• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2017.tde-24052017-183349
Documento
Autor
Nombre completo
Roberto Freitas Parente
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2016
Director
Tribunal
Sato, Cristiane Maria (Presidente)
Benevides, Fabricio Siqueira
Griffiths, Simon Richard
Kohayakawa, Yoshiharu
Morris, Robert David
Título en portugués
Empacotamento e contagem em digrafos: cenários aleatórios e extremais
Palabras clave en portugués
Álgebra de flags
Arborescência
Combinatória extremal
Digrafos aleatórios
Torneios
Resumen en portugués
Nesta tese estudamos dois problemas em digrafos: um problema de empacotamento e um problema de contagem. Estudamos o problema de empacotamento máximo de arborescências no digrafo aleatório D(n,p), onde cada possvel arco é inserido aleatoriamente ao acaso com probabilidade p = p(n). Denote por (D(n,p)) o maior inteiro possvel 0 tal que, para todo 0 l , temos ^(l-1)_i=0 (l-i)|{v in d^in(v) = i}| Provamos que a quantidade máxima de arborescências em D(n,p) é (D(n,p)) assintoticamente quase certamente. Nós também mostramos estimativas justas para (D(n, p)) para todo p [0, 1]. As principais ferramentas que utilizamos são relacionadas a propriedades de expansão do D(n, p), o comportamento do grau de entrada do digrafo aleatório e um resultado clássico de Frank que serve como ligação entre subpartições em digrafos e a quantidade de arborescências. Para o problema de contagem, estudamos a densidade de subtorneios fortemente conexos com 5 vértices em torneios grandes. Determinamos a densidade assintótica máxima para 5 torneios bem como as famlias assintóticas extremais de cada torneios. Como subproduto deste trabalho caracterizamos torneios que são blow-ups recursivos de um circuito orientado com 3 vértices como torneios que probem torneios especficos de tamanho 5. Como principal ferramenta para esse problema utilizados a teoria de álgebra de flags e configurações combinatórias obtidas através do método semidefinido.
Título en inglés
Packing and counting in digraphs: extremal and random settings
Palabras clave en inglés
Arborescence
Extremal combinatorics
Flag algebras
Random digraphs
Tournament
Resumen en inglés
In this thesis we study two problems dealing with digraphs: a packing problem and a counting problem. We study the problem of packing the maximum number of arborescences in the random digraph D(n,p), where each possible arc is included uniformly at random with probability p = p(n). Let (D(n,p)) denote the largest integer 0 such that, for all 0 l , we have ^(l-1)_i=0 (l-i)|{v in d^in(v) = i}|. We show that the maximum number of arc-disjoint arborescences in D(n, p) is (D(n, p)) asymptotically almost surely. We also give tight estimates for (D(n, p)) for every p [0, 1]. The main tools that we used were expansion properties of random digraphs, the behavior of in-degree of random digraphs and a classic result by Frank relating subpartitions and number of arborescences. For the counting problem, we study the density of fixed strongly connected subtournaments on 5 vertices in large tournaments. We determine the maximum density asymptotically for five tournaments as well as unique extremal sequences for each tournament. As a byproduct of this study we also characterize tournaments that are recursive blow-ups of a 3-cycle as tournaments that avoid three specific tournaments of size 5. We use the theory of flag algebras as a main tool for this problem and combinatorial settings obtained from semidefinite method.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-06-27
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.