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minha mãe, Roseli, que sempre estiveram ao meu lado e me apoiaram. Serei eternamente grato
por tudo o que fizeram por mim.

i



ii



Acknowledgements

I would like to thank Ernesto for his attention, motivation and dedication in guiding me
in this work.

I thank Professors Mart́ınez, Reinaldo, Sandra, and Yoshiko for their valuable suggestions
and comments, which have contributed to the improvement of this thesis.

Also I thank my friends and lab mates from IME for the talks, laughter, games and lunches.
Most of all, I thank my family, especially my father, Antonio Carlos, and my mother,

Roseli, who have always been with me and supported me. I will be eternally grateful for
everything they have done for me.

iii



iv



Resumo

LOBATO, R. D. Empacotamento de elipsoides. 2015. Tese (Doutorado) - Instituto de
Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, 2015.

O problema de empacotamento de elipsoides consiste em arranjar uma dada coleção de
elipsoides dentro de um determinado conjunto. Os elipsoides podem ser rotacionados e translada-
dos e não podem se sobrepor. Um caso particular desse problema surge quando os elipsoides
são bolas. O problema de empacotamento de bolas tem sido alvo de intensa pesquisa teórica
e experimental. Em particular, muitos trabalhos têm abordado esse problema com ferramen-
tas de otimização. O problema de empacotamento de elipsoides, por outro lado, começou a
receber mais atenção apenas recentemente. Esse problema aparece em um grande número de
aplicações práticas, como o projeto de materiais cerâmicos de alta densidade, na formação e
crescimento de cristais, na estrutura de ĺıquidos, cristais e vidros, no fluxo e compressão de
materiais granulares e vidros, na termodinâmica e cinética da transição de ĺıquido para cristal
e em ciências biológicas, na organização de cromossomos no núcleo de células humanas. Neste
trabalho, tratamos do problema de empacotamento de elipsoides dentro de conjuntos compactos
do ponto de vista de otimização. Introduzimos modelos de programação não-linear cont́ınuos e
diferenciáveis e algoritmos para o empacotamento de elipsoides no espaço n-dimensional. Apre-
sentamos dois modelos diferentes para a não-sobreposição de elipsoides. Como esses modelos
têm números quadráticos de variáveis e restrições em função do número de elipsoides a serem
empacotados, também propomos um modelo com variáveis impĺıcitas que possui uma quantidade
linear de variáveis e restrições. Também apresentamos modelos para a inclusão de elipsoides em
semi-espaços e dentro de elipsoides. Através da aplicação de uma estratégia multi-start simples
combinada com uma escolha inteligente de pontos iniciais e um resolvedor para otimização local
de programas não-lineares, apresentamos experimentos numéricos que mostram as capacidades
dos modelos propostos.

Palavras-chave: Empacotamento de elipsoides, programação não-linear, modelos matemáticos,
algoritmos, experimentos computacionais.
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Abstract

LOBATO, R. D. Ellipsoid packing. 2015. Doctoral Thesis - Institute of Mathematics and
Statistics, University of São Paulo, São Paulo, 2015.

The problem of packing ellipsoids consists in arranging a given collection of ellipsoids
within a particular set. The ellipsoids can be freely rotated and translated, and must not over-
lap each other. A particular case of this problem arises when the ellipsoids are balls. The
problem of packing balls has been the subject of intense theoretical and empirical research. In
particular, many works have tackled the problem with optimization tools. On the other hand,
the problem of packing ellipsoids has received more attention only in the past few years. This
problem appears in a large number of practical applications, such as the design of high-density
ceramic materials, the formation and growth of crystals, the structure of liquids, crystals and
glasses, the flow and compression of granular materials, the thermodynamics of liquid to crystal
transition, and, in biological sciences, in the chromosome organization in human cell nuclei. In
this work, we deal with the problem of packing ellipsoids within compact sets from an optimiza-
tion perspective. We introduce continuous and differentiable nonlinear programming models and
algorithms for packing ellipsoids in the n-dimensional space. We present two different models
for the non-overlapping of ellipsoids. As these models have quadratic numbers of variables and
constraints, we also propose an implicit variables models that has a linear number of variables
and constraints. We also present models for the inclusion of ellipsoids within half-spaces and
ellipsoids. By applying a simple multi-start strategy combined with a clever choice of starting
guesses and a nonlinear programming local solver, we present illustrative numerical experiments
that show the capabilities of the proposed models.

Keywords: Ellipsoid packing, nonlinear programming, mathematical models, algorithms, nu-
merical experiments.
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Chapter 1

Introduction

In a packing problem, we are given a collection of items (identical or non-identical sets) and
a set called container. Each item can be translated and possibly rotated. The problem consists
in arranging the items within the container and without overlap. In other words, each item must
be included in the container and the items must not overlap each other, that is, the intersection
of the interiors of any pair of items must be empty. The former type of restrictions is called
containment constraints and the latter is called non-overlapping constraints. In the present
work, the items to be packed are ellipsoids in Rn and the container can be either a polyhedron
or an ellipsoid. A particular case of the ellipsoid packing problem arises when the items to be
packed are balls. The problem of packing balls has been the subject of intense theoretical and
empirical research. In particular, many works have tackled the problem with optimization tools.
See, for example, [6, 9, 17, 18, 19, 22, 37, 53, 54, 55, 56] and the references therein. On the
other hand, the problem of packing ellipsoids has received more attention only in the past few
years. This problem appears in a large number of practical applications, such as the design
of high-density ceramic materials, the formation and growth of crystals [21, 49], the structure
of liquids, crystals and glasses [4], the flow and compression of granular materials [24, 34, 35],
the thermodynamics of liquid to crystal transition [1, 20, 48], and, in biological sciences, in the
chromosome organization in human cell nuclei [57].

The main problem when arranging the ellipsoids inside the container is to avoid the overlap
between the ellipsoids. Consider the particular case where the ellipsoids are balls. In this case,
there is a simple condition for two balls not to overlap. Suppose that one ball has radius ri
and is centered at ci and that another ball has radius rj ans is centered at cj . A necessary
and sufficient condition for these two balls not to overlap is that the distance between their
centers must be at least the sum of their radius, that is ‖ci − cj‖2 ≥ ri + rj . However, there
is no known simple condition for avoiding the overlap of general ellipsoids. Conditions for a
ball to be contained in a set can also be very simple depending on the set. For certain types of
containers, these conditions can be written as a set of constraints applied to the center of the
ball and involving a resized container. For example, the necessary and sufficient condition for
a ball with radius r centered at c to be contained within a ball with radius R centered at the
origin is ‖c‖2 ≤ R − r, that is, the center c must belong to the ball with radius R − r centered
at the origin. Again, there is no known simple condition for ensuring that an ellipsoid be inside

1



a ball.

In 1611, in an essay entitled “De Nive Sexangula” (“On the Six-Cornered Snowflake”),
Johannes Kepler described an arrangement of identical balls and conjectured that no other
arrangement could be tighter than that one [29]. This arrangement was an answer to the
problem of stacking cannonballs on the ships’ deck in the most efficient way. In this type of
arrangement, the density (ratio of the volume occupied by the balls to the total volume) reached
by identical balls arranged in the three-dimensional space is π/

√
18 (approximately 0.74048).

This density is achieved, for example, when the balls are arranged according to the face-centered
cubic lattice or the hexagonal close-packing. In 1998, nearly 400 years after Kepler formulated
his conjecture, Thomas C. Hales managed to prove it with the help of computational methods.
His proof was disclosed in a series of articles, the first one being published in 2005 [28].

Birgin et al. [7] consider the problem of packing circles within ellipses. Although the
condition for a circle to be inside another circle is very simple, the condition for a circle to
be inside an ellipse may not be. In order to develop conditions under which a circle is inside
an ellipse, they have introduced a new ellipse-based system of coordinates. This system of
coordinates is based on a reference ellipse and provides a closed-form expression to compute the
distance of an arbitrary point to the frontier of the reference ellipse. Based on this system of
coordinates, a continuous and differentiable nonlinear programming formulation for the problem
of packing circle within an ellipse was proposed.

Donev et al. [23] analyse the density of three-dimensional ellipsoid packings. On the one
hand, experiments with M&M’s Milk Chocolate Candies (registered trademark of Mars, Inc.)
are performed. Two varieties of the candies were used: mini and regular. Their shapes are very
similar to oblate ellipsoids. The minis have semi-axis lengths 0.4625 ± 0.0055cm and 0.2465 ±
0.009cm, while the regular ones have semi-axis lengths 0.67 ± 0.01cm and 0.3465 ± 0.009cm.
A 5-liter round flask was filled up with approximately 23,000 minis and 7,000 regular candies
(separately). The density found in both experiments was about 0.685. On the other hand, a
simulation technique that generalises the Lubachevsky-Stillinger sphere-packing algorithm [41]
is proposed. Numerical experiments with 1,000 ellipsoids are presented. For ellipsoids with
semi-axis lengths a = α−1, b = 1 and c = α with α ≈ 1.3, the density approaches 0.74. Since
the main subject of the work is to analyse the density of “jammed disordered packings”, the
computer-aided simulations do not confine the ellipsoids to a compact container (but to a box
with periodic boundary conditions) and optimization procedures are not employed.

Uhler and Wright [57] dealt with a problem related to the chromosome organization in the
human cell nucleus. The problem is to arrange ellipsoids inside a container (with the shape of an
ellipsoid) so as to minimize some measure of total overlap between ellipsoid pairs. The selected
overlap measure was the sum of the lengths of the principal semi-axes of the largest ellipsoid
that can be inscribed in the intersection of the ellipsoids. To solve this problem, they proposed
a hard-to-solve bilevel programming model in which the lower-level problem is a semidefinite
programming problem. The upper-level problem is to position and orient the ellipsoids in the
container so as to minimize the maximum overlap between the ellipsoids; while the lower-level
problem is a semidefinite program which aims at calculating the overlap measure.

Up to our knowledge, only five very recent works in the literature exploit mathemati-
cal programming formulations and optimization to deal with the problem of packing ellipses
or ellipsoids within rectangular containers. These are the works by Galiev and Lisafina [26]

2



(2013), Kallrath and Rebennack [38] (2014), Kallrath [36] (2015), Stoyan et al. [52] (2015), and
Pankratov et al. [47] (2015).

Galiev and Lisafina [26] considered the two-dimensional problem of packing the maximum
possible number of identical ellipses within a given rectangle. They restricted the problem to
the case where the ellipses are orthogonally oriented, that is, their axes are parallel to the axes
of the rectangle. To simplify the problem, the centers of the ellipses are also required to belong
to a given finite set of points as follows. Two finite sets of points lying in the container are
constructed, so that the centers of the ellipses can only be placed on points that belong to one
of these sets. If the center of an ellipse is placed on a point of the first set, then its major axis
is parallel to the x-axis. On the other hand, if the center of an ellipse is placed on a point of
the second set, then its major axis is parallel to the y-axis. These two sets are not required to
be disjoint. Due to these assumptions, the authors were able to derive conditions under which
two orthogonally oriented ellipses do not overlap and an integer linear programming model for
the problem was presented. Binary variables were used to select the points where the centers
of the ellipses should be placed and the objective was to maximize the sum of these variables
subject to (linear) non-overlapping constraints. Galiev and Lisafina also presented a heuristic
algorithm to deal with a possibly large number of variables. At each step of the algorithm, a few
layers of ellipses is packed in a portion of the rectangle by solving the proposed integer model,
taking into account previously packed ellipses. They have used CPLEX to solve the model and
presented experiments with packings of less than seventy ellipses.

Kallrath and Rebennack [38] dealt with the two-dimensional problem of packing a fixed
number of ellipses within a rectangle while minimizing the area of the container. The authors pre-
sented a non-convex nonlinear programming formulation for the problem. The non-overlapping
constraints are based on separating lines. For each pair of ellipses, there is an associated line
which forces the ellipses to lie on opposite half-planes determined by that line. To ensure that
a certain ellipse be on one side of the separating line, the point on the boundary of that ellipse
which is closest to the separating line is computed. Then, it is required that the distance be-
tween the center of the ellipse and the separating line be greater than or equal to the distance
from the center of the ellipse to the line that is tangent to that point on the boundary. The
authors derived closed-form solutions for those distances. To fit an ellipse inside the container,
it is required that the least rectangle that contains the ellipse and have sides parallel to the
sides of the container must be inside the container. This formulation has a quadratic number
of variables and constraints on the number of ellipses to be packed. An equivalent non-convex
quadratic model was also presented, which was more suitable considering the available optimiza-
tion solvers. Kallrath and Rebennack also included three sets of symmetry breaking constraints.
The first one requires that one of the ellipses must have its center in the first quadrant of the
container. A second set of constraint imposes an order on the centers of identical ellipses with
respect to the lower left corner of the container. The last set of constraints is responsible for
moving the center of each ellipse towards the lower left corner of the container. The authors
also presented a mixed-integer nonlinear programming extension of the proposed model. In
this formulation, the container is partitioned into a rectangular grid so that the center of each
ellipse is uniquely assigned to one of the cells of this grid. Binary variables are used to conduct
this assignment. The number of binary variables introduced is equal to the number of ellipses
times the number of cells in the grid. Lower and upper bounds on the area of the container

3



are computed by packing circles instead of the ellipses. Lower bounds are obtained by packing
circles whose radii are the length of the semi-minor axes of the ellipses and upper bounds are
computed by packing circles whose radii are the length of the semi-major axes of the ellipses.
The authors have developed two heuristic algorithms where the ellipses are gradually packed.
Both of them keep the width of the container fixed while the length of the container is mini-
mized. The first algorithm considers all possible sequences of the set of ellipses to be packed
and, for each sequence, it works as follows. At each step, the centers and angles of previous
packed ellipses are fixed, the next (up to) k ellipses of the sequence are selected to be packed
and the length of the container is minimized. After this subset is packed, the centers and angles
of all ellipses packed so far are unfixed and a global optimization solver is used to improve this
solution. The procedure continues until all ellipses are packed. The second algorithm is similar.
However, at each step, instead of fixing all previous ellipses packed, they are removed from the
current subproblem except for the k right most ellipses. The analysis of the numerical experi-
ments presented in [38] allow us to conclude that the state-of-the-art global optimization solvers
BARON [51], LindoGlobal [39], and GloMIQO [45], available within the GAMS platform, were
unable to find global solutions for instances with more than 4 ellipses (when restricted to a
maximum of 5 hours of CPU time). For larger instances, the authors have used the heuristic
methods and numerical experiments with up to 100 ellipses were presented.

The methodology introduced in [38] for packing ellipses within rectangles of minimum
area was extended by Kallrath [36] to tackle the problem of packing ellipsoids within rectan-
gular containers of minimum volume. The non-overlapping constraints are based on separating
hyperplanes. Nonlinear programming models were proposed and tackled by global optimization
methods. Instances with up to 100 ellipsoids were considered, but, as well as in the two-
dimensional case [38], state-of-the-art global optimization solvers available within GAMS were
unable to find optimal solutions and only feasible points are reported.

The problem of placing a given set of ellipses within a rectangular container of minimal
area was considered by Stoyan et al. [52]. Nonlinear programming models were proposed by
considering “quasi-phi-functions” that are an extension of the phi-functions that were extensively
used in the literature to model a large variety of packing problems (see, for example, [53, 54, 55,
56] and the references therein). Using ad hoc initial guesses, instances with up to 120 ellipses
were tackled by a multi-start strategy combined with a local nonlinear programming solver.
In [47], the methodology proposed in [52] is extended to deal with the problem of packing
spheroids within a rectangular container of minimal volume and numerical experiments with up
to 12 spheroids are presented.

1.1 The problem statement

An ellipsoid in Rn is a set of the form E = {x ∈ Rn | (x− c)>M−1(x− c) ≤ 1}, where M ∈
Rn×n is a symmetric and positive definite matrix. Vector c ∈ Rn is the center of the ellipsoid.
The eigenvectors of M−1 determine the principal axes of the ellipsoid and the eigenvalues of
M

1
2 are the lengths of the semi-axes of the ellipsoid. If M is a positive multiple of the identity

matrix, then the ellipsoid is a ball. More specifically, if M = r2In for some r > 0, then the
ellipsoid is a ball with radius r. An ellipsoid in a two-dimensional space is also called an ellipse.
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Figure 1.1(a) shows an ellipse and Figure 1.1(b) illustrates an ellipsoid in a three-dimensional
space.

c

ab

x1

x2

x1

x3

x2

(a) (b)

Figure 1.1: (a) An ellipse centered at c with semi-axes lengths a and b. (b) Illustration of an
ellipsoid in a three-dimensional space.

Let E = {x ∈ Rn | (x−c)>M(x−c) ≤ 1}, where M ∈ Rn×n. We denote by ∂E the frontier
of E , i.e., ∂E = {x ∈ Rn | (x − c)>M(x − c) = 1}. We denote by int(E) the interior of E , i.e.,
int(E) = {x ∈ Rn | (x − c)>M(x − c) < 1}. We say that two ellipsoids overlap if there exists a
point in the interior of one of the ellipsoids that belongs to the other ellipsoid. We say that two
ellipsoids touch each other if they do not overlap and there exists a point that belongs to the
frontier of both ellipsoids.

In this work, we deal with the problem of packing ellipsoids in two- and three-dimensional
spaces. We can state this problem as follows. Given ellipsoids Ē1, . . . , Ēm in Rn and a set C ⊂ Rn,
that we call a container from now on, we want to find ellipsoids E1, . . . , Em such that

1. Ei is obtained by rotating and translating ellipsoid Ēi for all i ∈ {1, . . . ,m};

2. int(Ei) ∩ int(Ej) = ∅ for all i, j ∈ {1, . . . ,m} with i 6= j;

3. Ei ⊆ C for each i ∈ {1, . . . ,m}.

The first constraint states that we can only rotate and translate the given ellipsoids. The
second constraint says that the ellipsoids cannot overlap. The third constraint requires that
each ellipsoid be inside the container. This is a feasibility problem whose variables are the
center and angles of rotation of each ellipsoid. We also deal with optimization problems such as
minimizing the volume of the container or packing the maximum possible number of ellipsoids
into a given container.

It is easy to determine whether two balls overlap. If the distance between the centers
of the balls is less than the sum of their radius then the balls overlap. Otherwise, they do not
overlap. In the case of ellipsoids, however, there is no simple way to verify whether two ellipsoids
overlap. For each i ∈ {1, 2}, consider the ellipsoid Ei = {x ∈ Rn | (x − ci)>M−1i (x − ci) ≤ 1}.
Ellipsoids E1 and E2 overlap if and only if there exists x ∈ Rn such that

(x− c1)>M−11 (x− c1) < 1 and (x− c2)>M−12 (x− c2) < 1.
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In order to guarantee that ellipsoids E1 and E2 do not overlap, we will apply a linear transfor-
mation to both ellipsoids that converts the first ellipsoid into a ball E11 with radius r and the
second ellipsoid into another ellipsoid E12. We will show that E1 and E2 overlap if and only if
E11 and E12 overlap.

For E11 and E12 not to overlap, the distance between the center c′1 of E11 and the ellipsoid
E12 must be greater than or equal to r. Nevertheless, there is no known formula for this distance
and it may be necessary to solve an optimization problem in order to find it. Thus, to find this
distance efficiently, we will propose a representation for the center of the ball E11 in terms of
the ellipsoid E12 so that the distance between c′1 and E12 be easily obtained, without the need
to solve an optimization problem.

1.2 Organization

This thesis is organized as follows. In Chapter 2, we derive two continuous and differ-
entiable nonlinear programming models for the non-overlapping of ellipsoids. The first model,
presented in Section 2.2.1, is based on a transformation presented in Section 2.1, which converts
an ellipsoid into a ball. The second model is introduced in Section 2.2.2 and is based on sep-
arating hyperplanes. Next, in Section 2.3 we propose continuous and differentiable nonlinear
programming models for the inclusion of an ellipsoid within an ellipsoid and within a half-space.
Section 2.4 closes this chapter with some numerical experiments that show the capabilities of
the introduced models.

Both non-overlapping models introduced in Chapter 2 have quadratic numbers of variables
and constraints on the number of ellipsoids to be packed. In Chapter 3, we propose a nonlinear
programming model that contains a linear number of variables and constraints. This model is
a modification of the first non-overlapping model. The constraints are grouped into a linear
number of constraints. Although these constraints are formed by a quadratic number of terms,
a clever algorithm can be used to efficiently evaluate all constraints. The variables that are
associated with every pair of ellipsoids become implicit variables, so that they have their values
computed only when they are needed. This model is twice-differentiable but is not everywhere
continuous on the domain. However, since it is discontinuous only on a zero measure subset of
the domain, it can be solved in practice by using derivative-dependent methods as it is shown
in Section 3.5.

Although the model proposed in Chapter 3 can be used to solve bigger problems than the
first model, it also has its limitations and is not suitable for large-scale problems. In Chapter 4,
we present a model and an algorithm for solving large-scale problems of packing the maximum
number of ellipsoids within a fixed container. The model is based on the first non-overlapping
model. By removing constraints that should never be active at a feasible solution and adding
few constraints to replace them, we were able to keep the number of variables and constraints
low, thus allowing the resolution of the larger problems.

In Chapter 5, we draw some conclusions and provide ideas for future work. Finally, in
Appendix A, we show the first order derivatives of the transformation based non-overlapping
model, and the first and second derivatives of the ball containment model. We also show how
to compute the first and second order derivatives of the implicit variables model. As we will
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see in Chapter 3, the values of the implicit variables depend on the solution of an optimization
problem so that the computation of the derivatives of the implicit variables is not a trivial task.

The computer implementation of the models and methods introduced in this thesis, as
well as the reported solutions, are freely available for downloading at http://www.ime.usp.br/

~lobato/.
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Chapter 2

Nonlinear programming models

In this chapter, we present two continuous and differentiable nonlinear programming mod-
els for the non-overlapping of ellipsoids. The first model, introduced in Section 2.2.1, is based on
a transformation described in Section 2.1. The second model is based on separating hyperplanes
and is introduced in Section 2.2.2. Also, in Sections 2.3.1 and 2.3.2, we present continuous and
differentiable nonlinear programming models for an ellipsoid to be contained in an ellipsoid and
a half-space, respectively.

2.1 Transformations of ellipsoids

Consider a rotation matrix Q ∈ Rn×n and the transformation R : Rn → Rn defined by
R(x) = Qx + c, where c ∈ Rn. In a two-dimensional space, we can represent a rotation matrix
as

Q(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (2.1)

which rotates a point counterclockwise through an angle θ. In a three-dimensional space, we
can represent a rotation matrix as

Q(ψ, θ, φ) =

 cos θ cosψ sinφ sin θ cosψ − cosφ sinψ sinφ sinψ + cosφ sin θ cosψ
cos θ sinψ cosφ cosψ + sinφ sin θ sinψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 ,

(2.2)

which rotates a point through an angle φ about the x-axis, through an angle θ about the y-axis,
and through an angle ψ about the z-axis. These rotations appear clockwise when the axis about
which they occur points toward the observer. Consider the ellipsoid E = {x ∈ Rn | x>M−1x ≤
1}, where M is a symmetric and positive definite matrix. After applying the transformation R

9



to the elements of E (that is centered at the origin), we obtain the set

Ē = {x ∈ Rn | x = R(z), z ∈ E}
= {x ∈ Rn | x = Qz + c, z ∈ E}
= {x ∈ Rn | z = Q>(x− c), z ∈ E}
= {x ∈ Rn | (x− c)>QM−1Q>(x− c) ≤ 1}.

The set Ē is an ellipsoid, since QM−1Q> is symmetric and positive definite. In fact, the trans-
formation R is an isometry, since it is a rotation followed by a translation.

Now, consider the ellipsoids

Ei = {x ∈ Rn | (x− ci)>QiP−1i Q>i (x− ci) ≤ 1} and

Ej = {x ∈ Rn | (x− cj)>QjP−1j Q>j (x− cj) ≤ 1},
(2.3)

where Pi and Pj are positive definite diagonal matrices, and Qi and Qj are rotation matrices.
Consider the linear transformation Ti : Rn → Rn defined by

Ti(x) = P
− 1

2
i Q>i x. (2.4)

Let Eii be the set obtained when the transformation Ti is applied to every element of Ei, i.e.,

Eii = {x ∈ Rn | x = Ti(z), z ∈ Ei}

= {x ∈ Rn | x = P
− 1

2
i Q>i z, z ∈ Ei}

= {x ∈ Rn | z = QiP
1
2
i x, z ∈ Ei}

= {x ∈ Rn | (QiP
1
2
i x− ci)

>QiP
−1
i Q>i (QiP

1
2
i x− ci) ≤ 1}

= {x ∈ Rn | (x− P−
1
2

i Q>i ci)
>(x− P−

1
2

i Q>i ci) ≤ 1}.

(2.5)

Note that Eii is a ball with unitary radius centered at P
− 1

2
i Q>i ci. By applying the transformation

Ti to the elements of Ej , we obtain the set

Eij = {x ∈ Rn | x = Ti(z), z ∈ Ej}

= {x ∈ Rn | x = P
− 1

2
i Q>i z, z ∈ Ej}

= {x ∈ Rn | (QiP
1
2
i x− cj)

>QjP
−1
j Q>j (QiP

1
2
i x− cj) ≤ 1}

= {x ∈ Rn | (x− P−
1
2

i Q>i cj)
>Sij(x− P

− 1
2

i Q>i cj) ≤ 1},

(2.6)

where

Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i . (2.7)

Observe that Sij can be written as Sij = V >ij Vij , where Vij = P
− 1

2
j Q>j QiP

1
2
i . Then, Sij is

symmetric. Moreover, since Vij is nonsingular with V −1ij = P
− 1

2
i Q>i QjP

1
2
j , matrix Sij is positive
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definite. Thus Eij is an ellipsoid. Unlike transformation R, transformation Ti does not preserve
the form of the ellipsoids. On the other hand, as shown in Lemma 2.1, the overlapping between
the ellipsoids is preserved after transformation Ti is applied. In other words, the ellipsoids Ei
and Ej overlap if and only if ellipsoids Eii and Eij overlap.

Lemma 2.1 Consider the ellipsoids Ei, Ej , Eii and Eij defined in (2.3), (2.5) and (2.6). Then,
the ellipsoids Ei and Ej overlap if and only if the ellipsoids Eii and Eij overlap.

Proof: For any x ∈ Rn, we have

(x− ci)>QiP−1i Q>i (x− ci) = (x− ci)>QiP
− 1

2
i P

− 1
2

i Q>i (x− ci)

= (x− ci)>(P
− 1

2
i Q>i )>P

− 1
2

i Q>i (x− ci)

= (P
− 1

2
i Q>i x− P

− 1
2

i Q>i ci)
>(P

− 1
2

i Q>i x− P
− 1

2
i Q>i ci)

= (Ti(x)− P−
1
2

i Q>i ci)
>(Ti(x)− P−

1
2

i Q>i ci).

Then, x ∈ int(Ei) if and only if Ti(x) ∈ int(Eii). Moreover,

(x− cj)>QjP−1j Q>j (x− cj) = (x− cj)>QiP
− 1

2
i P

1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i P
− 1

2
i Q>i (x− cj)

= (x− cj)>QiP
− 1

2
i SijP

− 1
2

i Q>i (x− cj)

= (x− cj)>(P
− 1

2
i Q>i )>SijP

− 1
2

i Q>i (x− cj)

= (P
− 1

2
i Q>i x− P

− 1
2

i Q>i cj)
>Sij(P

− 1
2

i Q>i x− P
− 1

2
i Q>i cj)

= (Ti(x)− P−
1
2

i Q>i cj)
>Sij(Ti(x)− P−

1
2

i Q>i cj).

Therefore, x ∈ int(Ej) if and only if Ti(x) ∈ int(Eij). Hence, int(Ei) ∩ int(Ej) 6= ∅ if and only
if int(Eii) ∩ int(Eij) 6= ∅. In other words, ellipsoids Ei and Ej overlap if and only if Eii and Eij
overlap. �

Figure 2.1 illustrates this transformation. Three ellipses are shown in Figure 2.1(a), where
the ellipses E1 and E2 overlap. Figure 2.1(b) shows these ellipses after applying the transforma-
tion T1, that turns the ellipse E1 into a unitary radius ball. Note that in Figure 2.1(b) only the
ellipses E11 and E12 overlap.

To end this section, we present the following lemma, which will be used in later sections.
In particular, this lemma will be applied together with transformation Ti defined in (2.4), which

is invertible (namely, T−1i (x) = QiP
1
2
i x).

Lemma 2.2 Let T : Rn → Rn be an invertible transformation. Let A and B be subsets of Rn
and A′ =

{
T (x) | x ∈ A

}
and B′ =

{
T (x) | x ∈ B

}
. Then, A ⊆ B if and only if A′ ⊆ B′.

Proof: Suppose that A ⊆ B. Let x ∈ A′. Then, by the definition of A′, we have T−1(x) ∈ A.
Thus, since A ⊆ B, we have T−1(x) ∈ B. By the definition of B′, we have x = T (T−1(x)) ∈ B′.
Therefore, A′ ⊆ B′. Hence, A′ ⊆ B′ if A ⊆ B. Analogously, we have A ⊆ B if A′ ⊆ B′. �
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Figure 2.1: (a) Three ellipses and an overlapping between ellipses E1 and E2. Ellipse E3 does not
overlap the other ellipses. (b) The transformation that converts E1 into a ball is applied to each
ellipse.

2.2 Non-overlapping models

2.2.1 Transformation based model

Consider a ball B with radius r > 0 and an ellipsoid E , both in Rn. We know that B and E
overlap if and only if the distance between the center of the ball B and the ellipsoid E is strictly
less than r. Therefore, a necessary and sufficient condition for B and E not to overlap is that
the distance between the center of the ball B and the ellipsoid E must be greater than or equal
to r.

Now, consider the ellipsoids

Ei = {x ∈ Rn | (x− ci)>QiP−1i Q>i (x− ci) ≤ 1} and

Ej = {x ∈ Rn | (x− cj)>QjP−1j Q>j (x− cj) ≤ 1},

where ci, cj ∈ Rn, Qi, Qj ∈ Rn×n are orthogonal matrices, and Pi, Pj ∈ Rn×n are diagonal and
positive definite matrices. As seen in Section 2.1, when transformation Ti defined in (2.4) is
applied to both ellipsoids, we obtain the ball

Eii = {x ∈ Rn | (x− P−
1
2

i Q>i ci)
>(x− P−

1
2

i Q>i ci) ≤ 1}

with unitary radius and the ellipsoid

Eij = {x ∈ Rn | (x− P−
1
2

i Q>i cj)
>Sij(x− P

− 1
2

i Q>i cj) ≤ 1},

where

Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i .
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In order to guarantee that Eii and Eij do not overlap, it is enough to require that the distance
between the center cii of the ball Eii and the ellipsoid Eij be greater than or equal to one. Notice
that, according to the discussion present in Section 2.1, this is a necessary and sufficient condition
for the ellipsoids Ei and Ej not to overlap. However, there is no known analytic expression for
this distance. Thus, to find it, we can solve the problem of projecting cii onto Eij , that can be
formulated as

minimize ‖x− cii‖22
subject to x ∈ Eij .

(2.8)

This is a convex quadratic programming problem whose optimal value is the squared distance
between the center of the ball Eii and the ellipsoid Eij . To find this distance more easily, we
can represent the center of the ball Eii as a function of ellipsoid Eij in a convenient way detailed
hereafter.

With a simple change of variables, we can rewrite problem (2.8) as the problem

minimize ‖x− (cii − P
− 1

2
i Q>i cj)‖22

subject to x>Sijx ≤ 1.
(2.9)

Let Ēij be the ellipsoid determined by matrix Sij and centered at the origin, i.e.,

Ēij = {x ∈ Rn | x>Sijx ≤ 1}.

Problem (2.9) is the problem of projecting the point cii − P
− 1

2
i Q>i cj onto ellipsoid Ēij . Suppose

that cii /∈ int(Eij). Equivalently, we have cii−P
− 1

2
i Q>i cj /∈ int(Ēij). Therefore, by Proposition 2.1

below, problem (2.9) has a unique solution xij ∈ Rn. Moreover, its solution belongs to the
frontier of ellipsoid Ēij , namely, x>ijSijxij = 1, and there exists a unique µij ∈ R+ such that

cii − P
− 1

2
i Q>i cj = xij + µijSijxij .

Thus, as long as cii /∈ int(Eij), cii is uniquely represented as a function of a point in the frontier
of Ēij and a non-negative scalar. In this case, the distance between the center cii of the ball Eii
and the ellipsoid Eij is given by

‖xij − (cii − P
− 1

2
i Q>i cj)‖2 = µij‖Sijxij‖2.

On the other hand, by Proposition 2.2 below, any point of the form y = x + µSijx with
x>Sijx = 1 and µ > 0 is such that y>Sijy > 1, i.e., it is a point that does not belong to the
ellipsoid Ēij . If µ = 0, then y = x and, therefore, y is a point on the frontier of ellipsoid Ēij .
Thus, any point of the form y = x + µSijx such that x>Sijx = 1 and µ ∈ R+ does not belong
to the interior of ellipsoid Ēij .

If cii lies in the interior of Eij , then the distance from cii to the ellipsoid Eij is zero. So,
for the ellipsoids Ei and Ej not to overlap, cii must be outside the interior of Eij . Therefore, we
can represent the center of the ball Eii as a function of a point xij in the frontier of ellipsoid Ēij
and a nonnegative number µij without loss of generality. Using this representation, the distance
from the center of the ball Eii to the ellipsoid Eij is given by µij‖Sijxij‖2.
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Proposition 2.1 Let E = {x ∈ Rn | x>Mx ≤ 1}, where M ∈ Rn×n is a positive definite matrix.
Thus, for each y ∈ Rn \ int(E), there exist unique x∗ ∈ Rn and µ∗ ∈ R such that y = x∗+µ∗Mx∗

and x∗ is the projection of y onto E. Moreover, x∗ ∈ ∂E and µ∗ ∈ R+.

Proof: Let y ∈ Rn be such that y /∈ int(E). The problem of projecting y onto the set E can be
formulated as the problem

minimize ‖x− y‖22
subject to x>Mx ≤ 1.

Since E is convex, this problem has a unique solution x∗ (see, for example, Proposition 2.1.3
in [5]). The Lagrangian function associated with the above problem is

L(x, µ) = ‖x− y‖22 + µ(x>Mx− 1),

whose gradient with respect to x is

∇xL(x, µ) = 2(x− y) + 2µMx.

Since the function that defines the inequality constraint is convex and the null vector strictly
satisfies this constraint, this problem fulfills the Slater constraint qualification (see, for exam-
ple, Proposition 3.3.9 in [5]). So, according to the Karush–Kuhn–Tucker first-order necessary
conditions (see, for example, Proposition 3.3.1 in [5]), there exists a unique µ∗ ∈ R such that

∇xL(x∗, µ∗) = 0 (2.10)

µ∗(x∗>Mx∗ − 1) = 0 (2.11)

µ∗ ≥ 0. (2.12)

Therefore, by condition (2.10), we have that y = x∗ + µ∗Mx∗. If y ∈ ∂E , then we must have
x∗ = y and µ∗ = 0. On the other hand, if y /∈ E , then we must have µ∗ 6= 0. So, by condition
(2.12), we must have µ∗ > 0. Consequently, condition (2.11) implies x∗>Mx∗ = 1, i.e., x∗ ∈ ∂E .
�

Proposition 2.2 Let E = {x ∈ Rn | x>Mx ≤ 1}, where M ∈ Rn×n is a positive definite matrix.
Thus, for each x ∈ ∂E and µ > 0, we have (x+ µMx)>M(x+ µMx) > 1.

Proof: Let x ∈ ∂E and µ > 0. Thus, x>Mx = 1 and

(x+ µMx)>M(x+ µMx) = x>Mx+ 2µ(Mx)>Mx+ µ2(Mx)>M(Mx)

= 1 + 2µ‖Mx‖22 + µ2(Mx)>M(Mx)

> 1,

where the inequality follows from the fact that Mx 6= 0 and M is positive definite. �

Based on this representation, we shall develop a model for the non-overlapping of ellipsoids
in Rn. Let I = {1, . . . ,m} be the set of indices of the ellipsoids. For each i ∈ I, it is given
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a positive definite diagonal matrix P
1
2
i ∈ Rn×n whose eigenvalues are the lengths of the semi-

principal axes of ellipsoid i. In order to guarantee that all the m ellipsoids do not overlap each
other, we ensure that ellipsoids i and j do not overlap for each i, j ∈ I such that i < j.

For each i ∈ I, the decision variable ci ∈ Rn will represent the center of ellipsoid i and
Qi ∈ Rn×n will represent a rotation matrix for ellipsoid i. For each i, j ∈ I such that i < j, the
decision variable cij ∈ Rn will represent the center of ball Eii as a function of ellipsoid Eij . But,
since we must have ci,i+1 = ci,k for each k ∈ {i + 2, . . . ,m}, we can replace variable cij with
variable cii for each j > i. Furthermore, for each i, j ∈ I such that i < j, the decision variable
xij ∈ Rn will represent a point in the frontier of ellipsoid Ēij and µij ∈ R will be a nonnegative
variable.

Let i, j ∈ I be such that i < j. Since xij will be a point in the frontier of ellipsoid
Ēij , we must have x>ijSijxij = 1. Since µij must be nonnegative, we must have the constraint
µij ≥ 0. Moreover, since the distance between the center of ball Eii and the ellipsoid Eij must be
greater than or equal to one, we must have µij‖Sijxij‖2 ≥ 1 or, equivalently, µ2ij‖Sijxij‖22 ≥ 1.
According to the adopted representation, the center cii of the ball Eii as a function of ellipsoid
Eij is given by

cii = xij + µijSijxij + P
− 1

2
i Q>i cj .

Finally, for each i ∈ I \ {m}, the center of ball Eii is P
− 1

2
i Q>i ci. Thus, the center of ellipsoid i is

given by ci = QiP
1
2
i cii. So, we obtain the following model:

x>ijSijxij = 1, ∀i, j ∈ I such that i < j (2.13)

µ2ij‖Sijxij‖22 ≥ 1, ∀i, j ∈ I such that i < j (2.14)

µij ≥ 0, ∀i, j ∈ I such that i < j (2.15)

cii = xij + µijSijxij + P
− 1

2
i Q>i cj , ∀i, j ∈ I such that i < j (2.16)

ci = QiP
1
2
i cii, ∀i ∈ {1, . . . ,m− 1}. (2.17)

This model has 1
2(m − 1)(2n + m(n + 3)) constraints. The variables of this model are

xij ∈ Rn, µij ∈ R for each i, j ∈ I such that i < j, and Qi ∈ Rn×n, cii ∈ Rn and ci ∈ Rn
for i ∈ I. Thus, if the rotation matrices are represented as in (2.1) and (2.2), this model will
have 1

2m(5 + 3m) variables in the two-dimensional case and (6 + 2m(m + 2)) variables in the
three-dimensional case.

2.2.1.1 Reducing the numbers of variables and constraints

The numbers of variables and constraints of the model (2.13)–(2.17) can be reduced by
simply eliminating variables cii and constraints (2.17). The remaining constraints can also be
somewhat simplified. Firstly, we present Proposition 2.3, which offers a strictly positive lower
bound for the value of µij . Lemma 2.3 is used in the proof of Proposition 2.3 and provides
an upper bound on the norm of the vector ‖Sijxij‖2 that depends only on the lengths of the
semi-principal axes of ellipsoids i and j.

15



Lemma 2.3 Let xij ∈ Rn and Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i ∈ Rn×n, where Qi and Qj are or-

thogonal matrices and Pi and Pj are positive definite diagonal matrices. Suppose that x>ijSijxij =
1. Thus,

‖Sijxij‖2 ≤ λmax(Pi)λmax(P−1j )λmax(P
1
2
j )λmax(P

− 1
2

i ).

Proof: We have

‖Sijxij‖2 = ‖P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i xij‖2

≤ λmax(P
1
2
i )‖Q>i QjP−1j Q>j QiP

1
2
i xij‖2

= λmax(P
1
2
i )‖P−1j Q>j QiP

1
2
i xij‖2

≤ λmax(P
1
2
i )λmax(P−1j )‖Q>j QiP

1
2
i xij‖2

= λmax(P
1
2
i )λmax(P−1j )‖P

1
2
i xij‖2

≤ λmax(P
1
2
i )λmax(P−1j )λmax(P

1
2
i )‖xij‖2

= λmax(Pi)λmax(P−1j )‖xij‖2,

where the second and third equalities hold since Qi and Qj are orthogonal matrices, and the

inequalities and the last equality follow from the fact that P
1
2
i and P−1j are positive definite

diagonal matrices. Therefore,

‖Sijxij‖2 ≤ λmax(Pi)λmax(P−1j )‖xij‖2. (2.18)

Since x>ijSijxij = 1, we have ‖xij‖2 > 0. Thus,

λmin(Sij) ≤
x>ijSijxij

‖xij‖22
=

1

‖xij‖22
,

where the inequality follows from the Courant–Fischer Theorem (see, for example, Theorem 8.1.2
in [27]). Recalling from Section 2.1 that Sij is positive definite, we have λmin(Sij) > 0. Thus,

‖xij‖22 ≤
1

λmin(Sij)
.

Moreover, we have

λmin(Sij) = λmin(P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i )

≥ λmin(Q>i QjP
−1
j Q>j Qi)λmin(P

1
2
i P

1
2
i )

= λmin(Q>i QjP
−1
j Q>j Qi)λmin(Pi)

≥ λmin(P−1j )λmin(Q>i QjQ
>
j Qi)λmin(Pi)

= λmin(P−1j )λmin(Pi),
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where the inequalities follow from Theorem 1.4 by Lu and Pearce [40] and the last equality holds
since Qi and Qj are orthogonal matrices. Thus,

‖xij‖22 ≤
1

λmin(P−1j )λmin(Pi)
= λmax(Pj)λmax(P−1i ),

where the equality holds since Pi and Pj are positive definite diagonal matrices. So,

‖xij‖2 ≤
(
λmax(Pj)λmax(P−1i )

) 1
2 =

(
λmax(Pj)

) 1
2
(
λmax(P−1i )

) 1
2 = λmax(P

1
2
j )λmax(P

− 1
2

i ).

Therefore, from (2.18), we have

‖Sijxij‖2 ≤ λmax(Pi)λmax(P−1j )λmax(P
1
2
j )λmax(P

− 1
2

i ).

�

Proposition 2.3 Any solution to the system (2.13)–(2.17) is such that µij ≥ εij, where

εij = λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j ) > 0,

for all i < j.

Proof: Consider a solution to the system (2.13)–(2.17). By constraints (2.13), we have x>ijSijxij =
1 for each i, j ∈ I such that i < j. Thus, by Lemma 2.3, we have

‖Sijxij‖2 ≤ λmax(Pi)λmax(P−1j )λmax(P
1
2
j )λmax(P

− 1
2

i )

for all i, j ∈ I such that i < j. By constraints (2.14) and (2.15), we must have ‖Sijxij‖2 > 0
and µij ≥ ‖Sijxij‖−12 for all i, j ∈ I such that i < j. Therefore, we can take

εij =
(
λmax(Pi)λmax(P−1j )λmax(P

1
2
j )λmax(P

− 1
2

i )
)−1

= λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j )

and the proposition holds. (Note that εij > 0 since Pi and Pj are positive definite matrices.) �

For each i, j ∈ I such that i < j, the term Sijxij appears in constraints (2.13), (2.14), and
(2.16). From constraints (2.16), we have

µijSijxij = cii − xij − P
− 1

2
i Q>i cj , ∀i, j ∈ I such that i < j.

Thus, constraints (2.14) are equivalent to constraints

‖cii − xij − P
− 1

2
i Q>i cj‖22 ≥ 1, ∀i, j ∈ I such that i < j. (2.19)
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Notice that any solution to the system (2.13)–(2.17) must strictly satisfy inequalities (2.15).
In other words, any solution must be such that µij > 0 for all i, j ∈ I such that i < j. This is a
consequence of constraints (2.14). Hence, constraints (2.13) can be replaced by

x>ij(cii − xij − P
− 1

2
i Q>i cj) = µij , ∀i, j ∈ I such that i < j, (2.20)

provided that µij 6= 0. By Proposition 2.3, there exist positive constants εij such that constraints
(2.13) and (2.15) are equivalent to constraints (2.20) and µij ≥ εij for all i, j ∈ I such that i < j.
By Proposition 2.3, we can take

εij = λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j ), (2.21)

where λmin(M) denotes the least eigenvalue of matrix M . Therefore, we can replace constraints
(2.13) and (2.14) with constraints (2.19), (2.20) and µij ≥ εij , for all i, j ∈ I such that i < j,
and obtain an equivalent model.

Finally, for each i ∈ I \ {m}, we can replace cii with P
− 1

2
i Q>i ci in constraints (2.19) and

(2.20). By doing so, we eliminate constraints (2.17) from the model and replace constraints
(2.16), (2.19) and (2.20), respectively, with the following constraints:

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j

‖P−
1
2

i Q>i (ci − cj)− xij‖22 ≥ 1, ∀i, j ∈ I such that i < j

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
= µij , ∀i, j ∈ I such that i < j.

Hence, model (2.13)–(2.17) is equivalent to the following model:

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
= µij , ∀i, j ∈ I such that i < j (2.22)

‖P−
1
2

i Q>i (ci − cj)− xij‖22 ≥ 1, ∀i, j ∈ I such that i < j (2.23)

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j (2.24)

µij ≥ εij , ∀i, j ∈ I such that i < j. (2.25)

The model (2.22)–(2.25) has 1
2m(m − 1)(n + 3) nonlinear constraints and 1

2m(m − 1)
bound-constraints. If the rotation matrices are represented as in (2.1) and (2.2), this model
will have 3

2m(m + 1) variables in the two-dimensional case and 2m(m + 2) variables in the
three-dimensional case.

2.2.1.2 Bounded domain for global optimization

Methods for global optimization rely heavily on bounds for the variables of the problem.
In general, the tighter the lower bounds are, the better the performance of a global optimization
method will be. We now derive some lower and upper bounds for the variables of model (2.22)–
(2.25).

Due to symmetry, the angles of rotation of each ellipsoid can be restricted to the interval
[0, π]. Lower and upper bounds on the center of each ellipsoid can be easily derived once the
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container is defined. For example, consider the case where the container is an n-dimensional
cuboid centered at the origin whose edges have lengths l1, . . . , ln. Since each ellipsoid must be
inside the cuboid, so must their centers be. Therefore, we must have |[ci]k| ≤ lk/2 for each
k ∈ {1, . . . , n} and for each i ∈ I. If the dimensions of the container are also variables of the
problem, then bounds on the variables ci can be derived from the bounds on the variables lk.
For each k ∈ {1, . . . , n}, a valid upper bound for lk could be

m∑
i=1

λmax(P
1
2 ).

We now present some auxiliary results. Proposition 2.4 provides lower and upper bounds
on the values of the variables xij . Lemma 2.4 is used in the proof of Proposition 2.4. Proposi-
tion 2.3 provides a positive lower bound for the value of µij . So we derive an upper bound for
the value of µij in Proposition 2.5. Lemma 2.5 is used in the proof of Proposition 2.5.

Lemma 2.4 Let Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i ∈ Rn×n, where Qi and Qj are n × n orthogonal

matrices and Pi and Pj are n× n positive definite diagonal matrices. Then

λmin(Sij) ≥ λmin(P−1j )λmin(Pi) and λmax(Sij) ≤ λmax(P−1j )λmax(Pi).

Proof: We have

λmin(Sij) = λmin(P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i )

≥ λmin(Q>i QjP
−1
j Q>j Qi)λmin(P

1
2
i P

1
2
i )

= λmin(Q>i QjP
−1
j Q>j Qi)λmin(Pi)

≥ λmin(P−1j )λmin(Q>i QjQ
>
j Qi)λmin(Pi)

= λmin(P−1j )λmin(Pi),

where the inequalities follow from Theorem 1.4 by Lu and Pearce [40] and the last equality holds
since Qi and Qj are orthogonal matrices. Thus,

λmin(Sij) ≥ λmin(P−1j )λmin(Pi).

Analogously, we conclude that

λmax(Sij) ≤ λmax(P−1j )λmax(Pi).

�

Proposition 2.4 Let xij ∈ Rn and Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i ∈ Rn×n, where Qi and Qj are

n× n orthogonal matrices and Pi and Pj are n× n positive definite diagonal matrices. Suppose
that x>ijSijxij = 1. Thus,

λmin(P
1
2
j )λmin(P

− 1
2

i ) ≤ ‖xij‖2 ≤ λmax(P
1
2
j )λmax(P

− 1
2

i ).
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Proof: Since x>ijSijxij = 1, we have ‖xij‖2 > 0. Thus,

λmin(Sij) ≤
x>ijSijxij

‖xij‖22
=

1

‖xij‖22
≤ λmax(Sij),

where the inequalities follow from the Courant–Fischer Theorem (see, for example, Theo-
rem 8.1.2 in [27]). Recalling from Section 2.1 that Sij is positive definite, we have λmin(Sij) > 0
and λmax(Sij) > 0. Thus,

1

λmax(Sij)
≤ ‖xij‖22 ≤

1

λmin(Sij)
.

By Lemma 2.4, λmin(Sij) ≥ λmin(P−1j )λmin(Pi) and λmax(Sij) ≤ λmax(P−1j )λmax(Pi). Thus,

‖xij‖22 ≤
1

λmin(P−1j )λmin(Pi)
= λmax(Pj)λmax(P−1i ),

and

‖xij‖22 ≥
1

λmax(P−1j )λmax(Pi)
= λmin(Pj)λmin(P−1i ),

where the equalities hold since Pi and Pj are positive definite diagonal matrices. So,

‖xij‖2 ≤
(
λmax(Pj)λmax(P−1i )

) 1
2 =

(
λmax(Pj)

) 1
2
(
λmax(P−1i )

) 1
2 = λmax(P

1
2
j )λmax(P

− 1
2

i )

and

‖xij‖2 ≥
(
λmin(Pj)λmin(P−1i )

) 1
2 =

(
λmin(Pj)

) 1
2
(
λmin(P−1i )

) 1
2 = λmin(P

1
2
j )λmin(P

− 1
2

i ).

�

Lemma 2.5 Let xij ∈ Rn and Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i ∈ Rn×n, where Qi and Qj are or-

thogonal matrices and Pi and Pj are positive definite diagonal matrices. Suppose that x>ijSijxij =
1. Thus,

‖Sijxij‖2 ≥ λmin(Pi)λmin(P−1j )λmin(P
1
2
j )λmin(P

− 1
2

i ).

Proof: We have

‖Sijxij‖2 = ‖P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i xij‖2

≥ λmin(P
1
2
i )‖Q>i QjP−1j Q>j QiP

1
2
i xij‖2

= λmin(P
1
2
i )‖P−1j Q>j QiP

1
2
i xij‖2

≥ λmin(P
1
2
i )λmin(P−1j )‖Q>j QiP

1
2
i xij‖2

= λmin(P
1
2
i )λmin(P−1j )‖P

1
2
i xij‖2

≥ λmin(P
1
2
i )λmin(P−1j )λmin(P

1
2
i )‖xij‖2

= λmin(Pi)λmin(P−1j )‖xij‖2,
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where the second and third equalities hold since Qi and Qj are orthogonal matrices, and the

inequalities and the last equality follows from the fact that P
1
2
i and P−1j are positive definite

diagonal matrices. Therefore,

‖Sijxij‖2 ≥ λmin(Pi)λmin(P−1j )‖xij‖2.

By Proposition 2.4, ‖xij‖2 ≥ λmin(P
1
2
j )λmin(P

− 1
2

i ). Then,

‖Sijxij‖2 ≥ λmin(Pi)λmin(P−1j )λmin(P
1
2
j )λmin(P

− 1
2

i ).

�

Proposition 2.5 Any solution to the system (2.22)–(2.25) satisfies

µij ≤ λmax(P
− 3

2
i )λmax(Pj)λmax(P

− 1
2

j )λmax(P
1
2
i )

(
2C + λmax(P

1
2
j )

)
for each i, j ∈ I such that i < j, where C is an upper bound on the norm of the center of each
ellipsoid.

Proof: Consider a solution to the system (2.22)–(2.25). Let i, j ∈ I such that i < j. By (2.24),
we have that

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij .

Thus,

µij = ‖Sijxij‖−12 ‖P
− 1

2
i Q>i (ci − cj)− xij‖2.

By Lemma 2.5, we have that

‖Sijxij‖−12 ≤
(
λmin(Pi)λmin(P−1j )λmin(P

1
2
j )λmin(P

− 1
2

i )

)−1
= λmax(P−1i )λmax(Pj)λmax(P

− 1
2

j )λmax(P
1
2
i ),

where the equality holds since Pi and Pj are positive definite matrices. Also, notice that

‖P−
1
2

i Q>i (ci − cj)− xij‖2 ≤ ‖P
− 1

2
i Q>i (ci − cj)‖2 + ‖xij‖2

≤ λmax(P
− 1

2
i )‖Q>i (ci − cj)‖2 + ‖xij‖2

= λmax(P
− 1

2
i )‖ci − cj‖2 + ‖xij‖2

≤ λmax(P
− 1

2
i )

(
‖ci‖2 + ‖cj‖2

)
+ ‖xij‖2

≤ λmax(P
− 1

2
i )

(
‖ci‖2 + ‖cj‖2

)
+ λmax(P

1
2
j )λmax(P

− 1
2

i )

= λmax(P
− 1

2
i )

(
‖ci‖2 + ‖cj‖2 + λmax(P

1
2
j )

)
,

21



where the first and third inequalities follow from the triangle inequality, the second inequality

holds since P
− 1

2
i is diagonal and positive definite, the fourth inequality follows from Proposi-

tion 2.4, and the first equality holds since Qi is orthogonal. Therefore,

µij ≤ λmax(P−1i )λmax(Pj)λmax(P
− 1

2
j )λmax(P

1
2
i )λmax(P

− 1
2

i )

(
‖ci‖2 + ‖cj‖2 + λmax(P

1
2
j )

)
= λmax(P

− 3
2

i )λmax(Pj)λmax(P
− 1

2
j )λmax(P

1
2
i )

(
‖ci‖2 + ‖cj‖2 + λmax(P

1
2
j )

)
.

Considering that the norm of the center of each ellipsoid is bounded by C, we obtain

µij ≤ λmax(P
− 3

2
i )λmax(Pj)λmax(P

− 1
2

j )λmax(P
1
2
i )

(
2C + λmax(P

1
2
j )

)
.

�

2.2.2 Separating hyperplane based model

A hyperplane is a set of the form H = {x ∈ Rn | w>x = s}, where w ∈ Rn \{0} and s ∈ R.
There are two half-spaces associated with hyperplane H, namely, H− = {x ∈ Rn | w>x ≤ s}
and H+ = {x ∈ Rn | w>x ≥ s}. We say that a hyperplane H in Rn supports a subset A of Rn if
A is contained in one of the half-spaces associated with H and there exists at least one element
of A that belongs to the hyperplane H. We denote the relative interior of set A by ri(A).

Given non-empty subsets A and B of Rn, we say that a hyperplane separates sets A
and B if A is contained in one of the half-spaces associated with this hyperplane and B is
contained in the other half-space associated with this hyperplane. If A and B are convex
sets then, by Theorem 11.3 in [50], there exists a hyperplane that separates A and B if and
only if ri(A) ∩ ri(B) = ∅. Therefore, since the relative interior of an ellipsoid is the interior
of this ellipsoid, there exists a hyperplane that separates ellipsoids Ei and Ej if and only if
int(Ei) ∩ int(Ej) = ∅. In this section, we propose a non-overlapping model based on separating
hyperplanes.

Consider the ellipsoids

Ei = {x ∈ Rn | (x− ci)>QiP−1i Q>i (x− ci) ≤ 1} and

Ej = {x ∈ Rn | (x− cj)>QjP−1j Q>j (x− cj) ≤ 1},

where ci, cj ∈ Rn, Qi, Qj ∈ Rn×n are orthogonal matrices and Pi, Pj ∈ Rn×n are positive definite
and diagonal matrices. Let Mi = QiP

−1
i Q>i and Mj = QjP

−1
j Q>j . For any x ∈ ∂Ei, vector

Mi(x − ci) defines a hyperplane that passes through the point x and supports the ellipsoid Ei
(see Lemma 2.6 below). For the ellipsoids Ei and Ej not to overlap, there must be a point y ∈ ∂Ej
such that, for some x ∈ ∂Ei, x can be expressed as the sum of y and a nonnegative multiple
of Mj(y − cj) and the vector Mj(y − cj) must be a negative multiple of Mi(x− ci). Figure 2.2
illustrates this situation in R2. In this picture, we have x̃ij ∈ ∂Ei and x̃ji ∈ ∂Ej . So, the vectors
Mi(x̃ij− ci) and Mj(x̃ji− cj) determine hyperplanes that support the ellipsoids Ei and Ej at the
points x̃ij and x̃ji, respectively.
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Mi(x̃ij − ci)

Mj(x̃ji − cj)

ci

Ei

x̃ij

cj

Ej

x̃ji

Figure 2.2: Separation of two ellipsoids by hyperplanes determined by the vectors Mi(x̃ij − ci)
and Mj(x̃ji − cj), and the points x̃ij and x̃ji.

We thus obtain the following model for the non-overlapping of ellipsoids, where the vari-
ables are ci ∈ Rn, the angles that form matrix Qi ∈ Rn×n for each i ∈ I, γij , ρij ∈ R for each
i, j ∈ I such that i < j, and x̃ij ∈ Rn for each i, j ∈ I such that i 6= j.

(x̃ij − ci)>Mi(x̃ij − ci) = 1 ∀i, j ∈ I such that i < j (2.26)

(x̃ji − cj)>Mj(x̃ji − cj) = 1 ∀i, j ∈ I such that i < j (2.27)

Mj(x̃ji − cj) = − γijMi(x̃ij − ci) ∀i, j ∈ I such that i < j (2.28)

x̃ij = x̃ji + ρijMj(x̃ji − cj) ∀i, j ∈ I such that i < j (2.29)

ρij ≥ 0 ∀i, j ∈ I such that i < j (2.30)

γij ≥ 0 ∀i, j ∈ I such that i < j. (2.31)

This model has m(m− 1)(n+ 1) nonlinear constraints and m(m− 1) bound-constraints. If the
rotation matrices are represented as in (2.1) and (2.2) then this model will have 3m2 variables
in the two-dimensional case and 4m2 + 2m in the three-dimensional case.

By Propositions 2.6 and 2.7 below, constraints (2.26)–(2.31) indeed model the non-overlapping
of ellipsoids. Lemma 2.6 is used in the proofs of Propositions 2.6 and 2.7.

Lemma 2.6 Consider the ellipsoid E = {x ∈ Rn | (x − c)>M(x − c) ≤ 1}, where M ∈ Rn×n
is positive definite. Let x∗ ∈ ∂E and define w = M(x∗ − c) and s = w>x∗. Thus, w>x ≤ s for
every x ∈ E.

Proof: Let f : Rn → R be the function defined by f(x) = (x−c)>M(x−c). Since the Hessian of f
(the matrix 2M) is positive definite in every point of Rn, we have that f is convex. Therefore,
by the first-order condition of convexity, we have

f(x) ≥ f(x∗) +∇f(x∗)>(x− x∗) (2.32)
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for all x ∈ E . Since w = ∇f(x∗)/2, s = w>x∗, f(x∗) = 1 and f(x) ≤ 1 for all x ∈ E ,
inequality (2.32) implies that w>x ≤ s for all x ∈ E . �

Proposition 2.6 Any solution to the system (2.26)–(2.31) is such that int(Ei)∩ int(Ej) = ∅ for
all i, j ∈ I such that i 6= j.

Proof: Consider a solution to the system (2.26)–(2.31). Let i, j ∈ I be such that i < j. Let
wji = Mj(x̃ji − cj) and sji = w>jix̃ji and consider the hyperplane Hji = {x ∈ Rn | w>jix = sji}.
We shall prove that Hji separates ellipsoids Ei and Ej . By Lemma 2.6, we have w>jix ≤ sji for

all x ∈ Ej , i.e., Ej ⊆ H−ji. Point x̃ij belongs to half-space H+
ji since

w>jix̃ij = w>ji
[
x̃ji + ρijMj(x̃ji − cj)

]
= w>ji(x̃ji + ρijwji)

= w>jix̃ji + ρij‖wji‖22
= sji + ρij‖wji‖22
≥ sji,

(2.33)

where the first equality follows from (2.29), the second equality follows from the definition of
wji, the fourth equality follows from the definition of sji and the inequality holds since ρij
is nonnegative. Now, consider the hyperplane Hij = {x ∈ Rn | w>ijx = sij}, where wij =

Mi(x̃ij − ci) and sij = w>ij x̃ij . For all x ∈ Ei, we have

w>jix = − γijw>ijx
≥ − γijsij
= − γijw>ij x̃ij
= w>jix̃ij

≥ sji,

where the first and third equalities follow from (2.28), the second equality follows from the
definition of sij , the first inequality follows from Lemma 2.6 and the fact that γij is nonnegative,
and the last inequality follows from (2.33). Therefore, x ∈ H+

ji for each x ∈ Ei. Hence, we

have Ej ⊆ H−ji and Ei ⊆ H+
ji, i.e., hyperplane Hji separates ellipsoids Ei and Ej . In other words,

ellipsoids Ei and Ej do not overlap. �

Proposition 2.7 Let I = {1, . . . ,m}. For each i ∈ I, let Ei = {x ∈ Rn | (x− ci)>Mi(x− ci) ≤
1}, where ci ∈ Rn and M ∈ Rn×n is positive definite. If ellipsoids E1, . . . , Em do not overlap
each other, then the system (2.26)–(2.31) has a solution.

Proof: Let i, j ∈ I be such that i < j. Suppose that Ei and Ej do not overlap. Let x∗ ∈ Ei and
y∗ ∈ Ej be such that the distance between ellipsoids Ei and Ej is equal to ‖x∗ − y∗‖2. Thus,
(x∗, y∗) is an optimal solution to the problem

minimize ‖x− y‖22
subject to (x− ci)>Mi(x− ci) ≤ 1

(y − cj)>Mj(y − cj) ≤ 1.
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Since both constraints of this problem are convex in R2n and point (ci, cj) strictly satisfies
both inequalities, this problem fulfills the Slater constraint qualification. Therefore, by Propo-
sition 3.3.9 in [5], there exist Lagrange multipliers µ∗i ∈ R and µ∗j ∈ R such that

2(x∗ − y∗) + 2µ∗iMi(x
∗ − ci) = 0 (2.34)

2(y∗ − x∗) + 2µ∗jMj(y
∗ − cj) = 0 (2.35)

µ∗i ≥ 0 (2.36)

µ∗j ≥ 0. (2.37)

From (2.35), we have x∗ = y∗ + µ∗jMj(y
∗ − cj). From (2.34) and (2.35), it follows that

µ∗jMj(y
∗ − cj) = −µ∗iMi(x

∗ − ci).

Since the ellipsoids do not overlap, we must have x∗ ∈ ∂Ei and y∗ ∈ ∂Ej . Thus, since Mi and
Mj are nonsingular, we have Mi(x

∗ − ci) 6= 0 6= Mj(y
∗ − cj). Therefore, µ∗j 6= 0 if µ∗i 6= 0, and

µ∗j = 0 if µ∗i = 0.
Suppose that µ∗i = 0. Thus, equation (2.34) implies that x∗ = y∗. Since int(Ei)∩ int(Ej) =

∅, there exists a hyperplane H that separates ellipsoids Ei and Ej . Since x∗ ∈ ∂Ei and x∗ ∈ ∂Ej ,
point x∗ must belong to the hyperplane H. (Suppose that x∗ /∈ H and let w ∈ Rn and s ∈ R
be such that H = {x ∈ Rn | w>x = s}. Since x∗ /∈ H, we have either w>x∗ < s or w>x∗ > s.
Suppose, without loss of generality, that w>x∗ < s. Thus, there exists a ball B with center in
x∗ and radius r > 0 such that w>x < s for all x ∈ B. Since x∗ ∈ ∂Ei, Theorem 6.1 in [50]
implies that there exists zi 6= x∗ such that zi ∈ B ∩ int(Ei). By the same reason, since x∗ ∈ ∂Ej ,
there exists zj 6= x∗ such that zj ∈ B ∩ int(Ej). Therefore, zi ∈ int(Ei) and zj ∈ int(Ej) satisfies
w>zi < s and w>zj < s. But it contradicts the fact that H separates ellipsoids Ei and Ej .)

Since x∗ belongs to the hyperplane H and H separates ellipsoids Ei and Ej , we have that
H supports ellipsoids Ei and Ej in x∗. Let Hij = {x ∈ Rn | w>ijx = sij}, where wij = Mi(x

∗− ci)
and sij = w>ijx

∗. By Lemma 2.6, Hij supports Ei in x∗. By Theorem 3.1 in [30], there exists
only one hyperplane that supports Ei in x∗. Therefore, Hij = H. Similarly, if we define
Hji = {x ∈ Rn | w>jix = sji}, where wji = Mj(x

∗ − cj) and sji = w>jix
∗, we have that Hji = H.

Therefore, Hij = Hji. Hence, wij must be parallel to wji, i.e., there must exist γ ∈ R \ {0} such
that Mi(x

∗ − ci) = γMj(x
∗ − cj). Notice that w>ijci < sij , since

−w>ijci = −c>i Mi(x
∗ − ci) = (x∗ − ci − x∗)>Mi(x

∗ − ci) = (x∗ − ci)>Mi(x
∗ − ci)− sij = 1− sij .

So, ci /∈ H. Since Hji separates ellipsoids Ei and Ej , Lemma 2.6 implies that w>jici ≥ sji. Thus,

since ci /∈ H, we must have w>jici > sji. In order to derive a contradiction, suppose that γ is
positive. Then,

w>ijci < sij = w>ijx
∗ = γw>jix

∗ = γsji < γw>jici = w>ijci,

which is a contradiction. Therefore, γ must be negative.
Hence, if we take x̃ij

.
= x∗, x̃ji

.
= y∗, ρij

.
= µ∗j and

γij
.
=

 −
µ∗j
µ∗i

if µ∗i > 0

− (x∗−cj)>MjMi(x
∗−ci)

‖Mj(x∗−cj)‖22
if µ∗i = 0,
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constraints (2.26)–(2.31) are satisfied. �

By constraints (2.27)–(2.28), any solution to the system (2.26)–(2.31) must satisfy

−γij(x̃ji − cj)>Mi(x̃ij − ci) = 1

for all i < j. Then, γij cannot be zero. Hence, since γij ≥ 0 by constraints (2.31), we must have
γij > 0 for all i < j. The following lemma provides a positive lower bound on the value of γij .

Lemma 2.7 Any solution to the system (2.26)–(2.31) is such that γij ≥ λmin(Pi) for all i < j.

Proof: Consider a solution to the system (2.26)–(2.31). By constraints (2.27)–(2.28), we must
have

−γij(x̃ji − cj)>Mi(x̃ij − ci) = 1.

Thus,

γij = −
[
(x̃ji − cj)>Mi(x̃ij − ci)

]−1
.

Since Mi is positive definite, we have (x̃ji − cj + x̃ij − ci)>Mi(x̃ji − cj + x̃ij − ci) ≥ 0. Then,
since

(x̃ji − cj + x̃ij − ci)>Mi(x̃ji − cj + x̃ij − ci) = (x̃ji − cj)>Mi(x̃ji − cj) +

(x̃ij − ci)>Mi(x̃ij − ci) +

2(x̃ji − cj)>Mi(x̃ij − ci),

we must have

−(x̃ji − cj)>Mi(x̃ij − ci) ≤
1

2

[
(x̃ji − cj)>Mi(x̃ji − cj) + (x̃ij − ci)>Mi(x̃ij − ci)

]
≤ max{(x̃ji − cj)>Mi(x̃ji − cj), (x̃ij − ci)>Mi(x̃ij − ci)}
≤ λmax(Mi)

= λmax(QiP
−1
i Q>i )

= λmax(P−1i ),

where the last equality holds since Qi is orthogonal. Hence,

γij ≥
[
λmax(P−1i )

]−1
= λmin(Pi).

�

According to Lemma 2.7, we can replace constraints (2.31) of the system (2.26)–(2.31)
with constraints γij ≥ λmin(Pi) for all i < j.
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2.3 Containment models

2.3.1 Ellipsoid inside an ellipsoid

In this section, we present a model for the inclusion of an ellipsoid Ei inside an ellipsoid C.
Firstly, we apply a transformation to Ei that converts this ellipsoid into a ball Eii with unitary
radius and we apply the same transformation to C, thus obtaining an ellipsoid Ci. In this way, we
have Ei ⊆ C if and only if Eii ⊆ Ci. In order to guarantee that Eii be contained in Ci, we require
that the center cii of ball Eii be in Ci and the distance between cii and the frontier of ellipsoid
Ci be at least one. Since the computation of the distance between a point and the frontier of
an ellipsoid demands the solution of a non-convex optimization problem, we will represent the
center cii with respect to Ci in a similar manner to what was done in Section 2.2.1. In this
representation, the distance between cii and the frontier of ellipsoid Ci is easily obtained.

To develop this model, we must first state some results. Next, we present Propositions 2.8
and 2.9 and Lemmas 2.8 and 2.9. Lemma 2.8 is used in the proof of Proposition 2.8 and
Lemma 2.9 is used in the proof of Proposition 2.9. These lemmas consider particular cases of
Propositions 2.8 and 2.9.

Lemma 2.8 Consider the ellipsoid E = {z ∈ Rn | z>Dz ≤ 1}, where D ∈ Rn×n is a positive
definite diagonal matrix. For each y ∈ E, there exist x ∈ ∂E and α ∈ [−1/λmax(D), 0] such that
y = x+ αDx.

Proof: We shall prove the assertion by induction on the dimension of the ellipsoid. We will
denote the i-th diagonal element of matrix D by di.

Consider the one-dimensional case, where n = 1. Then, D = d1 = λmax(D), E = {z ∈
R | d1z2 ≤ 1} = {z ∈ R | −1/

√
d1 ≤ z ≤ 1/

√
d1} and ∂E = {−1/

√
d1, 1/

√
d1}. Let y ∈ E . We

will analyse the cases where −1/
√
d1 ≤ y ≤ 0 and 0 < y ≤ 1/

√
d1 separately. Suppose that

−1/
√
d1 ≤ y ≤ 0. Take x = −1/

√
d1 and consider the point x+ αDx with

α =
y − x
d1x

= −y + 1/
√
d1√

d1
.

Then,

x+ αDx = x+
y − x
d1x

d1x = y.

Since y ≥ −1/
√
d1, we have y + 1/

√
d1 ≥ 0. Thus, α ≤ 0. In addition, since y ≤ 0, we have

α = −y + 1/
√
d1√

d1
≥ −1/

√
d1√
d1

= − 1

d1
= − 1

λmax(D)
.

Hence, y = x + αDx with x ∈ ∂E and α ∈ [−1/λmax(D), 0]. The case where 0 < y ≤ 1/
√
d1 is

analogous. Simply take x = 1/
√
d1 and α = (y − x)/(d1x).

Consider n > 1 and suppose that the assertion is true for all ellipsoids lying in a dimension
strictly less than n. Consider the ellipsoid E = {z ∈ Rn | z>Dz ≤ 1} and let y ∈ E . Let
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I = {1, . . . , n}, I+ =
{
i ∈ I | di = λmax(D)

}
and I− = I \ I+. Since D is diagonal, we must

find x ∈ Rn and α ∈ R such that

yi = xi + αdixi, ∀i ∈ I, (2.38)

x>Dx = 1, (2.39)

α ∈ [−1/λmax(D), 0]. (2.40)

For each α ∈ [−1/λmax(D), 0] and i ∈ I−, we have 1 + αdi ∈ (0, 1]. Therefore, from (2.38), for
all i ∈ I− we must have

xi =
yi

1 + αdi
.

Now, we consider two cases: the first one where yi 6= 0 for all i ∈ I+ and the second one where
yj = 0 for some j ∈ I+.

Case 1. Suppose that yi 6= 0 for all i ∈ I+. In this case, we must have α > −1/λmax(D). Thus,
from (2.38), we must have

xi =
yi

1 + αdi
(2.41)

for all i ∈ I. Then,

x>Dx =
n∑
i=1

dix
2
i =

n∑
i=1

di
y2i

(1 + αdi)2
=
∑
i∈I+

di
y2i

[1 + αλmax(D)]2
+
∑
i∈I−

di
y2i

(1 + αdi)2
.

Thus, for α > −1/λmax(D), we have x>Dx = 1 if and only if

∑
i∈I+

diy
2
i = [1 + αλmax(D)]2

[
1−

∑
i∈I−

di
y2i

(1 + αdi)2

]
.

Let f : R→ R be the function defined by

f(t) =
∑
i∈I+

diy
2
i − [1 + tλmax(D)]2

[
1−

∑
i∈I−

di
y2i

(1 + tdi)2

]
.

We have

f(0) =
∑
i∈I+

diy
2
i −

(
1−

∑
i∈I−

diy
2
i

)
=
∑
i∈I

diy
2
i − 1 = y>Dy − 1 ≤ 0,

where the inequality holds since y ∈ E , i.e., y>Dy ≤ 1. We also have

f(−1/λmax(D)) =
∑
i∈I+

diy
2
i > 0.

Thus, since f is continuous in the interval [−1/λmax(D), 0] and f(0) ≤ 0 and f(−1/λmax(D)) >
0, by the Intermediate Value Theorem, there exist t∗ ∈ (−1/λmax(D), 0] such that f(t∗) = 0.

28



Therefore, by taking α = t∗ and x as in (2.41), the system (2.38)–(2.40) is satisfied.

Case 2. Suppose that yj = 0 for some j ∈ I+. We shall consider the cases where |I+| = 1 and
|I+| > 1 individually.

Case 2.1. Suppose that |I+| = 1. Then, I− = I \ {j}. Thus, from (2.38), we must have
xi = yi/(1 + αdi) for all i ∈ I \ {j}. Then, x>Dx = 1 if and only if

λmax(D)x2j = 1−
∑
i∈I−

di
y2i

(1 + αdi)2
.

Let g : R→ R be the function defined by

g(t) = 1−
∑
i∈I−

di
y2i

(1 + tdi)2
.

If g(−1/λmax(D)) ≥ 0, then we can take α = −1/λmax(D), xi = yi/(1 + αdi) for all i ∈ I \ {j}
and

xj =

 1

λmax(D)

1−
∑
i∈I−

di
y2i

(1 + αdi)2




1
2

,

and therefore x and α form a solution to the system (2.38)–(2.40). Suppose that g(−1/λmax(D)) <
0. Since

g(0) = 1−
∑
i∈I−

diy
2
i = 1− y>Dy ≥ 0

and g is continuous in the interval [−1/λmax(D), 0], by the Intermediate Value Theorem, there
exists t∗ ∈ (−1/λmax(D), 0] such that g(t∗) = 0. Then, by taking α = t∗, xj = 0 and
xi = yi/(1 + αdi) for all i ∈ I \ {j}, we have a solution to the system (2.38)–(2.40).

Case 2.2. Suppose that |I+| > 1. Let ỹ ∈ Rn−1 be defined as

ỹi =

{
yi if i < j,
yi+1 if i ≥ j.

Consider the diagonal matrix D̃ ∈ R(n−1)×(n−1), where the i-th element of its diagonal is given
by

d̃i =

{
di if i < j,
di+1 if i ≥ j.

Then, since |I+| > 1, there exists i ∈ I\{j} such that di = λmax(D). Then, λmax(D̃) = λmax(D).
By construction, we have ỹ>D̃ỹ = y>Dy ≤ 1. Thus, by the induction hypothesis, there exist
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α̃ ∈ [−1/λmax(D), 0] and x̃ ∈ Rn−1 such that ỹ = x̃ + α̃D̃x̃ and x̃>D̃x̃ = 1. Therefore, if we
define α = α̃ and x ∈ Rn by

xi =


x̃i if i < j,
0 if i = j,
x̃i−1 if i > j,

we have y = x + αDx, x>Dx = 1 and α ∈ [−1/λmax(D), 0]. In other words, x and α form a
solution to the system (2.38)–(2.40) and the proof is complete. �

Proposition 2.8 Consider the ellipsoid E = {z ∈ Rn | z>Sz ≤ 1}, where S ∈ Rn×n is symmet-
ric and positive definite. For each y ∈ E, there exist x ∈ ∂E and α ∈ [−1/λmax(S), 0] such that
y = x+ αSx.

Proof: Let y ∈ E . Since S is symmetric, there exist an orthogonal matrix Q ∈ Rn×n and a
diagonal matrix D ∈ Rn×n formed by the eigenvalues of S such that S = QDQ> and λmax(S) =
λmax(D) (see, for example, Theorem 8.1.1 in [27]). Consider the ellipsoid E ′ = {z ∈ Rn | z>Dz ≤
1}. Then, y′ = Q>y ∈ E ′ and, by Lemma 2.8, there exist x′ ∈ ∂E ′ and α′ ∈ [−1/λmax(D), 0]
such that y′ = x′ + α′Dx′. By left multiplying by Q both sides of this equality, we obtain

y = Qx′ + α′QDx′

= Qx′ + α′QDQ>Qx′

= Qx′ + α′SQx′.

Since x′ ∈ ∂E ′, we have Qx′ ∈ ∂E . Define x = Qx′ and α = α′. Therefore, y = x + αSx, with
x ∈ ∂E and α ∈ [−1/λmax(S), 0]. �

Lemma 2.9 Let D ∈ Rn×n be a positive definite diagonal matrix. Consider the ellipsoid E =
{z ∈ Rn | z>Dz ≤ 1}. Let x ∈ ∂E and α ∈ [−1/λmax(D), 0]. Let y = x + αDx. Then, y ∈ E
and the distance from y to the frontier of E is ‖y − x‖2.

Proof: If α = 0, then y = x and, therefore, y ∈ E and d(y, ∂E) = d(x, ∂E) = 0 = ‖y − x‖2.
Suppose that α < 0. Consider the ball centered at y with radius ‖y − x‖2. We shall prove that
this ball is contained in the ellipsoid E . Let z ∈ Rn be a point belonging to this ball. Then,

‖z − y‖22 ≤ ‖y − x‖22 = α2‖Dx‖22. (2.42)

Since y = x+ αDx, we have

‖z − y‖22 = ‖z − x− αDx‖22 = ‖z − x‖22 − 2α(z − x)>Dx+ α2‖Dx‖22. (2.43)

From (2.42) and (2.43), it follows that

‖z − x‖22 − 2α(z − x)>Dx ≤ 0.
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Notice that

‖z − x‖22 − 2α(z − x)>Dx = (z − x)>(z − x− 2αDx)

= (z − x)>(z − x− αDx− αDx)

= (z − x)>(z − y − αDx)

= (z − x)>(z − y)− α(z − x)>Dx

= (z − x)>(z − y)− αz>Dx+ αx>Dx

= (z − x)>(z − y)− αz>Dx+ α,

where the third equality holds since y = x+ αDx and the last equality holds since x ∈ ∂E , i.e.,
x>Dx = 1. Thus,

(z − x)>(z − y)− αz>Dx ≤ −α.

By dividing both sides of this inequality by −α (that, by assumption, is positive), we obtain the
following inequality:

1

α
(z − x)>(y − z) + z>Dx ≤ 1.

We have

1

α
(z − x)>(y − z) + z>Dx =

1

α
(z − x)>(y − z) + z>D(x− z + z)

=
1

α
(z − x)>(y − z)− (z − x)>Dz + z>Dz

=
1

α
(z − x)>(y − z − αDz) + z>Dz

=
1

α
(z − x)>(x+ αDx− z − αDz) + z>Dz

=
1

α
(z − x)>[x− z + αD(x− z)] + z>Dz

= − 1

α
(x− z)>[x− z + αD(x− z)] + z>Dz.

Therefore,

− 1

α
(x− z)>[x− z + αD(x− z)] + z>Dz ≤ 1.

Note that

− 1

α
(x− z)>[x− z + αD(x− z)] ≥ 0,

since −1/α > 0 and

(x− z)>[x− z + αD(x− z)] = (x− z)>(x− z) + α(x− z)>D(x− z)
≥ ‖x− z‖22 + α(x− z)>(λmax(D)In)(x− z)
= ‖x− z‖22 + αλmax(D)‖x− z‖22
= [1 + αλmax(D)]‖x− z‖22
≥ 0,
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where the first inequality follows from the fact that D is a diagonal matrix and α < 0, and the
second inequality holds since α ≥ −1/λmax(D). Consequently, we have z>Dz ≤ 1, i.e., z ∈ E .
Thus, the ball centered at y with radius ‖y−x‖2 is contained in the ellipsoid E . Therefore, y ∈ E
and since x belongs to this ball and x ∈ ∂E , we conclude that d(y, ∂E) = ‖y−x‖2. (Suppose, in
order to derive a contradiction, that d(y, ∂E) < ‖y − x‖2. Then, there exists v ∈ ∂E such that
‖y − v‖2 < ‖y − x‖2. Then, v belongs to the interior of ball B(y, ‖y − x‖2) centered at y with
radius ‖y − x‖2. Since B(y, ‖y − x‖2) is contained in E , we have that v is also an interior point
of E , which is a contradiction. Thus, d(y, ∂E) = ‖y − x‖2.) �

Proposition 2.9 Consider the ellipsoid E = {z ∈ Rn | z>Sz ≤ 1}, where S ∈ Rn×n is a
symmetric and positive definite matrix. Let x ∈ ∂E and α ∈ [−1/λmax(S), 0]. Let y = x+ αSx.
Then, y ∈ E and the distance from y to the frontier of E is ‖y − x‖2.

Proof: Since S is symmetric, there exist an orthogonal matrix Q ∈ Rn×n and a diagonal matrix
D ∈ Rn×n formed by the eigenvalues of S such that S = QDQ> and λmax(S) = λmax(D) (see,
for example, Theorem 8.1.1 in [27]). Consider the ellipsoid E ′ = {z ∈ Rn | z>Dz ≤ 1}. Then,
Q>x ∈ ∂E ′. Thus, by Lemma 2.9, y′ = Q>x + αDQ>x is such that y′ ∈ E ′ and the distance
from y′ to the frontier of E ′ is ‖y′ −Q>x‖2. Since y′ ∈ E ′, it follows that Qy′ ∈ E . Moreover,

Qy′ = Q(Q>x+ αDQ>x) = x+ αQDQ>x = x+ αSx = y.

Thus, y = Qy′ and, therefore, y ∈ E . We also have

d(y′, ∂E ′) = min
z∈∂E ′

‖y′ − z‖2

= min
z∈∂E ′

‖Q(y′ − z)‖2

= min
z∈∂E ′

‖y −Qz‖2

= min
w∈∂E

‖y − w‖2

= d(y, ∂E),

where the second equality is valid since Q is orthogonal and the fourth equality holds since, for
all z ∈ ∂E ′, we have Qz ∈ ∂E and, for all w ∈ ∂E , we have w = Q(Q>w) and Q>w ∈ ∂E ′. Thus,
d(y′, ∂E ′) = d(y, ∂E). Furthermore,

d(y′, ∂E ′) = ‖y′ −Q>x‖2 = ‖Q(y′ −Q>x)‖2 = ‖Qy′ − x‖2 = ‖y − x‖2.

Hence, y ∈ E and d(y, ∂E) = ‖y − x‖2. �

We are now able to develop the model. Consider the ellipsoid C = {x ∈ Rn | x>P−1x ≤ 1},
where P is a positive definite diagonal matrix. Consider also the ellipsoid Ei = {x ∈ Rn |
(x − ci)>QiP−1i Q>i (x − ci) ≤ 1}, where ci ∈ Rn, Qi ∈ Rn×n is orthogonal and Pi ∈ Rn×n is a
positive definite diagonal matrix. By applying transformation Ti defined in (2.4) to ellipsoid Ei,
we obtain the ball

Eii = {x ∈ Rn | (x− P−
1
2

i Q>i ci)
>(x− P−

1
2

i Q>i ci) ≤ 1}.
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By applying the same transformation Ti to ellipsoid C, we obtain the ellipsoid

Ci = {x ∈ Rn | x>Six ≤ 1},

where

Si = P
1
2
i Q
>
i P
−1QiP

1
2
i . (2.44)

Since Ti is an invertible transformation, we have Ei ⊆ C if and only if Eii ⊆ Ci by Lemma 2.2. In
order to guarantee that Eii ⊆ Ci, we require that the center cii of ball Eii be in Ci and that the
distance between cii and the frontier of Ci be at least one. By Proposition 2.8, if cii ∈ Ci then
there exist x̄i ∈ ∂Ci and αi ∈ [−1/λmax(Si), 0] such that

cii = x̄i + αiSix̄i. (2.45)

Moreover, by Proposition 2.9, any point of the form (2.45) belongs to ellipsoid Ci and the distance

between cii and ∂Ci is ‖cii − x̄i‖2. Thus, since cii = P
− 1

2
i Q>i ci, we obtain the following model

for the inclusion of ellipsoids into an ellipsoid.

P
− 1

2
i Q>i ci = x̄i + αiSix̄i, ∀i ∈ I (2.46)

x̄>i Six̄i = 1, ∀i ∈ I (2.47)

‖P−
1
2

i Q>i ci − x̄i‖22 ≥ 1, ∀i ∈ I (2.48)

αi ≤ 0, ∀i ∈ I (2.49)

αi ≥ − 1/λmax(Si), ∀i ∈ I. (2.50)

2.3.1.1 Alternative model

Consider a solution to the system (2.46)–(2.50). Notice that the value of αi must be
strictly negative for each i ∈ I. Otherwise, if αi = 0 for some i ∈ I, constraint (2.46) implies
that cii = x̄i and, therefore, ‖cii− x̄i‖2 = 0, which violates constraint (2.48). Lemma 2.10 below
provides a negative upper bound on the value of αi.

Lemma 2.10 Any solution to the system (2.46)–(2.50) is such that αi ≤ εi, where

εi = −λmin(P−1i )λmin(P
1
2
i )λmin(P )λmin(P−

1
2 ) < 0,

for each i ∈ I.

Proof: Consider a solution to the system (2.46)–(2.50). Let i ∈ I. By constraints (2.47), we
have x̄>i Six̄i = 1. Then, by Lemma 2.3 (taking xij

.
= x̄i, Pj

.
= P and Qj

.
= In), we have

‖Six̄i‖2 ≤ λmax(Pi)λmax(P−1)λmax(P
1
2 )λmax(P

− 1
2

i ).

By constraints (2.48), we have α2
i ‖Six̄i‖22 ≥ 1. Thus, we must have ‖Six̄i‖2 > 0 and, there-

fore, α2
i ≥ 1/‖Six̄i‖22. Consequently, since αi ≤ 0 by constraints (2.49), we must have αi ≤
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−1/‖Six̄i‖2. Hence, αi must satisfy

αi ≤ −
(
λmax(Pi)λmax(P−1)λmax(P

1
2 )λmax(P

− 1
2

i )
)−1

= −λmin(P−1i )λmin(P
1
2
i )λmin(P )λmin(P−

1
2 ).

Then, we can take

εi = −λmin(P−1i )λmin(P
1
2
i )λmin(P )λmin(P−

1
2 )

and the result follows. (Note that εi < 0 since Pi and P are positive definite matrices.) �

Based on this result, we can slightly modify model (2.46)–(2.50) and consider an alternative
model. Constraints (2.46) imply

x̄>i P
− 1

2
i Q>i ci = x̄>i x̄i + αix̄

>
i Six̄i, ∀i ∈ I.

Therefore, since αi must be nonzero, we have that

x̄>i Six̄i =
x̄>i (P

− 1
2

i Q>i ci − x̄i)
αi

, ∀i ∈ I.

So, we can replace constraints (2.47) and (2.49), respectively, with constraints

αi = x̄>i (P
− 1

2
i Q>i ci − x̄i), ∀i ∈ I

αi ≤ εi, ∀i ∈ I,

which are apparently simpler, and obtain an equivalent model.

2.3.1.2 Computing the largest eigenvalue of Si

The i-th constraint in (2.50) depends on the largest eigenvalue of matrix Si defined in
(2.44). Thus, we must know how to compute it. Firstly, we consider the particular two-
dimensional case. Next, we consider the problem in Rn where the container is a ball. Finally,
we consider the general case in Rn where the container is an arbitrary ellipsoid (centered at the
origin).

Let i ∈ I. Consider the two-dimensional problem and suppose that ai and bi are the

eigenvalues of P
1
2
i , and a and b are the eigenvalues of P

1
2 . In this case, if we represent the

rotation matrix Qi as in (2.1), the largest eigenvalue of Si will be given by

λmax(Si) =
δi +
√
βi

4a2b2
,

where
δi = (a2 + b2)(a2i + b2i )− (a2 − b2)(a2i − b2i ) cos(2θi)

and
βi = δ2i − (4abaibi)

2.
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Constraint αi ≥ −1/λmax(Si) is therefore equivalent to constraint

αi ≥ −
4a2b2

δi +
√
βi
,

which in turn is equivalent to constraint

αi
√
βi ≥ −(4a2b2 + αiδi). (2.51)

By constraints (2.49), αi must be nonpositive. Then, we must have αi
√
βi ≤ 0 and, therefore,

4a2b2 + αiδi ≥ 0. In this way, constraint (2.51) is equivalent to constraints

α2
i βi − (4a2b2 + αiδi)

2 ≥ 0 (2.52)

4a2b2 + αiδi ≥ 0. (2.53)

The function that defines constraint (2.51) is not everywhere differentiable in the domain
of the variables of the model, whereas the functions that define constraints (2.52) and (2.53) are
continuous and differentiable. So, for our purposes, the latter constraints are more suitable than
the former one. This is because we are interested in solving the problem of packing ellipsoids
in practice and, for this, we will use methods that make use of the derivatives of the functions
that define the problem.

Now, consider the problem in Rn and suppose that the container is a ball with radius
r > 0. In this case, we have P = r2In and thus

Si = P
1
2
i Q
>
i P
−1QiP

1
2
i = r−2P

1
2
i Q
>
i QiP

1
2
i = r−2Pi.

Then, λmax(Si) = r−2λmax(Pi) and the largest eigenvalue of Pi is simply the largest element of
the diagonal of Pi.

Finally, consider the problem in Rn where the container is an ellipsoid centered at the ori-
gin. Since Si is nonsingular, we have λmin(S−1i ) = 1/λmax(Si). Then, the problem of computing
the largest eigenvalue of matrix Si is reduced to the problem of computing the least eigenvalue
of matrix S−1i . Consider the system of equations

S−1i vi = λivi (2.54)

v>i vi = 1 (2.55)

(S−1i − λiIn) = B>i Bi, (2.56)

where the variables are λi ∈ R, vi ∈ Rn and Bi ∈ Rn×n. Equations (2.54) and (2.55) are satisfied
if and only if vi is an eigenvector of S−1i and λi is the eigenvalue associated with vi. Equation
(2.56) is satisfied if and only if matrix S−1i −λiIn is positive semidefinite. (A matrix A is positive
semidefinite if and only if there exists a matrix B such that A = B>B. See, for example, page
566 in Meyer [44]). Since S−1i is positive definite, matrix S−1i − λiIn is positive semidefinite if
and only if λi ∈ [0, λmin(S−1i )]. Since equations (2.54) and (2.55) imply that λi is an eigenvalue
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of S−1i , equation (2.56) is satisfied if and only if λi = λmin(S−1i ). Therefore, in the n-dimensional
case, the i-th constraint in (2.50) of the model (2.46)–(2.50) must be replaced by constraints

αi ≥ − λi
S−1i vi = λivi

v>i vi = 1

(S−1i − λiIn) = B>i Bi,

(2.57)

and the variables λi, vi and Bi are incorporated into the model. In this case, n constraints are
removed from the model and m(n2 + n+ 1) variables and m(n2 + n+ 2) constraints are added
to the model.

2.3.2 Ellipsoid inside a half-space

In this section, we propose a model to include an ellipsoid Ei into a half-space H. A
transformation is applied to the ellipsoid Ei which converts it into a ball Eii and the same
transformation is applied to the half-space H, thus obtaining a half-space Hi. Next, we model
the inclusion of Eii into Hi and observe that Ei is contained in H if and only if Eii is contained
in Hi.

Consider the half-space H = {x ∈ Rn | w>x ≤ s}, where w ∈ Rn \ {0} and s ∈ R, and
the ellipsoid Ei = {x ∈ Rn | (x − ci)>QiP−1i Q>i (x − ci) ≤ 1}, where ci ∈ Rn, Qi ∈ Rn×n is
orthogonal and Pi ∈ Rn×n is positive definite and diagonal. Let Hi be the set obtained when
transformation Ti defined in (2.4) is applied to the half-space H, i.e.,

Hi = {x ∈ Rn | x = Ti(z), z ∈ H}

= {x ∈ Rn | x = P
− 1

2
i Q>i z, z ∈ H}

= {x ∈ Rn | z = QiP
1
2
i x, z ∈ H}

= {x ∈ Rn | w>QiP
1
2
i x ≤ s}.

Since Ti is an invertible transformation, Ei ⊆ H if and only if Eii ⊆ Hi by Lemma 2.2. Thus, in
order to guarantee that ellipsoid Ei is contained in the half-space H, we require that the ball Eii
be contained in the half-space Hi, i.e., the center cii of ball Eii must be in Hi and the distance
from cii to the frontier of the half-space Hi must be at least one.

The frontier of the half-space Hi is the hyperplane ∂Hi = {x ∈ Rn | w>QiP
1
2
i x = s}.

Thus, the distance d(cii, ∂Hi) from the point cii to the frontier of Hi is given by

d(cii, ∂Hi) =
|w>QiP

1
2
i cii − s|

‖P
1
2
i Q
>
i w‖2

.

Therefore, the conditions

(w>QiP
1
2
i cii − s)2

‖P
1
2
i Q
>
i w‖22

≥ 1 and w>QiP
1
2
i cii ≤ s (2.58)
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are satisfied if and only if Ei ⊆ H. Alternatively, since cii = P
− 1

2
i Q>i ci, we have

w>QiP
1
2
i cii = w>QiP

1
2
i P
− 1

2
i Q>i ci = w>ci.

Hence, conditions (2.58) can also be written as(
w>ci − s

)2
‖P

1
2
i Q
>
i w‖22

≥ 1 and w>ci ≤ s. (2.59)

2.4 Numerical experiments

In this section, we present a variety of numerical experiments that aim to illustrate the
capabilities and limitations of the introduced models for packing ellipsoids. In a first set of
experiments, we consider the problem tackled in [26] that consists in packing as many identical
ellipses as possible within a given rectangle. In a second set of experiments, we deal with the
problem approached in [38] that consists in, given a set of (not necessarily identical) ellipses,
finding the rectangle with the smallest area within which the given set of ellipses can be packed.
Finally, in a third set of experiments, we deal with the problem of packing three-dimensional
ellipsoids within a ball or cuboid, trying to minimize the volume of the container.

All considered two-dimensional models were coded in AMPL [25] (Modeling Language for
Mathematical Programming), while the three-dimensional models were coded in Fortran 90. The
experiments were run on a 2.4GHz Intel Core2 Quad Q6600 machine with 4.0GB RAM memory
and Ubuntu 12.10 (GNU/Linux 3.5.0-21-generic x86 64) operating system. As the nonlinear
programming (NLP) solver, we have used Algencan [2, 13] version 3.0.0, which is available for
downloading at the TANGO Project web page (http://www.ime.usp.br/~egbirgin/tango/).
Algencan was compiled with GNU Fortran (GCC) 4.7.2 compiler with the -O3 optimization
directive enabled.

Algencan is an augmented Lagrangian method for nonlinear programming that solves the
bound-constrained augmented Lagrangian subproblems using Gencan [3, 11, 12], an active-set
method for bound-constrained minimization. Gencan adopts the leaving-face criterion described
in [11], that employs spectral projected gradients defined in [15, 16]. For the internal-to-the-
face minimization, Gencan uses an unconstrained algorithm that depends on the dimension of
the problem and the availability of second-order derivatives. For small problems with available
Hessians, a Newtonian trust-region approach is used (see [3]); while for medium- and large-sized
problems with available Hessians a Newtonian line-search method that combines backtracking
and extrapolation is used (this is the case of the two-dimensional problems presented in the
current section that, since they were coded in AMPL, have second-order derivatives available).
When second-order derivatives are not available, each step of Gencan computes the direction
inside the face using a line-search truncated-Newton approach with incremental quotients to
approximate the matrix-vector products and memoryless BFGS preconditioners (this is the
case of the three-dimensional problems considered in the present section, that were coded in
Fortran 90 and for which only first-order derivatives were coded).

Although Algencan is a local nonlinear programming solver, it was designed in such a way
that global minimizers of subproblems are actively pursued, independently of the fulfillment of

37

http://www.ime.usp.br/~egbirgin/tango/


approximate stationarity conditions in the subproblems. In other words, Algencan’s subproblem
solvers try always to find the lowest possible function values, even when this is not necessary
for obtaining approximate local minimizers. As a consequence, practical behavior of Algencan
is usually well explained by the properties of their global-optimization counterparts [8]. The
“preference for global minimizers” of Algencan has been discussed in [2]. This has also been
observed in papers devoted to numerical experiments concerning Algencan and other solvers
(see, for example, [33, 32] and the references therein). This does not mean at all that Algencan
is able to find global minimizers. Moreover, in no case it would be able to prove that a global
minimizer has been found. This simply means that, although unnecessary from the theoretical
point of view, Algencan makes an effort to find good quality local minimizers.

2.4.1 Two-dimensional packing

2.4.1.1 Packing the maximum number of ellipses within a rectangle

Given positive numbers L, W , a, and b, the problem considered in this section consists
in computing the maximum number m∗ of identical ellipses with semi-axis lengths a and b that
can be packed within a rectangle with length L and width W . To illustrate the capabilities
of the introduced models, we have considered a very simple strategy for packing the maximum
possible number of identical ellipses into a given rectangle. The algorithm iteratively packs an
increasing amount of ellipses into the rectangle. At the m-th iteration, the algorithm tries to
pack m ellipses. If it successfully packs the m ellipses inside the rectangle, then the iteration
is over and the next one begins. If it cannot pack the m ellipses, a packing with m∗ = m − 1
ellipses is returned and the algorithm terminates.

In order to pack m ellipses, a feasibility problem must be solved. This feasibility problem
consists of the non-overlapping constraints (2.22)–(2.25) or, alternatively, the non-overlapping
constraints (2.26)–(2.31), plus the fitting constraints that require the ellipses to be inside the
rectangle. In (2.22)–(2.25) or (2.26)–(2.31), we have that Pi ∈ R2×2, for i = 1, . . . ,m, is the
diagonal matrix with diagonal entries a2 and b2; while εij (i, j ∈ {1, . . . ,m} such that i < j)
is given by (2.21). The inclusion of an ellipse within the rectangle is obtained by requiring
the ellipse to be contained in four half-spaces (each one associated with a particular side of
the rectangle) as modeled in (2.59). Hence, considering that the rectangle with length L and
width W is centered at the origin and has sides parallel to the Cartesian axes, the fitting
constraints are given by(

w>` ci − s`
)2
≥ ‖P

1
2
i Q
>
i w`‖22 and w>` ci ≤ s` for i ∈ {1, . . . ,m}, ` ∈ {1, . . . , 4},

(2.60)
where

w1 = −w2 = (1, 0)>, w3 = −w4 = (0, 1)>, s1 = s2 =
L

2
and s3 = s4 =

W

2
.

From now on, the feasibility problem with m ellipses and that uses the non-overlapping con-
straints (2.22)–(2.25) plus the fitting constraints (2.60) will be named Fm1 ; while the one that
uses the non-overlapping constraints (2.26)–(2.31) plus the fitting constraints (2.60) will be
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named Fm2 . The model Fm1 has m(5m+ 11)/2 constraints and 3m(m+ 1)/2 variables; while the
model Fm2 has m(3m+ 5) constraints and 3m2 variables.

Since the feasibility problems Fm1 and Fm2 are non-convex and their numerical resolution
can be a very hard task, we apply a multi-start strategy. We define a maximum number Natt of
attempts to solve each problem launching the local NLP solver Algencan from different initial
points. If the problem is successfully solved, a packing with m ellipses is found. In this case,
m is incremented and the algorithm continues. Otherwise, if the maximum number of attempts
has been reached, then the algorithm stops, suggesting that a packing with m ellipses is not
possible, and a packing with m∗ = m− 1 ellipses is returned.

The algorithm starts with m = 1 and increases m by one at each iteration. It is important
to mention that most of the computational effort is spent when solving the problem with m = m∗

and trying to solve the problem with m = m∗+1. See, for example, [10, 14, 17] where exhaustive
numerical experiments support this claim.

When trying to pack m ellipses, the first initial point is constructed as follows. First, m−1
ellipses are arranged as in the solution for the problem with m−1 ellipses and the m-th ellipse is
randomly arranged in the rectangle (the center of the m-th ellipse is chosen uniformly at random
inside the rectangle and its rotation angle is chosen uniformly at random in the interval [0, π]).
For each subsequent attempt of packing m ellipses, the initial point is given by a small random
perturbation (at most 15%) of the solution returned by the local NLP solver in the previous
unsuccessful attempt. We have considered a maximum of Natt = 100 attempts to solve each
subproblem for a fixed value of m. Also, we have considered a total CPU time limit of 5 hours
to solve all subproblems for increasing values of m.

Table 2.1 shows the results obtained by applying the described strategy connected with
models F1 and F2 to the six instances considered in [26], each one defined by a rectangle with
length 6 and width 3 and identical ellipses with eccentricity 0.74536. In the table, the first
column refers to the instance name and the second column shows the lengths of the semi-axes
of the identical ellipses. The third column shows the number of ellipses packed by the method
proposed in [26]. The fourth and fifth columns present, for models F1 and F2, respectively, the
number of packed ellipses and the total CPU time spent (in seconds). As expected, the strategy
of solving models Fm1 and Fm2 for increasing values of m was able to find better solutions than
the ones found by the method proposed in [26], since our models do not impose constraints on the
rotation angles of the ellipses (the method proposed in [26] considers only 90-degree rotations).
It is worth noting that this set of experiments suggests that the usage of model F1 delivered
solutions faster, even being able to deliver a better quality solution (within the considered CPU
time limit of 5 hours and the maximum number of attempts) for instance GL6. Figures 2.3
and 2.4 show the graphical representation of the solutions found by considering the models F1

and F2, respectively.

2.4.1.2 Minimizing the area of the container

In this section, we first consider the problem of packing a given set of m (identical or
non-identical) ellipses with semi-axis lengths ai and bi (for i ∈ {1, . . . ,m}) within a rectangu-
lar container of minimum area. This problem can be modeled as the nonlinear programming
problem that consists in minimizing the product of the variable length L and width W of
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Instance
Semi-axis
lengths

Sh. I. Galiev and
Model F1 Model F2M. S. Lisafina [26]

m∗ m∗ Time (s) m∗ Time (s)

GL1 (0.68892,0.45928) 13 15 10.23 15 285.80
GL2 (0.61237,0.40825) 16 19 14.49 19 393.68
GL3 (0.45928,0.30619) 30 34 47.05 34 182.94
GL4 (0.38273,0.25515) 45 50 1025.24 50 1120.17
GL5 (0.33681,0.22454) 56 65 2122.40 65 2375.46
GL6 (0.30619,0.20412) 69 79 2131.65 78 7158.56

Table 2.1: Results obtained for the instances proposed in [26].

GL1 GL2 GL3

GL4 GL5 GL6

Figure 2.3: Solutions found by model F1 for the instances proposed in [26].

the rectangular container (centered at the origin and with their sides parallel to the Cartesian
axes) subject to the non-overlapping constraints (2.22)–(2.25) plus the fitting constraints (2.60),
where Pi ∈ R2×2 is the diagonal matrix with entries a2i and b2i for i ∈ {1, . . . ,m} and εij is given
by (2.21) for i, j ∈ {1, . . . ,m} such that i < j. This NLP problem will be named M from now
on. The model M has m(5m+ 11)/2 constraints and 3m(m+ 1)/2 + 2 variables.

Since problemM is a very hard non-convex nonlinear programming problem, we consider,
once again, a multi-start strategy in order to obtain the best possible local solution using the
NLP solver Algencan. The algorithm stops when either the number of attempts to solve the
problem reaches Natt = 1000 or 5 hours of CPU time are spent.

For instances with identical ellipses with semi-axis lengths a and b, the initial point is
given as follows. The centers of the ellipses are arranged in a regular lattice where the distance
between consecutive points is 2 max {a, b}. The rotation angle of each ellipse is chosen uniformly
at random in the interval [0, π]. The initial guess for the length and width of the container are
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GL1 GL2 GL3

GL4 GL5 GL6

Figure 2.4: Solutions found by model F2 for the instances proposed in [26].

then chosen so that it contains all ellipses. In the case of instances with non-identical ellipses,
the lattice is constructed so that the ellipses do not overlap when their centers are arranged in
the lattice. Moreover, the order in which the ellipses are arranged in the lattice is random.

In a first set of experiments, we considered the three sets of instances introduced in [38]
for the problem of packing a given set of identical or non-identical ellipses within a rectangular
container of minimum area. The first set includes 15 instances with non-identical ellipses; the
second set includes 14 instances with identical ellipses; and the third set includes 15 small
instances with 3 non-identical ellipses with increasing eccentricity. Tables 2.2–2.4 show the
results. The first column presents the names of the instances and the second column shows the
number m of ellipses. The third column shows the area of the container found by the method
proposed in [38]. A subset of the instances in Table 2.2 were also considered in [52]. Therefore,
the third column in Table 2.2 also shows, when applicable, the area of the container found by
the method proposed in [52]. The fourth column shows the area of the container found by our
method. The area is rounded with 5 decimal places (results up to the machine precision can be
found in http://www.ime.usp.br/~lobato/). The fifth column shows the number of attempts
made to find the solution. The last column shows the average CPU time (in seconds) per local
minimization. As it can be seen, our method was able to find solutions at least as good as the
ones presented in [38]. Moreover, for 20 instances, our method found better solutions (marked
with * in Tables 2.2 and 2.3) than the ones reported in [38]. In Table 2.2 it is also possible to
see that, considering the 9 instances to which the methodology proposed in [52] was applied, our
method found better quality solutions in 7 instances (TC05b, TC06, TC11, TC14, TC20, TC50,
and TC100), same quality solution in one instance (TC05a), and a poorer quality solution in
only one instance (TC30). Figures 2.5, 2.6, and 2.7 illustrate the solutions obtained for the
instances with prefix TC, TS, and TE, respectively.

To end this section, we consider the problem of packing a given set of ellipses inside an
ellipse with minimum area. This problem can be modeled as the problem of minimizing the

41

http://www.ime.usp.br/~lobato/


Instance m
Areas reported in J. Kallrath

and S. Rebennack [38] (left) and
in Y. Stoyan et al. [52] (right)

Model M

Area
# Local Avg.

Minimizations Time (s)
TC02a 2 18.00000 18.00000 1 0.03
TC02b 2 22.23152 22.23159 2 0.02
TC03a 3 21.38577 21.38577 2 0.04
TC03b 3 25.22467 25.22467 39 0.07
TC04a 4 23.18708 23.18708 2 0.11
TC04b 4 28.54159 28.54074* 74 0.07
TC05a 5 25.29557 24.55368 24.55368* 43 0.15
TC05b 5 31.28873 30.84870 30.64919* 20 0.14
TC06 6 25.27463 25.47173 25.08331* 19 0.54
TC11 11 57.24034 57.17830 55.91657* 348 5.27
TC14 14 24.67185 24.25099 24.17168* 75 5.73
TC20 20 67.83459 66.13647 65.70134* 45 19.28
TC30 30 103.45212 95.36535 95.61125* 272 58.27
TC50 50 166.91505 154.47049 152.69296* 42 278.71
TC100 100 322.64663 297.73798 297.70558* 2 2790.77

Table 2.2: Instances with non-identical ellipses considered in [38].

Instance m
Area reported in
J. Kallrath and

S. Rebennack [38]

Model M

Area
# Local Avg.

Minimizations Time (s)
TS02 2 16.00000 16.00000 1 0.06
TS03 3 23.53351 23.51416* 3 0.08
TS04 4 31.06838 31.06838 3 0.22
TS05 5 39.01646 39.01646 40 0.58
TS06 6 46.59133 46.06018* 5 1.50
TS07 7 54.13676 54.13676 40 4.04
TS08 8 61.26671 60.62435* 32 6.82
TS09 9 69.58409 68.39704* 43 10.67
TS10 10 76.49471 75.37894* 7 23.15
TS11 11 84.61446 83.22998* 155 28.33
TS12 12 91.67122 89.69699* 61 43.09
TS13 13 99.85158 97.84148* 230 54.41
TS14 14 106.78443 105.44099* 136 65.88
TS15 15 115.13250 111.26804* 8 91.15

Table 2.3: Instances with identical ellipses considered in [38].

product ab of the variable semi-axis lengths a and b of the elliptical container subject to the
non-overlapping constraints (2.22)–(2.25) plus the fitting constraints (2.46)–(2.49) and (2.52)–
(2.53). This model has m(5m + 1)/2 constraints and 3m(m + 3)/2 + 2 variables. We have

42



Instance m
Area reported in
J. Kallrath and

S. Rebennack [38]

Model M

Area
# Local Avg.

Minimizations Time (s)
TE1.00 3 22.17171 22.17171 2 0.13
TE0.99 3 21.84169 21.84169 95 0.18
TE0.98 3 21.50833 21.50833 56 0.14
TE0.97 3 21.17669 21.17669 22 0.10
TE0.96 3 20.84672 20.84672 43 0.07
TE0.95 3 20.51837 20.51837 14 0.07
TE0.90 3 18.89960 18.89960 2 0.06
TE0.80 3 16.09992 16.09992 2 0.03
TE0.70 3 13.79909 13.79909 2 0.05
TE0.60 3 11.65005 11.65005 2 0.06
TE0.50 3 9.74384 9.74384 4 0.06
TE0.40 3 7.91654 7.91654 2 0.05
TE0.30 3 6.16566 6.16566 14 0.11
TE0.20 3 4.15789 4.15789 12 0.21
TE0.10 3 2.08193 2.08193 179 0.98

Table 2.4: Instances with three non-identical ellipses considered in [38].

considered only one instance where the ellipses to be packed have semi-axis lengths 2 and 1.
Figure 2.8 illustrates the solution found by a single run of Algencan. This solution was found
in 1h56m14s. The container has semi-axis lengths 19.136912 and 12.050124.

In all the experiments described in the present and the previous subsection, the local
solver Algencan was run using its default parameters; while the optimality and feasibility tol-
erances εfeas and εopt (that are parameters that must be provided by the user) were both set
to 10−8. Those tolerances, related to the stopping criteria, are used to determine whether a
solution to the optimization problem being solved has been found. See [13, pp. 116–117] for
details. For the packing problems considered in the present work, independently of the stopping
criterion satisfied by the optimizer, it is a relevant information the accuracy of the delivered
solution in terms of (a) the fitting constraints and (b) the maximum overlapping between the
ellipses being packed. Regarding the fitting constraints, once the multi-start process determines
that a solution has been found with tolerances εfeas = εopt = 10−8, the optimization process
is resumed with tighter tolerances in order to achieve a precision of the order of 10−14 in the
sup-norm of the fitting constraints (2.60). Regarding the overlapping between the ellipses, in
order to be able to deliver a measure that is independent of the model being solved, the approach
introduced in [31] was considered. In particular, its C/C++ implementation (freely available at
https://github.com/chraibi/EEOver) was used. The method is an exact method that is able
to compute the intersection between ellipses and, for all the solutions reported here, overlapping
between every pair of ellipses is always smaller than the machine precision 10−16.
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TC02a TC02b TC03a

TC03b TC04a TC04b

TC05a TC05b TC06

TC11 TC14 TC20

TC30 TC50 TC100

Figure 2.5: Illustrations of the solutions found for the instances with prefix TC.

2.4.2 Three-dimensional packing

In this section, we consider two problems of packing three-dimensional ellipsoids. The first
problem is to pack a given set of m ellipsoids inside a ball with minimum volume. It can be
modeled as the problem of minimizing the radius r of the ball subject to the non-overlapping
constraints (2.22)–(2.25), where Pi ∈ R3×3 is the diagonal matrix whose entries are the squared
lengths of the semi-axes of the i-th ellipsoid for i ∈ {1, . . . ,m} and εij is given by (2.21) for
i, j ∈ {1, . . . ,m} such that i < j, plus the fitting constraints (2.46)–(2.50), where Si = r−2Pi and
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TS02 TS03 TS04

TS05 TS06 TS07

TS08 TS09 TS10

TS11 TS12 TS13

TS14 TS15

Figure 2.6: Illustrations of the solutions found for the instances with prefix TS.

λmax(Si) = r−2λmax(Pi) for each i ∈ {1, . . . ,m}. This problem has 3m2+3m+1 constraints and
2m2+8m+1 variables. The second problem is to pack a given set of m ellipsoids inside a cuboid
with minimum volume. This problem can be modeled as the problem of minimizing the product
of the variable length L, width W , and height H of the cuboid subject to the non-overlapping
constraints (2.22)–(2.25) plus the fitting constraints. Assuming that the edges of the cuboid are
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TE0.10 TE0.20 TE0.30 TE0.40

TE0.50 TE0.60 TE0.70 TE0.80

TE0.90 TE0.95 TE0.96 TE0.97

TE0.98 TE0.99 TE1.00

Figure 2.7: Illustrations of the solutions found for the instances with prefix TE.

parallel to the Cartesian axes, the fitting constraints are given by(
w>` ci − s`

)2
≥ ‖P

1
2
i Q
>
i w`‖22 and w>` ci ≤ s` for i ∈ {1, . . . ,m}, ` ∈ {1, . . . , 6},

(2.61)
where w1 = −w2 = (1, 0, 0)>, w3 = −w4 = (0, 1, 0)>, w5 = −w6 = (0, 0, 1)>, and

s1 = s2 =
L

2
, s3 = s4 =

W

2
, and s5 = s6 =

H

2
.

This problem has 3m2 + 9m constraints and 2m2 + 4m+ 3 variables.

In our experiments, we have considered instances with m ∈ {10, 20, . . . , 100} identical
ellipsoids with semi-axis lengths l1 = 1, l2 = 0.75, and l3 = 0.5. The initial solution we have
used in our experiments is defined as follows. The ellipsoids are not rotated and their centers
correspond to m points in the set {(δ1l1, δ2l2, δ3l3) | δ1, δ2, δ3 ∈ Z} that are closest to the
origin. In this way, the ellipsoids do not overlap in the initial solution. The containers (ball
and cuboid) in the initial solution are the smallest ones that contain the enclosing balls of each
ellipsoid. Figure 2.9(a) illustrates the initial solution for the instance with m = 50. We have also

46



Figure 2.8: 100 ellipses with semi-axis lengths 2 and 1 inside a minimizing area ellipse with
semi-axis lengths 19.136912 and 12.050124.

considered the initial solution where the centers of the ellipsoids belong to a generalisation of the
hexagonal close-packing lattice for spheres. This initial solution is illustrated in Figure 2.9(b)
for m = 50. These two types of initial solution produced similar results and we only show the
results considering the first type.

(a) (b)

Figure 2.9: Initial solutions for m = 50.

Table 2.5 presents the results we have obtained for a single run of the local solver Algencan
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applied to each instance. In the table, the first column shows the number of ellipsoids. The
second and third columns show the volume of the ball found and the CPU time, respectively. The
fourth and fifth columns show the volume of the cuboid found and the CPU time, respectively.
Figures 2.10 and 2.11 illustrate selected solutions for the problem of packing ellipsoids within a
minimum volume ball and within a minimum volume cuboid, respectively.

m
Ball Cuboid

Volume Time Volume Time
10 23.80673 2s 28.59202 7s
20 48.58743 46s 53.44100 33s
30 75.40218 7m49s 77.76544 7m00s
40 101.58621 9m42s 101.44566 21m28s
50 122.76153 36m14s 127.20831 2h31m40s
60 145.26059 47m27s 152.05153 1h57m10s
70 171.22144 9h04m25s 175.10514 12h48m23s
80 192.62626 9h10m18s 198.85788 5h53m54s
90 214.63923 1d17h54m36s 223.17261 1d03h15m43s

100 242.49896 19h42m23s 245.27508 2d17h27m04s

Table 2.5: Results for the three-dimensional problem of minimizing the volume of the container
(ball or cuboid) for an increasing number of ellipsoids m ∈ {10, 20, . . . , 100}.
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20 30
40

50 60
70

80 90 100

Figure 2.10: Illustration of the solutions obtained for the problem of packing ellipsoids within a
ball of minimum volume.
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20 30
40

50 60
70

80 90 100

Figure 2.11: Illustration of the solutions obtained for the problem of packing ellipsoids within a
cuboid of minimum volume.
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Chapter 3

Model with implicit variables

The numbers of variables and constraints of the non-overlapping models presented in
Sections 2.2.1 and 2.2.2 are quadratically proportional to the number of ellipsoids to be packed.
Thus, when the number of ellipsoids is relatively high, these models become very hard to be
numerically solved. In order to reduce the number of constraints, we will combine all constraints
from the non-overlapping model (2.22)–(2.25) in one or more constraints. To reduce the number
of variables, we will replace the variables xij and µij from model (2.22)–(2.25) with functions
that play the same roles as these variables.

3.1 Reduction of the number of constraints

Consider the non-overlapping model (2.22)–(2.25) presented in Section 2.2.1:

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
= µij , ∀i, j ∈ I such that i < j

‖P−
1
2

i Q>i (ci − cj)− xij‖22 ≥ 1, ∀i, j ∈ I such that i < j

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j

µij ≥ εij , ∀i, j ∈ I such that i < j.

By replacing each of the inequality constraints of this model with its squared infeasibility mea-
sure, we obtain the following model:

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
− µij = 0, ∀i, j ∈ I such that i < j (3.1)

max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)− xij‖22
}2

= 0, ∀i, j ∈ I such that i < j (3.2)

xij + µijSijxij − P
− 1

2
i Q>i (ci − cj) = 0, ∀i, j ∈ I such that i < j (3.3)

max
{

0, εij − µij
}2

= 0, ∀i, j ∈ I such that i < j. (3.4)

This model is equivalent to the model (2.22)–(2.25), in the sense that any solution to (3.1)–(3.4)
is a solution to the model (2.22)–(2.25) and vice-versa.
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For each i, j ∈ I such that i < j, let the function oij : R3n+2q+1 → R+ be defined as

oij(ci, cj ,Ωi,Ωj , xij , µij) =

(
x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
− µij

)2

+ max
{

0, εij − µij
}2

+ ‖xij + µijSijxij − P
− 1

2
i Q>i (ci − cj)‖22 + max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)− xij‖22
}2

.

(3.5)

Now, observe that the set of constraints (3.1)–(3.4) is equivalent to the constraints

oij(ci, cj ,Ωi,Ωj , xij , µij) = 0, ∀i, j ∈ I such that i < j. (3.6)

In order to obtain a model with a linear number of constraints, we can combine the constraints
(3.6) in the following way

m∑
j=i+1

oij(ci, cj ,Ωi,Ωj , xij , µij) = 0, ∀i ∈ I \ {m} , (3.7)

or even combining them into a single constraint:

m−1∑
i=1

m∑
j=i+1

oij(ci, cj ,Ωi,Ωj , xij , µij) = 0. (3.8)

The constraints (3.7) (or the constraints (3.8)) are equivalent to the constraints (3.6). Therefore,
we can replace the constraints (2.22)–(2.25) with constraints (3.7) (or constraint (3.8)) and
obtain an equivalent model for the packing of ellipsoids.

Although this new model has a linear number of constraints that models the non-overlapping
of ellipsoids, the total number of terms in the summations is quadratically proportional to the
number of ellipsoids to be packed. Thus, the computational cost of evaluating the constraints
(3.7) at a given point is practically the same as the cost of evaluating the constraints (2.22)–
(2.25). In Section 3.3, we will see how to efficiently evaluate these constraints.

3.2 Reduction of the number of variables

Consider the ellipsoids Ei and Ej with i < j given by

Ei = {x ∈ Rn | (x− ci)>QiP−1i Q>i (x− ci) ≤ 1} and

Ej = {x ∈ Rn | (x− cj)>QjP−1j Q>j (x− cj) ≤ 1},

where ci, cj ∈ Rn, Qi, Qj ∈ Rn×n are orthogonal matrices, and Pi, Pj ∈ Rn×n are diagonal and
positive definite matrices. Let Tij : Rn → Rn be the linear transformation defined by

Tij(x) = P
− 1

2
i Q>i (x− cj). (3.9)

Let E iji and E ijj be the ellipsoids obtained when the transformation Tij defined in (3.9) is applied
to Ei and Ej , respectively, i.e.,

E iji = {x ∈ Rn | [x− P−
1
2

i Q>i (ci − cj)]>[x− P−
1
2

i Q>i (ci − cj)] ≤ 1}
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and

E ijj = {x ∈ Rn | x>Sijx ≤ 1},

where

Sij = P
1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i .

Thus, E iji is a unitary radius ball centered at yij
.
= P

− 1
2

i Q>i (ci − cj) and, since Sij is positive

definite, E ijj is an ellipsoid. By Lemma 3.1, we have that the ellipsoids Ei and Ej overlap if and

only if the ellipsoids E iji and E ijj overlap. This lemma is similar to Lemma 2.1, but we present
it here for completeness.

Lemma 3.1 Consider the ellipsoids Ei, Ej , E iji and E ijj defined above. Thus, the ellipsoids Ei
and Ej overlap if and only if the ellipsoids E iji and E ijj overlap.

Proof: For any x ∈ Rn, we have

(x− ci)>QiP−1i Q>i (x− ci) = (x− ci)>QiP
− 1

2
i P

− 1
2

i Q>i (x− ci)

= (x− ci)>(P
− 1

2
i Q>i )>P

− 1
2

i Q>i (x− ci)

= [(x− cj)− (ci − cj)]>(P
− 1

2
i Q>i )>P

− 1
2

i Q>i [(x− cj)− (ci − cj)]

= [P
− 1

2
i Q>i (x− cj)− P

− 1
2

i Q>i (ci − cj)]>[P
− 1

2
i Q>i (x− cj)− P

− 1
2

i Q>i (ci − cj)]

= [Tij(x)− P−
1
2

i Q>i (ci − cj)]>[Tij(x)− P−
1
2

i Q>i (ci − cj)].

Therefore, we have that x ∈ int(Ei) if and only if Tij(x) ∈ int(E iji ). Furthermore,

(x− cj)>QjP−1j Q>j (x− cj) = (x− cj)>QiP
− 1

2
i P

1
2
i Q
>
i QjP

−1
j Q>j QiP

1
2
i P
− 1

2
i Q>i (x− cj)

= (x− cj)>QiP
− 1

2
i SijP

− 1
2

i Q>i (x− cj)

= (x− cj)>(P
− 1

2
i Q>i )>SijP

− 1
2

i Q>i (x− cj)

= [P
− 1

2
i Q>i (x− cj)]>SijP

− 1
2

i Q>i (x− cj)
= Tij(x)>SijTij(x).

Then, x ∈ int(Ej) if and only if Tij(x) ∈ int(E ijj ). Hence, int(Ei) ∩ int(Ej) 6= ∅ if and only if

int(E iji )∩ int(E ijj ) 6= ∅. In other words, the ellipsoids Ei and Ej overlap if and only if the ellipsoids

E iji and E ijj overlap. �

Consider the constraint (3.7) and suppose that the ellipsoids Ei and Ej do not overlap. In
this case, we know that there are values for xij and µij such that the term oij(ci, cj ,Ωi,Ωj , xij , µij)
as defined in (3.5) vanishes and, therefore, does not contribute to the summation in (3.7). We
can just take xij as the projection of yij onto the ellipsoid E ijj and µij as the nonnegative scalar
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that satisfies yij = xij + µijSijxij . The projection of yij onto the ellipsoid E ijj is the solution of
the problem

minimize ‖x− yij‖22
subject to x>Sijx ≤ 1.

(3.10)

However, taking xij as the solution to the problem (3.10) does not lead to a good overlap-

ping measure. If yij ∈ int(E ijj ), then the solution to the problem (3.10) is yij and we must have

µij = 0. Then, the term associated with the distance between yij and E ijj will be constant, as
well as the term associated with the positivity of µij in (3.7). Consider the following problem:

minimize ‖x− yij‖22
subject to x>Sijx = 1.

(3.11)

If yij /∈ int(E ijj ), the problems (3.10) and (3.11) are equivalent and have a unique solution.
Notice that the null vector is not a feasible solution to the problem (3.11). Thus, since the
problem (3.11) has a single constraint and the matrix Sij is positive definite, the gradient of the
constraint is nonzero at every feasible point. Therefore, any solution to this problem satisfies
the linear independence constraint qualification. This means that the Karush–Kuhn–Tucker
optimality conditions of problem (3.11) (see, for example, the Proposition 3.3.1 in [5]) is satisfied
by every solution to the problem (3.11). Thus, if x∗ is a solution to this problem then there
exists µ∗ ∈ R such that

x∗ + µ∗Sijx
∗ − yij = 0. (3.12)

If yij /∈ int(E ijj ) then, by Proposition 2.1, there exist a unique x∗ ∈ ∂E ijj and a unique µ∗

that satisfy (3.12). Moreover, µ∗ ≥ 0. On the other hand, if yij ∈ int(E ijj ) then the problem
(3.11) may have more than one solution. But, by Proposition 3.1, the Lagrange multiplier
associated with the constraint of this problem is the same for any solution and belongs to the
interval [−1/λmax(Sij), 0].

Lemma 3.2 will be used in the proof of the Proposition 3.1, which shows that the Lagrange
multiplier associated with the constraint of the problem (3.11) is the same for any solution to
this problem. Lemma 3.2 is a particular case of Proposition 3.1.

Lemma 3.2 Consider the ellipsoid E = {z ∈ Rn | z>Dz ≤ 1}, where D ∈ Rn×n is diagonal
and positive definite. Given y ∈ E, there exists a unique α ∈ [−1/λmax(D), 0] and there exists
x ∈ ∂E such that y = x+ αDx. Moreover, if α ∈ (−1/λmax(D), 0] then x ∈ ∂E is unique.

Proof: Let I = {1, . . . , n}. For each i ∈ I, denote the i-th diagonal element of matrix D by di.
Consider the system

yi = xi + αdixi, ∀i ∈ I, (3.13)

x>Dx = 1, (3.14)

α ∈ [−1/λmax(D), 0]. (3.15)

By Lemma 2.8, the system (3.13)–(3.15) has at least one solution. Suppose that (x∗, α∗)
be a solution to this system and that α∗ > −1/λmax(D). We shall prove that this is the only
solution to this system. Notice that this is enough to prove the lemma.
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Since α∗ > −1/λmax(D), we have that

1 + α∗di > 0,∀i ∈ I. (3.16)

By (3.13), we have yi = (1 + α∗di)x
∗
i for each i ∈ I. Then, (3.13) and (3.16) imply that, for

each i ∈ I, x∗i = 0 if yi = 0. However, since x∗ = 0 does not satisfy (3.14), there must exist
i ∈ I such that yi 6= 0.

Since 1 + α∗di > 0 for each i ∈ I, by (3.13) we have that

x∗i =
yi

1 + α∗di
, ∀i ∈ I. (3.17)

In order to derive a contradiction, suppose that the system has a solution (x̄, ᾱ) 6= (x∗, α∗).
If ᾱ = α∗, then x̄ = x∗ by (3.17). Thus, we must have ᾱ 6= α∗. We shall divide the proof in the
cases where ᾱ > −1/λmax(D) and ᾱ = −1/λmax(D).

Case 1. Suppose that ᾱ > −1/λmax(D). Then, 1 + ᾱdi > 0 for each i ∈ I and, therefore,

x̄i =
yi

1 + ᾱdi
,∀i ∈ I.

By (3.14), we have that

1 = x∗>Dx∗ =
n∑
i=1

di(x
∗
i )

2 =
n∑
i=1

di
y2i

(1 + α∗di)2
.

If ᾱ < α∗, then 1 + α∗di > 1 + ᾱdi > 0 for each i ∈ I and

1 =
n∑
i=1

di
y2i

(1 + α∗di)2
<

n∑
i=1

di
y2i

(1 + ᾱdi)2
=

n∑
i=1

di(x̄i)
2 = x̄>Dx̄.

If ᾱ > α∗, then 0 < 1 + α∗di < 1 + ᾱdi for each i ∈ I and

1 =

n∑
i=1

di
y2i

(1 + α∗di)2
>

n∑
i=1

di
y2i

(1 + ᾱdi)2
=

n∑
i=1

di(x̄i)
2 = x̄>Dx̄.

In both cases we have that x̄>Dx̄ 6= 1 and, therefore, (x̄, ᾱ) is not a solution to the system
(3.13)–(3.15).

Case 2. Suppose that ᾱ = −1/λmax(D). Let I+ =
{
i ∈ I | di = λmax(D)

}
and I− = I \ I+.

By (3.13), we must have that yi = 0 for each i ∈ I+, since 1 + ᾱdi = 0 for each i ∈ I+. Thus,
since α∗ > −1/λmax(D), we must have that x∗i = 0 for each i ∈ I+. Hence, since x∗>Dx∗ = 1,
there exists i ∈ I− such that x∗i 6= 0 and, consequently, yi 6= 0, since yi = (1 + α∗di)x

∗
i . Since

1 + ᾱdi > 0 for each i ∈ I−, by (3.13) we have that

x̄i =
yi

1 + ᾱdi
, ∀i ∈ I−.
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Therefore,

1 = x∗>Dx∗ =
∑
i∈I

di(x
∗
i )

2 =
∑
i∈I−

di(x
∗
i )

2 =
∑
i∈I−

di
y2i

(1 + α∗di)2
<
∑
i∈I−

di
y2i

(1 + ᾱdi)2
=
∑
i∈I−

dix̄
2
i .

Thus,

x̄>Dx̄ =
∑
i∈I

dix̄
2
i ≥

∑
i∈I−

dix̄
2
i > 1,

that is, (x̄, ᾱ) is not a solution to the system (3.13)–(3.15).

Hence, (x∗, α∗) is the only solution to the system (3.13)–(3.15). �

Proposition 3.1 Consider the ellipsoid E = {z ∈ Rn | z>Sz ≤ 1}, where S ∈ Rn×n is a
symmetric and definite positive matrix. Given y ∈ E, there exists a unique α ∈ [−1/λmax(S), 0]
and there exists x ∈ ∂E such that y = x+ αSx. Moreover, if α ∈ (−1/λmax(S), 0] then x ∈ ∂E
is unique.

Proof: By Proposition 2.8, there exist x∗ ∈ ∂E and α∗ ∈ [−1/λmax(S), 0] such that

y = x∗ + α∗Sx∗. (3.18)

Suppose that α∗ ∈ (−1/λmax(S), 0]. We shall prove that there do not exist x̄ ∈ ∂E and ᾱ ∈
[−1/λmax(S), 0] such that y = x̄+ ᾱSx̄ and (x̄, ᾱ) 6= (x∗, α∗). In order to derive a contradiction,
suppose that there exist x̄ ∈ ∂E and ᾱ ∈ [−1/λmax(S), 0] such that

y = x̄+ ᾱSx̄ (3.19)

and (x̄, ᾱ) 6= (x∗, α∗).

Since S is symmetric, there exist an orthogonal matrix Q ∈ Rn×n and a diagonal matrix
D ∈ Rn×n formed by the eigenvalues of S such that S = QDQ> and λmax(S) = λmax(D) (see,
for example, Theorem 8.1.1 in [27]). Consider the ellipsoid E ′ = {z ∈ Rn | z>Dz ≤ 1}.

Then, Q>y ∈ E ′, Q>x∗ ∈ ∂E ′, Q>x̄ ∈ ∂E ′. Moreover, since λmax(S) = λmax(D), we have
that α∗ ∈ (−1/λmax(D), 0] and ᾱ ∈ [−1/λmax(D), 0]. By left multiplying both sides of equations
(3.18) and (3.19) by Q, we obtain

Q>y = Q>x∗ + α∗DQ>x∗ (3.20)

and

Q>y = Q>x̄+ ᾱDQ>x̄. (3.21)

By Lemma 3.2, if ᾱ = α∗, we must have Q>x̄ = Q>x∗ and, consequently, x̄ = x∗, which
contradicts the hypothesis that (x̄, ᾱ) 6= (x∗, α∗). If ᾱ 6= α∗, then (3.20) and (3.21) contradict
Lemma 3.2.
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Hence, if α∗ ∈ (−1/λmax(S), 0], then the system

y = x+ αSx,

x>Sx = 1,

α ∈ [−1/λmax(S), 0]

has a unique solution. �

The equation (3.12) implies that

x∗>(x∗ + µ∗Sijx
∗ − yij) = 0.

Since x∗>Sijx
∗ = 1, this implies that

x∗>(yij − x∗)− µ∗ = 0.

Therefore, since yij = P
− 1

2
i Q>i (ci − cj), any solution x∗ to the problem (3.11) together with the

corresponding Lagrange multiplier µ∗ satisfy

x∗>
(
P
− 1

2
i Q>i (ci − cj)− x∗

)
− µ∗ = 0

x∗ + µ∗Sijx
∗ − P−

1
2

i Q>i (ci − cj) = 0.

Thus, if we take Xij as a solution to the problem (3.11) and Uij as the corresponding Lagrange
multiplier, the constraints (3.7) become

m∑
j=i+1

max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)−Xij‖22
}2

+max
{

0, εij − Uij
}2

= 0, ∀i ∈ I\{m} . (3.22)

Thus, the variables xij and µij cease to be part of the non-overlapping model. In (3.22),
we define Xij to be a function whose value is a solution to the problem (3.11) and Uij is the
function whose value is the Lagrange multiplier associated with the value of Xij .

3.3 Efficient evaluation of the constraints

The total number of terms presented in constraints (3.22) is O(m2). However, most of
these terms do not need to be computed when the constraints are evaluated at a point that is
almost feasible, that is, a point where most of the ellipsoids do not overlap each other. In a
feasible solution, only a constant number of ellipsoids may touch a given ellipsoid. For example,
suppose that the ellipsoids are identical balls. In the two-dimensional case, at most six balls can
touch a given ball. In the three-dimensional case, this number is twelve. For identical ellipsoids,
the number of ellipsoids that can touch a given one will depend on the eccentricities of these
ellipsoids. Hence, in a (almost) feasible solution, only O(m) terms need to be evaluated.

If the ellipsoids Ei and Ej do not overlap, then the term associated with this pair of
ellipsoids in the summation (3.22) is zero and need not be evaluated. A sufficient condition for
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the ellipsoids Ei and Ej not to overlap is that their enclosing balls do not overlap. An enclosing
ball of a set is a ball that contains that set. The minimal enclosing ball of Ei is the ball with

radius ri = λmax(P
1
2
i ) centered at ci. Therefore, if

‖ci − cj‖2 ≥ ri + rj

then the ellipsoids Ei and Ej do not overlap. Let

R = max
i∈I
{ri}.

Thus, every ellipsoid Ei is contained in a ball with radius R centered at ci. Therefore, if

‖ci − cj‖2 ≥ 2R (3.23)

then the ellipsoids Ei and Ej do not overlap.

The method described here to identify the pairs of ellipsoids that do not meet the condi-
tion (3.23) has been used in other works, such as [18] and [43], to identify pairs of balls that may
overlap. Let l = 2R and consider a hypercube with edge length L that contains the container.
This hypercube can be covered by dL/len hypercubes with edge lengths l whose interiors are
mutually disjoint. We refer to each of these hypercubes with edge lengths l as a region. Two
regions are adjacent if they share at least one vertex. Suppose that Ei and Ej have their centers
in non-adjacent regions. In this case, since each region is a hypercube with edge length 2R,
we must have ‖ci − cj‖2 ≥ 2R, that is, the ellipsoids Ei and Ej do not overlap. Therefore, if
two ellipsoids are in non-adjacent regions, they do not overlap. If two ellipsoids are in the same
region or in adjacent regions, they may or may not overlap. Hence, considering all the terms that
appear in the constraints (3.22), we can evaluate only those that are associated with ellipsoids
that lie in the same region or in adjacent regions.

Each ellipsoid can be assigned to a region in constant time based on its center. The region
of the ellipsoid Ei is defined as the tuple

(p([ci]1), . . . , p([ci]n))

where

p(x) = min{max{1, bx/lc}, Nreg}

and Nreg = dL/le. The method to determine which pairs of ellipsoids should be considered works
as follows. First, an n-dimensional array with Nreg entries for each dimension is created. Each
element of this array is associated with a region and stores a list with the indices of ellipsoids
that belong to that region. This structure can be constructed in O(m) time. Also, there is
a list with the non-empty regions (regions that have at least one ellipsoid). This list is also
constructed in O(m) time. Then, for each non-empty region and for each ellipsoid Ei in that
region, the term associated with the ellipsoids Ei and Ej is computed for each ellipsoid Ej in that
region and in adjacent regions. Considering the case where all the ellipsoids have approximately
the same size, each region will contain only a constant number of ellipsoids in an almost feasible
solution. In this case, this algorithm performs in O(m) time.

58



3.4 Non-overlapping model

To make it clearer that xij and µij are no longer variables of the model but functions of
the centers and rotation angles of the ellipsoids Ei and Ej , we shall rewrite (3.22) in the following
way:

m∑
j=i+1

max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖22
}2

+

max
{

0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)
}2

= 0, ∀i ∈ I \ {m} .

(3.24)

The value of X (ci, cj ,Ωi,Ωj ;Pi, Pj) is therefore a solution to the problem

minimize ‖x− yij‖22
subject to x>Sijx = 1

(3.25)

and U(ci, cj ,Ωi,Ωj ;Pi, Pj) is the Lagrange multiplier associated with this solution.

This new non-overlapping model has m − 1 constraints given by (3.24) and its variables
are the centers of the ellipsoids (ci ∈ Rn for each i ∈ {1, . . . ,m}) and the rotation angles of
the ellipsoids (Ωi ∈ Rq for each i ∈ {1, . . . ,m}). Therefore, this model has a linear number
of variables and a linear number of constraints on the number of ellipsoids to be packed. The
following lemma shows that the constraint (3.24) is indeed a non-overlapping model.

Lemma 3.3 The function that defines the constraint (3.24) vanishes if and only if the ellipsoids
do not overlap.

Proof: Firstly, notice that the function is nonnegative at every point. Let i, j ∈ {1, . . . ,m} be
such that i < j. Suppose that the ellipsoids Ei and Ej do not overlap. Thus, we have that the

ellipsoids E iji and E ijj do not overlap either. So, the distance from the center yij of the unitary

radius ball E iji to the ellipsoid E ijj is at least one. Since in this case yij /∈ E ijj , we have that

X (ci, cj ,Ωi,Ωj ;Pi, Pj) is the projection of yij onto the ellipsoid E ijj . Therefore, recalling that

yij = P
− 1

2
i Q>i (ci − cj), we have

‖P−
1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖2 ≥ 1.

Consequently, we have that

max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖22
}2

= 0.

Since X (ci, cj ,Ωi,Ωj ;Pi, Pj) is the solution to the problem (3.11) and U(ci, cj ,Ωi,Ωj ;Pi, Pj)
is the Lagrange multiplier associated with this solution and satisfies (3.12), we have that
U(ci, cj ,Ωi,Ωj ;Pi, Pj) ≥ 0 by Proposition 2.1. By Proposition 2.3, we have that U(ci, cj ,Ωi,Ωj ;Pi, Pj) ≥
εij . Therefore,

max
{

0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)
}2

= 0.
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Hence, if the ellipsoids do not overlap, the function that defines the constraint (3.24) takes the
zero value.

Suppose that there exist two ellipsoids that overlap. Let i, j ∈ {1, . . . ,m} such that i < j

be the indices of those ellipsoids. Let yij be the center of the ball E iji , that is, yij = P
− 1

2
i Q>i (ci−

cj). Let us consider two cases. Suppose that yij /∈ int(E ijj ). In this case, X (ci, cj ,Ωi,Ωj ;Pi, Pj)

is the projection of yij onto ellipsoid E ijj . Since Ei and Ej overlap, we have that the ellipsoids

E iji and E ijj also overlap. Thus,

‖yij −X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖2 < 1.

Therefore,

max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖22
}2

> 0.

Now, suppose that yij ∈ int(E ijj ). Since yij ∈ int(E ijj ) and X (ci, cj ,Ωi,Ωj ;Pi, Pj) ∈ ∂E ijj , by
(3.12) and by Proposition 2.2, we must have U(ci, cj ,Ωi,Ωj ;Pi, Pj) ≤ 0. Moreover, since yij 6=
X (ci, cj ,Ωi,Ωj ;Pi, Pj), we must have U(ci, cj ,Ωi,Ωj ;Pi, Pj) 6= 0. Consequently, U(ci, cj ,Ωi,Ωj ;Pi, Pj) <
0. Then,

max
{

0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)
}2
> 0.

Therefore, if the ellipsoids Ei and Ej overlap, the term in the summation in (3.24) corresponding
to the indices i and j is positive. Hence, since each term in this summation is nonnegative, we
have that the function takes a positive value if the ellipsoids overlap. �

The overlapping measure of two ellipsoids Ei and Ej is given by

fij(Ei, Ej) = max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖22
}2

+

max
{

0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)
}2
.

(3.26)

This measure does not depend on the size of the ellipsoids as shown in the Lemma 3.4.

Definition 3.1 Consider the set E ⊆ Rn. For each ν ∈ R++, we define νE =
{
νx | x ∈ E

}
.

Lemma 3.4 The function defined in (3.26) is invariant with respect to the scaling of the ellip-
soids. That is, fij(Ei, Ej) = fij(νEi, νEj) for each ν ∈ R++.

Proof: Consider the ellipsoids Ei = {x ∈ Rn | (x − ci)>QiP−1i Q>i (x − ci) ≤ 1} and Ej = {x ∈
Rn | (x− cj)>QjP−1j Q>j (x− cj) ≤ 1}. Let ν ∈ R++. We have that

νEi = {νx ∈ Rn | x ∈ Ei}
= {x ∈ Rn | ν−1x ∈ Ei}

=
{
x ∈ Rn | (ν−1x− ci)>QiP−1i Q>i (ν−1x− ci) ≤ 1

}
=
{
x ∈ Rn | (x− νci)>Qi(ν2Pi)−1Q>i (x− νci) ≤ 1

}
.
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Analogously, we have that

νEj =
{
x ∈ Rn | (x− νcj)>Qj(ν2Pj)−1Q>j (x− νcj) ≤ 1

}
.

Notice that the constant εij given by Proposition 2.3 for the pair of ellipsoids Ei and Ej is
the same for the pair of ellipsoids νEi and νEj , since

εij = λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j )

= (ν−2νν2ν−1)λmin(P−1i )λmin(P
1
2
i )λmin(Pj)λmin(P

− 1
2

j )

= ν−2λmin(P−1i )νλmin(P
1
2
i )ν2λmin(Pj)ν

−1λmin(P
− 1

2
j )

= λmin((ν2Pi)
−1)λmin((ν2Pi)

1
2 )λmin(ν2Pj)λmin((ν2Pj)

− 1
2 ).

Thus, we have that

fij(νEi, νEj) = max
{

0, 1− ‖(ν2Pi)−
1
2Q>i (νci − νcj)−X (νci, νcj ,Ωi,Ωj ; ν

2Pi, ν
2Pj)‖22

}2
+

max
{

0, εij − U(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj)
}2
.

Let (νEi)ij be the set obtained by applying the transformation Tij to the ellipsoid νEi,
that is,

(νEi)ij = {x ∈ Rn | x = Tij(z), z ∈ νEi}

= {x ∈ Rn | x = (ν2Pi)
− 1

2Q>i (z − νcj), z ∈ νEi}

= {x ∈ Rn | z = Qi(ν
2Pi)

1
2x+ νcj , z ∈ νEi}

= {x ∈ Rn | (Qi(ν2Pi)
1
2x+ νcj − νci)>Qi(ν2Pi)−1Q>i (Qi(ν

2Pi)
1
2x+ νcj − νci) ≤ 1}

= {x ∈ Rn | (νQiP
1
2
i x+ νcj − νci)>Qi(ν2Pi)−1Q>i (νQiP

1
2
i x+ νcj − νci) ≤ 1}

= {x ∈ Rn | ν[QiP
1
2
i x− (ci − cj)]>Qiν−2P−1i Q>i ν[QiP

1
2
i x− (ci − cj)] ≤ 1}

= {x ∈ Rn | [QiP
1
2
i x− (ci − cj)]>QiP−1i Q>i [QiP

1
2
i x− (ci − cj)] ≤ 1}

= {x ∈ Rn | [x− P−
1
2

i Q>i (ci − cj)]>P
− 1

2
i Q>i QiP

−1
i Q>i QiP

1
2
i [x− P−

1
2

i Q>i (ci − cj)] ≤ 1}

= {x ∈ Rn | [x− P−
1
2

i Q>i (ci − cj)]>[x− P−
1
2

i Q>i (ci − cj)] ≤ 1}
= E iji .

Thus, (νEi)ij = E iji . Similarly, we obtain (νEj)ij = E ijj . Therefore, since X (ci, cj ,Ωi,Ωj ;Pi, Pj)

is a projection of the center of E iji onto the frontier of E ijj and X (νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) is

a projection of the center of (νEi)ij onto the frontier of (νEj)ij , (νEi)ij = E iji and (νEj)ij = E ijj
imply that

U(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) = U(ci, cj ,Ωi,Ωj ;Pi, Pj)
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by Proposition 3.2, and it is possible to take

X (νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj) = X (ci, cj ,Ωi,Ωj ;Pi, Pj).

Consequently,

fij(νEi, νEj) = max
{

0, 1− ‖(ν2Pi)−
1
2Q>i (νci − νcj)−X (νci, νcj ,Ωi,Ωj ; ν

2Pi, ν
2Pj)‖22

}2
+

max
{

0, εij − U(νci, νcj ,Ωi,Ωj ; ν
2Pi, ν

2Pj)
}2

= max

{
0, 1− ‖P−

1
2

i Q>i (ci − cj)−X (ci, cj ,Ωi,Ωj ;Pi, Pj)‖22
}2

+

max
{

0, εij − U(ci, cj ,Ωi,Ωj ;Pi, Pj)
}2

= fij(Ei, Ej).

�

We have defined X to be the function whose value is a solution to the problem (3.25)
and U to be the function whose value is the Lagrange multiplier associated with that solution.
Therefore, when solving the problem (3.25) in practice, it is important that the solver always
returns the same solution when the same instance of the problem is solved multiple times. Let
yij ∈ Rn and Sij ∈ Rn×n be a positive definite matrix. By Proposition 3.2, any solution to
the problem (3.25) is associated with the same Lagrange multiplier. Therefore, no matter what
optimal solution to the problem (3.25) is returned by the solver, U will behave like a function.
However, this may not be the case for X and it will depend on the solver. If yij /∈ int(E ijj )

then the problem (3.25) has a unique solution. On the other hand, if yij ∈ int(E ijj ) then the
problem (3.25) may have multiple optimal solutions. In this case, the solver could return different
solutions for the same problem in different executions. Figure 3.1 illustrates some cases where
this problem has more than one solution. This picture shows an ellipse with semi-axis lengths
a and b with a > b. The projection of the point y1 onto the frontier of the ellipse is unique: the
point x1. However, for any point y2 in the set {y ∈ R2 | b2/a− a < y1 < a− b2/a, y2 = 0}, there
are two projections: x̄2 and x2. If the ellipse is a circle, that is, a = b, then every point in the
frontier of the circle is a projection of the center of the circle onto the frontier. This undesirable
behaviour can be avoided by using a deterministic algorithm for solving the problem (3.25).
Also, X and U should be continuous and differentiable. These conditions, however, may not be
easy to satisfy. Consider the example illustrated in Figure 3.2. In this picture, the points y1

and y2 are arbitrarily close. The point y1 lies above the horizontal axis; while the point y2 lies
below the horizontal axis. Notice that the projection x1 of y1 onto the frontier of the ellipse is
far from x2, which is the projection of y2 onto the frontier of the ellipse. The set of points ciji
where the problem (3.25) has multiple optimal solutions has zero measure so that it does not
appear to be an issue in practice.

3.4.1 Evaluation of the overlapping measure

In order to evaluate the constraint (3.24) at a given point, we need to find the values of
X (ci, cj ,Ωi,Ωj ;Pi, Pj) and U(ci, cj ,Ωi,Ωj ;Pi, Pj). As we have seen, if the ellipsoids Ei and Ej
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(0, 0)−(a− b2

a , 0) (a− b2

a , 0)y2

x̄2

x2

y1

x1

Figure 3.1: Projections of the points y1 and y2 onto the frontier of the ellipse.

(0, 0)−(a− b2

a , 0) (a− b2

a , 0)

y1

x1

y2

x2

Figure 3.2: The points y1 and y2 can be arbitrarily close, but their projections x1 and x2 may
be far from each other.
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do not overlap, then the term associated with this pair of ellipsoids in the summation in (3.24)
is zero. Thus, if we know that the ellipsoids Ei and Ej do not overlap, then we do not need to
evaluate the functions X and U .

Suppose that we do not know whether the ellipsoids Ei and Ej overlap. In this case, we
need to compute the values of X (ci, cj ,Ωi,Ωj ;Pi, Pj) and U(ci, cj ,Ωi,Ωj ;Pi, Pj). For this, we
need to solve the problem

minimize 1
2‖x− yij‖

2
2

subject to x>Sijx = 1,

where yij = P
− 1

2
i Q>i (ci − cj). By performing the change of variable w = S

1
2
ijx, this problem is

equivalent to the problem

minimize 1
2w
>S−1ij w − y>ijS

− 1
2

ij w

subject to w>w = 1.
(3.27)

The objective function of the problem (3.27) is a convex quadratic function and the feasible set
is the frontier of the unitary radius ball centered at the origin. This problem can be solved by
an algorithm proposed in [42]. Mart́ınez [42] dealt with the problem of minimizing a quadratic
function over the frontier of a ball, that is, a problem of the following form:

minimize 1
2w
>Gw + g>w

subject to w>w = ∆,
(3.28)

where G ∈ Rn×n is symmetric, g ∈ Rn, and ∆ ∈ R++. In our case, we have G = S−1ij ,

g = −y>ijS
− 1

2
ij , and ∆ = 1.

3.5 Numerical experiments

In this section, we present some experiments to show that the non-overlapping model with
implicit variables can be used to solve larger instances than the ones solved by the transforma-
tion based model presented in Section 2.2.1. Since the model introduced in this chapter can
be solved faster, it opens the possibility for the use of a multi-start strategy to obtain better
quality solutions. This strategy could not be applied with the original transformation based
model for medium-sized instances due to the excessive amount of time spent to solve a single
problem (a single local minimization of the problem of packing 100 three-dimensional ellipsoids
within a minimum volume ball took 19h42m23s, as reported in Section 2.4.2, for example).
The model with implicit variables, however, is not suitable for small-sized instances of prob-
lems, because of the overhead of evaluating the constraints (as described in Section 3.3) and
solving the subproblems to compute the values of Xij and Uij (as seen in Section 3.4.1). For
small-sized instances, the original transformation based model should be preferred. We have
implemented both the two-dimensional and the three-dimensional non-overlapping models with
implicit variables in Fortran 2003, as well as the optimization procedure. To solve the nonlinear
programming problems, we used Algencan [2, 13] version 3.0.0. The models, the optimization
procedure and Algencan were compiled with the GNU Fortran compiler (GCC) 4.7.2 with the
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-O3 option enabled. The experiments were run on an Intel 2.4GHz Intel R© Core
TM

i7-3770 with
16GB of RAM memory and Debian GNU/Linux 7.8 (Linux version 3.2.0-4-amd64) operating
system.

3.5.1 Two-dimensional packing

In this section, we consider the problem of packing ellipses within a minimum area rectan-
gle. We consider the instances with prefix TC, introduced by Kallrath and Rebennack [38], that
were used in the experiments presented in Section 2.4.1.2. We considered the same multi-start
strategy described in Section 2.4.1.2 and that uses the nonlinear programming solver Algencan.
The algorithm stops when either the number of attempts to solve the problem reaches 1000 or 5
hours of CPU time are spent. The results are shown in Table 3.1. The first and second columns
show the name of the instances and the number of ellipses, respectively. The next three columns
show the results for the model M presented in Section 2.4.1.2; while the last three columns
show the results for the model developed in this chapter. They show the area of the container,
the number of local minimizations required to find the reported solution and the average time
per local minimization. In the two-dimensional experiments presented Section 2.4.1, we checked
the overlapping between every pair of ellipses in each solution. For this, we used the method
introduced in [31] to compute the intersection area between the ellipses. We did the same for
all the solutions reported here. The overlapping between every pair of ellipses is also always
smaller than the machine precision 10−16.

Instance m
Model M Implicit variables model

Area
# Local Avg.

Area
# Local Avg.

Minimizations Time (s) Minimizations Time (s)
TC02a 2 18.00000 1 0.03 18.00000 70 0.03
TC02b 2 22.23159 2 0.02 22.23146 777 0.04
TC03a 3 21.38577 2 0.04 21.38560 487 0.08
TC03b 3 25.22467 39 0.07 25.22444 733 0.09
TC04a 4 23.18708 2 0.11 23.18696 803 0.13
TC04b 4 28.54074 74 0.07 29.27856 851 0.12
TC05a 5 24.55368 43 0.15 24.55353 418 0.22
TC05b 5 30.64919 20 0.14 30.64913 337 0.23
TC06 6 25.08331 19 0.54 25.08320 640 0.43
TC11 11 55.91657 348 5.27 55.94734 220 1.01
TC14 14 24.17168 75 5.73 24.17342 500 2.87
TC20 20 65.70134 45 19.28 65.94474 353 4.31
TC30 30 95.61125 272 58.27 95.40195 919 9.58
TC50 50 152.69296 42 278.71 153.88090 215 33.83
TC100 100 297.70558 2 2790.77 297.14123 21 129.56

Table 3.1: Instances with non-identical ellipses considered in [38].

We also considered the problem of packing 500 identical ellipses with semi-axis lengths
2 and 1 within a minimum area rectangle. To solve this problem, we applied a multi-start
strategy as follows. In the initial solution of the first iteration, the ellipses are not rotated and
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their centers are arranged in a generalisation of the hexagonal lattice for circles. For each of
the subsequent iterations, the initial solution is given by a random perturbation of the previous
solution. The centers and rotation angles of the ellipses are perturbed by at most 1%. We have
imposed a time limit of 5 hours. Within this time interval, the best solution was found at the
eighteenth iteration. The average time spent at each iteration was 16m40s. The area of the
container is approximately 3533.65429, so the arrangement presents a density of approximately
0.88904. Figure 3.3 illustrates this solution.

Figure 3.3: 500 ellipses with semi-axis lengths 2 and 1 inside a minimizing area rectangle with
side lengths approximately 90.08609 and 39.22530.

3.5.2 Three-dimensional packing

In this section, we consider the problems of packing ellipsoids within a minimum volume
ball and within a minimum volume cuboid. We have used some of the instances presented
in Section 2.4.2, formed by m ∈ {50, . . . , 100} identical ellipsoids with semi-axis lengths 1,
0.75, and 0.5. We have implemented a simple multi-start strategy. In the first iteration, the
initial solution is the one used in the experiments presented in Section 2.4.2. For each of the
subsequent iterations, the initial solution is given by a random perturbation of the last feasible
solution found. The centers and rotation angles of the ellipsoids were perturbed by at most
10%. Tables 3.2 and 3.3 show a comparison between the transformation based non-overlapping
model and the model with implicit variables. In Table 3.2 we have the results for the problem
of packing ellipsoids within a minimum volume ball; while in Table 3.3 we present the results
for the problem of packing ellipsoids within a minimum volume cuboid. The first column shows
the number of ellipsoids. The second, third, and fourth columns are associated with the original
transformation based non-overlapping model. The second column shows the volume of the
container, the third column shows the density of the solution, and the fourth column shows the
time spent to find the solution in a single local minimization. These results were presented in
Section 2.4.2. The last four columns correspond to the model with implicit variables introduced
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in this chapter. The fifth column shows the volume of the container and the sixth column
shows the density of the solution. The seventh column shows the number of local minimizations
(multi-start iterations) required to find the best solution found and the last column shows the
average time in seconds per local minimization. We have imposed a time limit of 5 hours for
each instance. We can observe that the time spent in a single local minimization of the model
with implicit variables is much smaller than the time spent in the original transformation based
non-overlapping model. For example, a single local minimization of the problem of minimizing
the volume of the ball took 19h42m23s for the original transformation based model, while for the
model with implicit variables it took only 13m15s. The solutions for all instances were improved,
except for the instance with m = 100 ellipsoids and minimization of the volume of the cuboid.

m

Transformation
Implicit variables model

based model

Volume Density Time Volume Density
# Local Avg.

Minimizations Time
50 122.76153 0.63978 36m14s 120.04091 0.65428 26 4m01s
60 145.26059 0.64882 47m27s 143.45858 0.65697 38 5m26s
70 171.22144 0.64218 9h04m25s 166.81615 0.65914 15 8m49s
80 192.62626 0.65237 9h10m18s 189.94112 0.66159 34 8m51s
90 214.63923 0.65865 1d17h54m36s 212.94280 0.66390 26 11m31s

100 242.49896 0.64775 19h42m23s 237.81017 0.66053 23 13m15s

Table 3.2: Comparison between the transformation based model and the model with implicit
variables for the problem of packing three-dimensional ellipsoids within a minimum volume ball.

m

Transformation
Implicit variables model

based model

Volume Density Time Volume Density
# Local Avg.

Minimizations Time
50 127.20831 0.61741 2h31m40s 126.49258 0.62090 79 3m21s
60 152.05153 0.61984 1h57m10s 150.50514 0.62621 50 3m42s
70 175.10514 0.62794 12h48m23s 174.53424 0.63000 79 2m56s
80 198.85788 0.63193 5h53m54s 197.60740 0.63593 52 5m40s
90 223.17261 0.63346 1d03h15m43s 221.44723 0.63840 71 4m09s

100 245.27508 0.64042 2d17h27m04s 247.36635 0.63501 46 6m47s

Table 3.3: Comparison between the transformation based model and the model with implicit
variables for the problem of packing three-dimensional ellipsoids within a minimum volume
cuboid.

To end this section, we show the result of an experiment involving 500 identical ellipsoids
with semi-axis lengths 1, 0.75, and 0.5. The problem is to minimize the volume of the ball.
The solution illustrated in Figure 3.4 has a ball with radius approximately 6.53685, so this
solution has a density of approximately 0.67126. It was found after 59 multi-start iterations,
each iteration having spent 47m22s on average.
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Figure 3.4: 500 three-dimensional ellipsoids with semi-axis lengths 1, 0.75, and 0.5 within a ball
of radius approximately 6.53685.
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Chapter 4

Large-scale packing problems

In Chapter 2, we proposed two non-overlapping models. Those models have quadratic
numbers of variables and constraints, which make their use impractical from a computational
point of view when the number of ellipsoids to be packed is large. To overcome this shortcoming,
we proposed a model with a linear number of variables and constraints in Chapter 3. As we saw
in Section 3.5, the implicit variables model can be used to solve larger problems. However, this
model also has limitations on the number of ellipsoids to be packed. In this chapter, we deal
with the problem of packing the largest possible number of ellipsoids inside a given container
and present a different approach to solve large-scale problems.

In Section 4.1, we present a simple and general algorithm to solve this problem. In
Section 4.2, we propose some strategies that can be used to compose the general algorithm. To
deal with the case where the number of ellipsoids to be packed is large, we present what we call
the isolation constraints in Section 4.3. These are additional constraints to the model to prevent
large groups of ellipsoids from overlapping and thus reducing the total number of constraints of
the model. Finally, we present some numerical experiments in Section 4.4.

4.1 Model algorithm

Briefly, the algorithm to pack ellipsoids inside a given container is as follows. At each
iteration, a certain number of ellipsoids are packed within the container. Once these ellipsoids
are packed, they are fixed in their positions (their centers and rotations are fixed). Then, a new
group of ellipsoids is packed, so that they do not overlap each other and do not overlap the
ellipsoids already fixed.

At the k-th iteration of the algorithm, let Nk be the set of indices of the new ellipsoids
and let Fk be the set formed by the indices of the ellipsoids already packed and fixed in their
positions. In order to pack the new ellipsoids, we must ensure that (i) they are arranged inside
the container, (ii) do not overlap each other, and do not overlap the ellipsoids already fixed.

So, assuming the container is a ball of radius r and considering the models presented in
Sections 2.2.1 and 2.3.1, at the k-th iteration of the algorithm, we must find a solution to the
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model

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
= µij , ∀i ∈ Nk ∪ Fk, j ∈ Nk such that i < j

‖P−
1
2

i Q>i (ci − cj)− xij‖22 ≥ 1, ∀i ∈ Nk ∪ Fk, j ∈ Nk such that i < j

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i ∈ Nk ∪ Fk, j ∈ Nk such that i < j

µij ≥ εij , ∀i ∈ Nk ∪ Fk, j ∈ Nk such that i < j

P
− 1

2
i Q>i ci = x̄i +

αi
r2
Pix̄i, ∀i ∈ Nk

1

r2
x̄>i Pix̄i = 1, ∀i ∈ Nk

‖P−
1
2

i Q>i ci − x̄i‖22 ≥ 1, ∀i ∈ Nk
αi ≤ εi, ∀i ∈ Nk
αi ≥ − r2/λmax(Pi), ∀i ∈ Nk.

The variables of this model are ci, x̄i ∈ Rn, Qi ∈ Rn×n and αi ∈ R for each i ∈ Nk, and xij ∈ Rn
and µij ∈ R for each i ∈ Nk∪Fk and j ∈ Nk such that i < j. Notice that ci and Qi are constants
for each i ∈ Fk, since the ellipsoids in Fk have already been fixed.

4.2 Packing strategy

The algorithm described in the last section requires the new ellipsoids to be inside the
container, not to overlap each other and not to overlap the ellipsoids already packed. However,
it does not specify how the new ellipsoids should be packed. Since the goal is to pack as many
ellipsoids as possible, the ellipsoids should stay tightly grouped within the container. An attempt
to achieve this result is to minimize, in some sense, the height of the ellipsoid to be packed. The
idea is that the new ellipsoids become in contact with other ellipsoids already packed, so that the
ellipsoids are well packed inside the container. We define two types of heights for an ellipsoid.
The upper height of an ellipsoid E is defined as max

{
xn | x ∈ E

}
and the lower height of an

ellipsoid is defined as min
{
xn | x ∈ E

}
. The computations of heights, however, are not easy.

Since the goal is to minimize these heights, we need a simple way to model them. One way of
doing this is to model the upper and lower heights of an ellipsoid by supporting hyperplanes.
The idea is to consider hyperplanes that support the ellipsoid precisely at the points that realize
the upper and lower heights.

Consider the half-space S = {x ∈ Rn | w>x ≤ s}, where w ∈ Rn and s ∈ R, and the
ellipsoid Ei = {x ∈ Rn | (x−ci)>QiP−1i Q>i (x−ci) ≤ 1}, where ci ∈ Rn, Qi ∈ Rn×n is orthogonal
and Pi ∈ Rn×n is diagonal and positive definite. We saw in Section 2.3.2 that, in order to ensure
that the ellipsoid be contained in the half-space S, we can simply require the center of the
ellipsoid to belong to that half-space and the distance between the center of the ball Eii and the
frontier of the half-space Si, obtained by transformation Ti defined in (2.4), be at least one. To
ensure that ∂S supports the ellipsoid Ei, we can just change the minimum distance condition
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and require it to be exactly one. Therefore, the conditions(
w>ci − s

)2
‖P

1
2
i Q
>
i w‖22

= 1 and w>ci ≤ s (4.1)

guarantee that the hyperplane ∂S supports the ellipsoid Ei. Moreover, if we take w = en, the n-
th standard basis vector, then ∂S will support the ellipsoid Ei at the point arg max

{
xn | x ∈ Ei

}
,

and we will necessarily have s = max
{
xn | x ∈ Ei

}
. If we take w = −en, then ∂S will support

the ellipsoid Ei at the point arg min
{
xn | x ∈ Ei

}
, and we will have s = −min

{
xn | x ∈ Ei

}
.

In order to minimize the upper height of the ellipsoid, we can then add the constraints (4.1)
to the packing model, with w = en, and add the variable s, whose value should be minimized.
Similarly, to minimize the lower height of the ellipsoid, we add the constraints (4.1) with w = −en
and minimize the value of −s.

As we will see in Section 4.4, experiments in the three-dimensional space show that the
packed ellipsoid tends to have its semi-major axis parallel to the upper plane when its upper
height is minimized (the ellipsoid is “standing”). But when the lower height is minimized, the
tendency is that the semi-minor axis remains parallel to the upper plane (the ellipsoid is “lying”).
To avoid this kind of behavior, which can result in poor quality solutions, we can consider the
minimization of a convex combination of lower and upper heights. In this case, we add the
following constraints to the model(

w>ci − ssup
)2

‖P
1
2
i Q
>
i w‖22

= 1, w>ci ≤ ssup,
(
− w>ci − sinf

)2
‖P

1
2
i Q
>
i w‖22

= 1 and − w>ci ≤ sinf ,

where w = en, and we minimize the value of ξssup − (1− ξ)sinf for some constant ξ ∈ [0, 1]. For
ξ = 1, we have the minimization of the upper height of the ellipsoid being packed. For ξ = 0, we
have the minimization of the lower height of the ellipsoid. For ξ = 1

2 , we have the minimization
of [ci]n, the n-th component of the center of the ellipsoid.

4.3 The isolation constraints

In addition to ensuring that the new ellipsoids (to be packed) do not overlap each other,
we have to make sure that these ellipsoids do not overlap the ellipsoids previously packed. Thus,
the number of pairs of ellipsoids whose overlapping should be avoided grows as the number of
previously packed ellipsoids increases. This makes the number of variables and constraints of
each subproblem also increase, making each subproblem more and more difficult to be solved.

On the other hand, assuming that a sufficiently large number of ellipsoids has been packed,
it is expected that there is no possibility for the new ellipsoids to be in contact with most of
the fixed ellipsoids, since the latter should be surrounded by several other ellipsoids. Let N
be the set of the new ellipsoids and F be the set formed by the ellipsoids already packed and
that cannot touch the new ellipsoids in a feasible solution. By adding constraints to ensure
that the ellipsoids in N are sufficiently distant from the ellipsoids in F , we can remove the non-
overlapping constraints between these two groups of ellipsoids. For this change in the model to
have the desired effect (making the subproblems simpler), it is clear that the new constraints
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should be “easier” than the original non-overlapping constraints. By easy constraints we mean
constraints that are smaller in number, defined by simpler functions and/or involve a small
number of variables. We will call these new constraints the isolation constraints. We say that
an ellipsoid is isolated if it is possible to easily infer that the isolation constraints ensure that
the new ellipsoids not overlap the ellipsoid in question.

We present Figure 4.1 to illustrate the isolation of ellipsoids. Consider the packing of
ellipses inside a rectangle. In Figure 4.1(a), it is shown some ellipses already packed inside the
rectangle. Now consider the problem of packing a new ellipse. Due to the non-overlapping
constraints, this new ellipse could touch only the blue ellipses. The set F is formed by the green
ellipses in Figure 4.1(a). Now, consider the isolation constraint that requires the new ellipse
to lie above the line illustrated in Figure 4.1(b). Thus, the green ellipses are isolated and the
original non-overlapping constraints associated with these ellipses can be removed.

(a) (b)

Figure 4.1: Illustration of the isolation constraints. (a) Ellipses already packed and fixed in
their positions. (b) The isolation constraint requires the new ellipse to be packed to lie above
the highlighted line. Only the red ellipses are considered in the non-overlapping model.

Because of the simplicity of the isolation constraints, these constraints may isolate ellip-
soids that could touch the new ellipsoids in a feasible solution (as it is the case for some green
ellipses in Figure 4.1(b)). Anyway, it is important to point out that the isolation constraints
ensure that the new ellipsoids do not overlap the isolated ellipsoids. Even if the isolation con-
straints are not able to isolate all ellipsoids of F , the expectation is that most of these ellipsoids
are isolated and the subproblems become to have very low numbers of constraints and variables.
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4.4 Numerical experiments

In our numerical experiments, we considered the problem of packing the maximum number
of three-dimensional ellipsoids within balls and cubes. We considered the non-overlapping model
presented in Section 2.2.1. We implemented, in Fortran 90, the non-overlapping model (2.22)–
(2.25), the model (2.46)–(2.50) for the inclusion of an ellipsoid in a ball, and the model described
in Section 2.3.2 for the inclusion of an ellipsoid in a cube. We also implemented in Fortran 90 the
optimization procedure described in Section 4. To solve the nonlinear programming problems,
we used Algencan [2, 13] version 2.5.0. The models, the optimization procedure and Algencan
were compiled with the GNU Fortran compiler (GCC) 4.7.2 with the -O3 option enabled. The

tests were run on an Intel 2.4GHz Intel R© Core
TM

i7-3770 with 16GB of RAM memory and
Linux operating system.

In our experiments, we considered three types of isolation constraints. The first one
constrains the new ellipsoids to remain within a certain cylinder of infinite height. The second
one requires the new ellipsoids to lie inside a box of infinite height. Actually, these constraints
require the (x, y) coordinates of the centers of the new ellipsoids to lie within a circle and a
box, respectively. The third type of isolation constraint requires the new ellipsoids to lie above
a certain plane parallel to the plane x-y. The latter type of isolation constraint will be used
together with one of the first two isolation constraints.

The isolation constraints depend on some parameters. The first type of isolation constraint
depends on the choice of a value for the radius of the base of the cylinder. For the second kind
of isolation constraint, we must choose the lengths of the sides of the base of the box. As for the
third type, we need to decide at which point the plane must pass through. Ideally, the presence
of isolation constraints should not affect the quality of the solution. Thus, we need to determine
what would be good parameters for those constraints.

To assess the influence of these parameters on the quality of the solution, we considered
the packing of ellipsoids with semi-axis lengths 0.67, 0.67 and 0.3465 withing a cube with side
length 10. The ellipsoids are packed one by one (Nk = 1 for each iteration k), minimizing the
average of the upper and lower heights, according to the procedure described in Section 4. In
the first experiment, we considered the isolation constraints given by a cylinder and a plane.
Let a be the greatest length of a semi-axis among the ellipsoids already packed and the new
ellipsoid. (In our case we have a = 0.67.) For the cylinder base radius, we take the values 2a,
3a, and 4a. The initial position of the new ellipsoid to be packed is defined as follows. First, we
choose the (x, y) coordinates of the center c of the cylinder uniformly random over the base of
the cube. Let us denote by ai the length of the semi-major axis of the i-th ellipsoid. Let j be
the index of the new ellipsoid to be packed. As the new ellipsoid must have its center within
the cylinder, any ellipsoid i such that

‖[ci]1:2 − [c]1:2‖2 ≥ r + ai + aj (4.2)

will have no chance to overlap the ellipsoid j. Thus, the ellipsoid i can be removed from the
non-overlapping model. For the ellipsoids whose condition (4.2) is not met, the non-overlapping
constraints remain in the model. Let h be the maximum upper height among the packed
ellipsoids whose condition (4.2) is not satisfied. (If there is no such ellipsoid, we take h = −∞).
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The height of the plane will be defined with respect to h. We consider the values h− 3a, h− 4a,
and h− 5a for the plane height, i.e., the new ellipsoid should belong to the half-space

H =
{
x ∈ R3 | w>x ≥ s

}
,

where w = (0, 0, 1)> and s takes some value in the set {h− 3a, h− 4a, h− 5a}. Now, we are
ready to set the starting position of the new ellipsoid. The (x, y) coordinates of the center of the
new ellipsoid will be equal to the coordinates of the center of the cylinder, and the z coordinate
will be equal to h+2a. The initial rotation angles are chosen uniformly randomly in the interval
[−π, π]. Once the initial point has been set, we solve the problem defined by the non-overlapping
and containment models using Algencan. If Algencan does not find a solution to the problem,
we define a new cylinder and a new plane according to the method described earlier and try to
solve the problem again. For each ellipsoid to be packed, we try to solve the problem of packing
it up to 100 times. If this number of attempts is reached and the ellipsoid has not been packed,
the optimization procedure is completed and the solution with the ellipsoids previously packed
is returned.

In Table 4.1, we show the results we have obtained. N refers to the maximum number
of packed ellipsoids, the next column shows the time elapsed until the N -th ellipsoid is packed,
column Ac shows the amount of times the cylinder constraint was active at the solution, and
column Ap shows the number of times that the plane constraint was active at the solution.

Plane height

h− 3a h− 4a h− 5a

N Time Ac Ap N Time Ac Ap N Time Ac Ap

C
y
li

n
d

er
ra

d
iu

s 2a 844 23m31s 153 56 843 32m52s 169 17 858 51m43s 145 0

3a 855 36m40s 15 59 870 1h7m45s 24 11 869 1h32m43s 23 0

4a 839 45m32s 3 100 877 1h41m53s 3 12 879 2h38m40s 0 1

Table 4.1: Results obtained considering the isolation constraints defined by a cylinder and a
plane, and minimizing the average of the upper and lower heights of the ellipsoid.

We can observe that as the radius of the cylinder increases and the plane height decreases,
the quality of the solution is improved. The combination that produced the best result was
considering the cylinder radius equal to 4a and the plane height equal to h − 5a. For these
parameters, we found that the isolation constraints have had little influence on the quality of
the solution found, given that the plane constraint was active at a single solution and the cylinder
constraint was never active.

In Table 4.2, we show the results obtained considering the box constraint instead of the
cylinder constraint. In order to compare the cylinder and the box constraints, we considered
square boxes with the same areas as the areas of the cylinder considered in the previous exper-
iment. In this table, Ac refers to the number of times that the box constraint was active at a
solution.

Only in two cases the solution obtained was better than the one obtained considering the
cylinder constraint (namely, in the case where box side length was equal to 3a

√
π and the plane

height equal to h − 3a and equal to h − 5a). The best solution presented in Table 4.2 has 873
ellipsoids packed, whereas the best solution presented in Table 4.1 has 879 ellipsoids packed.
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Plane height

h− 3a h− 4a h− 5a

N Time Ac Ap N Time Ac Ap N Tempo Ac Ap

B
ox

si
d

e
le

n
g
th

2a
√
π 757 21m14s 221 120 833 36m8s 237 29 856 54m18s 185 2

3a
√
π 860 37m6s 40 61 863 1h18m45s 51 20 873 1h26m12s 46 1

4a
√
π 804 39m57s 14 130 869 1h39m8s 9 19 872 2h21m30s 15 4

Table 4.2: Results obtained considering isolation constraints given by a box and a plane, and
minimizing the average of the upper and lower heights of the ellipsoid.

In a third experiment, we evaluated the minimization of the heights of the ellipsoid to be
packed. We considered two types of isolation constraints: one given by a cylinder with radius 4a
and another one given by a box with side length 4a

√
π. Both of them were employed together

with a plane constraint with height h − 5a, as described earlier. In Table 4.3, we present the
results. We can observe that the quality of the solutions is much lower than those found in
previous experiments in which the average of the upper and lower heights were minimized.

Minimization of the upper height Minimization of the lower height

Box and plane Cylinder and plane Box and plane Cylinder and plane

N Time N Time N Time N Time
830 1h4m30s 833 59m0s 835 1h52m45s 828 1h40m37s

Table 4.3: Comparison between the minimization of the upper and lower heights of the ellipsoid
being packed. The relative height of the plane is −5a, the length of the side of the box is 4a

√
π,

and the cylinder radius is 4a.

In Figure 4.2, we show the graphical representations of the solutions obtained considering
the isolation constraints given by by a cylinder with radius 4a and a plane with height h− 5a.
Figure 4.2(a) represents the solution obtained by minimizing the upper height of the ellipsoid
to be packed. In this case, 833 were were packed. We can notice that the semi-minor axis of
the ellipsoids tends to be almost perpendicular to the base of the cube (the ellipsoids are almost
“lying”). In the Figure 4.2(b) we have the solution with 828 ellipsoids obtained by minimizing
the lower height of the ellipsoid. We observe in this case another trend: the ellipsoids have their
semi-major axes nearly perpendicular to base of the cube (the ellipsoids are almost “standing”).
Figure 4.2(c) shows the solution with 879 ellipsoids found by minimizing the average of the
upper and lower heights (which is the minimization of the third component of the center of the
ellipsoid). Contrary to what occurred in the first two cases, we cannot notice any positioning
trend of the ellipsoids. They are positioned in a more varied way (they are “messier”), which
should have contributed in getting a higher quality solution.

Figure 4.3 shows the packing of 14541 ellipsoids with semi-axis lengths (0.67, 0.67, 0.3465)
within a cube with side length 25 using isolation constraints given by a cylinder with radius 4a
and a plane with height h− 5a. This solution was found in 5d5h46m3s.

Figure 4.4 shows the packing of 7649 ellipsoids with semi-axis lengths (0.67, 0.67, 0.3465)
within a ball of radius 12.75 using isolation constraints given by a cylinder with radius 4a and
a plane with height h− 4a. This solution was found in 4d8h54m7s.
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(a) (b) (c)

Figure 4.2: Packing of ellipsoids with semi-axis lengths (0.67, 0.67, 0.3465) within a cube with
side length 10 using isolation constraints given by a cylinder with radius 4a and a plane with
height h− 5a. (a) 833 ellipsoids obtained by minimizing the upper height of the ellipsoids. (b)
828 ellipsoids obtained by minimizing the lower height. (c) 879 ellipsoids obtained by minimizing
the average of the lower and upper heights.

76



Figure 4.3: Packing of 14541 ellipsoids with semi-axis lengths (0.67, 0.67, 0.3465) within a cube
with side length 25 using isolation constraints given by a cylinder with radius 4a and a plane
with height h− 5a.
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Figure 4.4: Packing of 7649 ellipsoids with semi-axis lengths (0.67, 0.67, 0.3465) within a ball
of radius 12.75 using isolation constraints given by a cylinder with radius 4a and a plane with
height h− 4a.
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Chapter 5

Conclusions

In this work, we dealt with the problem of packing ellipsoids within compact sets. We intro-
duced two continuous and differentiable nonlinear programming models for the non-overlapping
between ellipsoids. Also, we proposed continuous and differentiable nonlinear programming
models for the inclusion of ellipsoids within half-spaces and ellipsoids. We performed some nu-
merical experiments that showed the capabilities of the models. In particular, we were able to
find better solutions to instances from the literature than other approaches.

Since the two non-overlapping models introduced in Chapter 2 have quadratic numbers of
variables and constraints on the number of ellipsoids to be packed, the use of those models for
solving problems with a relatively large number of ellipsoids become a prohibitive computational
task. In order to alleviate this shortcoming, we proposed an implicit variables model that
contains a linear number of variables and constraints. This model is based on the first non-
overlapping model. First, to reduce the number of constraints, we replaced the constraints of the
first model by their respective squared infeasibility measure. Then, we grouped those constraints
to obtain a model with a linear number of constraints. Since each of the new constraints have
a quadratic number of terms, we used a clever algorithm to be able to evaluate all constraints
in linear time. Regarding the variables associated with pairs of ellipsoids, we replaced them by
functions that were evaluated only when the ellipsoids were sufficiently close to each other. In
this way, we were able to reduce the number of variables of the model. Numerical experiments
showed that the implicit variables model was able to deal with problems with a larger number
of ellipsoids.

Although the implicit variables model has a linear number of variables and constraints,
its use is still not practical from the computational perspective when the number of ellipsoids is
too large. In order to solve large-scale problems of packing the maximum number of ellipsoids
within a given container, we proposed what we called the isolation constraints. Considering the
algorithm that gradually packs the ellipsoids while minimizing their heights, the new ellipsoids
would not be able to touch ellipsoids that were packed many iterations before. Therefore, the
non-overlapping constraints between those ellipsoids could be removed and replaced by simpler
ones that kept them sufficiently distant from each other.

We also plan to work on the ellipsoid contact number problem. The contact number
problem consists in finding the largest number of congruent copies of a given convex body that
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Figure 5.1: The contact number problem for ellipses with aspect ratios 1:1, 1:0.5, and 1:0.2,
respectively.

do not overlap and that touch a given copy of this body. This problem is also known as the
kissing number problem. In the most famous contact number problem, the convex body is a
ball. For this problem, the contact number is only known for the dimensions 1, 2, 3, 4, 8 and
24 [46]. By using the non-overlapping model that we introduced in Section 2.2.1, we were able to
model the ellipsoid contact number problem. Figure 5.1 shows the better solutions we obtained
in the two-dimensional space for ellipses with semi-axis aspect ratios 1:1, 1:0.5, and 1:0.2. In
comparison to the ball contact number problem, the ellipsoid contact number problem presents
an additional difficulty which is the fact that the ellipsoids can be rotated. In the future, we
intend to investigate this problem in more detail.

80



Appendix A

Derivatives

We shall present the derivatives of the functions that define some models introduced in this
thesis. In Section A.1, we present the derivatives of the transformation based non-overlapping
model introduced in Section 2.2.1. The derivatives of the functions that model the containment
of an ellipsoid inside an ellipsoid, proposed in Section 2.3.1, is presented in Section A.2. Finally,
in Section A.3, we show how to compute the derivatives of the implicit variables model presented
in Chapter 3.

A.1 Derivatives of the transformation based non-overlapping
model

In this section, we present the derivatives of the functions that define the model (2.22)–
(2.25). Let A ∈ Rn×m. We will denote by ∂A

∂v the matrix in Rn×m whose entry in row k and
column l is the partial derivative with respect to v of the element in row k and column l of the
matrix A. For each i ∈ I, we will denote by Oi the set of rotation angles associated with the
ellipsoid i. Thus, in the two-dimensional case, we have Oi = {θi}, and in the three-dimensional
case we have Oi = {θi, ψi, φi}. We re-present the model (2.22)–(2.25) here:

x>ij
(
P
− 1

2
i Q>i (ci − cj)− xij

)
= µij , ∀i, j ∈ I such that i < j (A.1)

‖P−
1
2

i Q>i (ci − cj)− xij‖22 ≥ 1, ∀i, j ∈ I such that i < j (A.2)

P
− 1

2
i Q>i (ci − cj) = xij + µijSijxij , ∀i, j ∈ I such that i < j (A.3)

µij ≥ εij , ∀i, j ∈ I such that i < j. (A.4)

A.1.1 Derivatives of (A.1)

Let fij be the function defined by

fij ≡ f(ci, cj , xij , µij ,Ωi) = x>ij

(
P
− 1

2
i Q>i (ci − cj)− xij

)
− µij .
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We have

∂fij
∂ci

= QiP
− 1

2
i xij ,

∂fij
∂cj

= −∂fij
∂ci

,
∂fij
∂xij

= P
− 1

2
i Q>i (ci − cj)− 2xij e

∂fij
∂µij

= −1.

For each ω ∈ Oi, we have
∂fij
∂ω

= x>ijP
− 1

2
i

∂Qi
∂ω

>
(ci − cj),

where ∂Qi

∂ω is the component-wise derivative of matrix Qi with respect to ω.

A.1.2 Derivatives of (A.2)

Let gij be the function defined by

gij ≡ g(ci, cj , xij ,Ωi) = 1− ‖P−
1
2

i Q>i (ci − cj)− xij‖22
We have

∂gij
∂ci

= −2QiP
− 1

2
i

(
P
− 1

2
i Q>i (ci − cj)− xij

)
,
∂gij
∂cj

= −∂gij
∂ci

e
∂gij
∂xij

= 2(P
− 1

2
i Q>i (ci− cj)−xij).

For each ω ∈ Oi, we have

∂gij
∂ω

= −2

(
P
− 1

2
i Q>i (ci − cj)− xij

)>
P
− 1

2
i

∂Qi
∂ω

>
(ci − cj).

A.1.3 Derivatives of (A.3)

Let hij be the function defined by

hij ≡ h(ci, cj , xij , µij ,Ωi,Ωj) = P
− 1

2
i Q>i (ci − cj)− xij − µijSijxij .

We have
∂hij
∂ci

= P
− 1

2
i Q>i ,

∂hij
∂cj

= −∂hij
∂ci

,
∂hij
∂xij

= −µijSij e
∂hij
∂µij

= −Sijxij .

Let Vij = P
− 1

2
j Q>j QiP

1
2
i . Then, Sij = V >ij Vij . Thus, for each ω ∈ Oi, we have

∂Vij
∂ω

= P
− 1

2
j Q>j

∂Qi
∂ω

P
1
2
i

and
∂hij
∂ω

= P
− 1

2
i

∂Qi
∂ω

>
(ci − cj)− µij

[(
∂Vij
∂ω

)>
Vij + V >ij

(
∂Vij
∂ω

)]
xij .

For each ω ∈ Oj , we have

∂Vij
∂ω

= P
− 1

2
j

∂Qj
∂ω

>
QiP

1
2
i

and
∂hij
∂ω

= −µij

[(
∂Vij
∂ω

)>
Vij + V >ij

(
∂Vij
∂ω

)]
xij .
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A.2 Derivatives of the ellipsoid containment model

A.2.1 First order derivatives

We shall consider only the case where the container is a ball of radius r. In this case, we
have Si = r−2Pi for each i ∈ I. For each i ∈ I, let

fi(ci,Ωi, x̄i, αi, r) = P
− 1

2
i Q>i ci − x̄i − αiSix̄i,

gi(ci,Ωi, x̄i, αi, r) = x̄>i Six̄i − 1,

hi(ci,Ωi, x̄i, αi, r) = 1− ‖P−
1
2

i Q>i ci − x̄i‖22.

A.2.1.1 Derivatives of fi

We have

∂fi
∂ci

= P
− 1

2
i Q>i ,

∂fi
∂αi

= −r−2Pix̄i,
∂fi
∂r

= 2r−3αiPix̄i,
∂fi
∂x̄i

= −In − r−2αiPi

and, for each ω ∈ Oi, we have
∂fi
∂ω

= P
− 1

2
i

∂Qi
∂ω

>
ci.

A.2.1.2 Derivatives of gi

We have
∂gi
∂r

= −2r−3x̄>i Pix̄i,
∂gi
∂x̄i

= 2r−2Pix̄i.

A.2.1.3 Derivatives of hi

We have

∂hi
∂ci

= −2QiP
− 1

2
i (P

− 1
2

i Q>i ci − x̄i),
∂hi
∂x̄i

= 2(P
− 1

2
i Q>i ci − x̄i)

and, for each ω ∈ Oi, we have

∂hi
∂ω

= −2c>i
∂Qi
∂ω

P
− 1

2
i (P

− 1
2

i Q>i ci − x̄i).

A.2.2 Second order derivatives

A.2.2.1 Derivatives of fi

We have

∂2fi
∂αi∂x̄i

= −r−2Pi,
∂2fi
∂αi∂r

= 2r−3Pix̄i,
∂2fi
∂r2

= −6r−4αiPix̄i,
∂2fi
∂r∂x̄i

= 2r−3αiPi,
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and, for each ω, σ ∈ Oi, we have

∂2fi
∂ω∂ci

= P
− 1

2
i

∂Qi
∂ω

>
,
∂2fi
∂σ∂ω

= P
− 1

2
i

∂2Qi
∂σ∂ω

>
.

A.2.2.2 Derivatives of gi

We have

∂2gi
∂r2

= 6r−4x̄>i Pix̄i,
∂2gi
∂r∂x̄i

= −4r−3Pix̄i,
∂2gi
∂x̄2i

= 2r−2Pi.

A.2.2.3 Derivatives of hi

We have
∂2hi
∂c2i

= −2QiP
−1
i Q>i ,

∂2hi
∂ci∂x̄i

= 2P
− 1

2
i Q>i ,

∂2hi
∂x̄2i

= −2In,

and, for each ω ∈ Oi, we have

∂2hi
∂ω∂ci

= −2

(
∂Qi
∂ω

P−1i Q>i +QiP
−1
i

∂Qi
∂ω

>
)
ci,

∂2hi
∂ω∂x̄i

= 2P
− 1

2
i

∂Qi
∂ω

>
ci.

Moreover, for each ω, σ ∈ Oi, we have

∂2hi
∂σ∂ω

= −2

c>i
(
∂2Qi
∂σ∂ω

P−1i Q>i +
∂Qi
∂ω

P−1i

∂Qi
∂σ

>
)
ci − c>i

∂2Qi
∂σ∂ω

P
− 1

2
i x̄i

 .
A.3 Derivatives of the implicit variables model

The computation of the derivatives of the function defined in (3.24) is nontrivial. That is
because this function depends on the functions X and U whose values are given by the solution
of an optimization problem. In Section A.3.1, we show how to compute the first order derivatives
of the function defined in (3.24) and, in Section A.3.2, we show how to compute the second order
derivatives.

A.3.1 First order derivatives

Firstly, we will show the derivatives of the terms that compose the function defined in
(3.24) in terms of the derivatives of the functions X and U . Next, we will show how to compute
the derivatives of the functions X and U . The symbol 0m,n will be used to denote the m×n null
matrix. Also, we will denote X (ci, cj ,Ωi,Ωj ;Pi, Pj) by Xij and U(ci, cj ,Ωi,Ωj ;Pi, Pj) by Uij .

We have

∂yij
∂ci

= P
− 1

2
i Q>i

∂yij
∂cj

= −P−
1
2

i Q>i
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and, for each ωi ∈ Oi, we have

∂yij
∂ωi

= P
− 1

2
i

∂Qi
∂ωi

>
(ci − cj),

where ∂Qi

∂ωi
∈ Rn×n is the matrix whose (l, k) entry has the value ∂[Qi]lk

∂ωi
.

Let Vij = P
− 1

2
j Q>j QiP

1
2
i . Then, Sij = V >ij Vij . Thus, for each ωi ∈ Oi, we have

∂Vij
∂ωi

= P
− 1

2
j Q>j

∂Qi
∂ωi

P
1
2
i

and, for each ωj ∈ Oj , we have

∂Vij
∂ωj

= P
− 1

2
j

∂Qj
∂ωj

>
QiP

1
2
i ,

where
∂Qj

∂ωj
∈ Rn×n is the matrix defined in an analogous manner to ∂Qi

∂ωi
.

For each ω ∈ Oi ∪ Oj , we have

∂UijSijXij
∂ω

=
∂Uij
∂ω

SijXij + Uij

(∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij + Sij

∂Xij
∂ω

},
where

∂Xij

∂ω ∈ Rn is the vector whose l-th component has the value
∂[Xij ]l
∂ω .

Consider the functions fij and gij defined by

fij(ci, cj ,Ωi,Ωj) = max
{

1− f̄ij(ci, cj ,Ωi,Ωj), 0
}2

(A.5)

gij(ci, cj ,Ωi,Ωj) = max
{
εij − Uij , 0

}2
(A.6)

where

f̄ij(ci, cj ,Ωi,Ωj) = ‖P−
1
2

i Q>i (ci − cj)−Xij‖22.
Next, we compute the derivatives of these functions with respect to the variables of the

non-overlapping model.

A.3.1.1 First order derivatives of (A.5)

If f̄ij(ci, cj ,Ωi,Ωj) ≥ 1 then

∂fij
∂[ci]k

=
∂fij
∂[cj ]k

=
∂fij
∂ω

= 0

for each k ∈ {1, . . . , n} and for each ω ∈ Oi ∪ Oj . Otherwise, we have

∂fij
∂ci

= − 4
[
1− f̄ij(ci, cj ,Ωi,Ωj)

](
QiP

− 1
2

i − ∂Xij
∂ci

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
∂fij
∂cj

= − 4
[
1− f̄ij(ci, cj ,Ωi,Ωj)

](
−QiP

− 1
2

i − ∂Xij
∂cj

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
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where
∂Xij

∂ci
is the matrix in Rn×n whose (l, k) entry has the value

∂[Xij ]k
∂[ci]l

. Analogously, we define

the matrix
∂Xij

∂cj
. For each ωi ∈ Oi, we have

∂fij
∂ωi

= −4
[
1− f̄ij(ci, cj ,Ωi,Ωj)

](
P
− 1

2
i Q>i (ci − cj)−Xij

)>(
P
− 1

2
i

∂Qi
∂ωi

>
(ci − cj)−

∂Xij
∂ωi

)
.

For each ωj ∈ Oj , we have

∂fij
∂ωj

= −4
[
1− f̄ij(ci, cj ,Ωi,Ωj)

](
P
− 1

2
i Q>i (ci − cj)−Xij

)>(
−∂Xij
∂ωj

)
.

A.3.1.2 First order derivatives of (A.6)

If Uij ≥ εij then
∂gij
∂[ci]k

=
∂gij
∂[cj ]k

=
∂gij
∂ω

= 0

for each k ∈ {1, . . . , n} and for each ω ∈ Oi ∪ Oj . Otherwise, we have

∂gij
∂ci

= − 2(εij − Uij)
∂Uij
∂ci

∂gij
∂cj

= − 2(εij − Uij)
∂Uij
∂cj

and, for each ω ∈ Oi ∪ Oj , we have

∂gij
∂ω

= −2(εij − Uij)
∂Uij
∂ω

.

A.3.1.3 First order derivatives of X and U

Let i, j ∈ {1, . . . ,m} such that i < j. We have that X (ci, cj ,Ωi,Ωj ;Pi, Pj) is a solution to
the problem

minimize 1
2‖x− yij‖

2
2

subject to x>Sijx = 1,
(A.7)

where yij = P
− 1

2
i Q>i (ci−cj), and U(ci, cj ,Ωi,Ωj ;Pi, Pj) is the corresponding Lagrange multiplier.

To simplify the notation, we will denote by Xij the value X (ci, cj ,Ωi,Ωj ;Pi, Pj) and by Uij
the value U(ci, cj ,Ωi,Ωj ;Pi, Pj). According to the Karush–Kuhn–Tucker first-order necessary
conditions for problem (A.7), we have

Xij + UijSijXij − yij = 0

Xij>SijXij − 1 = 0.
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Thus, by defining the function F : Rn × Rn × Rq × Rq → Rn+1 as

F (ci, cj ,Ωi,Ωj) =

 Xij + UijSijXij − yij
1
2

(
Xij>SijXij − 1

)  , (A.8)

we have that F (ci, cj ,Ωi,Ωj) = 0 for all ci, cj ∈ Rn and for all Ωi,Ωj ∈ Rq. That is, F is
an identically zero function. Therefore, we have that the derivative of function F is also an
identically zero function. Hence, for each variable v of the function F and for each component
` ∈ {1, . . . , n+ 1} of F , we have

dF`
dv

=
∂F`
∂v

dv

dv
+
∂F`
∂Uij

dUij
dv

+
n∑
k=1

∂F`
∂[Xij ]k

d[Xij ]k
dv

= 0. (A.9)

Once the values of Xij and Uij are known, we have, for each ` ∈ {1, . . . , n+ 1}, analytical
expressions for ∂F`

∂v , ∂F`
∂Uij , and ∂F`

∂[Xij ]k
for each k ∈ {1, . . . , n}. On the other hand, the values of

dUij
dv and

d[Xij ]k
dv for each k ∈ {1, . . . , n} are unknown, but can be computed by solving the linear

system provided by (A.9):

∂F1
∂[Xij ]1

· · · ∂F1
∂[Xij ]n

∂F1
∂Uij

∂F2
∂[Xij ]1

· · · ∂F2
∂[Xij ]n

∂F2
∂Uij

...
...

...
...

∂Fn+1

∂[Xij ]1
· · · ∂Fn+1

∂[Xij ]n

∂Fn+1

∂Uij





d[Xij ]1
dv
...

d[Xij ]n
dv

dUij
dv


= −



∂F1
∂v

∂F2
∂v
...

∂Fn+1

∂v


.

Then, for each i, j ∈ {1, . . . ,m} such that i < j, we need to solve 2(n + q) linear systems with
n + 1 equations and n + 1 variables (one linear system for each variable among ci, cj , Ωi and
Ωj).

Once i and j are fixed, observe that the 2(n+ q) linear systems have the same coefficient
matrix. The only difference between these systems are their right-hand sides. Thus, in order to
solve these linear systems, we can factorize the coefficient matrix only once and then, for each
right-hand side, solve the linear system with the coefficient matrix already factorized.

A.3.1.4 First order partial derivatives of F

We shall present the first order partial derivatives of the function F . For each ωi ∈ Oi, we
have

∂F

∂ωi
=

 Uij
(
∂Vij
∂ωi

>
Vij + V >ij

∂Vij
∂ωi

)
Xij − P

− 1
2

i
∂Qi

∂ωi

>
(ci − cj)(

VijXij
)> ∂Vij

∂ωi
Xij

 .
For each ωj ∈ Oj , we have

∂F

∂ωj
=

 Uij
(
∂Vij
∂ωj

>
Vij + V >ij

∂Vij
∂ωj

)
Xij(

VijXij
)> ∂Vij

∂ωj
Xij

 .
87



With respect to the center of the ellipsoids, we have

∂F

∂ci
=

[
−P−

1
2

i Q>i
01,n

]
and

∂F

∂cj
=

[
P
− 1

2
i Q>i
01,n

]
.

With respect to the implicit variables, we have

∂F

∂Uij
=

[
SijXij

0

]
and

∂F

∂Xij
=

[
In + UijSij(
SijXij

)>
]
.

A.3.2 Second order derivatives

In Sections A.3.2.1 and A.3.2.2, we present the second order derivatives of the functions
fij and gij , respectively. These derivatives depend on the (first and second order) derivatives
of the functions Xij and Uij . As the first order derivatives of Xij and Uij , the second order
derivatives of these functions do not have an analytical expression. So, in Section A.3.2.3, we
will show how to compute them.

A.3.2.1 Second order derivatives of (A.5)

If f̄ij(ci, cj ,Ωi,Ωj) ≥ 1 then

∂2fij
∂[ci]k∂ci

=
∂2fij

∂[cj ]k∂ci
=

∂2fij
∂σ∂ci

=
∂2fij
∂σ∂cj

= 0n,1

for each k ∈ {1, . . . , n} and for each σ ∈ Oi ∪ Oj and

∂2fij
∂σ∂ω

= 0

for each σ, ω ∈ Oi ∪ Oj . Otherwise, for each k ∈ {1, . . . , n}, we have

∂2fij
∂[ci]k∂ci

= − 4

{
− ∂f̄ij
∂[ci]k

(
QiP

− 1
2

i − ∂Xij
∂ci

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

[
1− f̄ij(ci, cj ,Ωi,Ωj)

] [
− ∂2Xij
∂[ci]k∂ci

(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

(
QiP

− 1
2

i − ∂Xij
∂ci

)([
P
− 1

2
i Q>i

]
:,k

− ∂Xij
∂[ci]k

)]}
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∂2fij
∂[cj ]k∂ci

= − 4

{
− ∂f̄ij
∂[cj ]k

(
QiP

− 1
2

i − ∂Xij
∂ci

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

[
1− f̄ij(ci, cj ,Ωi,Ωj)

] [
− ∂2Xij
∂[cj ]k∂ci

(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

(
QiP

− 1
2

i − ∂Xij
∂ci

)(
−
[
P
− 1

2
i Q>i

]
:,k

− ∂Xij
∂[cj ]k

)]}

∂2fij
∂[cj ]k∂cj

= − 4

{
− ∂f̄ij
∂[cj ]k

(
−QiP

− 1
2

i − ∂Xij
∂cj

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

[
1− f̄ij(ci, cj ,Ωi,Ωj)

] [
− ∂2Xij
∂[cj ]k∂cj

(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+(

−QiP
− 1

2
i − ∂Xij

∂cj

)(
−
[
P
− 1

2
i Q>i

]
:,k

− ∂Xij
∂[cj ]k

)]}

For each σ ∈ Oi ∪ Oj , we have

∂2fij
∂σ∂ci

= − 4

{
− ∂f̄ij

∂σ
(ci, cj ,Ωi,Ωj)

(
QiP

− 1
2

i − ∂Xij
∂ci

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

[
1− f̄ij(ci, cj ,Ωi,Ωj)

] [(∂Qi
∂σ

P
− 1

2
i − ∂2Xij

∂σ∂ci

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

(
QiP

− 1
2

i − ∂Xij
∂ci

)(
P
− 1

2
i

∂Qi
∂σ

>
(ci − cj)−

∂Xij
∂σ

)]}

∂2fij
∂σ∂cj

= − 4

{
− ∂f̄ij

∂σ
(ci, cj ,Ωi,Ωj)

(
−QiP

− 1
2

i − ∂Xij
∂cj

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+

[
1− f̄ij(ci, cj ,Ωi,Ωj)

] [(
−∂Qi
∂σ

P
− 1

2
i − ∂2Xij

∂σ∂cj

)(
P
− 1

2
i Q>i (ci − cj)−Xij

)
+(

−QiP
− 1

2
i − ∂Xij

∂cj

)(
P
− 1

2
i

∂Qi
∂σ

>
(ci − cj)−

∂Xij
∂σ

)]}

where

∂f̄ij
∂σ

(ci, cj ,Ωi,Ωj) = 2

(
P
− 1

2
i Q>i (ci − cj)−Xij

)>(
P
− 1

2
i

∂Qi
∂σ

>
(ci − cj)−

∂Xij
∂σ

)
.
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For each σ, ω ∈ Oi ∪ Oj , we have

∂2fij
∂σ∂ω

= −4

{
− ∂f̄ij

∂σ
(ci, cj ,Ωi,Ωj)

(
P
− 1

2
i Q>i (ci − cj)−Xij

)>(
P
− 1

2
i

∂Qi
∂ω

>
(ci − cj)−

∂Xij
∂ω

)
+

[
1− f̄ij(ci, cj ,Ωi,Ωj)

] [(
P
− 1

2
i

∂Qi
∂σ

>
(ci − cj)−

∂Xij
∂σ

)>(
P
− 1

2
i

∂Qi
∂ω

>
(ci − cj)−

∂Xij
∂ω

)
+

(
P
− 1

2
i Q>i (ci − cj)−Xij

)>(
P
− 1

2
i

∂2Qi
∂σ∂ω

>
(ci − cj)−

∂2Xij
∂σ∂ω

)]}
.

A.3.2.2 Second order derivatives of (A.6)

If Uij ≥ εij then

∂2gij
∂[ci]k∂ci

=
∂2gij

∂[cj ]k∂ci
=

∂2gij
∂ω∂ci

=
∂2gij
∂ω∂cj

= 0n,1

for each k ∈ {1, . . . , n} and for each ω ∈ Oi ∪ Oj . Otherwise, for each k ∈ {1, . . . , n}, we have

∂2gij
∂[ci]k∂ci

= − 2

(
(εij − Uij)

∂2Uij
∂[ci]k∂ci

− ∂Uij
∂[ci]k

∂Uij
∂ci

)
∂2gij

∂[cj ]k∂ci
= − 2

(
(εij − Uij)

∂2Uij
∂[cj ]k∂ci

− ∂Uij
∂[cj ]k

∂Uij
∂ci

)

and, for each ω ∈ Oi ∪ Oj , we have

∂2gij
∂ω∂ci

= − 2

(
(εij − Uij)

∂2Uij
∂ω∂ci

− ∂Uij
∂ω

∂Uij
∂ci

)
∂2gij
∂ω∂cj

= − 2

(
(εij − Uij)

∂2Uij
∂ω∂cj

− ∂Uij
∂ω

∂Uij
∂cj

)
.

Moreover, for each ω, σ ∈ Oi ∪ Oj , we have

∂2gij
∂σ∂ω

= − 2

(
(εij − Uij)

∂2Uij
∂σ∂ω

− ∂Uij
∂σ

∂Uij
∂ω

)
.

A.3.2.3 Second order derivatives of X and U

For each variable v of the function F defined in (A.8) and for each component ` of F , we
define the function Gv` as the total derivative of the function F` with respect to v:

Gv` (ci, cj ,Ωi,Ωj) =
dF`
dv

(ci, cj ,Ωi,Ωj).
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Since the function F is identically zero, its derivative is also identically zero. Then, for each
variable u of the function Gv` , we have

dGv`
du

=
∂Gv`
∂u

du

du
+
∂Gv`
∂Uij

dUij
du

+

n∑
k=1

∂Gv`
∂[Xij ]k

d[Xij ]k
du

= 0. (A.10)

Next, we present the partial derivatives of the function Gv` , that appear in the expression (A.10).
The partial derivative of Gv` with respect to the variable u is given by

∂Gv`
∂u

=
∂2F`
∂u∂v

+
∂2F`
∂u∂Uij

dUij
dv

+
∂F`
∂Uij

∂

∂u

(
dUij
dv

)
+

n∑
k=1

∂2F`
∂u∂[Xij ]k

d[Xij ]k
dv

+

n∑
k=1

∂F`
∂[Xij ]k

∂

∂u

(
d[Xij ]k

dv

)
.

The partial derivative of Gv` with respect to Uij is given by

∂Gv`
∂Uij

=
∂2F`
∂Uij∂v

+
∂2F`

∂Uij∂Uij
dUij
dv

+
∂F`
∂Uij

∂

∂Uij

(
dUij
dv

)
+

n∑
k=1

∂2F`
∂Uij∂[Xij ]k

d[Xij ]k
dv

+

n∑
k=1

∂F`
∂[Xij ]k

∂

∂Uij

(
d[Xij ]k

dv

)

=
∂2F`
∂Uij∂v

+

n∑
k=1

∂2F`
∂Uij∂[Xij ]k

d[Xij ]k
dv

.

Finally, the partial derivative of Gv` with respect to Xij is given by

∂Gv`
∂[Xij ]t

=
∂2F`

∂[Xij ]t∂v
+

∂2F`
∂[Xij ]t∂Uij

dUij
dv

+
∂F`
∂Uij

∂

∂[Xij ]t

(
dUij
dv

)
+

n∑
k=1

∂2F`
∂[Xij ]t∂[Xij ]k

d[Xij ]k
dv

+

n∑
k=1

∂F`
∂[Xij ]k

∂

∂[Xij ]t

(
d[Xij ]k

dv

)

=
∂2F`

∂[Xij ]t∂v
+

∂2F`
∂[Xij ]t∂Uij

dUij
dv

+

n∑
k=1

∂2F`
∂[Xij ]t∂[Xij ]k

d[Xij ]k
dv

.

The simplifications in the expressions of the derivatives of Gv` with respect to Uij and Xij come
from the removal of null elements.

Considering that the values of the first order derivatives of the function F are known, the
equation (A.10) provides the following linear system

∂F1
∂[Xij ]1

· · · ∂F1
∂[Xij ]n

∂F1
∂Uij

∂F2
∂[Xij ]1

· · · ∂F2
∂[Xij ]n

∂F2
∂Uij

...
...

...
...

∂Fn+1

∂[Xij ]1
· · · ∂Fn+1

∂[Xij ]n

∂Fn+1

∂Uij





∂
∂u

(
d[Xij ]1
dv

)
...

∂
∂u

(
d[Xij ]n

dv

)
∂
∂u

(
dUij
dv

)


= −



bu,v1

bu,v2

...

bu,vn+1
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for each variable u and for each variable v of the function F . The components of the right-hand
side of this system are given by

bu,v` =
∂2F`
∂u∂v

+
∂2F`
∂u∂Uij

dUij
dv

+
n∑
k=1

∂2F`
∂u∂[Xij ]k

d[Xij ]k
dv

+
∂Gv`
∂Uij

dUij
du

+
n∑
k=1

∂Gv`
∂[Xij ]k

d[Xij ]k
du

for each ` ∈ {1, . . . , n+ 1}. Notice that the coefficient matrix of this linear system does not
depend on the variables u and v. Therefore, for each i, j ∈ {1, . . . ,m} such that i < j, we have
(n + q)(2(n + q) + 1) linear systems (one for each pair of variables u and v of the function F )
with n+ 1 variables each one, and all of them have the same coefficient matrix.

A.3.2.4 Second order partial derivatives of F

We now present the second order partial derivatives of the function F . For each k ∈
{1, . . . , n}, we have

∂2F

∂[ci]k∂ci
=

∂2F

∂[cj ]k∂cj
=

∂2F

∂[ci]k∂cj
= 04,n

and, for each ωj ∈ Oj , we have

∂2F

∂ωj∂ci
=

∂2F

∂ωj∂cj
= 04,n.

For each ωi ∈ Oi, we have

∂2F

∂ωi∂ci
=

[
−P−

1
2

i
∂Qi

∂ωi

>

01,n

]

and
∂2F

∂ωi∂cj
=

[
P
− 1

2
i

∂Qi

∂ωi

>

01,n

]
.

For each ω, σ ∈ Oi ∪ Oj , we have

∂2F

∂σ∂ω
=


Uij
(
∂2Vij
∂σ∂ω

>
Vij +

∂Vij
∂ω

> ∂Vij
∂σ +

∂Vij
∂σ

> ∂Vij
∂ω + V >ij

∂2Vij
∂σ∂ω

)
Xij − P

− 1
2

i
∂2Qi

∂σ∂ω

>
(ci − cj)[(

∂Vij
∂σ Xij

)> ∂Vij
∂ω +

(
VijXij

)> ∂2Vij
∂σ∂ω

]
Xij

 .
With respect to the implicit variables, we have

∂2F

∂Uij∂Xij
=

[
Sij
01,n

]
,

∂2F

∂Uij∂Uij
= 04,1,
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∂2F

∂ci∂Uij
=

∂2F

∂cj∂Uij
=

∂2F

∂[ci]k∂Xij
=

∂2F

∂[cj ]k∂Xij
= 04,n,

∂2F

∂[Xij ]k∂Xij
=

 0n,n([
Sij
]
:,k

)>


for each k ∈ {1, . . . , n} and, for each ω ∈ Oi ∪ Oj , we have

∂2F

∂ω∂Uij
=


(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij

0


and

∂2F

∂ω∂Xij
=


Uij
(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
((

∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij

)>
 .

A.3.2.5 Right-hand side of the linear system

Let u, v ∈
{

[ci]k1 , [cj ]k2
}

for some k1 ∈ {1, . . . , n} and for some k2 ∈ {1, . . . , n}. We have

bu,v =

 Sij

(
dUij
du

dXij

dv +
dUij
dv

dXij

du

)
dXij

dv

>
Sij

dXij

du

 .
Let u = ω ∈ Oi and v = [ci]k for some k ∈ {1, . . . , n}. We have

bu,v =

[
−P−

1
2

i
∂Qi

∂ω

>

01,n

]
:,k

+
dUij
dv


(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij

0

+


Uij
(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij>

(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
 dXij

dv
+

 Sij

(
dUij
du

dXij

dv +
dUij
dv

dXij

du

)
0

+

[
0n,1

dXij

dv

>
Sij

dXij

du

]
.

Let u = ω ∈ Oi and v = [cj ]k for some k ∈ {1, . . . , n}. We have

bu,v =

[
P
− 1

2
i

∂Qi

∂ω

>

01,n

]
:,k

+
dUij
dv


(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij

0

+


Uij
(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij>

(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
 dXij

dv
+

 Sij

(
dUij
du

dXij

dv +
dUij
dv

dXij

du

)
0

+

[
0n,1

dXij

dv

>
Sij

dXij

du

]
.
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Let u = ω ∈ Oj and v = [ci]k or v = [cj ]k for some k ∈ {1, . . . , n}. We have

bu,v =
dUij
dv


(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij

0

+


Uij
(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij>

(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
 dXij

dv
+

 Sij

(
dUij
du

dXij

dv +
dUij
dv

dXij

du

)
0

+

[
0n,1

dXij

dv

>
Sij

dXij

du

]
.

Let u = ω ∈ Oi ∪ Oj and v = σ ∈ Oi ∪ Oj . We have

bu,v =


Uij
(
∂2Vij
∂σ∂ω

>
Vij +

∂Vij
∂ω

> ∂Vij
∂σ +

∂Vij
∂σ

> ∂Vij
∂ω + V >ij

∂2Vij
∂σ∂ω

)
Xij − P

− 1
2

i
∂2Qi

∂σ∂ω

>
(ci − cj)[(

∂Vij
∂σ Xij

)> ∂Vij
∂ω +

(
VijXij

)> ∂2Vij
∂σ∂ω

]
Xij

+

dUij
dv


(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij

0

+


Uij
(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
Xij>

(
∂Vij
∂ω

>
Vij + V >ij

∂Vij
∂ω

)
 dXij

dv
+

dUij
du



(
∂Vij
∂σ

>
Vij + V >ij

∂Vij
∂σ

)
Xij

0

+

[
Sij
01,n

]
dXij
dv

+



Uij
(
∂Vij
∂σ

>
Vij + V >ij

∂Vij
∂σ

)
Xij>

(
∂Vij
∂σ

>
Vij + V >ij

∂Vij
∂σ

)
+

dUij
dv

[
Sij
01,n

]
+

 0n,n(
Sij

dXij

dv

)>

 dXij

du
.
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