH .

As a reminder, the array parenti represents the component-tree of an image f using the neigh-
borhood Ai. This means that, for every arc (r, parenti[r]) where r is a canonical element (and not
the root), there is an arc (N,N ′) in the component-tree CT (f,Ai) where CC(N) = rec(parenti, r)
and CC(N ′) = rec(parenti, parenti[r]). Since all arcs of each individual component-tree are in the
compact-hypertree, then for all arcs in parenti, there is a corresponding parent arc in G

([0→K−1],[1→i])
CH .

Hence, we can be sure that any parent arc allocated by the algorithm is a parent arc of the compact-
hypertree of f and A.

Additionally, most arcs are allocated using the parentUpdateList set of the connect procedure.
Using Prop. 4.28, it is easy to see that:

Proposition 4.30. Suppose Alg. 22 is running at step i and let parentUpdateListi denote
parentUpdateList before the call of updateNewArcs at step i. If r ∈ parentUpdateListi, then r is
a canonical element of parenti−1.

Now, we need to prove that the parent arcs allocated using parentUpdateList are, indeed, minimal
arcs.

For that, suppose Alg. 22 is running at step i. There are two cases that allocate parent arcs in
the algorithm. In the first case, any new node N satisfying adj(N) = i has a parent arc allocated,
where the parent node N ′ of N satisfies either adj(N ′) = i or adj(N ′) < i. In other words, this
parent arc is either a vertical arc or a backward arc and, therefore, the arc (N,N ′) allocated by the
algorithm is a minimal arc.

The second case consists of allocation of parent arcs of nodes that had their parent changed.
In this case, they consist of arcs (r, parenti[r]) where r represents an old compact node N and
r′ = findRep(f, parenti, parenti[r], f(parenti[r])) represents a compact node N ′.

From Prop. 4.27, we know that a change in parent implies that f(parenti−1[r]) < f(parenti[r]).
This property has two implications: first, N ′ represents a new node, since a change in parent im-
plies that the new parent represents a new CC. Second, findRep(f, parenti−1, r, f(parenti[r])) =
findRep(f, parenti−1, r, f(r)), that is to say that, in the complete-hypertree, the nodes N =

64 PROPOSED METHOD 4.6

(C, f(r), i − 1) and M = (C′, f(parenti[r]), i − 1) with r ∈ C and r ∈ C′ satisfy rep(N) = rep(M)
and C = C′. Hence, this node M is a partial node of N ′ = (rec(parenti, parenti[r]), f(parenti[r]), i)
in the complete hypertree, implying that the arc (cn(M), cn(N ′)) = (N,N ′) is a composite arc of
the compact-hypertree. However, the existence of the arc (r, parenti[r]) in parenti also implies that
(cn(N), cn(N ′)) = (N,N ′) is also a parent arc. Hence, (N,N ′) is a double arc and, by consequence,
a minimal arc.

For composite arcs, they can be either allocated manually at the node allocation step or added
later if they are in the set parentUpdateList of the connect procedure. In the first case, for any
newly allocated node N ′ with rep(N ′) = r, we find the last allocated node N with rep(N) = r
in lastNode[r] which, at that moment, still stores lastNodei−1[r]. In lastNodei−1, for any canonical
element r′ of parenti−1, lastNodei−1[r′] stores a node representing a Ai−1-CC. Hence, N is a compact
node satisfying f(N) = f(r) and CC(N) is a Ai−1-CC, or to put it another way, there exists a
node M = (C, f(r), i − 1) in the complete hypertree satisfying C = CC(N). Meanwhile, N ′ is a
new compact node satisfying f(N ′) = f(r) and adj(N) = i. Since they both include r and N ′ is a
compact node, then CC(N) = CC(M) ⊂ CC(N ′), implying that (M,N ′) is a composite arc of the
complete hypertree. Hence, (cn(M), cn(N ′)) = (N,N ′) is a composite arc of the compact-hypertree
satisfying f(r) = f(N) = f(N ′), that is, it is a horizontal arc and, by consequence, a minimal arc.

In the second case, for composite arcs that are parent arcs (in other words, they are double
arcs), this case was already covered before. The remaining case is when the arc (r, parenti[r]) is only
mapped to a composite of the compact-hypertree. This can only happen if r had its parent changed
but is not a canonical element of parenti.

Using Prop. 4.30, we know that r was a canonical element of parenti−1. In this case, the arc
(r, parenti[r]) is mapped into the arc (lastNode[r], lastNode[r′]), where r′ is the representative of
parenti[r] in parenti. Again, r′ represents a new node because a change in parenthood relation
happened.

Since r is not canonical in parenti, N = lastNodei[r] = lastNodei−1[r], while N ′ = lastNodei[r′]
represents a new node. Since N = lastNodei−1[r], then CC(N) is a Ai−1-CC of Xf(r)(f). This
means that, in the complete-hypertree, there exists a node M = (CC(N), f(r), i− 1).

On the other hand, CC(N ′) is a Ai-CC of Xf(r′)(f), and N ′ = (CC(N ′), f(r′), i) is a node of
the complete-hypertree. In particular, since r is not canonical in parenti, then f(r) = f(parenti[r]) =
f(r′).

In other words, both M = (CC(N), f(r), i − 1) and N ′ = (CC(N ′), f(r), i) are nodes of the
complete-hypertree. Since r ∈ CC(N) and r ∈ CC(N ′), then any pixel Ai−1-connected to r is
also Ai-connected to r, implying that CC(N) ⊂ CC(N ′). Hence, (M,N ′) is a composite arc of the
complete-hypertree and the arc (cn(M), cn(N ′) = (N,N ′) is a compact arc with f(N) = f(N ′)
and, finally, we can conclude that (N,N ′) is a horizontal arc. By consequence, it is a minimal arc.

With that, we conclude that all arcs allocated by the algorithm are minimal arcs.

4.6 Parent and Composite Nodes in Minimal-Hypertrees

As explained before, minimal-hypertrees provide an efficient way of representing component-
hypertrees by removing repeated CCs and avoiding storing most redundant arcs. However, it is
important to observe that minimal-hypertrees, compact-hypertrees and complete-hypertrees are
equivalent, in the sense that all information stored in a complete component-hypertree can be
inferred from its respective minimal-hypertrees.

Thus, this means that, given a compact node N of a minimal-hypertree, it is possible to infer
the location of all non-compact nodes M of the complete-hypertree such that cn(M) = N , as well
as all parent, composite, children and partial nodes of N .

4.6 PARENT AND COMPOSITE NODES IN MINIMAL-HYPERTREES 65

4.6.1 Parent Nodes in Minimal-Hypertrees

For this section, we first recall that a redundant parent arc e = (N,N ′) is an arc of a compact-
hypertree that is a diagonal parent arc but not a diagonal composite arc. A diagonal parent arc
(N,N ′) is redundant if there exists another parent arc (N,M) where f(M) = f(N ′) and adj(M) <
adj(N ′). In this case, there is path from N to M and a path from M to N ′, making the arc (N,N ′)
redundant. An example is shown in Fig 4.18.

Figure 4.18: Occurence of diagonal parent arcs. On the left, we show the configuration of a complete-
hypertree that generates a diagonal parent arc, where nodes with the same color represent the same CC. The
respective compact-hypertree is shown on the right. In the minimal-hypertree, the diagonal parent arc is not
allocated.

Let par(GMH , N) be the set of all parents of N in the minimal-hypertree GMH = (VMH , EMH),
that is, for any NP ∈ par(GMH , N), (N,NP) ∈ EMH is a parent arc. If we compare par(GMH , N)
to par(GCH , N), where GCH = (VCH , ECH) is the corresponding compact-hypertree of GMH , then
it is clear that par(GMH , N) ⊆ par(GCH , N), where any N ′ ∈ par(GCH , N) \ par(GMH , N) has the
property that (N,N ′) is a redundant parent arc.

Suppose we want to find pari(GMH , N), the parent of N at neighborhood index i in the minimal-
hypertree GMH . For convenience, suppose also that the elements of par(GMH , N) are ordered ac-
cording to their neighborhood indices.

If there exists a node NP ∈ par(GMH , N) where adj(NP) = i, then NP = pari(GMH , N). If this
node does not exist, then we find the element N ′P ∈ par(GMH , N) with the highest neighborhood
index adj(N ′P) < i. In the compact-hypertree, that would be the correct parent already. However,
since some parent arcs are not allocated in minimal-hypertrees, it is possible that the parent arc
that points to the correct node is not allocated.

In that case, suppose thatN ′ is the node we are searching for, in other words,N ′ = pari(GMH , N).
If (N,N ′) 6∈ EMH , then this arc is redundant, implying that there exists a parentN ′P ∈ par(GMH , N)
satisfying CC(N ′P) ⊂ CC(N ′), f(N ′P) = f(N ′) and adj(N ′P) < adj(N ′). Hence, either N ′ is a com-
posite of N ′P or there is a path from N ′P to N ′ composed of horizontal arcs, and the correct node
N ′ is the last element in this path that has neighborhood index lower than or equal to i.

Then, supposing par(GMH , N) = (N1, . . . , N|par(GMH ,N)|) is the set of parent nodes of N in
GMH ordered by neighborhood indices (more formally, adj(N`) < adj(N`+1) for any 1 ≤ ` <
|par(GMH , N)|), then Alg. 23 can be used to obtain the parent of N at neighborhood index 1 ≤
i ≤ n. An example is shown in Fig 4.19.

66 PROPOSED METHOD 4.6

Algorithm 23 Algorithm that, given two nodes N , NC with NC a composite of N , finds nodes N ′

such that e = (N,N ′) is a missing redundant composite arc in a minimal-hypertree.
1: procedure getParent(N , i)
2: NC ← comp(N) with f(N) = f(NC);
3: NP ← ∅;
4: if i < adj(NC) then . in other words, if pari(N) exists
5: `← 1
6: NP = N1; . Suppose par(N) = (N1, . . . , N|par(N)|), ordered by neighborhood index
7: while adj(N`+1) ≤ i do
8: ` = `+ 1
9: NP = N`

10: NPC ← comp(NP) with f(NPC) = f(NP);
11: while NPC 6= ∅ and adj(NPC) ≤ i do
12: NP ← NPC

13: NPC ← comp(NP) with f(NPC) = f(NP);
return NP

Figure 4.19: Finding the parent of a node N at neighborhood index i in minimal-hypertrees. Dotted arcs
indicate compact redundant arcs that are not allocated in the minimal representation.

4.6.2 Composite Nodes in Minimal-Hypertrees

For some applications, having all the redundant arcs can be useful. In particular, some attributes
that will be presented in Sec 4.8 take advantage of the number of partial nodes of a node and, for
that, we need to take redundant arcs into consideration.

For these particular cases where redundant composite arcs are useful, a question that may arise
is if it is not better to simply allocate the compact component-hypertree instead of the minimal-
hypertree. However, it turns out that designing an efficient algorithm for compact-hypertree con-
struction seems to be harder than designing an algorithm for minimal-hypertree construction. The
biggest problem is that redundant composite arcs are not arcs of the parent arrays, and to detect
them we need to either further modify the connect procedure to detect occurrences of redundant
arcs, which does not seem to be an easy task, or find these composite arcs by checking all possible
gray-levels where non-compact nodes were removed to check for potential missing redundant arcs,
which is not efficient.

Hence, in these cases, we chose to build the minimal-hypertree instead and, if needed, using
a post-processing algorithm to search for redundant arcs. The algorithm that we present is more
efficient than checking all gray-levels for each node and has the additional advantage that we do not
need to explicitly allocate the nodes: knowing where they are is enough to compute the attributes,
so memory can also be saved.

To explain how redundant composite arcs can be detected in minimal-hypertrees, we first recall
that redundant composite arcs are diagonal arcs that are composite arcs but not parent arcs. This
happens when the configuration shown in Fig. 4.20 situation exists in a complete-hypertree:

4.6 PARENT AND COMPOSITE NODES IN MINIMAL-HYPERTREES 67

Figure 4.20: Patterns that indicate the occurrence of diagonal composite arcs in complete-hypertrees and
their respective representation in compact-hypertrees.

For every occurrence of this scenario, there is a redundant composite arc. Figure 4.21 depicts a
more general example, showing some cases of this pattern happening in a complete hypertree and
how they are mapped into its corresponding minimal-hypertree.

Figure 4.21: Left: a generic example showing patterns where diagonal composite arcs occur. Right: the
respective minimal-hypertree, with the redundant composite arcs represented as dashed arrow.

According to these observations, to find redundant composite arcs, we need to detect the sit-
uation shown in Fig. 4.20 in minimal-hypertrees, that is, we need to find nodes N , M ′ and N ′

where M ′ is a composite node of N ′ and N ′ is a parent of M ′. Under this circumstance, if M , the
original parent of N in the complete hypertree, satisfied cn(M) = cn(N), then we have a redundant
composite arc from N to N ′.

Naturally, sinceM is not a compact node,M does not exist in the minimal-hypertree. However,
its existence can be inferred from the parent arcs of the minimal-hypertree: from the definition of
a compact arc, if a compact parent arc (N1, N2) exists, then for all gray-levels between f(N1) and
f(N2), there was a non-compact node that stored the same CC as N1 that was removed. This can
be observed, for instance, in Fig 4.21, for all the red nodes with i = 1, 2 and 3.

Hence, redundant composite arcs can be detected using the following idea: suppose we want
to find all missing redundant composite arcs that had a node N as their origin. Then, we find a
composite node NC and, for all ancestors N `

C of NC , it is possible that a redundant composite arc
from N is missing. To know if these arcs actually exist, we need to search for non-compact nodes
that stored CC(N) that were removed, and that can be done by looking at all gray-levels λ ∈ K
such that f(NP) < λ < f(N), where NP is a parent of N . For all of these gray-levels, there is
a missing redundant arc from N to the correspondent ancestor of NC . An example is shown in
Fig 4.22.

68 PROPOSED METHOD 4.6

Figure 4.22: Left: part of a complete-hypertree, extracted from Fig. 4.21, where dashed arcs will become
redundant composite arcs. Middle: the respective part in the minimal-hypertree, where the redundant arcs
are not allocated. Right: finding missing redundant composite arcs in the minimal-hypertree by looking for
ancestors of NC with gray-level higher than f(NP).

In the simplest cases, where N has only one composite and one parent, this idea works. To deal
with multiple composite nodes, the idea is simple: we just repeat the process for every pair (N,NC),
where NC is a composite node of N .

When multiple parents exist, we must choose the proper parent node when choosing NP and
the ancestors of NC . To do that, we remind that we are always looking at a situation where we are
analyzing two consecutive neighborhood indices adj(NC)−1 and adj(NC) of the complete-hypertree.
Hence, in our algorithm, we want NP to be the parent of N at neighborhood index adj(NC) − 1
and the ancestors of NC to be obtained from neighborhood index adj(NC). Using these ideas, the
algorithm for obtaining missing redundant composite arcs is presented in Alg. 24.

Algorithm 24 Algorithm that, given two nodes N , NC with NC a composite of N , finds nodes N ′

such that e = (N,N ′) is a missing redundant composite arc in a minimal-hypertree.
1: procedure getComposites(N , NC)
2: composites← ∅;
3: k ← NP .level, where NP = paradj(NC)−1(N);
4: N ′ ← paradj(NC)(NC);
5: while N ′.level > k do
6: composites← composites ∪ {N ′};
7: N ′ ← paradj(NC)(N

′);

8: return composites;

With Alg. 24, one can recover all missing redundant composite arcs if needed. In particular,
this algorithm will be useful later to obtain statistical measures that analyze attributes of merged
nodes in component-hypertrees.

4.7 CHOICE OF NEIGHBORHOODS 69

4.7 Choice of Neighborhoods

In this chapter, up to this point, we presented an efficient algorithm for minimal-hypertree
construction for any choice of increasing symmetric neighborhoods. Now, we change focus and
consider the problem of how the choice of neighborhoods used to build A affects the complexity of
the minimal-hypertree construction algorithm.

It can be observed that the complexity of Alg. 22 depends on the number of neighboring pixels.
In particular, its complexity is linked to the number of calls of Line 8. This implies that connect
is called

∑n
i=1 |Ai| times, which may be prohibitive, depending on the choice of the neighborhoods.

In other words, Alg. 22 can run faster if the size of the neighborhoods is reduced. Hence, an idea
to make the proposed algorithms faster is to process, at every step 1 ≤ i ≤ n, only a subset of
elements of Ai, if we can guarantee that processing this subset has the same effect of processing all
pairs of Ai-neighboring pixels.

For this purpose, given a gray-level image f and an increasing sequence A = (A1, . . . ,An),
two neighborhoods Ai and a A′i are equivalent if and only if, given an array parenti−1 storing
CC(f,Ai−1), running Alg. 22 at step i with Ai or A′i both produce an array parenti that stores
CC(f,Ai). Given a sequence A′ = (A′1, . . . ,A′n), A and A′ are equivalent iff, for any 1 ≤ i ≤ n,
Ai and A′i are equivalent, and this implies that running Alg. 22 with A′ and A produces the
same hypertrees. For some well-chosen types of neighborhoods, it is possible to obtain optimized
equivalent sequences A′ that significantly reduce the complexity of Alg. 22.

A possible strategy for obtaining those neighborhoods is to build a neighborhood A′i ⊂ Ai
without including arcs (p, q) ∈ Ai when p and q are comparable in parenti−1 (since they do not
change the array when connect is called), or when it is known that there exists another pair
(p′, q′) ∈ Ai that will make p and q become comparable as a side effect of calling connect for
(p′, q′).

In particular, a call of the connect procedure has the effect of merging two disjoint paths of
the parent array into one. In other words, Prop. 4.31 is valid.

Proposition 4.31. Let f be a gray-level image and A1, A2 be two symmetric neighborhoods such
that A2 = A1 ∪ {p, q}. Suppose that parent1 stores CC(f,A1) and we call
connect(f, parent1, p, q, False), generating an updated array parent2 storing CC(f,A2). Then:

• For any pair of pixels (p′, q′) such that p′ and q′ are comparable in parent1, p′ and q′ are also
comparable in parent2.

• For any p′ such that p′ = p or p′ ∈ anc(parent1, p) and any q′ such that q′ = q or q′ ∈
anc(parent1, q), p′ and q′ are comparable in parent2.

More formally, suppose parenti−1 is given and there exist pixels p, p′, q and q′ ∈ Df such that, in
parenti−1, the following conditions are valid: (1) p and q are not comparable; (2) p′ ∈ desc(rep(p));
and (3) q′ ∈ desc(rep(q)) (note that this implies that p′ and q′ are also not comparable in parenti−1).
Additionally, suppose (p, q) and (p′, q′) ∈ Ai. Thus, calling connect to (p′, q′) at step i of Alg. 22
also makes p and q comparable in parenti. Hence, if connect is called for (p′, q′) (that is to say,
the pair with greater depths in parenti−1, which is also the pair with higher gray-levels in a max-
tree), then calling connect for (p, q) is not needed, implying that Ai and A′i = Ai \ {(p, q)} are
equivalent. Besides, all pairs in P ×Q ⊆ Ai, where P (resp. Q) consists of pixels in the path from p′

to the root node (resp. q′ to the root) are not needed, with the exception of pair (p′, q′). Formally,
this idea is presented in Prop. 4.32.

Proposition 4.32. Suppose that: (1) Ai is a neighborhood; (2) parenti−1 is given, with i > 1; (3)
P ×Q ⊆ Ai such that P (resp. Q) is a subset of a path in parenti−1 linking a pixel to the root node.
If (hp, hq) ∈ P ×Q such that hp (resp. hq) is the element of P (resp. Q) with the greatest depth in
parenti−1, then Ai and A′i = (Ai \ (P ×Q)) ∪ {(hp, hq)} are equivalent.

70 PROPOSED METHOD 4.7

Note that, for any pair of sets (P,Q) satisfying the conditions of Prop. 4.32, A′i has up to
|P × Q| − 1 fewer elements than Ai. Hence, running Alg. 22 using A′i instead of Ai generates the
same parenti but processing less neighboring pixels.

Although Prop. 4.32 seems to suggest a reduction of Ai to A′i, some choices of neighborhoods
provide efficient ways of computing A′i directly. In the context of Prop. 4.32, for any pair (P,Q)
satisfying the specified conditions, only the pair (hp, hq) needs to be added to A′. In the following,
we present some sequences of neighborhoods that can benefit from this strategy.

4.7.1 Dilation-generated Neighborhoods

In this section, we recall the notions of sequences of dilation-generated neighborhoods [MAH15].
The main idea consists of having multiple increasing neighborhoods, where the next neighborhoods
are slightly bigger than the previous, and this growth in size is defined using small SEs.

A dilation-generated neighborhood sequence A = (A1, . . . ,An) is built from a sequence of
increasing SEs S = (S1,S2, . . . ,Sn). We recall that, given a SE S, the neighborhood A(S) can be
defined using Eq. (2.7). Applying Eq. (2.7), we have that:

A(Si) = {(p, q) : p ∈ {q} ⊕ Si} (4.5)

The sequence S, in turn, is built from another sequence of SEs B = (B1, . . . ,Bn), as follows:

Si =

{
B1 ⊕ B̆1 i = 1

Si−1 ⊕ Bi ⊕ B̆i 2 ≤ i ≤ n
(4.6)

From now on, we will refer to the sequences S and B, as generated sequence and generating
sequence, respectively. Examples are provided in Fig. 4.23.

4.7 CHOICE OF NEIGHBORHOODS 71

Figure 4.23: Example of generating sequences and their respective generated sequences.

Dilation-generated neighborhoods follow some properties that allow the development of efficient
algorithms for hypertree construction. For instance:

Proposition 4.33. For all 1 ≤ i ≤ n, Si is symmetric.

To help enunciating other properties, we make use of the following notation:

Wi = B1 ⊕ . . .⊕ Bi (4.7)

Using this definition, an alternative way of defining the generating sequence S consists of the
following:

Proposition 4.34. For all 1 ≤ i ≤ n, Si =Wi ⊕ W̆i.

Additionally, we proved in [MAH15] that Prop. 4.34 implies the following result:

Proposition 4.35. Let f be a gray-level image, p and q ∈ Df and S a generated sequence of SEs.
Then, for any 1 ≤ i ≤ n,

p ∈ (q ⊕ Si)⇔ ((p⊕Wi) ∩ (q ⊕Wi)) 6= ∅ (4.8)

Two examples are provided in Fig. 4.24.

72 PROPOSED METHOD 4.7

Figure 4.24: Left: a generic example showing pixels p, q, p′, q′ satisfying {p, q} ∈ A(S) but {p′, q′} 6∈ A(S).
Right: the same pixels p, q, p′, q′ and their respective dilations by W. Note that the dilations of p and q by
W intersect, indicating they are A(S)-neighbors, while the dilations of p′ and q′ do not, indicating they are
not A(S)-neighbors.

It is worth noting that the intersection of two neighboring pixels can happen outside of the
domain of the image. An example is shown in Fig. 4.25.

Figure 4.25: An example of SE S where, given two A(S)-neighboring pixels p, q, the intersection (p⊕W)∩
(q ⊕W) 6= ∅, but happens outside of the domain of the image.

However, for the neighborhoods presented in Fig. 4.23, it can be proved that there is always at
least one pixel inside the domain in the intersections of the dilation of the pixels. If Si is generated
from a symmetric SE Wi, then it is easy to prove that, given two A(Si)-neighboring pixels p =
(xp, yp) and q = (xq, yq), that (

xp+xq
2 ,

yp+yq
2) is in (p ⊕ Wi) ∩ (q ⊕ Wi). An example is shown in

Fig. 4.26.

4.7 CHOICE OF NEIGHBORHOODS 73

Figure 4.26: A schematic example showing that, for symmetric SEsW, if the intersection (p⊕W)⊕(q⊕S) 6=
∅, then the middle point of p and q is always in the intersected area.

For the specific case of a non-symmetric square SE in 2d, it can also be shown that the intersec-
tion happens inside the domain. We use Fig. 4.27 to explain how to prove this fact. Basically, given
two A(S)-neighboring pixels p = (xp, yp), q = (xq, yq) ∈ Df , there are four possible configurations
for the relative position of p and q: they are vertically, horizontally or diagonally disposed (but
there are two possible configuration for the diagonal case) and, for any of these cases, it can be
proved that there is one point of the domain that is in the intersection (p⊕W) ∩ (q ⊕W).

Figure 4.27: Illustration showing that the intersection (p⊕W)∩ (q ⊕W) happens inside the domain for a
rectangular non-symmetric SE. For the first three cases, the point q is always in the intersection, while in the
last case, the point (xq, yp) is in the intersection, and should be in the domain if we consider a rectangular
image.

It is worth noting that the proofs for the symmetric and the rectangular SEs can be easily
extended for d-dimensional images, in other words, if an intersection occurs, there is at least one
pixel of the domain in the intersected area.

Hence, Prop. 4.35 gives an alternative way of obtaining A(Si)-neighbors using intersections of
dilated sets. Under the conditions of the proposition, (p ⊕Wi) ∩ (q ⊕Wi) 6= ∅ implies that there
exists an element r ∈ Df ⊕Wi such that r ∈ (p⊕Wi) ∩ (q ⊕Wi).

Hence, let Li : Df ⊕Wi → P(Df) (or Li : Df → P(Df) if symmetric or squares SEs are being
used) be a function that returns, for each pixel p, Li(p) = {q : p ∈ (q ⊕ (Wi))}. Then, all pairs of
elements in Li(p) are Si-neighbors among themselves.

Because of the way Li(p) is defined, it is easy to prove that:

Proposition 4.36. Let r ∈ Df ⊕Wi. Then:

Li(r) =
⋃

x∈{r}⊕B̆i

Li−1(x) (4.9)

Note that Prop. 4.36 implies that p, q ∈ Li(r) iff ∃p′, q′ ∈ {r} ⊕ B̆i such that p ∈ Li−1(p′) and
q ∈ Li−1(q′).

Using this proposition, the main idea to obtain a neighborhood A′ equivalent to
A = (A(S1), . . . ,A(Sn)) consists of building mappings, for 2 ≤ i ≤ n, Li−1 : Df ⊕Wi−1 → P(Df)
in such a way that, for each r ∈ Df ⊕Wi−1, any two distinct pixels in Li−1(r) are comparable in

74 PROPOSED METHOD 4.7

parenti−1 (that is, Li−1(r) is a subset of a path in parenti−1). Supposing that a pair (p, q) ∈ Ai with
Li−1(p)× Li−1(q) ⊆ Ai is given, based on Prop. 4.32, we define:

A′i = (Ai \ (Li−1(p)× Li−1(q))) ∪ {hi−1
p , hi−1

q }, (4.10)

where hi−1
p ∈ Li−1(p) and hi−1

q ∈ Li−1(q) have the greatest depth in parenti−1. Then Ai and A′i are
equivalent.

Note that obtaining these elements hi−1 is easy: let Hi : Df → Df be a function that returns,
for each element p ∈ Df , the element hip with highest graylevel in Li(p). Then, Hi can be efficiently
updated using the following property:

Hi(p) = arg max
p∈({q}⊕Bi)

f(Hi−1(q)) (4.11)

Using this property, one can use Alg. 25 to build the sets of neighboring pixels:

Algorithm 25 Algorithm for building the sets of neighboring pixels using dilation-generated neigh-
borhoods.
1: procedure createNeighbors(f , B = (B1, . . . ,Bn));
2: for p ∈ Df do
3: H0(p)← p;
4: D1 ← Df
5: for 1 ≤ i ≤ n do
6: Ai ← ∅;
7: Hi ← copy of Hi−1;
8: if i < n and Bi+1 ⊆ Bi then
9: Di+1 ← ∅;

10: else
11: Di+1 ← Df ;
12: for q ∈ Di do
13: for p ∈ ({q} ⊕ (Bi)) do
14: Ai ← Ai ∪ (Hi−1(q),Hi(p));
15: if f(Hi−1(q)) > f(Hi(p)) then
16: Hi(p)← Hi−1(q);
17: if p 6∈ Di+1 then
18: Di+1 ← Di+1 ∪ {p};

In general, this strategy of building A′i and calling connect to its pairs is faster than processing
all Ai-neighboring pixels. Furthermore, there are still other optimizations that can be performed.

For instance, in Alg. 25, Di is the set of pixels to be used in step i. Using a generic sequence
B = (B1, . . . ,Bn), the simplest way of computing the sets of neighbors is to always choose Di = Df
for any 1 ≤ i ≤ n. However, when Bi+1 ⊆ Bi (for 1 ≤ i < n), then ({q} ⊕ (Bi+1)) ⊆ ({q} ⊕ (Bi)),
for any q ∈ Df . In particular, at step i, if Hi(q) = Hi−1(q), then q does not need to be added to
Di+1 because it can not change any Hi+1(p) for any p ∈ ({q} ⊕ Bi+1) at step i + 1. Additionally,
it can not add any relevant pair of neighbors: for any p ∈ ({q} ⊕ Bi+1) with Hi+1(p) = Hi(p), the
pair (Hi(q),Hi+1(p)) was already added in step i as the pair (Hi−1(q),Hi(p)). If Hi+1(p) 6= Hi(p),
then the new relevant pair of neighbors was already added at the moment Hi+1(p) changed. This
strategy reduces the number of pixels to process, leading to a even more efficient algorithm for
hypertree construction based on dilation-generated neighborhoods.

A more detailed complexity analysis is provided in Chapter 5.1. But before that, we analyze
other types of neighborhoods that can take advantage of Prop. 4.32.

4.7 CHOICE OF NEIGHBORHOODS 75

4.7.2 Neighborhoods Based on Hierarchies of Partitions

In this section, we present the strategy published on [MPAH20] to obtain a sequence of neighbor-
ing pixels A′ based on hierarchy of partitions. This strategy can significantly reduce the complexity
of the hypertree building algorithm by employing Prop. 4.32.

Let H = (H1, . . . ,Hn) be a hierarchy of partitions of Df , that is, each Hi is a partition of Df
for 1 ≤ i ≤ n and, for every element R of Hi, there exists an element R′ of Hi+1 such that R ⊆ R′,
or to put it another way, the partition Hi refines the partition Hi+1 for 1 ≤ i < n.

For each partition Hi, we consider an undirected graph Gi = (Hi, Ei), where we say R,R′ ∈ Hi
are adjacent if and only if {R,R′} ∈ Ei. Thus, the graph Gi = (Hi, Ei) induces a neighborhood Ai in
such way that, for any two distinct pixels p, p′ ∈ Df , we have (p, p′) ∈ Ai iff there exist R,R′ ∈ Hi
such that p ∈ R, p′ ∈ R′ and either R = R′ or (R,R′) ∈ Ei.

Depending on the choices of H and E = (E1, . . . , En), it is possible to design efficient algorithms
for hypertree construction. In particular, let H and E be defined in such a way that the following
condition holds:

∀R ∈ Hi,∀R1, R2 ∈ Hi−1 with R1 6= R2, R1 ∪R2 ⊆ R (4.12)
⇒ (R1, R2) ∈ Ei−1

Suppose that H and E are given and they satisfy the conditions in Eq. (4.12). Since any region
R ∈ Hi consists of a set of regions of Hi−1, then for any (p, q) ∈ Ai with p, q ∈ R, either p and q
both belong to the same region of Hi−1 or they belong to adjacent regions of Gi−1. In both cases,
by definition, this implies that p and q are Ai−1-neighbors.

Hence, for any pair (p, q) ∈
(
Ai \Ai−1

)
, p and q are in adjacent regions of Gi. Thus, there exist

two adjacent regions Rp, Rq ∈ Hi such that p ∈ Rp, q ∈ Rq. As explained above, any two distinct
elements of Rp (resp. Rq) are Ai−1-neighbors, which means, at the start of step i in Alg. 22, they
are comparable in parenti−1. Then, Prop 4.32 applies and we can define:

A′i = (Ai \ (Rp ×Rq)) ∪ {hip, hiq}, (4.13)

where hip ∈ Rp and hiq ∈ Rq have the greatest depth in parenti−1. From Prop 4.32, we conclude
that Ai and A′i are equivalent.

4.7.3 Pyramidal Hierarchy

One particular strategy that can be used to efficiently build a hierarchy of partitions is to design
a pyramidal hierarchy. For that, consider a sequence (D0,D1 . . . ,Dn) such that Df = D0 ⊃ D1 ⊃
. . . ,⊃ Dn and, for i = 1, . . . , n, let ρi : Di−1 → Di be a mapping, called downsampling, that assigns
each pixel p ∈ Di−1 to a pixel u ∈ Di. In this way, we define a pyramidal hierarchy as a sequence
of downsamplings (ρ1, . . . , ρn). An interesting property is that the composition of i downsamplings
θi = ρiρi−1 · · · ρ1 : Df → Di induces an equivalence relation on Df , denoted by ≡i, as follows:

∀p, q ∈ Df , (p ≡i q)⇔ θi(p) = θi(q) (4.14)

This equivalence relation leads us to a partition Hi of Df in a such way that two distinct pixels
p, q ∈ Df are in the same region in Hi iff θi(p) = θi(q) = u ∈ Di. More formally, Hi = {Rui : u ∈ Di}
where Rui = {x ∈ Df : u = θi(x)}. In this way, a pyramidal hierarchy (ρ1, . . . , ρn) defines a hierarchy
of partitions H = (H1, . . . ,Hn).

Given these definitions, we now focus on obtaining a specialized and suitable pyramidal hierarchy
for efficient component-hypertree construction. One possible choice consists of the following: given
(t1, . . . , td) ∈ Zd with tj > 0, we define the downsampling ρi : Di−1 → Di as, for any x =
(x1, . . . , xd) ∈ Di−1,

ρi(x = (x1, . . . , xd)) =

{
(x1, . . . , xd), i = 1;
(bx1/t1c, . . . , bxd/tdc), i > 1,

(4.15)

76 PROPOSED METHOD 4.7

where bac indicates the greatest integer less than or equal to a. In this way, Hi consists of hyper-
rectangles of Df of size ((t1)i−1, (t2)i−1, . . . , (td)

i−1).
Now, we define the sequence E = (E1, . . . , En). In order to ensure the validity of condition given

in Eq. (4.12), we make use of the following graph Gi = (Hi, Ei), where

Ei = {(Rvi , Rui) ∈ Hi ×Hi : v, u ∈ Di, |vj − uj | < tj , 1 ≤ j ≤ d} (4.16)

Finally, we analyze this problem in the context of Alg. 22 and Prop. 4.32. Suppose that Alg. 22
is running at the beginning of step i. Then, since the choice of E satisfies the conditions given in
Eq. (4.12), we can make use of Eq. (4.13) to compute a neighborhood A′i equivalent to Ai, using
the following strategy: for all p ∈ Di, find all q ∈ Di such that p 6= q and (Rpi , R

q
i) ∈ Ei; and, then,

add the pair (hip, h
i
q) into A′i (see Eq. (4.13)). An example is provided in Fig. 4.28.

A detailed analysis showing the efficiency of this strategy using a pyramidal hierarchy of hyper-
rectangles for component-hypertree construction, compared to other choices of neighborhoods, is
given in Chap. 5.

1 3 4 0 3 2 2 0 4

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 80 2 3 4 5 6 7 81

0 1 2 3 4 5 6 7 8 42 842 61 8

Figure 4.28: From top to bottom: the input image f ; the sequence of graphs of the hierarchy of partitions G =
(G1,G2,G3) that defines the neighboring pixels of f ; the sequence of neighborhoods A′ = (A′1,A′2,A′3) equiva-
lent to the neighborhoods defined by G and the resulting component-hypertree of f using A′ = (A′1,A′2,A′3).

4.8 ATTRIBUTES 77

4.8 Attributes

With the theory presented up to this point, one can build an efficient structure to store
component-hypertrees. In this section, we focus on fast ways of computing attributes, in order
to carry out image processing tasks using the algorithms and structures presented so far.

Attributes are functions κ : CC(f,A) → R that, given a CC C, return a numerical value that
gives quantitative information about the shape of C. Classic examples of attributes include metrics
such as area (number of pixels) or perimeter (number of pixels in the border of the component) of
a shape.

For a given attribute att, we denote its value in C as κatt(C). For example, the area of a CC C
is denoted by κarea(C). Some examples of attributes and their definitions are presented below:

• κarea(C) = |C|, that is, the number of pixels p ∈ C;

• κminX(C): the lowest x coordinate of all pixels p = (x, y) ∈ C;

• κmaxX(C): the highest x coordinate of all pixels p = (x, y) ∈ C;

• κwidth(C) = κmaxX(C)− κminX(C) + 1.

There are attributes that can take advantage of the inherently hierarchical structure of component-
trees and component-hypertrees to be efficiently computed. These attributes are known as incre-
mental attributes. In this case, given a node N of a max-tree, an incremental attribute can be
computed using only pixels stored in N and the attribute values stored in all children of N . Hence,
let pixels(N) denote the pixels stored in the node N . For instance, the attributes presented above
are incremental and can be computed in component-trees using the formulas below:

• κarea(N) = |pixels(N)|+
∑

NC∈child(N)

κarea(NC);

• κminX(N) = min{x : p = (x, y) ∈ pixels(N), min
NC∈child(N)

κminX(NC)}.

For component-hypertrees, analogous strategies can be used for some attributes. Given a node
N with adj(N) > 1 (if adj(N) = 1, the same strategies used in max-tree can be used, since
part(N) = ∅), for attributes such as minX, maxX and width, these attributes can be efficiently
computed as follows:

• κminX(N) = min
N ′∈(child(N)∪part(N))

{κminX(N ′)}.

For other attributes, a better strategy consists of taking into consideration all the partial nodes.
Since every node is a cluster of nodes obtained from a smaller neighborhood, attributes of nodes of
hypertrees can be efficiently computed by only looking at their partial nodes. For example, assuming
that all partial nodes of N are stored in part(N), an alternative way of incrementally computing
the values of some attributes for nodes N of component-hypertrees with neighborhood index higher
than 1 is shown below:

• κarea(N) =
∑

NP∈part(N)

κarea(NP);

• κminX(N) = min
NP∈part(N)

κminX(NP).

Due to the storage optimization of minimal hypertrees, some of these partial nodes NP may not
be in part(N), in case the arc that links NP to N is redundant. For these cases, it is necessary to
first find the missing redundant arcs using Alg. 24. From now on, the set of partial nodes of N that
include redundant composite nodes will be denoted by part∗(N).

78 PROPOSED METHOD 4.8

4.8.1 Statistical Measures of Clusters of Nodes

Since nodes with index i > 1 are clusters of nodes of previous trees, we can compute additional
statistics that measure how the values of an attribute vary in partial nodes. Some of these statistical
measurements, like average and variance, can also be incrementally computed by storing some
additional information: let N be a node of a component-hypertree with adj(N) > 1 and att be any
attribute. Then, we will define the accumulated and squared values of the attribute att in N as,
respectively:

κaccatt (N) =
∑

NP∈part∗(N)

κatt(NP); (4.17)

κsqatt(N) =
∑

NP∈part∗(N)

(κatt(NP)2). (4.18)

Then, we can compute the mean and variance of the values of κatt in the partial nodes of N
using the following statistical properties:

κatt(N) =
κaccatt (N)

|part∗(N)|
; (4.19)

κvaratt (N) =
κsqatt(N)

|part∗(N)|
− κatt(N)2. (4.20)

It is important to note that we can change the denominator of these function to compute mean
and variance according to some other rules. For example, given a node N , instead of computing
the mean of an attribute in N according to their direct partial nodes, we can compute the mean
according to the number of CCs that are parts of N in any given neighborhood index. For example,
in Fig. 4.29 (right), the node N ′ has two direct partial nodes, but it is composed of 4 nodes with
neighborhood index 1 (N1 to N4).

In particular, the number of CCs with neighborhood index 1 will be referred as partials1. It
can be computed as an incremental attribute: given a node N of a component-hypertree, we can
efficiently compute κpartials1(N) according to the following rules:

κpartials1(N) =

1, if adj(N) = 1;∑
NC∈part∗(N)

κpartials1(NC), otherwise. (4.21)

4.8.2 Attributes Between Nodes

For nodes of component-hypertrees that have more than one partial node, we can also compute
attributes that give an insight of how nodes are merged or some values quantifying information
between merged nodes.

For example, assuming A = (A1, . . . ,An) is defined such that Ai = A(Si) and Si is a (2i+1)×3
SE for 1 ≤ i ≤ n, the neighborhood index will give the size of the horizontal gap between partial
nodes. We define this attribute as horizontal distance. Analogously, we can obtain the vertical
distance by changing the SEs to a sequence of 3× (2i+ 1) rectangles; and the Chebyschev distance
by changing SEs to a sequence of squares with side 2i+ 1, for 1 ≤ i ≤ n.

All of these distances can be computed as incremental attributes. For example, let N be a node
and assume A = (A1, . . . ,An), where Ai = (A(Si)) and Si is a (2i+ 1)× 3 SE, for 1 ≤ i ≤ n. Then,
we can compute κacchdist(N), the value of the accumulated horizontal distance in the partial nodes,
as follows:

4.8 ATTRIBUTES 79

κacchdist(N) =

0, if adj(N) = 1;

(adj(N)− 1)(|part∗(N)| − 1) +
∑

NC∈part∗(N)

κacchdist(NC), otherwise; (4.22)

An example is provided in Fig.4.29 (right).

Figure 4.29: Computation of horizontal distance. The computed value is equivalent to the sum of all hori-
zontal spacing (in red) between the isolated components.

In the next chapter, we provide some examples showing how these attributes can be used to
perform text segmentation and classification.

80 PROPOSED METHOD 4.8

Chapter 5

Experiments

In this chapter, we present theoretical and experimental results regarding computational com-
plexity, time and memory consumption of the proposed algorithms and data structures. Addition-
ally, we also present some text-related applications where computation of attributes can be applied.
Finally, we use this application to show how the choice of neighborhoods can affect not only per-
formance, but also how accurate are the computed attributes.

5.1 Analysis

5.1.1 Complexity Analysis

For the complexity analysis, suppose that a sequence of increasing sets of neighborhoods A =
(A1, . . . ,An) is given and let A′ = (A′1, . . . ,A′n) be a sequence equivalent to A. As discussed above,
time complexity of Alg. 22 is proportional to the number of calls of connect, or to put it another
way, it is proportional to

∑n
i=1 |A′i|.

This implies that the choice of neighborhoods affects the complexity of the algorithm. In par-
ticular, the complexity can be greatly reduced if the neighborhoods of A′ have significantly less
elements than the neighborhoods of A.

As seen in the last chapter, for dilation-generated neighborhoods, the neighborhoods A′i ∈ A′
have sizes proportional to the size of the SEs used to generate the neighborhoods. In the general
case, this implies |A′i| = Θ(|Df | · |Bi|). By using the specific example of the d-dimensional cubic
SEs, each Bi would have size 2d, leading to

∑n
i=1 |A′i| = Θ(|Df | · 2d · n).

However, for this particular example, when every Bi has size 2d, then the optimization of Alg. 25
can be used and |Ai| is approximately |Di| · |Bi|. Finally, |Di| depends on how many times Line 17
is true at step i− 1.

By construction, Line 17 is true if the maximum element of q⊕Bi−1
1 is greater than the maximum

element of p⊕ Bi−1
1 . As a consequence, the number of elements of Di depends on the input image

and a precise complexity analysis can not be performed.
For this reason, to obtain an estimation of the expected complexity, we use a probabilistic

approach. To estimate the expected number of elements in Di, we assume that the probability of
the maximum being in q ⊕ Bi−1

1 (and not in p⊕ Bi−1
1) is proportional to the size of the sets. Note

that the size of Bi−1
1 in this case is id, but since p ∈ {q} ⊕ Bi, then

(
p ⊕ Bi−1

1

)
and

(
q ⊕ Bi−1

1)

overlap, and the only possibility of Line 17 being true is if the maximum of
(
p⊕Bi−1

1

)
∪
(
q⊕Bi−1

1)

is in
(
q ⊕ Bi−1

1

)
\
(
p⊕ Bi−1

1).
Since the size of

(
q⊕Bi−1

1

)
\
(
p⊕Bi−1

1) is approximately d×i and the size of
(
p⊕Bi−1

1

)
∪
(
q⊕Bi−1

1)
is approximately id, we have that:

|Di| ≈
d · i
id
· |Df | =

d

id−1
· |Df |

81

82 EXPERIMENTS 5.1

By choosing a fixed d, we can estimate
n∑
i=1
|Di|. For example, for d = 2, then

n∑
i=1

1
i can be

approximated using the fact that
∫ n

1
1
i di ≈ lnn. If d > 2, then it grows even slower. Thus, for this

particular example, the expected number of calls of connect is proportional to Θ(|Df | · |Bi| · lnn),
that is to say, when the number of neighborhoods is increased linearly, the complexity of the
construction algorithm only increases by a logarithmic factor of n.

This computational complexity already ensures that component-hypertrees can be built in a
reasonable time even for a large number of neighborhoods. However, this complexity can be improved
even further when neighborhoods based on a hierarchy of partitions are taken into consideration.

For the specific case of a pyramidal hierarchy, we have |A′i| = Θ(|Hi| · |Si|). In a simple case
where t = (2, . . . , 2) and Si defines (3d−1)-adjacency, we have

∑n
i=1 |A′i| = O(|Df |·(1+ 1

2d−1
)·3d) =

O(|Df | · 3d). For a small constant d, this implies that
∑n

i=1 |A′i| is linear on the size of the domain
of f . It is important to emphasize, however, that this gain in performance has an impact in the
precision of the computed attributes, as we will see later in this chapter.

To conclude our analysis in terms of computational complexity, the exact cost of the connect
procedure is difficult to calculate. When connect is called to two pixels p, q, the number of recursive
calls is proportional to the paths linking p to c and q to c in the parent array, where c is the first
common ancestor of c. It is difficult to compute, on average, the size of these paths, but we can be
sure that both of them are bounded by K. Hence, in the worst case, connect runs in O(K), but
on average the procedure is faster than that because, after the updates performed in the array by
the procedure, a subsequent call of connect with the same parameters would be faster because
the common ancestor of p and q in the second call would now be either p or q.

Finally, the computational complexity of the node and arc allocation procedures are proportional
to the sizes of newNodesList and parentUpdateList. These sets are composed of canonical elements,
and the number of canonical elements is bounded by |Df |. Hence, in the worst case, these algorithms
run in O(|Df |) for each step 1 ≤ i ≤ n. However, on average, the number of elements in these sets
is usually much lower.

5.1.2 Experimental Results

As emphasized by the last section, both the dilation-generated strategy and the pyramidal
strategy are more efficient than a general approach for building component-hypertrees, with the
counterpart of a more restricted choice of neighborhoods.

For the dilation-based strategy, when the property Bi ⊆ Bi−1 is satisfied, the size of the neigh-
borhoods can grow, at most linearly, for each dimension; this implies that a large number of SEs is
required to connect distant nodes. By contrast, the pyramidal approach reduces the domain in each
dimension geometrically; this implies that a much lower n can be used. This observation, added to
the fact that the pyramidal strategy already has a better computational complexity, indicates that
building the component-hypertree using this approach is also much faster than the dilation-based
strategy.

In order to experimentally corroborate these observations, a set of about 500 random images was
taken from the ICDAR 2017 Robust Reading Challenge Dataset [NYB+17] for time consumption
experiments. These images were divided into 10 subsets I1, . . . , I10, where Ij consists of images with
size between j − 1 and j megapixels (MP). For each image, component-hypertrees using both the
pyramidal hierarchy strategy and the dilation-based strategy were computed. Component-hypertree
computation includes the update of the max-tree, allocation of nodes and arcs and computation of
the attributes number of CCs, height, width and spacing [MAS+19b]. For pyramidal hierarchies,
t = (2, 2) was used and, for dilation-based neighborhoods, Bi was the 2× 2 SE for all 1 ≤ i ≤ n.

For the dilation-based strategy, 3 configurations were used: the first with n = 11, to match the
n used for the pyramidal strategy, and the other two with n = 512. One of these configurations
with n = 512 updates the component-hypertree only at steps 1 ≤ i ≤ n that were powers of 2, to
try to extract similar nodes to those obtained using the hierarchical approach, whereas the other
one updates it at every step.

5.1 ANALYSIS 83

Size(MP)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

1 2 3 4 5 6 7 8 9 10

Pyramidal Dilation (n=11) Dilation(powers of 2) Dilation (n=512)

Time consumption (s)

Figure 5.1: Comparison of times between the pyramidal hierarchy strategy (blue line, n = 11) and the
dilation-based strategy using 3 different configurations: n = 11 (red), n = 512 allocating updating the hypertree
at powers of 2 (yellow) and n = 512 allocating all nodes (green).

For each subset of images, the average time, in seconds, was computed. The implementation
was written in Java and was tested in a i7 2.6GHz processor with 16GB of RAM. The results are
presented in Fig. 5.1.

From the graph, it is possible to see that the pyramidal strategy is about 2.5 times faster
than the dilation-based approach, for this fixed n = 11. However, extraction of nodes with similar
distances to the ones obtained by the pyramidal approach requires the usage of n = 512 when using
the dilation-based strategy, which drastically increases processing time, as shown by the yellow and
green lines in the graph. In fact, for the 10MP images tested, the pyramidal strategy was more than
14 faster than those approaches, and the difference would only increase as the size of the images
increases as well.

A drawback of a geometric growth in the size of the neighborhoods is that many neighborhoods
are skipped, which impacts in loss of precision in terms of distance of merged nodes. In fact, while the
dilation-based strategy can compute the exact Chebyshev distance between two pixels [MAS+19a],
the Chebyshev distance of two pixels that connect at step i using the pyramidal approach can be
any value between (t′)i−2 + 1 up to (t′)i − 1, assuming t = (t′, . . . , t′).

Even so, it is still possible to obtain an estimate of the distance between merged nodes. Ex-
periments performed in about 15 000 nodes extracted from images of the ICDAR database showed
that, for t = (2, 2), the value 2(i−1) is a good estimate of the distance of nodes merged at step i,
2 ≤ i ≤ n. Comparing to the exact values, the estimated distances differed by about 8% on average,
with more of half of the nodes differing by less than 5%, more than 90% of the nodes differing by
less than 25% and about 0.1% of the nodes with a difference of more than 50% compared to their
real value. Moreover, the difference to the exact value tends to decrease as the number of merged
nodes increases.

Even though the computed distance is not exact, this degree of precision can still be useful for
some applications that use distance as a feature. For instance, it is still possible to extract different
scales of objects only by restricting the values of the variance of the distance of the merged nodes.

84 EXPERIMENTS 5.1

One example is shown in Fig. 5.2.

IK (0)DR (0) IV (0)'T (0)

IKE (0.11)DRIVE (0.11)DON'T (0.06)

LIKE (0.29)

DON'T DRIVE LIKE (0.73)

4 4 4 4 42 2 281616
4 4 35 23 3 4 3 3 17 10 3 3Exact dist.

Est. dist.

i

1

2

3

4

5

24

Figure 5.2: Computation of horizontal spacing using the pyramidal approach. In the top row, the exact
horizontal distance between CCs, in pixels, is shown. In the row below, in red, the estimated values are
displayed. For this example, t = (2, 1) is used to merge nodes aligned horizontally, so the estimated distance
is 2i−1. At the bottom, some nodes of the hypertree are depicted, showing how letters are merged as i increases.
Each node is indicated by its content (in black) and its variance of the horizontal spacing between merged
nodes (in red). The displayed value is obtained by dividing the variance of the horizontal spacing by the
average height of the merged nodes, to add scale invariance. Note that the variance of horizontal spacing can
be useful to differentiate words from lines of texts.

Figure 5.3: Extraction of letters, words and lines of text using different thresholds for the variance of the
distance of merged nodes, based on the component-hypertree from Fig. 5.2. For example, by selecting nodes
with variance less than 0.3, words can be extracted (middle column, where elements with the same color
belong to the same node) and, if no threshold is given, then entire lines of text can be obtained (right).

5.1.3 Memory Consumption

In this section, we analyze how much memory is saved by using our minimal representation
of component-hypertrees, compared to the complete representation and a naive strategy that only
removes repeated CCs if they have the same neighborhood index. In other words, in the complete
representation, all CCs of all complete component-trees from A1 to An are stored in memory and,
in this naive representation, only nodes of (non-complete) component-trees are stored.

For these tests, images from the Born Digital set of the ICDAR 2011 [KMM+11] were used,
which consists of a set of 410 images of webpages and e-mail attachments. For each image of this
set, we used a sequence of square neighborhoods A = (A1, . . . ,An), with n = 50, where Ai is
defined using a SE of size (2i + 1) × (2i + 1). Then, we computed the average of the number of
nodes and arcs for each i for the 3 structures: the complete hypertree, the naive implementation
and our minimal representation. The results in Fig 5.4 shows that the minimal representation can
save a considerable amount of memory compared to the other ones. On average, for the cases tested,
we have a saving of about 50% compared to the naive implementation and 80% compared to the
complete hypertree for n = 10. Additionally, it can be seen from the graph that the number of
nodes and arcs remains almost constant in the minimal representation, implying that the numbers

5.2 APPLICATIONS 85

of redundant nodes and arcs tend to increase as n increases. Since these nodes and arcs are still
allocated in the non-minimal hypertrees, the gains in terms of percentage is even greater for higher
values of n.

0 10 20 30 40 50
0

20,000

40,000

60,000

Number of Neighborhoods

N
um

be
r

of
N

od
es

Complete
Naive
Minimal

0 10 20 30 40 50
0

50,000

100,000

150,000

Number of Neighborhoods
N

um
be

r
of

A
rc

s

Complete
Naive
Minimal

Figure 5.4: Left: average number of nodes for each representation for up to 50 neighborhoods. Right: the
same experiments but for the average number of arcs.

5.2 Applications

5.2.1 Segmentation of Words in an Image Containing Text

As shown in Fig. 5.3, based on the assumption that spaces between words are wider than spaces
between letters of a same word, we can develop a strategy to extract words from an image containing
text based on how far apart the CCs are.

Naturally, the results can be optimized with the usage of more attributes. Hence, we chose images
from the ICDAR Born-Digital database, which consists of small images extracted from e-mail and
web pages that contain texts, and the main goal is to segment the words of these images.

For this proof of concept, the following assumptions about the texts were made:

1. Texts have a visually good contrast with the background, and are not very noisy;

2. Letters of the same word have a similar color;

3. Letters are composed of a single CC when using 8-connected neighborhood;

4. Words are aligned on the horizontal axis;

5. Letters of the same word have similar heights;

6. Letters of the same word have a consistent distance among themselves, which should be
smaller than the distance between two letters from different words.

For each of these suppositions, the following design choices were made, respectively:

1. Images with low contrast or that suffered from effects of lightning, noise or uneven background
were not used;

2. Using the component-hypertree. This is an essential assumption when using component-
hypertrees, in order to have nodes that contain words without noise;

3. A1 is the SE that defines 8-connected neighborhood;

86 EXPERIMENTS 5.2

4. Ai for i > 1 only grows horizontally;

5. For each node N of the component-hypertree, we computed their height, the average and the
variance of the heights of their parts;

6. For each node N of the component-hypertree, the following attributes were computed:

(a) κavgdist(N), the average of the distances of all nodes N ′ that are parts of N with i(N ′) =
1, in other words, they are descendants of N with f(N ′) = f(N) and i(N ′) = 1;

(b) κvardist(N), the variance of the distances of all nodes N ′ from the previous item.

Since average and variance are not scale invariant, we decided to normalize these values by using
the following formula:

κnormdist(N) =
κvardist(N)

κavgdist(N)2
(5.1)

Clearly, κnormdist(N) is directly proportional to κvardist(N). In other words, the smaller the
value of κnormdist(N), the better the consistency between the distance of the latters N .

Empirical tests suggest κnormdist(N) ≤ 0.08 is a good threshold to segment words. For nor-
malized height variation, we used a threshold of 0.4, because of the difference of heights within
non-capitalized letters. The normalization was done the same way: we divide variance of the heights
by the average of the heights squared.

Table 5.1 shows same examples of results obtained with this simple strategy. For these tests,
we reduced the number of gray-levels to K = 4 in order to improve performance and reduce noise
from gray-level variation.

5.2 APPLICATIONS 87

Table 5.1: Segmentation of words using our method. In the left, we show the original images and, in the
right, the result of our word segmentation algorithm. Letters with the same color belong to the same node.

5.2.2 Segmentation of Oriental Ideograms

Another application that can take advantage of component-hypertrees is segmentation of Ori-
ental ideograms, such as Chinese, Japanese or Korean characters. Contrary to Latin alphabet, these
ideograms can be composed of small parts that are not connected using 8-connected neighborhood,
but the use of a bigger connectivity may connect these parts in a single node.

Additionally, the following suppositions were made about these types of text:

88 EXPERIMENTS 5.2

1. Texts have a visually good contrast with the background, and are not very noisy;

2. Letters of the same word have a similar color;

3. As stated above, letters are not composed of a single CC when using 8-connected neighbor-
hood;

4. Words can be aligned in both the horizontal axis or the vertical axis;

5. Each letter can be contained in a square shape, and letters from the same word or line of text
fit within squares with similar sides.

Based on these suppositions, we made the following design choices to our application:

1. Images with low contrast or that suffered from effects of lightning, noise or uneven background
were discarded;

2. Using the component-hypertree;

3. A1 is chosen as the SE that defines 8-connected neighborhood, in order to obtain the parts of
a letter, but we do not assume each node is already a complete letter;

4. Ai for i > 1 grows both horizontally and vertically. This is important to both join parts of
the same letter but also because we do not know the orientation of the text;

5. For each node N , we compute the following attribute:

κsquare(N) =

{
true, if 10

14 ≤
κheight(N)
κwidth(N) ≤

14
10

false, otherwise

Using these assumptions, we obtain nodes with adj(N) = n and decompose them into smaller
parts that fit within a square, using the κsquare attribute.

The results for image with horizontal text is shown in Table 5.2. Extracted characters have
their bounding box drawn. Letters without their bounding boxes were selected as candidates but
discarded because they did not fit a square shape.

The images were obtained from the Robust Reading Competition from the training database
for ICDAR 2017, and the regions with text were manually extracted.

5.2 APPLICATIONS 89

Table 5.2: Extraction of Oriental ideograms using our method for texts with horizontal orientation. In the
left we show the original image and in the right we show our results, with each selected node represented by
a color and its bounding box.

The same application, without any modification, can be applied to text with a vertical orienta-
tion, as we show in Table 5.3.

Since we only we use the κsquare attribute, the results are not as robust as our word segmentation
application. The results are noisier, and in some cases, some parts of some ideograms are missing
or merged (for example, the letter 小 was divided in two in the last image from Fig 5.2 and the
letters 銀座 , although recognized individually as candidates for letters, became a single node in
the last image from Fig 5.3 since our threshold is too lenient). Nevertheless, the results obtained
have an acceptable rate of success and can be applied to multiple languages: the first two images
from Table 5.2 have texts in Japanese, Chinese and Korean, all correctly segmented.

90 EXPERIMENTS 5.2

Table 5.3: Extraction of Oriental ideograms using our method for texts with vertical orientation.

Chapter 6

Conclusion

In this chapter, we finish this thesis by presenting perspective works and our conclusions.

6.1 Perspective Works

In terms of perspective works, there are some topics that need to be further investigated. One
such example consists of analyzing other types of neighborhoods similar to hierarchy of partition, but
that uses a downsampling function with a non-integer scale. In this case, the obtained neighborhood
does not consist of a hierarchy of partitions, but the same computational complexity is kept and
the error in terms of computed distance can be reduced. Some experimental results suggest this
approach may work, but further studies would be necessary to understand if important properties
are lost.

Another topic related to the choice of neighborhoods consists of further investigating which
neighborhoods can be generated using the dilation-based approach. In this sense one could, for
example, choose directly which neighborhoods to use when extracting connected components and
the generated sequence would be computed based on the sequence chosen by the user.

Still related to the topic of neighborhoods, it may also be worthy to investigate connections
between different types of neighborhoods. For instance, it is likely that dilation-generated neighbor-
hoods are as a subset of mask-based neighborhoods, but with additional properties. In this sense,
if a more efficient algorithm for mask-based neighborhoods is developed, it could also benefit the
algorithm for dilation-based neighborhoods.

Attribute computation and applications were also not explored in-depth in this manuscript. In
particular, many topics related to component-trees can be extended to component-hypertrees, such
as: development of new attributes that can be efficiently computed, pruning or removal of nodes and
strategies for node selection based on computed attributes. This last problem seems particularly
important because, since component-hypertrees are directed acyclic graphs, two nodes can intersect
without one being included in the other. This issue does not happen in usual component-trees, so
new strategies need to be developed to deal with this case.

Finally, a final topic that is worth considering is the extension of the developed theory for high-
dimensional images or general graphs. The first case seems straightforward, but the latter does not
seem to be an easy task, since many properties of gray-level images and the neighborhoods were
used to develop the algorithms. However, it may be possible to extend the theory for other domains
that share similar properties to the ones used in the proposed algorithms.

91

92 CONCLUSION

6.2 Final Words

This thesis dealt with the problem of building component-hypertrees of gray-level images ac-
cording to a sequence of increasing neighborhoods. In essence, component-hypertrees can be seen
as an extension of component-trees for multiple neighborhoods. This means that, if many neighbor-
hoods are used, a component-hypertree can take a long time to be built and use too much memory
to be stored. Therefore, in this manuscript, we focused on designing efficient algorithms and data
structures for component-hypertree computation, storage and manipulation.

In order to do that, we first presented a theoretical and algorithmic background in component-
trees and explained how to modify and extend these concepts to obtain an approach that is optimized
for component-hypertree construction. To optimize our algorithm even further, it was noted that
the computational complexity was directly tied to the neighborhoods used to extract the nodes, so
an additional section was dedicated to explore different choices of neighborhoods and explain how
they can be optimized for this particular problem. This led to the development of dilation-generated
neighborhoods and neighborhoods based on hierarchy of partitions. Then, to reduce memory usage,
we proposed the minimal-hypertrees, an optimized data structure that avoids storing repeated nodes
and also removes most arcs that give redundant information regarding inclusion relation between
nodes.

To corroborate the efficiency of the proposed approaches, we presented analyses of computation
complexity, memory usage and showed some experimental results, proving that our algorithms
can save a considerable amount of time and memory when compared to strategies that do not
use the optimizations proposed in this manuscript. It is also worth mentioning that the proposed
methods comprise three publications accepted in some of the most important conferences and
journals [MAS+19b, MAS+19a, MPAH20] in the field of Mathematical Morphology, which further
endorses the effectiveness of our strategies.

Finally, at the end of this thesis, a text-extraction application was presented. This is an example
of a problem where component-hypertrees are particularly suitable, since texts are usually clustering
of smaller objects that can be merged together by considering multiple increasing neighborhoods.
Then, we conclude this manuscript by presenting some perspective works and with these final words.

Bibliography

[BGL+] Christophe Berger, Thierry Géraud, Roland Levillain, Nicolas Widynski, Anthony Bail-
lard and Emmanuel Bertin. Effective component tree computation with application to
pattern recognition in astronomical imaging. In 2007 IEEE International Conference
on Image Processing, volume 4. IEEE. 2, 20

[BNG02] Ulisses Braga-Neto and John Goutsias. Connectivity on complete lattices: New results.
Computer Vision and Image Understanding, 85(1):22–53, 2002. 3, 7

[CG14] Edwin Carlinet and Thierry Géraud. A comparative review of component tree com-
putation algorithms. IEEE Transactions on Image Processing, 23(9):3885–3895, 2014.
2

[CG15] Edwin Carlinet and Thierry Géraud. MToS: A tree of shapes for multivariate images.
IEEE Transactions on Image Processing, 24(12):5330–5342, 2015. 4

[CO15] Juan Climent and Luiz S. Oliveira. A new algorithm for number of holes attribute
filtering of grey-level images. Pattern Recognition Letters, 53:24–30, 2015. 3

[Gra71] Stephen B. Gray. Local properties of binary images in two dimensions. IEEE Trans-
actions on Computers, 100(5):551–561, 1971. 2

[Jon99] Ronald Jones. Connected filtering and segmentation using component trees. Computer
Vision and Image Understanding, 75(3):215–228, 1999. 1, 2

[KMM+11] Dimosthenis Karatzas, Sergi R. Mestre, Joan Mas, Farshad Nourbakhsh and Partha P.
Roy. ICDAR 2011 robust reading competition - challenge 1: Reading text in born-digital
images (web and email). In 2011 International Conference on Document Analysis and
Recognition, pages 1485–1490, Sep. 2011. 84

[MAH15] Alexandre Morimitsu, Wonder A. L. Alves and Ronaldo F. Hashimoto. Incremental and
efficient computation of families of component trees. In International Symposium on
Mathematical Morphology and Its Applications to Signal and Image Processing, pages
681–692. Springer, 2015. 3, 4, 70, 71

[MAS+19a] Alexandre Morimitsu, Wonder A. L. Alves, Dennis J. Silva, Charles F. Gobber and
Ronaldo F. Hashimoto. Incremental attribute computation in component-hypertrees.
In International Symposium on Mathematical Morphology and Its Applications to Signal
and Image Processing, pages 150–161, 2019. 4, 39, 83, 92

[MAS+19b] Alexandre Morimitsu, Wonder A. L. Alves, Dennis J. Silva, Charles F. Gobber and
Ronaldo F. Hashimoto. Minimal component-hypertrees. In International Conference
on Discrete Geometry for Computer Imagery, pages 276–287, 2019. 4, 39, 82, 92

[MDA+08] Petr Matas, Eva Dokladalova, Mohamed Akil, Thierry Grandpierre, Laurent Najman,
Martin Poupa and Vjaceslav Georgiev. Parallel algorithm for concurrent computation
of connected component tree. In International Conference on Advanced Concepts for
Intelligent Vision Systems, pages 230–241. Springer, 2008. 2

93

94 BIBLIOGRAPHY

[MG00] Pascal Monasse and Frédéric Guichard. Fast computation of a contrast-invariant image
representation. IEEE Transactions on Image Processing, 9(5):860–872, 2000. 3

[MPAH20] Alexandre Morimitsu, Nicolas Passat, Wonder A.L. Alves and Ronaldo F. Hashimoto.
Efficient component-hypertree construction based on hierarchy of partitions. Pattern
Recognition Letters, 135:30–37, 2020. 4, 39, 75, 92

[NC06] Laurent Najman and Michel Couprie. Building the component tree in quasi-linear
time. IEEE Transactions on Image Processing, 15(11):3531–3539, 2006. 2, 20

[NM12] Lukáš Neumann and Jiří Matas. Real-time scene text localization and recognition. In
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages
3538–3545. IEEE, 2012. 3

[NYB+17] Nibal Nayef, Fei Yin, Imen Bizid, Hyunsoo Choi, Yuan Feng, Dimosthenis Karatzas,
Zhenbo Luo, Umapada Pal, Christophe Rigaud, Joseph Chazalon et al. Icdar2017
robust reading challenge on multi-lingual scene text detection and script identification-
rrc-mlt. In 2017 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR), volume 1, pages 1454–1459. IEEE, 2017. 82

[OW07a] Georgios K. Ouzounis and Michael H. F. Wilkinson. Mask-based second-generation
connectivity and attribute filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(6):990–1004, 2007. 3

[OW07b] Georgios K. Ouzounis and Michael H. F. Wilkinson. A parallel implementation of the
dual-input max-tree algorithm for attribute filtering. In ISMM, pages 449–460, 2007.
27

[PN11] Nicolas Passat and Benoît Naegel. Component-hypertrees for image segmentation. In
International Symposium on Mathematical Morphology and Its Applications to Signal
and Image Processing, volume 6671, pages 284–295. Springer, 2011. 1, 3, 4, 12

[PN14] Nicolas Passat and Benoît Naegel. Component-trees and multivalued images: Struc-
tural properties. Journal of Mathematical Imaging and Vision, 49(1):37–50, 2014. 4

[PNK19] Nicolas Passat, Benoît Naegel and Camille Kurtz. Component-graph construction.
Journal of Mathematical Imaging and Vision, 61(6):798–823, 2019. 4

[PNR+11] Nicolas Passat, Benoît Naegel, François Rousseau, Mériam Koob and Jean-Louis Di-
etemann. Interactive segmentation based on component-trees. Pattern Recognition,
44(10):2539–2554, 2011. 3

[SAMH16] Dennis J. Silva, Wonder A. L. Alves, Alexandre Morimitsu and Ronaldo F. Hashimoto.
Efficient incremental computation of attributes based on locally countable patterns in
component trees. In 2016 IEEE International Conference on Image Processing (ICIP),
pages 3738–3742. IEEE, 2016. 3

[Ser98] Jean Serra. Connectivity on complete lattices. Journal of Mathematical Imaging and
Vision, 9(3):231–251, 1998. 3

[SG00] Philippe Salembier and Luis Garrido. Binary partition tree as an efficient representation
for image processing, segmentation, and information retrieval. IEEE Transactions on
Image Processing, 9(4):561–576, 2000. 3

[SOG98] Philippe Salembier, Albert Oliveras and Luis Garrido. Antiextensive connected op-
erators for image and sequence processing. IEEE Transactions on Image Processing,
7(4):555–570, 1998. 1, 2

BIBLIOGRAPHY 95

[Soi07] P. Soille. On genuine connectivity relations based on logical predicates. In 14th Inter-
national Conference on Image Analysis and Processing, pages 487–492, 2007. 3

[Son07] Yuqing Song. A topdown algorithm for computation of level line trees. IEEE Trans-
actions on Image Processing, 16(8):2107–2116, 2007. 3

[SW09] Philippe Salembier and Michael H. F. Wilkinson. Connected operators. IEEE Signal
Processing Magazine, 26(6), 2009. 3

[Tar75] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975. 2, 15

[WGH+08] Michael H. F. Wilkinson, Hui Gao, Wim H. Hesselink, Jan-Eppo Jonker and Arnold
Meijster. Concurrent computation of attribute filters on shared memory parallel ma-
chines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10):1800–
1813, 2008. 2

	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Overview
	Related Works
	Strategies to Build the Component Tree
	Efficient Computation of Attributes
	Connectivity Used to Obtain the CCs
	Other Types of Graphs Used to Represent Images

	Text Organization

	Theoretical Background
	Sets and Partitions
	Images
	Neighborhood Relations
	Graphs
	General Definitions
	Trees and Directed Acyclic Graphs
	Images as Graphs

	Connectedness in Images
	Binary Images
	Gray-Level Images

	Connectedness in Increasing Neighborhoods
	Component-Hypertrees

	Algorithmic Background
	Representing Forests as Arrays
	Labeling Connected Components in Binary Images
	Labeling Connected Components in Gray-Level Images
	Canonical Elements and Representatives
	Ordered parent Construction
	Unordered parent Construction
	Parent Change Properties

	Proposed Method
	Component-Hypertree Construction
	General Algorithm

	Compact Component-Hypertrees
	Compact Nodes
	Compact Arcs
	Equivalence between Complete-Hypertrees and Compact-Hypertrees
	Arc Redundancy
	Properties of Compact Arcs

	Minimal-Hypertrees
	Which Compact Arcs are Minimal Arcs
	Vertical Arcs
	Backward Arcs
	Horizontal Arcs
	Diagonal Arcs

	Algorithm for Minimal Hypertree Construction
	Algorithm for Compact Node Allocation
	Algorithm for Minimal Arc Allocation
	Algorithm for Arc Allocation
	Arcs Allocated by the Algorithm are Minimal Arcs

	Parent and Composite Nodes in Minimal-Hypertrees
	Parent Nodes in Minimal-Hypertrees
	Composite Nodes in Minimal-Hypertrees

	Choice of Neighborhoods
	Dilation-generated Neighborhoods
	Neighborhoods Based on Hierarchies of Partitions
	Pyramidal Hierarchy

	Attributes
	Statistical Measures of Clusters of Nodes
	Attributes Between Nodes

	Experiments
	Analysis
	Complexity Analysis
	Experimental Results
	Memory Consumption

	Applications
	Segmentation of Words in an Image Containing Text
	Segmentation of Oriental Ideograms

	Conclusion
	Perspective Works
	Final Words

	Bibliography

