# UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA

Análise global da expressão gênica de Xylella fastidiosa submetida a estresses ambientais

# Tie Koide

Tese de Doutorado

Orientadora: Profa. Dra. Suely Lopes Gomes

SÃO PAULO 07/07/2006

(Sete de Julho de 2006)

Aos meus queridos pais, Kiyomi e Mirian Koide Ao meu marido Ricardo

#### **AGRADECIMENTOS**

- À Prof. Dra. Suely Lopes Gomes, pela orientação desde a iniciação científica, sempre de forma séria e competente.
- Aos meus pais, Kiyomi e Mirian e meus irmãos Emi e Kiyoshi, pelo carinho, apoio, momentos divertidos e tudo mais!
- Ao Ricardo Vêncio, por todos os trabalhos em parceria e pelo amor e carinho no nosso dia-a-dia.
- A Prof. Dra. Marilis Marques e José Freire da Silva Neto pelos trabalhos em colaboração e discussões sempre pertinentes.
- A Rita de Cássia Simão, pela dedicação e paciência em me ensinar a trabalhar no laboratório.
- Ao Marcelo Avedissian e Christian Kohler pelas contribuições no início do trabalho de choque térmico.
- Aos colegas Paulo Zaini, Adriana Matsukuma e Leandro Moreira pelo trabalho em equipe na construção do microarranjo e comparação de cepas de *Xylella*. À Adriana e Denise por estarem sempre disponíveis a ajudar no laboratório CAGE.
- À Sandra Mara Fernandes, pelo trabalho eficiente que torna nossa vida no laboratório mais fácil e pelo seu jeito calmo de ser.
- À Luci Cattapan, pela grande amizade, trabalho sério, troca de receitas e experiências de vida.
- À Raphaela Georg, pela agradável companhia nas viagens a congressos e claro, no dia-a-dia também.
- A Karina Ribichich, pela companhia no karatê, passeio de veleiro... e claro, por ser uma pessoa séria e extremamente responsável no trabalho.
- À Silvia Salem-Izaac, por testar os programas de análise de microarranjos e contribuir para melhorá-los.
- À Cristina Alvarez-Martinez, pelas conversas divertidas e ajuda no laboratório.
- Aos colegas que fizeram ou fazem do laboratório um lugar agradável de se trabalhar, sempre disponíveis para ajudar e discutir: Regina Baldini, Michelle Susin, Rogério, André, José Humberto Tambor e Luciana Pugliese.
- À FAPESP, pelo apoio financeiro.

# **SUMÁRIO**

| RESUMO                                                                                                                    |     |
|---------------------------------------------------------------------------------------------------------------------------|-----|
| ABSTRACT                                                                                                                  |     |
| ABREVIATURAS                                                                                                              |     |
| Lista de figuras e tabelas                                                                                                | 4   |
| I. INTRODUÇÃO                                                                                                             |     |
| 1. Xylella fastidiosa                                                                                                     | 6   |
| 2. Análise de expressão gênica em larga escala                                                                            |     |
| 3. Genômica Funcional de Xylella fastidiosa                                                                               |     |
| 4. Resposta a estresses ambientais                                                                                        | .13 |
| 4.1. Resposta a estresse térmico                                                                                          |     |
| 4.2. Resposta a estresse osmótico e salino                                                                                |     |
| OBJETIVOS                                                                                                                 | .21 |
| II. MATERIAL E MÉTODOS                                                                                                    |     |
| 1. Soluções e meios de cultura                                                                                            | 22  |
| 2. Cultivo de <i>Xylella fastidiosa</i> e condições de estresse                                                           |     |
| 3. Extração de RNA                                                                                                        |     |
| 4. Microarranjos de DNA                                                                                                   |     |
| 4.1. Amplificação de fragmentos ORF-específicos                                                                           |     |
| 4.2. Preparação dos microarranjos de DNA de Xylella fastidiosa                                                            |     |
| 4.3. Síntese dos cDNAs e marcação com fluoróforos                                                                         |     |
| 4.4. Hibridização                                                                                                         | 26  |
| 4.5. Quantificação dos sinais de fluorescência                                                                            | 26  |
| 4.6. Normalização dos dados                                                                                               |     |
| 4.7. Determinação dos genes diferencialmente expressos                                                                    |     |
| 4.8. Agrupamento dos genes de acordo com o perfil de expressão                                                            |     |
| 4.9. Determinação das categorias funcionais altamente representadas                                                       |     |
| 5. RT-PCR quantitativo                                                                                                    |     |
| 6. Ensaio de Extensão de Oligonucleotídeo                                                                                 |     |
| 7. Busca <i>in silico</i> por promotores dependentes de $\sigma^{32}$                                                     | 33  |
| III. RESULTADOS E DISCUSSÃO                                                                                               |     |
| 1. Construção dos microarranjos de DNA de <i>Xylella fastidiosa</i>                                                       | 34  |
| 2. Desenvolvimento de ferramentas para análise de dados de microarranjos de DNA                                           | 37  |
| 2.1. HTself: teste estatístico baseado em experimentos homotípicos                                                        | 38  |
| 2.2. BayGO: análise bayesiana de termos de ontologia enriquecidos em dados de                                             |     |
| microarranjos de DNA.                                                                                                     | 46  |
| 2.3. SpotWhatR: um sistema de análise de dados de microarranjos de DNA com interface                                      |     |
| amigável                                                                                                                  | 51  |
| 3. Análise global da expressão gênica de <i>Xylella fastidiosa</i> em resposta a estresses ambientais 3.1. Choque térmico | 57  |
| 3.1.1. Análise global da expressão gênica durante o choque térmico                                                        | 57  |
| 3.1.2. Série temporal                                                                                                     |     |
| 3.1.3. Validação dos perfis de expressão por RT-PCR quantitativo                                                          |     |
| 3.1.4. Função dos genes diferencialmente expressos                                                                        |     |
| 3.2. Estresse salino e osmótico                                                                                           | - * |
| 3.2.1. Análise global da expressão gênica durante o choque salino e osmótico                                              | 78  |

| 3.2.2. Série temporal                                                       | 85  |
|-----------------------------------------------------------------------------|-----|
| 3.2.3. Validação dos perfis de expressão por RT-PCR quantitativo            | 93  |
| 3.2.4. Função dos genes diferencialmente expressos em condições de estresse | 96  |
| IV. DISCUSSÃO FINAL                                                         |     |
| IV. DISCUSSAO FINAL                                                         |     |
| 1. Métodos para análise de dados de microarranjos de DNA                    | 105 |
| 2. Resposta a estresses ambientais                                          | 106 |
| V.CONCLUSÕES                                                                | 118 |
| VI. REFERÊNCIAS BIBLIOGRÁFICAS                                              | 119 |
| MATERIAL SUPLEMENTAR                                                        | 130 |
| CURRICULUM VITAE                                                            |     |

#### **RESUMO**

Xylella fastidiosa é uma bactéria fitopatogênica, responsável por doenças em diversas plantas de importância econômica. Diversas cepas têm sido estudadas, porém, pouco se sabe a respeito da resposta a estresses ambientais em X. fastidiosa. Utilizando a tecnologia de microarranjos de DNA, verificou-se a resposta global aos estresses térmico, salino e osmótico em nível de transcrição. Os experimentos foram realizados em séries temporais, os perfis de expressão gênica dos genes diferencialmente expressos foram agrupados e validados por RT-PCR quantitativo. No choque térmico, 261 genes foram induzidos (9,7%) e 222 genes foram reprimidos (8,3%). Dentre os genes altamente induzidos, destacam-se os que codificam proteínas de choque térmico (Hsps), que previnem a desnaturação e a formação de agregados protéicos ou degradam polipeptídeos irreversivelmente desnaturados. A partir da determinação do início de transcrição de seis genes altamente induzidos no choque térmico, propôs-se um consenso para promotores dependentes do fator sigma alternativo que controla a resposta ao choque térmico,  $\sigma^{32}$ . Observou-se também a indução de genes relacionados ao estresse extracitoplasmático, que são regulados pelo fator sigma alternativo  $\sigma^E$ . No choque osmótico e salino, os genes codificando a maioria das Hsps foram reprimidos na exposição prolongada a esses estresses, indicando que a resposta não é mediada por  $\sigma^{32}$  ou  $\sigma^{E}$ . Dos 142 genes induzidos tanto no estresse salino como osmótico, 57% codificam proteínas hipotéticas ou hipotéticas conservadas, indicando uma possível função na resposta a estes estresses. Observou-se a repressão de genes relacionados à síntese protéica e ao metabolismo intermediário nos três estresses analisados, além da indução de genes relacionados à virulência como toxinas e adesinas, revelando a complexa rede de genes envolvida na resposta a estresses ambientais.

Para auxiliar a análise de dados de microarranjos de DNA, foram desenvolvidas três ferramentas de bioinformática: HTself, utilizada na determinação de genes diferencialmente expressos; BayGO, utilizada na análise categorias funcionais altamente representadas dentre os genes de interesse e SpotWhatR, uma plataforma que integra programas utilizados nas diversas etapas da análise e préprocessamento de dados de microarranjos, com uma interface de fácil utilização. Estas ferramentas foram utilizadas com sucesso e estão disponíveis livremente para outros pesquisadores.

#### **ABSTRACT**

Xylella fastidiosa is a phytopathogenic bacterium responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. To investigate X. fastidiosa genes involved in heat, salt and osmotic shock responses, we performed a whole genome microarray analysis in time-course experiments. The expression profiles of the differentially expressed genes were grouped and their expression patterns were validated by quantitative RT-PCR experiments. During heat shock, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). Among the differentially expressed genes, the ones presenting the highest induction ratios encode heat shock proteins (Hsps), which prevents protein misfolding and aggregation or promote the degradation of the irreversibly denatured polypeptides. We determined the transcription start sites of six heat shock inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for  $\sigma^{32}$  promoters in X. fastidiosa. We also observed the induction of genes related to the extracytoplasmic stress response, that are regulated by the alternative sigma factor  $\sigma^E$ . During prolongued exposure to salt and osmotic stress, genes encoding most of the Hsps were repressed, indicating that the response is not mediated by  $\sigma^{32}$  or  $\sigma^{E}$ . Among the 142 genes induced by both salt and osmotic stress, 57% encode hypothetical or conserved hypothetical proteins, indicating a possible role of these genes in the stress response. In addition, we observed the repression of genes related to protein biosynthesis and intermediary metabolism during the three stresses tested, besides the induction of genes related to virulence such as toxins and adhesins, revealing the complex network of genes that work together in response to environmental stresses.

To facilitate the microarray data analysis process, we developed three bioinformatics tools: HTself, which is used to determine the differentially expressed genes; BayGO, which aims at finding over-represented gene categories and SpotWhatR, a system that integrates programs used in different steps of microarray data analysis in a user-friendly interface. These tools were successfully used and are freely available to the research community.

#### **ABREVIATURAS**

μg: micrograma

μl: microlitro

cDNA: DNA complementar

**DEPC**: Dietilpirocarbonato

DNA: Ácido desoxiribonucléico DNase: Desoxirribonuclease

dNTPs (dATP, dCTP, dGTP e dTTP): 2'-desoxirribonucleotídeo-5'-trifosfato de adenina, citosina, guanina e

timina, respectivamente.

DO: Densidade ótica

DTT: Ditiotreitol

EDTA: Ácido etilenodiaminotetracético

fmol: fentomol

g: unidades de gravidade

h: hora

kb: quilobase

M: Molar

mg: miligrama

min: minutos

mJ: milijoule

ml: mililitro

mM: milimolar

MOPS: Ácido 3-[N-morfolino] propasulfônico

mRNA: ácido ribonucléico mensageiro

ng: nanograma nm: nanômetro °C: graus Celcius

ORF: região aberta de leitura (Open Reading Frame)

pb: pares de base

PCR: reação em cadeia pela polimerase

pmol: picomoles

ppGpp: tetrafosfato de guanosina

RNA: Ácido ribonucléico RNase: Ribonuclease rpm: rotações por minuto rRNA: RNA ribossômico

SDS: Dodecil sulfato de sódio Tris: hidroxometil aminometano

U: unidades UV: ultravioleta

V: Volts

# LISTA DE FIGURAS

| Figura 1: Sintomas da Clorose Variegada de Citros e o agente causador da doença                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 2: Esquema de um experimento de microarranjo de DNA                                                                                         |
| Figura 3: Eletroforese em gel de agarose dos produtos de PCR depositados nos microarranjos3:                                                       |
| Figura 4: Imagem bicolor de uma lâmina de microarranjo de DNA de Xylella fastidiosa36                                                              |
| Figura 5: Experimento homotípico utilizando o microarranjo de DNA de Xylella fastidiosa4                                                           |
| Figura 6: Interceptação de intervalos durante a execução do algoritmo do HTself4                                                                   |
| Figura 7: Interface web para utilização do método HTself                                                                                           |
| Figura 8: Interface com menus interativos para a utilização de ferramentas de análises de dados d                                                  |
| microarranjos de DNA                                                                                                                               |
| Figura 9: Exemplos de diferentes métodos de normalização aplicados a dados de X. fastidiosa e E emersonii                                          |
| <b>Figura 10</b> : Visualização dos agrupamentos Hierárquico e <i>K-means</i> , utilizando as ferramenta disponíveis no sistema <i>SpotWhatR</i> . |
| Figura 11: Genes diferencialmente expressos no choque térmico, agrupados por categorias funcionais                                                 |
| Figura 12: Análise de componentes principais para os genes diferencialmente expressos durante                                                      |
| choque térmico.                                                                                                                                    |
| Figura 13: Agrupamento dos genes diferencialmente expressos durante o choque térmico6                                                              |
| Figura 14: Mudanças globais na expressão gênica em resposta ao choque térmico64                                                                    |
| Figura 15: Níveis de expressão durante o choque térmico de 10 genes selecionados, analisados po                                                    |
| RT-PCR quantitativo e por microarranjos de DNA                                                                                                     |
| Figura 16: Determinação do início de transcrição dos os genes groES, dnaK, grpE, clpB, htpX e hspA                                                 |
| em experimentos de extensão de oligonucleotídeo6                                                                                                   |
| <b>Figura 17</b> : Matriz de probabilidade para os promotores dependentes de $\sigma^{32}$                                                         |
| Figura 18: Curvas de crescimento de X. fastidiosa cepa 9a5c em meio PW, na presença de diferente                                                   |
| concentrações de NaCl ou sacarose                                                                                                                  |
| Figura 19: Genes diferencialmente expressos no estresse causado por NaCl, agrupados por categoria                                                  |
| funcionais8                                                                                                                                        |
| Figura 20: Genes diferencialmente expressos no estresse causado por sacarose, agrupados po                                                         |
| categorias funcionais                                                                                                                              |
| Figura 21: Análise de componentes principais para os dados de NaCl e sacarose                                                                      |
| Figura 22: Agrupamento dos genes diferencialmente expressos em NaCl                                                                                |
| Figura 23: Agrupamento dos genes diferencialmente expressos em sacarose 300mM91                                                                    |
| Figura 24: Níveis de expressão de 7 genes durante o estresse salino analisados por RT-PCI                                                          |
| quantitativo e por microarranjos de DNA9                                                                                                           |

| Figura 25: Níveis de expressão de 7 genes durante o estresse causado por sacarose,                            | analisados por |
|---------------------------------------------------------------------------------------------------------------|----------------|
| RT-PCR quantitativo e por microarranjos de DNA                                                                | 95             |
| Figura 26: Genes induzidos em mais de um dos estresses testados em X. fastidiosa                              | 108            |
| Figura 27: Genes reprimidos em mais de um dos estresses testados em X. fastidiosa                             | 109            |
| Figura 28: Genes induzidos nos estresses salino e osmótico em X. fastidiosa                                   | 113            |
| Figura 29: Genes reprimidos nos estresses salino e osmótico em X. fastidiosa                                  | 114            |
| LISTA DE TABELAS                                                                                              |                |
| Tabela 1: Oligonucleotídeos utilizados nos experimentos de RT-PCR quantitativo                                | 31             |
| Tabela 2: Oligonucleotídeos utilizados nos ensaios de extensão de oligonucleotídeo                            | 33             |
| Tabela 3: Termos do Gene Ontology considerados altamente representados pelo método                            | BayGO50        |
| Tabela 4: Genes com os maiores níveis de indução durante o choque térmico                                     | 68             |
| Tabela 5: Sobrevivência após choque salino ou choque osmótico                                                 | 80             |
| Tabela 6: Número de genes diferencialmente expressos somente em NaCl, somente                                 | em sacarose e  |
| comuns aos dois estresses, em cada um dos tempos de estresse e considerando tod                               | los os tempos  |
| analisados                                                                                                    | 81             |
| Tabela 7: Genes com os maiores níveis de indução durante o choque salino                                      | 89             |
| Tabela 8: Genes com os maiores níveis de indução durante o choque osmótico                                    | 92             |
| LISTA DE TABELAS SUPLEMENTARES                                                                                |                |
| Tabela S1: Categorias funcionais dos genes de X. fastidiosa                                                   | 130            |
| Tabela S2: Genes induzidos durante o choque térmico                                                           | 132            |
| Tabela S3: Genes reprimidos durante o choque térmico                                                          | 136            |
| Tabela S4: Agrupamento dos genes diferencialmente expressos no choque térmico                                 | 140            |
| <b>Tabela S5</b> : Prováveis promotores dependentes de $\sigma^{32}$ , encontrados pela análise in sia        | lico nos genes |
| induzidos pelo choque térmico                                                                                 | 149            |
| Tabela S6: Genes induzidos durante o choque salino                                                            | 150            |
| Tabela S7: Genes reprimidos durante o choque salino                                                           | 156            |
| Tabela S8: Agrupamento dos genes diferencialmente expressos no choque salino                                  | 159            |
| Tabela S9: Genes induzidos durante o choque osmótico                                                          | 168            |
| Tabela S10: Genes reprimidos durante o choque osmótico                                                        | 171            |
| Tabela S11: Agrupamento dos genes diferencialmente expressos no choque osmótico                               | 173            |
| <b>Tabela S12</b> : Prováveis promotores dependentes de $\sigma^{70}$ , encontrados pela análise <i>in si</i> | lico nos genes |
| induzidos pelo choque salino e osmótico                                                                       | 178            |

# I. INTRODUÇÃO

## 1. Xylella fastidiosa

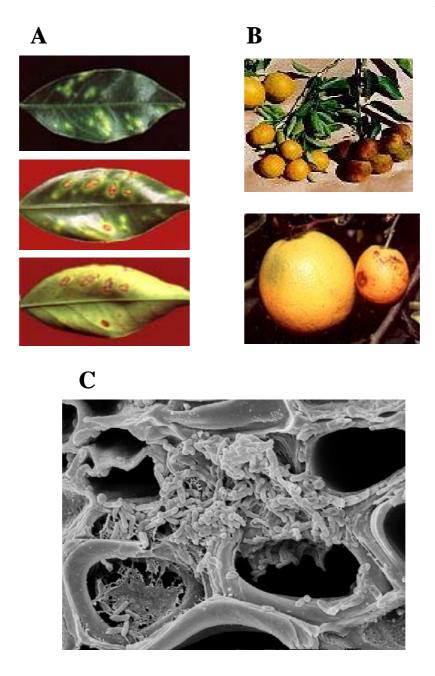
Xylella fastidiosa, uma bactéria gram-negativa pertencente ao subgrupo gamma das proteobactérias (Wells et al., 1987), é responsável por doenças em plantas de grande importância econômica como a doença de Pierce (PD) em videiras, a Clorose Variegada de Citros (CVC) (Rosseti et al., 1990) e outras doenças em plantas de café, ameixa, amêndoa e oleandro (Hopkins, 1989).

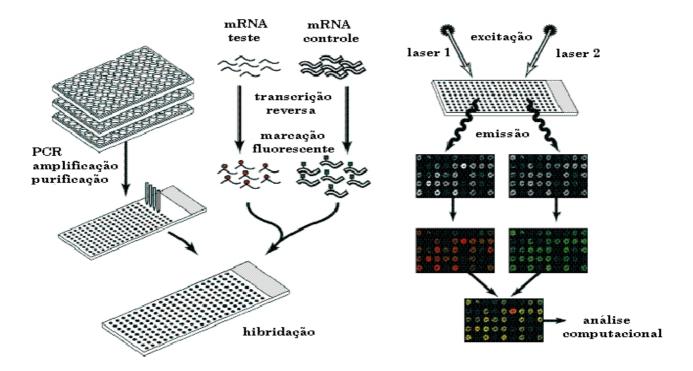
No Brasil, a CVC - popularmente conhecida como amarelinho - causa grandes prejuízos econômicos pois os frutos pequenos e endurecidos não têm valor comercial. Outros sintomas das plantas infectadas com a CVC são (Figura 1): a clorose na lâmina foliar, lesões causadas por goma na parte inferior das folhas e estresse de água e nutrientes associados a agregados da bactéria, que podem causar a oclusão do xilema (Lee et al., 1991). A partir 1987, a CVC espalhou-se rapidamente pela transmissão via insetos que se alimentam da seiva do xilema das plantas. Onze espécies de cigarrinhas (gênero Cicadellidae) já foram identificadas como vetores de X. fastidiosa (Redak et al., 2004). No estado de São Paulo, responsável por cerca de 30% da produção mundial de citros, a doença afetou aproximadamente 43% das plantações no ano de 2005, segundo dados do Fundo de Defesa da Citricultura (Fundecitrus).

Os mecanismos responsáveis pela patogenicidade da bactéria começaram a ser desvendados após o següenciamento completo do genoma da cepa 9a5c de Xylella fastidiosa que causa a CVC (Simpson et al., 2000). O genoma sequenciado consiste em um cromossomo principal (2.679.305 pb) e dois plasmídeos: o mini-plasmídeo pXF1.3 (1.285 pb) e o megaplasmídeo pXF51 (51.158 pb). Foram preditas 2904 regiões abertas de leitura no genoma, das quais 47% tiveram uma possível função atribuída segundo a similaridade de sequência com outros organismos. Com base nos genes identificados, os mecanismos de patogenicidade e virulência da bactéria propostos sugerem o envolvimento de toxinas como hemolisinas,

bacteriocinas e colicinas; genes relacionados ao metabolismo de ferro; proteínas utilizadas na interação entre bactérias e entre a bactéria e o hospedeiro, como fimbrias, adesinas e hemaglutininas; genes relacionados à degradação da parede celular das plantas, como poligalactorunases e endoglucanases; além de diversos transportadores (Simpson et al., 2000; Meidanis et al., 2002).

É importante ressaltar que Xylella fastidiosa (cepa 9a5c) foi o primeiro fitopatógeno a ter o genoma completamente següenciado, revelando genes que haviam sido identificados anteriormente somente em patógenos animais, indicando que as bases moleculares da patogenicidade são conservadas (Dow & Daniels, 2000; Lambais et al., 2000; Simpson et al., 2000). Atualmente, há 14 genomas completos de bactérias fitopatogênicas e outros 19 estão sendo següenciados (Setubal et al., 2005). Dentre estes genomas, destacamos o da cepa Temecula, responsável pela doença de Pierce (Van Sluys et al., 2003) e das cepas Dixon e Ann-1 que infectam amêndoa e oleandro, respectivamente, que foram parcialmente seqüenciadas (Bhattacharyya et al., 2002a; Bhattacharyya et al., 2002b; Van Sluys et al., 2003) e permitiram avanços no estudo da genômica comparativa em relação à especificidade do hospedeiro.





Figura 1: Sintomas da Clorose Variegada de Citros e o agente causador da doença: (A) clorose na lâmina foliar, pequenas manchas amareladas espalhadas na face superior da folha que correspondem a lesões de cor palha face inferior da folha (fonte: Fundecitrus); (B) frutos de tamanho reduzido e com queimaduras de sol (fonte: Fundecitrus); (C) microscopia eletrônica de X. fastidiosa obstruindo o xilema de citros (fonte: Kitajima, E.W.).

#### 2. Análise de expressão gênica em larga escala

A disponibilidade de grande quantidade de informação obtida pelo sequenciamento de genomas impulsionou o desenvolvimento e a utilização de técnicas de análise funcional de genes em larga escala, como a análise serial da expressão gênica (SAGE) utilizada para eucariotos (Velculescu et al., 1995) e os microarranjos de DNA (Bowtell, 1999).

Os microarranjos de DNA foram desenvolvidos na década de 90 e consistem em lâminas de vidro onde milhares de fragmentos de DNA de seguência conhecida são imobilizados de forma ordenada (Schena et al., 1995). Cada fragmento de DNA é denominado "elemento" ou "ponto", e serve como sonda para um gene específico. O princípio da técnica é a hibridização competitiva entre uma amostra teste e uma amostra controle, marcadas com diferentes fluoróforos, Cy3 ou Cy5. Os estudos mais comuns são os de transcriptoma ou análise de transcritos em larga escala, onde os mRNAs das condições teste e controle são submetidos à transcrição reversa e marcados com diferentes fluoróforos. Após a hibridização dos cDNAs marcados, a lâmina é varrida por lasers de comprimento de onda específico para cada um dos fluoróforos, gerando imagens independentes para as amostras teste e controle. As imagens obtidas são usadas para quantificar a intensidade de fluorescência de cada ponto, permitindo obter a relação entre a fluorescência nas condições teste e controle e assim determinar o nível relativo de expressão dos genes (Figura 2).

Nos últimos anos, a tecnologia de microarranjos de DNA tem sido otimizada em todos os aspectos, desde a construção das lâminas, passando pela marcação com fluoróforos, a aquisição das imagens e, principalmente, a análise dos dados em larga escala (Holloway et al., 2002). Os microarranjos de DNA têm sido utilizados não só para medir a expressão relativa de genes em nível transcricional como também em estudos de genômica comparativa e, mais recentemente, na identificação de següências regulatórias que interagem com uma determinada proteína e no estudo de RNAs regulatórios, dentre outras aplicações (Hoheisel, 2006).



**Figura 2**: Esquema de um experimento de microarranjo de DNA (adaptado de Duggan *et al*, 1999). Fragmentos dos genes de um organismo são amplificados por PCR, purificados e imobilizados em lâminas de vidro utilizando um robô. A partir do RNA das amostras teste e controle, os cDNAs são sintetizados e marcados com os fluoróforos Cy3 e Cy5 e hibridizados nas lâminas contendo os fragmentos de DNA. A lâmina é varrida com lasers de comprimento de onda específicos utilizando um escaner e são geradas imagens monocromáticas. Após a análise das imagens, são extraídos os valores de intensidade de fluorescência para cada ponto nas condições teste e controle, o que permite determinar o nível relativo de expressão dos genes individuais.

A análise de dados de microarranjos é uma etapa complexa e multi-fatorial (Slonim, 2002). As diversas fases incluem: a quantificação dos sinais de fluorescência através de programas de segmentação de imagens, a normalização dos dados para corrigir diferenças na incorporação dos fluoróforos e intensidade de fluorescência, a determinação de genes diferencialmente expressos, as análises de agrupamento dos genes que apresentam perfis de expressão semelhantes e a busca por categorias funcionais mais representadas dentre os genes de interesse (Quackenbush, 2001; Koide *et al.*, 2006a). Centenas de artigos foram publicados com diferentes métodos de análise, porém, não há um consenso sobre os métodos utilizados (Hoheisel, 2006). Há esforços em relação à padronização e à disponibilização dos resultados em bancos de dados públicos como o GEO (GeneExpression Omnibus) (Barrett *et al.*, 2005), bem como a utilização de vocabulários controlados para lidar com a imensa quantidade de informação (Ashburner *et al.*, 2000). A necessidade e a padronização dos experimentos para a validação dos resultados obtidos através de técnicas de larga escala também vem sendo amplamente adotados e discutidos pela comunidade científica (Chuaqui *et al.*, 2002).

# 3. Genômica Funcional de Xylella fastidiosa

Os estudos pós-genômicos de *Xylella fastidiosa* incluem o desenvolvimento de ferramentas para a obtenção de mutantes, estudos de genômica comparativa, expressão gênica em larga escala em nível transcricional e proteômica. Estes estudos vêm permitindo uma maior compreensão da função e expressão dos genes e seu envolvimento com a patogenicidade da bactéria.

Em relação à obtenção de mutantes de cepas isoladas de citros, somente as cepas J1a12 e B111, isoladas de *Citrus sinensis* em Jales e Bebedouro (São Paulo), respectivamente, apresentaram-se susceptíveis à transformação utilizando vetores replicativos contendo a origem de replicação do cromossomo de *X. fastidiosa* (Monteiro *et al.*, 2001). A cepa J1a12 também foi transformada utilizando vetores com uma origem de replicação plasmidial (da

Silva Neto *et al.*, 2002) e pelo sistema de transposome (Koide *et al.*, 2004). Entretanto, até o momento não há relatos de mutantes da cepa de citros seqüenciada 9a5c, enquanto que a cepa Temecula que infecta videiras tem sido facilmente transformada (Guilhabert *et al.*, 2001; Feil *et al.*, 2003; Newman *et al.*, 2004).

Apesar da cepa J1a12 ter sido isolada a partir de plantas com sintomas de CVC, testes de patogenicidade realizados em plantas de citros e tabaco, mostraram que esta linhagem não é patogênica (Koide *et al.*, 2004). A comparação do DNA genômico utilizando microarranjos de DNA mostrou que 14 seqüências codificadoras presentes na cepa patogênica 9a5c estavam ausentes ou eram altamente divergentes na cepa não-patogênica J1a12. Dentre elas, um gene codificando uma arginase e uma adesina da fimbria estavam ausentes em J1a12, o que pode estar relacionado com a incapacidade da cepa se estabelecer no hospedeiro e com seu fenótipo menos agregado *in vitro* (Koide *et al.*, 2004). Outros estudos de genômica comparativa incluem a comparação de cepas de *X. fastidiosa* isoladas de hospedeiros distintos, onde se observaram diversos eventos de transferência horizontal de genes (Nunes *et al.*, 2003); e a comparação das cepas Temecula e 9a5c. Este estudo comparou os resultados obtidos através de microarranjos de DNA com os dados do seqüenciamento das duas cepas, indicando a relevância e confiabilidade da utilização desta tecnologia para estudos de genômica comparativa (Costa de Oliveira *et al.*, 2002).

Estudos de expressão gênica utilizando microarranjos de DNA mostraram condições em que a expressão de genes relacionados à patogenicidade são induzidos. Na condição de biofilme, genes relacionados à fimbria do tipo IV e ao sistema de secreção do tipo II apresentaram maior expressão do que em células planctônicas (de Souza *et al.*, 2004); em bactérias recém-isoladas da planta, genes relacionados à adesão e à adaptação ao hospedeiro mostraram-se mais expressos do que em bactérias cultivadas por várias passagens (de Souza *et al.*, 2003). A análise do proteoma de *X. fastidiosa* permitiu a identificação dos produtos de 142 genes dentre proteínas intracelulares e secretadas no meio, tendo destaque também as

proteínas envolvidas na adesão (Smolka *et al.*, 2003). Apesar dos avanços no conhecimento sobre a fisiologia de *X. fastidiosa*, pouco se sabe sobre a resposta a estresses ambientais e sua regulação neste importante fitopatógeno.

## 4. Resposta a estresses ambientais

Em plantas infectadas, as bactérias estão sujeitas a diversos tipos de estresses ambientais, como alterações na temperatura, disponibilidade de nutrientes, estresse hídrico e presença de moléculas tóxicas. Conseqüentemente, os mecanismos utilizados pela bactéria para responder e se proteger de diferentes tipos de estresse são essenciais para sua sobrevivência e transmissão. Diversos mecanismos de adaptação a estresses ambientais foram caracterizados em muitas bactérias, patogênicas ou não (Dow & Daniels, 2000). Genes cujos produtos estão relacionados com patogenicidade geralmente não são expressos constitutivamente, mas possuem regulação ambiental. Em *Erwinia chrysanthemi*, patógeno de planta cuja virulência é devida principalmente à produção de enzimas pectinolíticas, a transcrição desses genes é favorecida por condições ambientais como a presença de pectina, fase de crescimento estacionário e limitação de ferro e oxigênio (Hugouvieux-Cotte-Pattat *et al.*, 1996).

Na maioria dos casos, a resposta bacteriana leva à ativação de genes cujos produtos respondem a um dado estresse físico-químico. Fatores que regulam esses genes respondem a sinais específicos, ambientais ou celulares, estimulando ou inibindo a transcrição, tradução ou algum outro evento na expressão gênica de modo a modificar adequadamente a taxa de síntese dos produtos gênicos, obtendo a adaptação físiológica e bioquímica necessária.

As alterações na expressão gênica em resposta a um estímulo do ambiente podem ser controladas por fatores sigma alternativos, que são subunidades da RNA polimerase e direcionam o reconhecimento de promotores pela polimerase para a expressão de um conjunto específico de genes. Em condições normais de crescimento, o fator sigma vegetativo ou sigma

principal é responsável pela maior parte da transcrição na bactéria. Já em resposta a condições adversas, os fatores sigma alternativos são ativados ou têm sua concentração aumentada na célula e competem com o sigma vegetativo pelo cerne da RNA polimerase, alterando assim o padrão de expressão gênica do organismo. O regulon de um único fator sigma pode ser formado por centenas de genes, constituindo um eficiente mecanismo de regulação gênica coordenada (Gruber & Gross, 2003).

Os fatores sigma podem ser classificados em duas famílias principais, com base na similaridade de seqüência de aminoácidos, estrutura e função: a família  $\sigma^{70}$  e a família  $\sigma^{54}$ . A família  $\sigma^{70}$  inclui o fator sigma vegetativo e fatores sigma alternativos envolvidos na resposta a estresses como o  $\sigma^{32}$  de choque térmico, o  $\sigma^{S}$  e o  $\sigma^{B}$ , de resposta geral a estresses em bactérias gram-negativas e positivas como *E. coli* e *Bacilus subtilis*; e os fatores sigma ECF ou de função extracitoplasmática, como o fator  $\sigma^{E}$  de *E. coli*. Os membros da família  $\sigma^{70}$  possuem estruturas conservadas, com maior conservação nas regiões responsáveis pelo reconhecimento das regiões promotoras -35 e -10, e na desnaturação do DNA na região -10 (Paget & Helmann, 2003). Já os membros da família  $\sigma^{54}$  necessitam de ativadores para formar o complexo aberto de transcrição na região promotora. Na maioria das espécies, o fator  $\sigma^{54}$  é chamado  $\sigma^{N}$  e controla uma variedade de processos fisiológicos, como o metabolismo de nitrogênio, expressão de genes relacionados com pili e flagelo, dentre outros (Buck *et al.*, 2000). Diversos fatores sigma alternativos também têm sido relacionados direta ou indiretamente com a regulação de genes virulência em bactérias patogênicas (Kazmierczak *et al.*, 2005).

No genoma de X. fastidiosa foram anotados genes codificando quatro fatores sigma putativos:  $\sigma^{70}$  ou sigma principal,  $\sigma^{E}$  de resposta a estresse extracitoplasmático,  $\sigma^{32}$  de resposta a choque térmico e um membro da família  $\sigma^{54}$ .

## 4.1. Resposta a estresse térmico

Quando uma célula é exposta a um aumento brusco na temperatura, seu programa de expressão gênica é alterado para se adaptar a este estresse ambiental. Uma resposta característica a este tipo de estresse é o aumento na taxa de síntese de uma classe de proteínas denominadas Hsps (*heat shock proteins*) ou proteínas de choque térmico. Elas atuam principalmente como chaperones moleculares, mediando o enovelamento e a montagem de polipeptídeos, ou como proteases, degradando os polipeptídeos irreversivelmente desnaturados. As Hsps são altamente conservadas em procariotos e eucariotos (Lindquist & Craig, 1988) e são classificadas em famílias de acordo com sua massa molecular: Hsp100, Hsp90, Hsp70, Hsp60, Hsp10 e α-Hsps. Muitas dessas proteínas são também induzidas em outras condições de estresse ambiental como carência de nutrientes, mudanças na osmolaridade ou pH do meio.

A resposta ao choque térmico tem sido estudada extensivamente, tanto em bactérias gram-negativas como gram-positivas. Em E.coli, a expressão dos genes das Hsps é regulada positivamente pelo fator sigma alternativo  $\sigma^{32}$ , codificado pelo gene rpoH. A regulação dos níveis de  $\sigma^{32}$  é exercida por uma retroinibição onde as Hsps (DnaK, DnaJ e GrpE) direcionam  $\sigma^{32}$  para proteólise mediada por FtsH sob condições normais de temperatura (Gross, 1996). Como os níveis de DnaK e DnaJ são limitantes na célula, o aumento dos níveis de proteínas desenoveladas durante o choque térmico seqüestra essas chaperones, liberando o  $\sigma^{32}$  para ligar-se à RNA polimerase, direcionando-a para promotores específicos de genes de choque térmico (Yura & Nakahigashi, 1999). Além disso, o aumento da temperatura provoca um rápido aumento na tradução de  $\sigma^{32}$  devido à desestabilização da estrutura secundária do mRNA de rpoH, liberando o acesso dos ribossomos ao sítio de início da tradução do mensageiro (Morita et al., 1999). Quando os níveis de DnaK aumentam, o fator  $\sigma^{32}$  é novamente seqüestrado, sendo inativado e degradado, desligando a resposta. Recentemente,

foi demonstrado que a maquinaria das chaperoninas GroES/EL também está envolvida na regulação da atividade e estabilidade de  $\sigma^{32}$  em *E.coli* (Guisbert *et al.*, 2004).

Diferente dos mecanismos descritos para  $E.\ coli$ , na bactéria gram-negativa  $Caulobacter\ crescentus$  do grupo  $\alpha$ , a maquinaria de DnaKJ e os níveis de  $\sigma^{32}$  não estão envolvidos no desligamento da resposta ao choque térmico (da Silva  $et\ al.$ , 2003). A reativação do fator sigma vegetativo  $\sigma^{73}$  pela chaperone ClpB controla o desligamento da resposta ao choque térmico em  $C.\ crescentus$ , favorecendo o fator sigma vegetativo  $\sigma^{73}$  na competição com  $\sigma^{32}$  pelo cerne da RNA polimerase (Simao  $et\ al.$ , 2005).

Na bactéria gram-positiva *Bacillus subtilis*, as estratégias de regulação da resposta ao choque térmico são bastante distintas. Os genes induzidos por choque térmico são classificados em pelo menos seis grupos. Os genes da classe I são as chaperones DnaKJ-GrpE e GroESL, cuja expressão é controlada negativamente pelo repressor HrcA, que se liga a uma seqüência altamente conservada na região operadora denominada CIRCE – *Controlling Inverted Repeat of Chaperone Expression*. A classe II compreende mais de 100 genes que são regulados positivamente pelo fator sigma alternativo σ<sup>B</sup> e estão envolvidos não somente na resposta ao choque térmico como também na resposta aos estresses salino, oxidativo, ácido, falta de oxigênio, glicose e fosfato, sendo denominado o regulon de resposta geral a estresses. Os genes da classe III codificam proteases dependentes de ATP e são regulados pelo repressor CtsR. Na classe IV há somente o gene *htpG* que codifica uma chaperone molecular, cujo regulador ainda é desconhecido, enquanto que na classe V estão dois genes codificando proteases ancoradas à membrana, regulados pelo sistema de dois componentes CssRS. Na classe VI estão genes com diversas funções, cujo mecanismo de regulação ainda é desconhecido (Schumann, 2003).

A disponibilidade da sequência completa de diversos genomas bacterianos tem facilitado o estudo da resposta global ao choque térmico. A resposta ao aumento da temperatura em nível de transcrição foi descrita em diversas bactérias, desde organismos

modelo como *E. coli* (Richmond *et al.*, 1999) e *B. subtilis* (Helmann *et al.*, 2001), passando por organismos envolvidos em bioremediação como *Shewanella oneidenis* (Gao *et al.*, 2004) e diversos patógenos de mamíferos como *Campylobacter jejuni* (Stintzi, 2003), *Streptococcus* do grupo A (Smoot *et al.*, 2001), *Mycoplasma pneumoniae* (Weiner *et al.*, 2003), *Yersinia pestis* (Motin *et al.*, 2004) e *Neisseria meningitis* (Guckenberger *et al.*, 2002). Estas análises globais utilizando microarranjos de DNA mostraram que a resposta ao aumento da temperatura provocou não só a indução de Hsps como também mudanças nos níveis de expressão de genes relacionados a outras funções celulares como biogênese de flagelo, reguladores da transcrição, genes relacionados a fagos, à composição da membrana e relacionados à patogênese. Foram feitos também estudos para caracterizar a resposta ao choque térmico em nível de proteína, como em *Bradyrhizobium japonicum* (Munchbach *et al.*, 1999), *Agrobacterium tumefaciens* (Rosen *et al.*, 2002) e *Myxococcus xanthus* (Otani *et al.*, 2001). Estes estudos em larga escala são um passo para a compreensão destes organismos como um sistema integrado em resposta a um dado estímulo ambiental.

Em X. fastidiosa, além do fator  $\sigma^{32}$  de choque térmico, foram anotados o fator  $\sigma^{E}$  envolvido na resposta a temperaturas extremas em E. coli, Hsps das famílias Hsp100, Hsp60, Hsp10 e  $\alpha$ -Hsps. Além disso, foi verificada a presença do gene hrcA em um provável operon com os genes grpE-dnaK-dnaJ e uma seqüência CIRCE de ligação ao repressor HrcA a 5' do operon groES-groEL.

#### 4.2. Resposta a estresse osmótico e salino

As bactérias geralmente mantêm a pressão osmótica intracelular maior do que a do meio de crescimento de forma a gerar o turgor celular, necessário para diversos processos como o crescimento e a divisão celular. O aumento da osmolaridade do meio pode desidratar o citoplasma, causando a plasmólise da célula; já em meio hipotônico, a entrada excessiva de água pode causar a lise celular. A capacidade de adaptação a mudanças na osmolaridade do

meio é, portanto, muito importante para a sobrevivência e tem sido associada à virulência em algumas bactérias patogênicas (Sleator & Hill, 2002).

Em resposta a um aumento da osmolaridade do meio, duas estratégias têm sido descritas para a adaptação de células procarióticas: a manutenção de uma alta concentração de sal no citoplasma e o acúmulo de osmoprotetores. A primeira é utilizada por organismos de crescimento restrito a ambientes de osmolaridade elevada que toleram altíssimas concentrações de sal no meio, como as halobactérias. Já o acúmulo de solutos compatíveis é amplamente utilizado e tem sido descrito em diversas bactérias como *E.coli*, *B. subtilis*, *Salmonella*, *Streptomyces*, dentre outras (Sleator & Hill, 2002).

Como resposta primária ao aumento da osmolaridade do meio, há um rápido aumento da concentração intracelular de K<sup>+</sup>. Em *E. coli*, os sistemas de tomada de K<sup>+</sup> envolvidos na resposta ao estresse osmótico são Trk e Kdp; em *B. subtilis*, os sistemas KtrAB e KtrCD. Para contrabalançar a carga de K<sup>+</sup>, há também um aumento na concentração de glutamato. A resposta secundária consiste no aumento da concentração citoplasmática de osmoprotetores (Heermann & Jung, 2004).

Solutos compatíveis são moléculas altamente solúveis, preferencialmente sem carga em pH fisiológico, que podem ser acumulados em altas concentrações sem perturbar as diversas funções celulares, auxiliando na manutenção do turgor celular. A ação dos solutos compatíveis é cosmotrópica, ou seja, eles aumentam as forças coesivas na estrutura da água, favorecendo a estabilização das estruturas nativas das proteínas. Existem diversos tipos de solutos compatíveis: aminoácidos (glutamato, prolina), derivados de aminácidos (ectoína, prolina, betaína), peptídeos, metilaminas (glicina-betaína, carnitina), polióis (glicerol, glicosilglicerol), açúcares (sacarose, trealose), dentre outros. Estes solutos podem ser sintetizados ou simplesmente transportados pela célula. Em *E. coli*, a síntese de trealose é feita via OtsAB; em *B. subtilis*, a prolina é sintetizada por ProABC e a glicina betaína é sintetizada a partir de colina via GbsAB (Bremer & Krämer, 2000).

A percepção da mudança na osmolaridade é mediada por proteínas osmosensoras que são proteínas integrais de membrana com extensões hidrofílicas. Alguns osmosensores atuam simultaneamente como osmoreguladores, como por exemplo os sistemas de transporte ProP de *E. coli* envolvido no transporte de prolina, BetP de *C. glutamicum* e OpuABC de *Lactococcus lactis*, envolvidos no transporte de glicina-betaína. Estas proteínas percebem um determinado estímulo, como a concentração de íons ou propriedades da membrana, e também atuam como transportadores na tomada efetiva de solutos compatíveis do meio.

Existem também osmosensores que regulam a expressão de genes que codificam osmoreguladores, constituindo sistemas de dois componentes: o sensor localizado na membrana tem um domínio de histidina quinase que, na presença do estímulo, transmite a informação via fosforilação para os reguladores de resposta. Alguns exemplos de sistemas de dois componentes envolvidos na resposta ao estresse osmótico são: o sistema KdpDE de *E.coli* envolvido na tomada de K<sup>+</sup> e o sistema EnvZ-OmpR que regula a expressão das porinas OmpC e OmpF em *E. coli*, que por sua vez, facilitam a difusão de moléculas hidrofílicas. Em resposta a um aumento na pressão osmótica, a expressão de OmpF é diminuída e OmpC tem sua expressão aumentada (Heermann & Jung, 2004).

Muitos estudos sobre o estresse osmótico em bactérias são realizados pela adição de NaCl ao meio de cultura. Além de causar o estresse osmótico, o íon Na<sup>+</sup> é tóxico para as células e portanto, é mantido em concentrações intracelulares menores do que as do meio externo. Para isso, há diversos sistemas envolvidos no transporte ativo de Na<sup>+</sup> que utilizam como fonte de energia ATP e sistemas acoplados a conversões metabólicas ou à respiração, além de antiporters de Na<sup>+</sup>/H<sup>+</sup> (Padan & Krulwich, 2000). Os íons Cl<sup>-</sup> também apresentam um papel na homeostase de Na<sup>+</sup> ativando os sistema de efluxo de Na<sup>+</sup> e sistemas de transmissão de sinal (Roessler *et al.*, 2003).

A resposta ao estresse osmótico envolve ainda mudanças na composição da membrana plasmática e da parede celular, além de alterações no nível de superenovelamento

do DNA. Um estudo utilizando microarrajos de DNA mostrou também o envolvimento da alta salinidade na limitação de ferro e na repressão de genes relacionados à quimiotaxia e motilidade em *B. subtilis* (Steil *et al.*, 2003). Em *E. coli*, células submetidas ao estresse osmótico apresentaram alterações na respiração e diminuição da transcrição de genes de proteínas ribossômicas (Weber & Jung, 2002).

Os fatores sigma alternativos também estão envolvidos na resposta a mudanças na osmolaridade do meio, sendo que o choque hiperosmótico induz os regulons de  $\sigma^S$ ,  $\sigma^{32}$  e  $\sigma^E$  em *E. coli* (Bianchi & Baneyx, 1999) e o regulon do fator  $\sigma^B$  em *B. subtilis* (Steil *et al.*, 2003) e do  $\sigma^B$  em *Streptomyces coelicolor*, que também está envolvido na resposta ao estresse oxidativo (Lee *et al.*, 2005). A resposta ao estresse salino e/ou osmótico também foi verificada em estudos em larga escala em *Shewanella oneidensis* (Liu *et al.*, 2005), *Desulfovibrio vulgaris* (Mukhopadhyay *et al.*, 2006), *Yersinia pestis* (Han *et al.*, 2005) e *Pseudomonas aeruginosa* (Aspedon *et al.*, 2006).

No genoma de *X. fastidiosa*, não foram anotados genes envolvidos no transporte de betaína, carnitina e colina, nem genes relacionados à síntese de trealose e ectoína. Foram porém descritos genes envolvidos na biossíntese de prolina, glutamato, transportadores de Na<sup>+</sup> e antiporters Na<sup>+</sup>/H<sup>+</sup> e transportadores de aminoácidos polares (Simpson *et al.*, 2000; Meidanis *et al.*, 2002). Foram também identificados genes codificando MscL e YggB, que são canais sensíveis a estímulos mecânicos, os quais permitem o efluxo de solutos em condições hipoosmóticas (Booth & Louis, 1999), além de proteínas sensoras de membrana externa envolvidas na resposta ao estresse osmótico.

# **OBJETIVOS**

Este trabalho tem como objetivo analisar a expressão gênica global em nível transcricional de *Xylella fastidiosa* submetida a estresses ambientais. Para isso, a metodologia utilizada baseou-se no uso de microarranjos de DNA para o estudo dos estresses térmico e osmótico em *X. fastidiosa*. Até o momento, não há estudos de resposta a estresses em larga escala em bactérias fitopatogênicas.

# II. MATERIAL E MÉTODOS

#### 1. Soluções e meios de cultura

TAE: Tris-acetato 40 mM e EDTA 1 mM

TBE: Tris-base 89 mM; ácido bórico 89 mM; EDTA 2 mM pH 8,0

MOPS: MOPS 20 mM pH 7,0; acetato de sódio 5 mM; EDTA 0,1 mM

PW: fitona peptona 4,0 g/l; tripticase peptona 1,0 g/l; cloreto de hemina 0,001 %, K<sub>2</sub>HPO<sub>4</sub> 1,2

g/l; KH<sub>2</sub>PO<sub>4</sub> 1,0g/l; MgSO<sub>4</sub>·7H<sub>2</sub>O 0,4 g/l; glutamina 0,4 %.

PWG: PW contendo glicose 0,5 %

## 2. Cultivo de Xylella fastidiosa e condições de estresse

A cepa 9a5c de *Xylella fastidiosa*, isolada a partir de *Citrus (L.) Osbeck* com sintomas de CVC foi cultivada em meio PW (Davis *et al.*, 1981) a 29°C, sob agitação de 150 rpm. A cultura foi mantida através de diluições seriadas (1/10). Culturas de *X. fastidiosa* cultivadas por 7 dias (fase de crescimento exponencial) foram submetidas ao estresse térmico a 40°C em um banho com agitação de 150 rpm. Alíquotas de 50 ml das culturas foram retiradas em cada um dos tempos de choque térmico (0, 7, 15, 25 e 45 min), centrifugadas a 5.000xg, a 4°C por 5 min e as células foram imediatamente congeladas em gelo seco. No choque osmótico, o estresse foi induzido pela adição de NaCl (concentração final 150 mM) ou sacarose (concentração final 300 mM) às culturas cultivadas por 7 dias em banho a 29°C com agitação de 150 rpm. Alíquotas de 50 ml das células foram retiradas em cada um dos tempos de estresse (0, 7, 15, 30 e 60 min), centrifugadas a 5.000xg, a 4°C por 5 min e as células foram imediatamente congeladas em gelo seco. Foram realizadas no mínimo três réplicas biológicas independentes para cada experimento.

#### 3. Extração de RNA

O RNA total de *Xylella fastidiosa* foi obtido utilizando duas metodologias distintas: a extração utilizando fenol quente ou Trizol.

#### **Fenol quente**

As células congeladas em gelo seco foram ressuspensas em 1 ml de solução contendo acetato de sódio 20 mM, EDTA 1 mM e SDS 0,4%. Em seguida, adicionou-se 1 ml de fenol pré-aquecido a 65°C, equilibrado em tampão acetato de sódio 20 mM (pH 5,4) contendo EDTA 1 mM. A suspensão foi homogeneizada com forte agitação e incubada a 65°C por 15 min. A fase aquosa foi separada por centrifugação a 7.800xg. Após 3 extrações consecutivas com fenol, a fase aquosa foi coletada e tratada com o mesmo volume de clorofórmio e submetida à precipitação pela adição de 0,1 volume de acetato de sódio 3 M (pH 5,4) e 2 volumes de etanol 100%. Após centrifugação a 10.000xg por 15 min a 4°C, o sobrenadante foi descartado e o precipitado lavado em etanol 70% e seco sob vácuo por 5 min.

#### **Trizol**

As células congeladas em gelo seco foram ressuspensas em 1 ml de Trizol (Invitrogen) e incubadas a 65°C por 10 min. A seguir, adicionou-se 200 µl de clorofórmio e as amostras foram agitadas vigorosamente por aproximadamente 15 s. Após 5 min de incubação a temperatura ambiente, as amostras foram centrifugadas a 12.000xg por 15 min a 4°C, a fase aquosa foi retirada e submetida à precipitação pela adição de 1 ml de isopropanol e incubação a -80°C ou em gelo seco por no mínimo 30 min. Após centrifugação a 12.000xg por 30 min a 4°C, o sobrenadante foi descartado e o precipitado foi lavado com 1 ml de etanol 75% e seco sob vácuo por 5 min.

O RNA total foi tratado com 0,03U de DNAse RQ1 (Promega) na presença de inibidor de RNAse RNAseOUT (Invitrogen) ou RNAsin (Promega) por 30 min a 37°C, purificados por extração com fenol:clorofórmio (1:1) e precipitados pela adição de 0,1 volume de acetato de sódio 3 M (pH 5,4) e 2 volumes de etanol 100%. Após centrifugação a

10.000xg por 15 min a 4°C, o sobrenadante foi descartado e o precipitado lavado em etanol 70% e seco sob vácuo por 5 min. O RNA total obtido foi ressuspenso em água DEPC e incubado a 65°C por 10 min. A quantificação dos RNAs e a avaliação do grau de pureza foram feitos pela medida da absorbância da amostra a 260 nm e a 280 nm, respectivamente. Para verificação da integridade dos RNAs, uma alíquota de cada amostra foi submetida a eletroforese em gel de agarose 1,5 % e formaldeído 2,2 M em tampão MOPS.

# 4. Microarranjos de DNA

#### 4.1. Amplificação de fragmentos ORF-específicos

Os fragmentos de DNA ORF-específicos utilizados nos microarranjos foram produzidos a partir de oligonucleotídeos específicos (MWG Inc. ou Operon Technologies), desenhados utilizando uma adaptação do programa PRIMER3 (Rozen & Skaletsky, 2000) feita pelo Prof. Alan Durham do Departamento de Ciências da Computação do Instituto de Matemática e Estatística - USP. A lista completa dos oligonucleotídeos utilizados está disponível em <a href="http://verjo19.iq.usp.br/xylella/microarray/Construction/">http://verjo19.iq.usp.br/xylella/microarray/Construction/</a>. As reações de PCR foram feitas em placas de 96 poços tendo como molde 100 ng de DNA genômico ou plasmidial de *Xylella fastidiosa* cepa 9a5c num volume final de 50 μl contendo MgCl<sub>2</sub> 2,5 mM, 50 pmol de cada oligonucleotídeo, dNTP 0,2 mM, 0,1 U de Taq DNA polimerase (BIOLASE) e tampão correspondente. As condições das reações de PCR foram: um passo de desnaturação inicial de 95°C por 5 min, seguida por 40 ciclos que consistem em: desnaturação a 95°C por 45 s, hibridização a 50°C por 30 s e extensão a 72°C por 1 min; e um passo final de polimerização a 72°C por 10 min. Os produtos das amplificações foram verificados em gel de agarose 1,2 % em tampão TAE.

Para aumentar a concentração dos produtos de PCR obtidos com os oligonucleotídeos do lote sintetizado pela MWG Inc, foi feita uma reamplificação a partir de 2

μl de uma diluição de 200 vezes das reações de PCR. No caso dos oligonucleotídeos fabricados pela Operon Technologies, não foi necessária a etapa de re-amplificação, pois a concentração de produto obtida na amplificação foi suficiente para a imobilização nas lâminas de vidro. Em alguns poucos casos a amplificação foi realizada a partir de cosmídeos selecionados da biblioteca genômica preparada durante o projeto de seqüenciamento de *X. fastidiosa*. A biblioteca de 1056 cosmídeos foi fornecida pelo Prof. Jesus Ferro do *Brazilian Clone Collection Center*, UNESP, Jaboticabal.

# 4.2. Preparação dos microarranjos de DNA de Xylella fastidiosa

Os produtos da amplificação/reamplificação por PCR foram purificados em placas de filtração Multiscreen MAFBNOB50 (Millipore) e eluídos com 50 µl de Tris 10 mM pH 8,0. As placas de 96 poços foram combinadas manualmente em placas de 384 poços, utilizadas no equipamento para imobilizar os produtos de PCR na lâmina de vidro.

A concentração final dos produtos de PCR a serem imobilizados na lâmina de vidro deve estar entre 200-400 fmol/µl de DNA, sendo que cada ponto deve ter no mínimo 100 pg de DNA. Adicionou-se DMSO (50% v/v) às placas de 384 poços contendo os produtos de PCR amplificados para atingir essa concentração. Os produtos de PCR correspondentes a fragmentos ORF-específicos foram depositados em lâminas espelhadas do tipo 7 ou tipo 7 star (GE Healthcare) utilizando o Generation III Microarray Spotter (GE Healthcare). O aparelho permite a deposição de 4608 amostras de DNA organizadas em 12 subconjuntos de 384 pontos (12 linhas x 32 colunas). O conjunto de 4608 pontos é depositado em duplicata nas duas metades longitudinais da lâmina. Após a deposição dos fragmentos de DNA, as lâminas foram fixadas com 50 mJ de luz UV e armazenadas em dessecador com umidade relativa em torno de 5%. A descrição completa da plataforma pode ser encontrada no banco de dados Gene Expression Omnibus (GEO) (Barrett *et al.*, 2005)(http://www.ncbi.nlm.nih.gov/geo), com o número de acesso GPL2708.

# 4.3. Síntese dos cDNAs e marcação com fluoróforos

A síntese e marcação de cDNAs foram feitas utilizando os sistemas Cy-Scribe Post Labeling kit (GE Healthcare) ou Superscript Plus Indirect cDNA labeling kit (Invitrogen). A síntese do cDNA foi feita a partir de 20 μg de RNA total, utilizando oligonucleotídeos randômicos, uma mistura de nucleotídeos, amino-alil dNTPs, tampão 1x, DTT e a transcriptase reversa nas quantidades recomendadas pelo fabricante. A reação foi incubada a 42°C (CyScribe) ou a 46°C (SuperscriptIII) por 3 h. Em seguida, os RNAs foram submetidos a hidrólise alcalina e os cDNAs modificados com amino-alil dNTP foram purificados em placas de filtração Multiscreen MAFOB (Millipore). A marcação dos cDNAs é feita quando o CyDye NHS-éster reage com os grupos amino-alil incorporados no cDNA. O cDNA marcado foi purificado em placas de filtração Multiscreen MAFOB (Millipore). O fluoróforo total incorporado foi quantificado medindo-se a absorbância a 550 nm (Cy3) e a 650 nm (Cy5), a quantidade de cDNA sintetizado foi medida pela absorbância a 260 nm.

# 4.4. Hibridização

As hibridizações foram realizadas na presença de tampão de hibridização 25% (GE Healthcare) e formamida 50% por 16 h a 42°C. As lavagens foram feitas a 55°C em SSC 1,0x, SDS 0,2% por 10 min; SSC 0,1x, SDS 0,2% por 10 min e SSC 0,1x por 1 min. As lâminas foram secas com vapor de nitrogênio e a aquisição das imagens foi feita no Generation III Scanner (Molecular Dynamics). Foram obtidas imagens independentes para as amostras marcadas com Cy3 e Cy5, utilizando lasers de 532 nm e 633 nm, respectivamente.

#### 4.5. Quantificação dos sinais de fluorescência

Após a obtenção das imagens de cada lâmina, as intensidades de sinal de cada ponto foram extraídas utilizando o programa Array Vision 6.0 (Image Research). Para quantificar a

Intensidade de fluorescência dos pontos utilizamos a medida *Median Artifact Removed Density* (MTMDens) que consiste em uma medida de densidade excluindo os pixels que apresentem sinal acima ou abaixo de 4 desvios absolutos da mediana (MAD), permitindo a exclusão de pixels que apresentem poeira ou artefatos de hibridização. O sinal de fundo foi quantificado como sendo uma moldura com largura de 2 pixels em torno do ponto. A intensidade de fluorescência de cada ponto foi determinada como sendo o valor de MARMDens subtraindo a mediana do sinal de fundo. Pontos que apresentaram irregularidades foram marcados para exclusão nas etapas subseqüentes da análise dos dados.

#### 4.6. Normalização dos dados

A normalização dos dados deve ser realizada para corrigir artefatos na incorporação dos fluoróforos e diferenças na intensidade de fluorescência entre Cy3 e Cy5 (Quackenbush, 2001; Yang *et al.*, 2002). Para isso, utilizou-se o método LOWESS (*LOcally WEighted regreSSsion*) para ajustar os dados de expressão gênica, assumindo como hipótese que a maioria dos genes não deve apresentar diferença entre as duas condições (Yang *et al.*, 2002). A função LOWESS está implementada no pacote estatístico R (www.r-project.org) e consiste em uma regressão linear com peso local. A normalização foi feita no espaço M x S onde M= log<sub>2</sub>(teste/controle), que é a razão entre o sinal observado na condição teste em relação à condição controle, e S = log<sub>2</sub>(Cy3/2 + Cy5/2) que representa a média da intensidade total do ponto.

Os dados brutos e normalizados de todos os experimentos realizados foram depositados no banco de dados GEO (Gene Expression Omnibus) (Barrett *et al.*, 2005). O número de acesso dos dados de choque térmico é GSE3044.

## 4.7. Determinação dos genes diferencialmente expressos

Para determinar a variabilidade experimental intrínseca aos nossos experimentos de microarranjos de DNA, foram realizadas duas hibridizações homotípicas (self-self) independentes. Nestes experimentos, a mesma amostra de RNA controle foi utilizada para síntese de cDNA e após a marcação com os fluoróforos Cy3 e Cy5, foram hibridizadas na mesma lâmina. As hibridizações homotípicas foram utilizadas para determinar a função densidade de probabilidade, testando a hipótese nula Ho: "não há hibridização diferencial entre as amostras teste e controle. Este procedimento resulta na determinação dos limites superior e inferior, dependentes da intensidade, da variabilidade intrínseca ao experimento e torna possível a aplicação desses limites aos experimentos reais (Vencio & Koide, 2005). Portanto, os genes que apresentam razão de expressão consistentemente acima ou abaixo desses limites são considerados diferencialmente expressos. O algoritmo utilizado está implementado em http://blasto.iq.usp.br/~rvencio/HTself. Após definir o limite superior e inferior para os genes não diferencialmente expressos (curvas homotípicas), outros experimentos de microarranjos, realizados nas mesmas condições técnicas que os experimentos homotípicos, foram avaliados. A curva homotípica foi ajustada utilizando os seguintes parâmetros: intervalo de credibilidade de 98%, passo 0,2 e janela 0,1. O resultado (M,S) de um determinado gene nos dados de interesse (não homotípicos) foi comparado às curvas da hibridização homotípica. Foram considerados diferencialmente expressos os genes que apresentaram 80% das réplicas com valor de M acima ou abaixo dos limites determinados pelas curvas homotípicas, com no mínimo 5 réplicas válidas nos experimentos de choque térmico e no mínimo 3 réplicas, nos experimentos de estresse osmótico. Todos os experimentos foram realizados com 3 réplicas biológicas independentes e cada gene foi depositado em duplicata nas lâminas de microarranjos. Portanto, temos no mínimo um total de 6 réplicas para cada gene. Mais detalhes sobre a metodologia podem ser encontrados na seção III.2.1.

## 4.8. Agrupamento dos genes de acordo com o perfil de expressão

Os genes classificados como diferencialmente expressos foram agrupados utilizando o método *K-means*, com uma medida de distância que considera a informação das medidas repetidas. O *K-means* é um algoritmo iterativo de agrupamento, onde o número de grupos é definido pelo usuário. Foram utilizados os valores da mediana das réplicas técnicas e biológicas dos dados que apresentavam a série temporal completa para evitar erros decorrentes da entrada de dados.

No *K-means*, os objetos (genes) são distribuídos de forma que os grupos sejam internamente similares, mas externamente dissimilares. Inicialmente, os objetos são distribuídos ao acaso em um dos grupos e então é calculado um vetor de expressão para cada grupo. O algoritmo minimiza a soma das distâncias de cada objeto ao seu vetor de expressão correspondente. Em cada iteração, cada gene é designado ao vetor de expressão mais próximo, e novos vetores são computados. Esses passos são repetidos até que não haja mais movimentação dos genes entre os diferentes grupos.

A medida de distância utilizada é análoga à distância euclideana, ponderada pelo desvio padrão. Para descobrir o número de grupos a ser considerado no *K-means*, aplicou-se a análise de componentes principais (PCA) (van der Werf *et al.*, 2006). Quando as diferenças entre as componentes principais sucessivas caiam para próximo de zero, o valor da componente principal foi utilizado como o número de grupos.

#### 4.9. Determinação das categorias funcionais altamente representadas

Para encontrar as categorias funcionais altamente representadas na análise de agrupamento, utilizou-se a ferramenta denominada BayGO (http://blasto.iq.usp.br/~tkoide/BayGO/) (Vencio *et al.*, 2006). O programa resume os dados apresentando o número de genes em cada categoria funcional e calcula a medida de

associação entre "ser diferencialmente expresso" e "pertencer a uma dada categoria funcional". Esta medida de associação, denominada G, é calculada como descrito por Goodman e Kruskal (Goodman & Kruskal, 1954). Para determinar a significância estatística de uma dada associação, ela é comparada com a associação  $G^*$ , obtida a partir de listas de genes simuladas ao acaso. Uma categoria foi considerada como altamente representada se o valor da probabilidade  $P = Pr (G^* > G)$  for menor que 0,05. Mais detalhes sobre a metodologia podem ser encontrados na seção III.2.2.

# 5. RT-PCR quantitativo

Foram desenhados oligonucleotídeos específicos para genes selecionados utilizando o programa Primer Express 2.0 (Applied Biosystems). Este programa otimiza o desenho dos oligonucleotídeos para a reação de RT-PCR quantitativo, considerando que o produto de PCR deve ter entre 50 e 150 pb e sua temperatura de dissociação deve ser em torno de 80°C. 5 μg de RNA total foram utilizados para produzir cDNAs utilizando 200 U de transcriptase reversa SuperscriptII (Invitrogen) e 500 ng de primers randômicos. O cDNA foi diluído em água DEPC para a concentração final de 35 ng/µl. A reação de PCR quantitativa foi feita utilizando 180 ng de cDNA como molde, 800 nM de primers direto e reverso e 10 µl de Platinum SYBR Green qPCR SuperMix UDG (Invitrogen) ou 10 µl de Sybr Green PCR Master Mix (Applied Biosystems) em um sistema ABI PRISM 5700 Sequence Detection System (Applied Biosystems). Foram utilizados os parâmetros padrão do equipamento e, após completar a reação de PCR, foi feita uma curva de dissociação do produto de PCR para assegurar a especificidade da reação. A ORF XF2157 (dnaQ) foi utilizada para normalizar a quantidade de cDNA para cada uma das amostras, já que diferentes experimentos de microarranjos de DNA mostraram que a expressão desta ORF não era alterada em nenhuma das condições de estudo. O valor da razão de cada uma das ORFs testadas foi calculada utilizando o método 2<sup>-</sup>

<sup>ΔΔCT</sup> (Livak & Schmittgen, 2001). Foram realizados três experimentos independentes. Os oligonucleotídeos utilizados estão descritos na Tabela 1.

Tabela 1: Oligonucleotídeos utilizados nos experimentos de RT-PCR quantitativo

| Gene    | Nome | Oligo direto (5'-3')   | Oligo reverso (5´-3`)    |
|---------|------|------------------------|--------------------------|
| XF0263  | cvaC | TCGGCGTTTCTGCCTTTTT    | CCACCGCGGGTTCCA          |
| XF0264  | cvaC | GCGACTTTGCTACGCGTCTT   | CAGCAAAAAAAGCAGCAATGC    |
| XF0371  | pilO | GCATCTTGGTCGGCTTTTTTA  | GCTCGCGCTCTTTACCTTCA     |
| XF0390  | phoQ | TCTTGCGCGATGGATCATTA   | GCCGGCACATCAAAGTG        |
| XF0395  | bfr  | TGGATGGTTTGCCGAATTTT   | TGCCAAATCGCCACTGAATA     |
| XF0975  | oprO | GGTGCTGGAACGTCCACAGT   | GGTTGTCGCCTTGTAGATCTTTG  |
| XF1220  | cvaB | TCACTGGCATAGCGCTTGAA   | TGAAATTGAAGGCGGTGGTT     |
| XF1493  | xrvA | TGCTTACCCCACAGTGGTGAA  | CCTTCCCATGCAGCAAATG      |
| XF1632  | pilU | AGCGCGAGGAATTCGAGAA    | GCGGAAGCGACCAATGTT       |
| XF1896  | pal  | GCTTCGTCGGGACAGTTGA    | CTTTCTGTTGATTCAGTGCAAACC |
| XF1915  | trpG | GCCATATCGAGTCATCGTCGTA | CCGAGCTGCTCAAAATATGAGA   |
| XF2157  | dnaQ | GGTGCCGAACTGATTATTCACA | CAACCGCGATAACTCGTAATCAA  |
| XF2174  | ybbN | CGCTCGCTGATTCCGATTT    | TTGATCTTCGCCAGCTCAAA     |
| XF2241  | тисД | TCATCGGTAGCGACGAACAG   | ACGCACGGTGGGTAGATTTT     |
| XF2336  | colR | CGCAACATCTCGGAGATGATC  | CCATCGACGGCATAATCCA      |
| XF2340  | dnaK | AGCGCGCTAAAATCGAATTGT  | TGCATCCGCCGTAATGTATG     |
| XF2395  | axeA | GCACGTCAACCTGCATTGG    | TGGGTCTGGCTGTGGTTACC     |
| XFa0052 | vapD | TTGTCGGACGATTTCAATGC   | TCGACGCTCAAAAGCTTCTCT    |

# 6. Ensaio de Extensão de Oligonucleotídeo

Para determinar o início de transcrição de 6 genes induzidos no choque térmico (XF2340-dnaK, XF2341-grpE XF0616-groES, XF0381-clpB, XF2234-hspA e XF2625-htpX), foram desenhados oligonucleotídeos próximos ao ATG da ORF de interesse correspondendo à fita complementar, mostrados na Tabela 2. 50 pmoles de cada oligonucleotídeo foram marcados radioativamente na extremidade 5' com  $\gamma^{32}P$  ATP (30  $\mu$ Ci), numa reação utilizando

5 U de T4 Polinucleotídeo Quinase (New England Biolabs). Após quantificar a incorporação do radioativo, foram precipitados aproximadamente 10<sup>6</sup> cpm de oligonucleotídeo e 50 µg de RNA total com acetato de sódio e etanol em gelo seco por 30 min. As amostras foram centrifugadas por 30 min a 12.000xg, secas sob vácuo e em seguida ressuspensas em 25 µl de tampão de hibridização (PIPES 100 mM pH 7.0, NaCl 1 M, EDTA 5 mM). A desnaturação foi feita por 10 min a 100°C e a hibridização a 50°C por 16 h. Os ácidos nucléicos foram precipitados com etanol 100% em gelo seco por 30 min e lavados com etanol 70%. A extensão do oligonucleotídeo foi feita utilizando 200 U de transcriptase reversa SuperscriptII (Invitrogen), DTT 1 mM, 10 U de inibidor de RNAses RNAseOUT (Invitrogen) e 1 mM de cada dNTP. A reação foi incubada por 90 min a 42°C e, em seguida, o RNA foi eliminado pela adição de 30 µg de RNaseA e incubação a 37°C por 30 min. O material foi purificado por extração com fenol:clorofórmio (1:1) e precipitado com 3 volumes de etanol absoluto em gelo seco por 30 min. Após centrifugação (12.000xg, 4°C) e lavagem (etanol 70%), as amostras foram secas e solubilizadas em 2 µl de água e 4 µl de tampão de amostra (formamida 95%, EDTA 20 mM, azul de bromofenol 0,05% e xileno cianol 0,05%). As amostras foram aquecidas a 94°C por 3 min e aplicadas em gel de eletroforese contendo 7,5% de poliacrilamida – 7 M uréia

Para determinar o tamanho do produto de extensão obtido e consequentemente, o início de transcrição da ORF, o produto do sequenciamento do fago M13 foi utilizado como referência de tamanho molecular. A reação de sequenciamento foi obtida por PCR utilizando o oligonucleotídeo -40 M13 (Tabela 2) e DNA fita simples do fago, utilizando o sistema *fmol* DNA Cycle Sequencing System (Promega), conforme as instruções do fabricante.

Tabela 2: Oligonucleotídeos utilizados nos ensaios de extensão de oligonucleotídeo

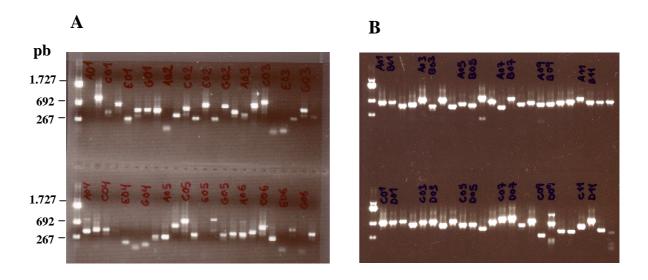
| Gene    | Nome  | Oligonucleotídeo (5'-3') |
|---------|-------|--------------------------|
| XF0381  | clpB  | GTAAGCTTATCCATCCGC       |
| XF0616  | groES | GATCATGAAGCGGTTTGA       |
| XF2340  | dnaK  | AGGTCGATACCAATGATT       |
| XF2341  | grpE  | CATTCGGGGTGGTCTTGA       |
| XF2625  | htpX  | GGCAAACAAGACAATACG       |
| XF2234  | hspA  | CCAAGGGGTATAACGAAC       |
| -40 M13 |       | GTTTTCCCAGTCACGAC        |

## 7. Busca *in silico* por promotores dependentes de $\sigma^{32}$

Com base na informação gerada a partir dos ensaios de extensão de oligonucleotídeo que permitiu determinar 6 prováveis promotores dependentes de  $\sigma^{32}$ , foram construídas matrizes com a freqüência (porcentagem) de cada nucleotídeo em cada posição das regiões -35 e -10. Estas matrizes foram utilizadas separadamente para buscar prováveis seqüências promotoras na região 5′ dos genes classificados como induzidos durante o choque térmico (região -200 a -1) com o programa PATSER (van Helden, 2003), com parâmetros padrão. Foi feito um programa na linguagem R (http://www.r-project.org/) para incorporar as saídas do programa para as regiões -35 e -10 e o espaçamento entre elas. Para avaliar se a lista de prováveis promotores era estatisticamente significante, calculou-se a probabilidade P de que a proporção de prováveis promotores dependentes de  $\sigma^{32}$  encontrados entre os genes não-induzidos fosse maior do que a proporção encontrada entre os genes induzidos por choque térmico, como função da pontuação dada pelo programa PATSER. Quando mais de uma seqüência promotora foi predita para o mesmo gene, escolheu-se aquela com maior pontuação.

#### III. RESULTADOS E DISCUSSÃO

#### 1. Construção dos microarranjos de DNA de Xylella fastidiosa


A construção dos microarranjos de *Xylella fastidiosa* foi baseada na amplificação de fragmentos específicos de DNA para cada uma das ORFs anotadas no genoma da cepa 9a5c (Simpson *et al.*, 2000). Foram utilizados 2577 pares de oligonucleotídeos ORF-específicos para a produção de fragmentos de DNA dupla fita com tamanho entre 250 e 800 pb. Esses produtos de PCR foram avaliados por eletroforese em gel de agarose (Figura 3A), onde foi constatada falha em 15% das reações. A primeira versão do microarranjo de *X. fastidiosa* contendo 2572 fragmentos de ORFs amplificadas está depositada banco de dados GEO sob número de acesso GPL3409. Em seguida, 355 novos pares de oligonucleotídeos foram desenhados e sintetizados pela Operon Technologies. As amplificações deste lote de oligonucleotídeos apresentaram falha em somente 3% das reações (Figura 3B). Esses produtos de PCR foram imobilizados em lâminas de vidro juntamente com os 2572 fragmentos obtidos na versão 1. Com isso, obtivemos a versão 2 do microarranjo de *X. fastidiosa* contendo fragmentos internos de 2692 ORFs (Figura 4) que representam 94,6% do genoma de *X. fastidiosa*. Esta versão foi utilizada na maioria dos experimentos de resposta a estresse e está disponível no banco de dados GEO sob número de acesso GPL2708.

Os microarranjos de DNA de *X. fastidiosa* foram utilizados com sucesso em um estudo de genômica comparativa entre a cepa patogênica 9a5c e a cepa não patogênica J1a12 (Koide *et al.*, 2004). Neste trabalho, foram feitas hibridizações competitivas que permitiram determinar conjuntos de genes ausentes ou altamente divergentes na cepa J1a12. Foi verificada a ausência do gene codificando a arginase em J1a12, que pode estar relacionada com a incapacidade da cepa se multiplicar nas plantas hospedeiras. Em *Helicobacter pylori*, esta enzima parece estar relacionada com a sobrevivência da bactéria nas células hospedeiras, por provocar a diminuição da produção de óxido nítrico pelo hospedeiro. Observou-se

também a falta do gene codificando um precursor da adesina da fímbria, que pode estar associada com o fenótipo menos agregado da cepa J1a12 crescendo *in vitro* (Koide *et al.*, 2004). Este estudo foi o primeiro a comparar uma cepa patogênica com outra não-patogênica de *X. fastidiosa*, sendo um importante passo para a compreensão dos mecanismos moleculares

da doença CVC.

Esta ferramenta também tem sido utilizada por outros grupos no estudo de *X. fastidiosa*: estudo do crescimento em diferentes concentrações de glicose, revelando a expressão aumentada de colicinas V (Pashalidis *et al.*, 2005), estudos do metabolismo de ferro (desenvolvidos por Paulo Zaini e Aline Maria da Silva), resistência a peptídeos antimicrobianos (desenvolvidos por Andréa Fogaça e Aline Maria da Silva) e no estudo de mutantes de fatores sigma de *X. fastidiosa* (desenvolvidos por José Freire da Silva Neto, Tie Koide, Suely Lopes Gomes e Marilis do Vale Marques).



**Figura 3**: Eletroforese em gel de agarose (1,2%) dos produtos de PCR depositados na lâmina. A figura mostra a foto do gel corado com brometo de etídeo. A primeira canaleta à esquerda corresponde ao marcador de tamanho molecular. (A) Rendimento médio obtido com o primeiro lote de primers (~15% de falha). (B) À direita, o rendimento médio obtido com os primers da marca Operon (~3% de falha).

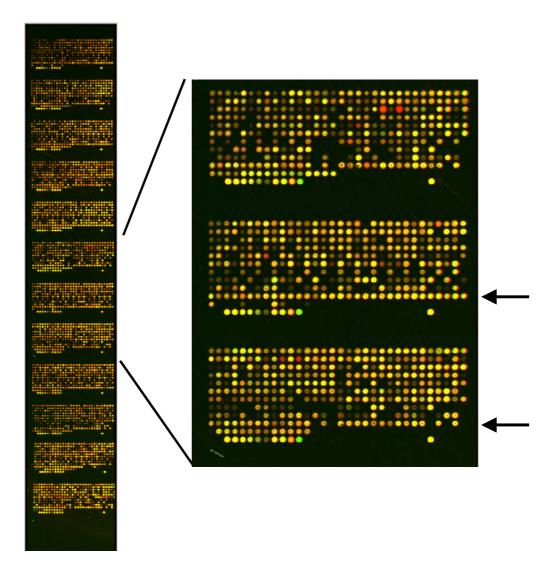



Figura 4: Imagem bicolor de uma lâmina de microarranjo de DNA contendo 2694 fragmentos ORF-específicos. Esta lâmina foi hibridizada manualmente com DNA fluorescente preparado de DNA total da cepa 9a5c (Cy3) e cepa J1a12 (Cy5). A figura mostra a porção esquerda do microarranjo com os 12 subconjuntos e uma ampliação dos subconjuntos 6 a 8. Os pontos em vermelho representam ORFs que são aparentemente ausentes na cepa J1a12. As setas à direita apontam a linha correspondente aos produtos obtidos com o segundo lote de oligonucleotídeos (10<sup>a</sup> linha).

#### 2. Desenvolvimento de ferramentas para análise de dados de microarranjos de DNA

A tecnologia de microarranjos de DNA tem permitido o estudo da expressão gênica em escala genômica, mudando o paradigma do estudo de expressão de um único gene para uma abordagem em larga escala. A análise dos dados provenientes destes experimentos é uma etapa complexa, e há uma grande variedade de métodos estatísticos disponíveis (Nadon & Shoemaker, 2002; Cui & Churchill, 2003; Stolovitzky, 2003).

Os microarranjos de *Xylella fastidiosa* foram os primeiros a serem desenvolvidos no Instituto de Química da Universidade de São Paulo. Além dos desafios na construção da plataforma, diversas questões relacionadas à análise de dados dos microarranjos de DNA levaram ao desenvolvimento de algumas ferramentas de análise. Neste capítulo, serão descritas três ferramentas desenvolvidas em conjunto com o doutorando Ricardo Vêncio do Programa Interunidades de Doutorado em Bioinformática da USP. A primeira ferramenta descrita é chamada *HTself* e tem sido utilizada na determinação de genes diferencialmente expressos, principalmente em estudos em que há poucas réplicas disponíveis. (Vencio & Koide, 2005). A segunda ferramenta é chamada *BayGO*, onde foi implementada uma abordagem bayesiana para a análise de termos ou categorias funcionais altamente representadas dentre os genes de interesse (Vencio *et al.*, 2006). A última ferramenta é chamada *SpotWhatR*, e consiste em uma plataforma que integra programas utilizados nas diversas etapas da análise e pré-processamento de dados de microarranjos com uma interface de fácil utilização por pessoas que não estão habituadas com linguagens de programação computacional (Koide *et al.*, 2006a).

#### 2.1. HTself: teste estatístico baseado em experimentos homotípicos

Nos experimentos de microarranjos de DNA, a comparação entre duas amostras marcadas com diferentes corantes fluoróforos permite a classificação de um gene como diferencialmente expresso (ou divergente, caso esteja-se lidando com hibridizações genômicas) utilizando uma grande variedade de métodos estatísticos (Nadon & Shoemaker, 2002; Cui & Churchill, 2003; Stolovitzky, 2003). Num desenho experimental ideal, deve-se obter dados provenientes do máximo número possível de réplicas técnicas e biológicas, de modo que o dado seja representativo e possa ser analisado com as ferramentas estatísticas disponíveis. Entretanto, nem sempre é possível satisfazer essa necessidade de réplicas nas situações experimentais reais que se apresentam ao pesquisador.

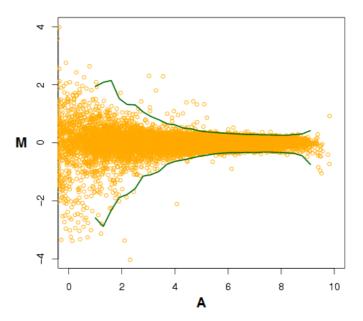
Em laboratórios com restrições financeiras, por exemplo, os microarranjos são utilizados principalmente como ferramentas de varredura em larga escala para a seleção de alguns poucos genes de interesse. Nestes casos, a prática mostra que é preferível realizar experimentos com poucas réplicas experimentais e testar mais condições biológicas diferentes. Outro exemplo é o estudo de doenças raras em humanos, naturalmente sujeito à restrição de amostras, uma vez que o RNA disponível provém de dois ou três pacientes apenas. Apesar do número de réplicas não ser o ideal, esses estudos são indubitavelmente importantes. No entanto, estes dados não são analisados de forma adequada quando se utiliza os métodos estatísticos tradicionais ou os métodos no estado-da-arte, que requerem um número superior de réplicas e/ou assumem certas hipóteses sobre as distribuições de probabilidades envolvidas, as quais não podem ser verificadas.

O programa *HTself* foi implementado como uma ferramenta bioinformática de fácil utilização para a análise de microarranjos restritos a poucas réplicas experimentais. Para isso, foram exploradas duas idéias amplamente aceitas na análise de dados de microarranjos, mas que até então nunca haviam sido utilizadas em conjunto: a determinação de cortes críticos dependentes da intensidade usando experimentos controle conhecidos como homotípicos

(Kim *et al.*, 2002; Tu *et al.*, 2002; Yang *et al.*, 2002) e o uso de métodos não-paramétricos (Tusher *et al.*, 2001; Troyanskaya *et al.*, 2002; Zhao & Pan, 2003). O sistema implementado chamado de *HTself*, está gratuitamente disponível na Internet e faz as análises num servidor hospedado no endereço: http://blasto.iq.usp.br/~rvencio/HTself.

Na análise de dados de microarranjos, uma questão fundamental é como classificar um gene como sendo diferencialmente expresso. Para isso, é necessário determinar um valor crítico de corte para a razão de hibridização. Em termos matemáticos, este passo consiste em testar a hipótese nula H<sub>0</sub>: "o ponto não apresenta hibridização diferencial entre as duas amostras testadas".

Existem várias abordagens matemáticas para definir os valores críticos de corte e rejeitar H<sub>0</sub>, que podem ser detalhadamente vistos em revisões recentes (Nadon & Shoemaker, 2002; Cui & Churchill, 2003; Stolovitzky, 2003). Uma estratégia muito simples e ainda amplamente utilizada consiste em escolher uma razão arbitrária, como por exemplo, 2 vezes. Genes com razão de hibridização maior que o valor crítico de corte são considerados como tendo expressão diferencial. Para incorporar algum rigor estatístico, costuma-se também utilizar os testes estatísticos tradicionais como o teste *t*, usando transformações logarítmicas sobre as razões (mais conhecido por *log-ratios*, em inglês) e um valor arbitrário de corte para a média. Matematicamente, H<sub>0</sub>: "média do log da razão é maior que logaritmo do valor crítico de corte". Este esquema fornece algum tipo de significância estatística ao resultado através de um *p*-valor do teste, mesmo que o valor crítico de corte seja um valor arbitrário. Entretanto, para ser adequadamente aplicado, é necessário verificar se os valores de log da razão para um dado gene são de fato distribuídos segundo uma normal e se o número de observações experimentais não é muito pequeno.


Outra abordagem comum consiste em assumir um modelo estatístico para o comportamento de toda a lâmina (usualmente uma distribuição normal), definir este como sendo a função Densidade de Probabilidade (DP) nula do teste, e procurar pelos extremos

(*outliers*) (Nadon & Shoemaker, 2002; Cui & Churchill, 2003; Stolovitzky, 2003). Novamente, esta estratégia exige que o dado seja distribuído de acordo com algum modelo conhecido.

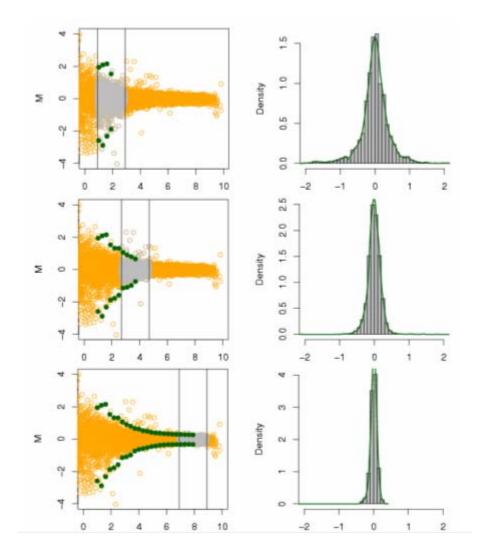
Como os modelos assumidos nem sempre são adequados para os dados de microarranjos, diferentes métodos não-paramétricos foram propostos para definir a DP nula para os valores de log da razão de um gene (Tusher *et al.*, 2001; Troyanskaya *et al.*, 2002; Zhao & Pan, 2003). Entretanto, uma vez que estes métodos são usualmente baseados em reamostragem (*bootstrap*), permutação, estimativas de desvio padrão, estatísticas de rank/ordem, etc., eles podem não ser boas escolhas para a obtenção da DP de genes individuais quando existem poucas réplicas experimentais.

Uma categoria de abordagem completamente diferente para definir os valores críticos de corte baseia-se em estratégias experimentais como o uso de hibridizações homotípicas (self-self). Nos experimentos homotípicos, o mesmo material biológico é marcado separadamente com os fluoróforos Cy3 e Cy5 e as duas amostras hibridizadas simultaneamente na mesma lâmina. Esta estratégia tem sido utilizada para obter valores de corte dependentes da intensidade para classificação de genes como diferencialmente expressos. A comparação entre o uso de valores de corte que são constantes e o uso de cortes dependentes da intensidade já foi extensivamente discutida, mostrando um desempenho superior deste último (Tu et al., 2002; Yang et al., 2002).

Por "dependente da intensidade" entendemos que o valor crítico de corte definido é diferente em função da intensidade do ponto definida por A ( $A = \log_2(\text{Cy3})/2 + \log_2(\text{Cy5})/2$ .). A Figura 5 mostra um exemplo do resultado de um experimento homotípico num gráfico M versus A.



**Figura 5:** Experimento homotípico utilizando o microarranjo de DNA de *Xylella fastidiosa*, os cDNAs marcados foram sintetizados a partir de RNA extraído após crescimento por 7 dias a  $29^{\circ}$ C.  $M = \log_2(Cy5 / Cy3)$ ,  $A = \log_2(Cy3)/2 + \log_2(Cy5)/2$ , Cy3 e Cy5 são as intensidades dos dois fluoróforos. Pode-se notar que, conforme esperado uma vez que o mesmo material foi marcado com cada um dos fluoróforos, as observações de M se distribuem em torno de M = 0. Também é possível notar que a dispersão de M aumenta para os valores menores A, ou seja, existe uma dependência com a intensidade média. A curva verde é o corte dinâmico de 99,5% de credibilidade.


O método implementado no sistema *HTself* usa experimentos homotípicos para obter experimentalmente a DP nula do teste estatístico. Uma vez que a hipótese nula "não existe hibridização diferencial entre as duas amostras" vale, por construção, para todos os genes em experimentos homotípicos, é possível escapar do paradigma gene-a-gene e usar todos os pontos de todos os genes imobilizados na lâmina para estimar a DP nula. Sendo assim, com um número adequado de observações (todos os pontos da lâmina), o uso de métodos não paramétricos é factível. Para levar em conta a dependência da variabilidade com a

intensidade, a DP nula é estimada usando um processo de janela-deslizante que se desloca por todo o espectro de intensidades medidas.

O algoritmo para definir valores de corte críticos dos log das razões de uma forma dependente da intensidade é, resumidamente:

- o usuário define uma janela-deslizante para o eixo A definindo dois parâmetros: o tamanho da janela e o passo do deslocamento. Em cada passo será destacado então um subintervalo arbitrário de A;
- 2. para cada subintervalo de *A* selecionado em (i), estima-se a DP de *M* usando o método de *Kernel Density Estimator*;
- 3. integra-se a DP de (ii) em torno da moda da densidade até que algum nível de probabilidade, pré-definido pelo usuário, seja atingido;
- 4. as etapas (ii) e (iii) são repetidas até que a janela tenha deslizado por todo o espectro de A.

A Figura 6 mostra um exemplo de intervalos interceptados no processo de criação das curvas de corte para os valores de log da razão *M*. Este exemplo foi criado com os dados homotípicos obtidos num estudo com a bactéria *X. fastidiosa* (Koide *et al.*, 2004).



**Figura 6:** Interceptação de intervalos durante a execução do algoritmo do *HTself*. Os gráficos à esquerda são os gráficos *MxA* do experimento homotípico e os gráficos à direita são os histogramas da distribuição dos log das razões *M*, referentes aos subintervalos de *A* demarcados pelas linhas verticais nos respectivos gráficos *MxA*. O método *Kernel Density Estimator* é usado sobre os histogramas de *M* para se obter empiricamente sua função densidade de probabilidade (DP, linhas verde nos gráficos à direita). Com esta, obtém-se os intervalos de credibilidade desejados (linhas verticais nos gráficos à direita) integrando-se desde a moda da DP até atingir-se a probabilidade desejada. Neste exemplo a integração pára ao atingir a probabilidade de 0,995. Os intervalos de credibilidade em *M* assim definidos são transportados ao gráfico *MxA* (pontos verdes nos gráficos da esquerda) e conjuntamente formam o valor de corte crítico (como as curvas verdes na figura 5)

A técnica *Kernel Density Estimator* é uma técnica não-paramétrica que estima a função densidade de probabilidade de uma variável empiricamente, com base em amostras observadas (Silverman, 1986). Para ganhar intuição sobre esta técnica, basta notar que um simples e conhecido histograma é um caso particular deste formalismo. Ela pode ser interpretada intuitivamente como se fosse um processo de suavização de um histograma, utilizada para gerar as curvas DP de M em cada um dos subintervalos (Figura 6, curvas verdes gráficos da direita) com as observações  $M_i$  adequadas.

Uma vez definido o valor crítico de corte, basta aplicá-lo aos experimentos de interesse, ou seja, experimentos com duas amostras sendo comparadas e não mais os controles homotípicos. Neste raciocínio, assume-se implicitamente que o mesmo processo estocástico que gera o ruído experimental nos ensaios homotípicos ocorre nos ensaios de interesse. Por exemplo, suponha que num experimento real, os valores (a, m) observados de um dado ponto mostrem valores de log da razão m para fora de um valor crítico de corte de 99% de credibilidade. Este ponto pode então ser classificado pelo usuário do método como sendo diferencialmente expresso, uma vez que há somente (100-99)% = 1% de chance que esta medida de log da razão seja produto de ruído experimental. Se o gene em questão possui mais de um ponto relativo a ele ou se existe mais de uma réplica do experimento, o usuário pode decidir se irá considerar o gene como diferencialmente expresso ou não, com base em propriedades como porcentagem de observações acima/a baixo do valor crítico de corte, log das razões médio, etc.

Como o método é aplicado a cada ponto de forma individual, ele não depende necessariamente de um grande número de réplicas experimentais para chegar a decisão de que o gene é diferencialmente expresso ou não, podendo ser aplicado até mesmo a casos limite em que há uma única observação (1 ponto para detectar um único gene em 1 único experimento) disponível.

O sistema é composto por uma interface amigável e simples com o usuário, por meio de um website. A Figura 7 mostra um exemplo da interface do sistema implementado. Após a aplicação das curvas homotípicas aos dados de interesse, a saída do programa consiste em tabelas contendo informações sobre o número total de pontos, porcentagem de pontos acima / abaixo / dentro dos valores determinados pelas curvas homotípicas, média dos valores de log da razão, desvios, dentre outros. Desta forma, espera-se que o usuário possa decidir, com base nestas informações, os critérios para classificar um gene como diferencialmente expresso.

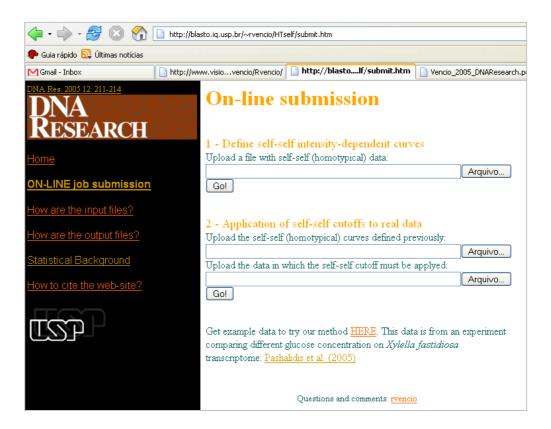



Figura 7: Interface web para utilização do método HTself. Uma interface amigável disponibiliza o método para qualquer usuário, que pode decidir quais genes serão considerados como relevantes em seu estudo, com base nos indicadores de desempenho dos pontos em relação aos experimentos homotípicos.

Com este sistema, pretende-se auxiliar os pesquisadores a extrair informações importantes contidas em seus conjuntos de dados. Esta metodologia foi empregada com sucesso nos dados de transcriptoma da bactéria *Xylella fastidiosa*, apresentados na seção III.3.

# 2.2. BayGO: análise bayesiana de termos de ontologia enriquecidos em dados de microarranjos de DNA.

A busca por categorias funcionais altamente representadas em uma lista de genes de interesse é uma abordagem cada vez mais utilizada nas análises de dados de microarranjos de DNA (Cavalieri & De Filippo, 2005; Yue & Reisdorf, 2005). Esta abordagem procura resumir a informação biológica proveniente de uma grande quantidade de dados, auxiliando o pesquisador a encontrar as conexões entre vias metabólicas e outros processos biológicos, de forma a construir hipóteses a partir dos dados experimentais.

Geralmente, as categorias funcionais altamente representadas são definidas a partir de testes onde é verificado se uma dada categoria está presente na lista de genes selecionados, mais do que seria esperado ao acaso. As categorias funcionais ou termos utilizados geralmente provém de sistemas de classificação próprios para cada organismo ou sistemas mais gerais e padronizados como os do *Gene Ontology Consortium* (GO) (Ashburner *et al.*, 2000) ou do banco de dados KEGG (Kanehisa & Goto, 2000). Existem diversos pacotes computacionais que abordam a questão do enriquecimento de termos ou categorias funcionais, como por exemplo, os listados na página web do Gene Ontology (GOA@EBI home page); recentemente, mais de dez ferramentas foram comparadas em uma revisão de diversas metodologias (Khatri & Draghici, 2005).

Todos estes programas disponíveis são baseados em testes de hipóteses. Entretanto, para definir as categorias mais representadas, é também possível utilizar medidas de associação estatística como uma alternativa ou complemento à significância dos testes de hipótese. As contribuições originais implementadas na ferramenta *BayGO* são: a

disponibilização de um programa que mede a associação estatística entre a expressão diferencial de genes e um dado termo de classificação funcional e a apresentação de um modelo estatístico para o problema de enriquecimento de categorias funcionais que leva em conta o fato de que, na maioria das vezes, nem todos os genes de uma dada categoria são de fato observados. Utilizando a ferramenta *BayGO*, é possível ter uma visão mais ampla dos processos que estão envolvidos em resposta a um determinado tratamento, para depois focalizar nos genes individuais. A ferramenta e o material suplementar estão disponíveis no sítio: http://blasto.iq.usp.br/~tkoide/BayGO.

A base de funcionamento do *BayGO* é a medida da associação estatística entre o gene estar diferencialmente expresso e pertencer a uma dada classe funcional. Uma medida de associação bastante conhecida entre os biólogos é a correlação. Uma medida de associação análoga à correlação, porém mais adequada para a aplicação em tabelas de contingência, é o fator *gamma* de Goodman-Kruskall (Goodman & Kruskal, 1954), que vem sendo utilizada desde a década de 50 em diversas áreas do conhecimento. Essa medida foi utilizada para analisar a associação estatística entre as categorias funcionais e a expressão gênica diferencial. A tabela de contingência utilizada é, para uma categoria qualquer *i*, construída como:

Diferencialmente expressos Não-diferencialmente expressos

| i-j                   | ij                  | j-i                   |  |
|-----------------------|---------------------|-----------------------|--|
| $X_{i-j}$             | $X_{ij}$            | $X_{j-i}$             |  |
| $N_{i-j}$ - $X_{i-j}$ | $N_{ij}$ - $X_{ij}$ | $N_{j-i}$ - $X_{j-i}$ |  |

Note que um mesmo gene pode ser classificado em mais de uma categoria, no caso i e/ou j.  $X_{i-j}$  é o número de genes diferencialmente expressos exclusivos da categoria i;  $N_{i-j}$  é o número total de genes que são exclusivos da categoria i;  $X_{ij}$  é o número de genes diferencialmente expressos que pertencem a intersecção i e j,  $N_{ij}$  é o número total de genes que pertencem a intersecção i e j;  $X_{j-i}$  é o número de genes diferencialmente expressos que não estão relacionados à categoria i (ou seja, exclusivos da categoria j);  $N_{j-i}$  é o número total de genes que não estão relacionados à categoria i (ou seja, exclusivos da categoria j). Um dado

gene deve ser contado em somente um dos casos e a soma em N deve totalizar o número de genes considerados. A medida de associação utilizada é dada por:

$$G = (p - q)/(p + q)$$

onde p =  $X_{i-j}(N_{ij} - X_{ij} + N_{j-i} - X_{j-i}) + X_{ij}(N_{j-i} - X_{j-i})$  and q =  $X_{j-i}(N_{ij} - X_{ij} + N_{i-j} - X_{i-j}) + X_{ij}(N_{i-j} - X_{i-j})$ . Valores de G próximos de 1 indicam que a propriedade descrita pelo termo em questão pode ter um importante papel no fenômeno estudado.

Para saber se um valor de associação medido é significativo ou não, ele é comparado com o obtido de uma tabela semelhante à acima, mas com uma lista de genes diferencialmente expressos, escolhidos aleatoriamente e simulados. Quando a probabilidade da associação obtida aleatoriamente for menor que a associação realmente medida nos dados, ou seja, for muito pequena (por exemplo, P < 0.05), a associação medida é considerada significante e a categoria funcional em questão é considerada altamente representada.

A maioria dos aplicativos existentes que lidam com o problema de achar categorias altamente representadas em dados de microarranjos costuma utilizar somente a análise de significância. Neste trabalho, foi introduzido o uso de uma medida de associação entre pertencer a uma classificação funcional e o fato de ser diferencialmente expresso, além da utilização da significância.

Outra contribuição relevante do trabalho é o modelo que leva em conta os genes que não foram observados nos experimentos. Um dado gene pode não ter sido detectado por diversos motivos: não foi imobilizado na lâmina, não passou nos critérios estatísticos estabelecidos a respeito da reprodutibilidade ou intensidade do ponto, etc.. A abordagem bayesiana permite a incorporação de informações *a priori* em relação ao tamanho conhecido de cada conjunto de genes associados a um dado termo de classificação funcional, permitindo estimar um intervalo de credibilidade para a medida de associação e estimar o comportamento de uma população finita com base em uma amostra, assim como é feito em uma pesquisa eleitoral, por exemplo.

Para testar a ferramenta *BayGO*, foram utilizados dados de microarranjos de DNA de *Xylella fastidiosa* submetida a choque térmico a 40°C por 25 minutos. O choque térmico é um estresse que causa uma resposta biológica bastante conservada. Os dados completos estão disponíveis no banco de dados GEO sob o número de acesso GSE3044. As análises dos dados de microarranjos foram feitas conforme descrito em Materiais e Métodos. As informações sobre as vias metabólicas foram obtidas a partir do banco de dados KEGG e as informações sobre a classificação utilizando o *Gene Ontology* a partir da página GOA@EBI.

Os resultados mostrados foram comparados com os obtidos a partir do programa GeneMerge. É importante ressaltar que existem diversas comparações possíveis, dependendo dos parâmetros utilizados nos programas. Em relação às vias do banco de dados KEGG, as categorias mais representadas de acordo com o programa GeneMerge foram: *Dobramento de proteínas e processamentos associados* e *Dobramento, Degradação*. De acordo com o método bayesiano: *Dobramento de proteínas e processamentos associados* e *Dobramento, Degradação* e *Processamento de Informações Genéticas*, o que é compatível com o que se sabe sobre a resposta ao choque térmico em bactérias. Considerando a classificação do *Gene Ontology*, os termos significativos estão mostrados na Tabela 3. É possível observar que um conjunto mais numeroso de termos foi encontrado pela metodologia *BayGO* em comparação com a abordagem do GeneMerge, que encontrou 4 termos altamente representados, indicados com um asterisco na Tabela 3.

Tabela 3: Termos do Gene Ontology (GO) considerados altamente representados pelo método BayGO. Os termos do GO marcados com um asterisco são os que foram considerados significantes pelo programa GeneMerge. G é o valor gamma de associação estatística e G90% é o intervalo de credibilidade para G (barra de erro)

| ID         | Descrição                                 | P     | G    | $G_{90\%}$   |
|------------|-------------------------------------------|-------|------|--------------|
| GO:0006986 | Resposta a proteínas desnaturadas *       | 0,000 | 1,00 | [0,95; 1,00] |
| GO:0006457 | Dobramento de proteínas *                 | 0,000 | 0,86 | [0,76; 0,91] |
| GO:0051082 | Ligação a proteínas desnaturadas *        | 0,000 | 0,83 | [0,74; 0,88] |
| GO:0004252 | Atividade de endopeptidase do tipo serina | 0,005 | 0,85 | [0,69; 0,94] |
| GO:0004222 | Atividade de metaloendopeptidase          | 0,005 | 0,72 | [0,56; 0,84] |
| GO:0005515 | Ligação a proteínas *                     | 0,010 | 0,80 | [0,65; 0,89] |
| GO:0031072 | Ligação a proteínas de choque térmico     | 0,015 | 0,81 | [0,78;0,84]  |
| GO:0008233 | Atividade de peptidase                    | 0,015 | 0,63 | [0,50; 0,81] |
| GO:0006508 | Proteólise e peptidólise                  | 0,020 | 0,59 | [0,41; 0,73] |
| GO:0016702 | Atividade de oxidoredutase                | 0,020 | 0,81 | [0,78; 0,83] |
| GO:0004176 | Atividade de peptidase dependente de ATP  | 0,025 | 1,00 | [0,80; 1,00] |
| GO:0009377 | Atividade de protease HslUV               | 0,025 | 1,00 | [1,00; 1,00] |
| GO:0030163 | Catabolismo de proteínas                  | 0,025 | 0,81 | [0,79; 0,84] |
| GO:0004295 | Atividade de tripsina                     | 0,030 | 1,00 | [1,00; 1,00] |
| GO:0015969 | Metabolismo de guanosina tetrafosfato     | 0,030 | 1,00 | [1,00; 1,00] |
| GO:0019836 | Hemólise                                  | 0,030 | 1,00 | [1,00; 1,00] |
| GO:0006886 | Transporte intracelular de proteínas      | 0,045 | 0,66 | [0,62; 0,70] |

É importante ressaltar que, apesar de ser muito útil, a busca por categorias funcionais mais representadas apresenta uma série de limitações intrínsecas. Uma delas é a dificuldade prática na validação experimental das conclusões obtidas através destes métodos, outra é a grande quantidade de parâmetros que pode ser modificada, desde a estrutura das ontologias ao corte em um determinado p-valor. Outra limitação consiste em assumir que um a dada função ou via metabólica é importante com base no número de genes ou associação estatística, ignorando o fato de que poucos genes diferencialmente expressos numa dada via podem ser suficientes para causar respostas globais. Além disso, os resultados baseiam-se completamente na anotação dos genes fornecida para um dado organismo.

O código-fonte do programa está disponível gratuitamente em três versões: para Linux, Windows e como um pacote para implementar um servidor local. Os programa foi escrito na linguagem de programação estatística R (www.r-project.org) e o aplicativo pode ser utilizado com qualquer tipo de classificação funcional dos genes, contanto que o usuário possua tabelas de correspondência entre os genes e sua classificação funcional. A ferramenta web foi implementada para um conjunto de organismos com interesse particular como Xylella fastidiosa, Blastocladiella emersonii e Xanthomonas citrii, mas os códigos fonte estão disponíveis no sítio suplementar permitindo que outros pesquisadores tenham acesso ao programa.

# 2.3. SpotWhatR: um sistema de análise de dados de microarranjos de DNA com interface amigável

O sistema *SpotWhatR* tem como objetivo auxiliar na análise dos dados de microarranjos de DNA, através de uma interface amigável nos sistemas operacionais Windows e Linux. Desta forma, o pesquisador que não está familiarizado com linguagens de programação pode realizar a análise de seus dados de microarranjos, através de uma interface de janelas com menus interativos. No programa, o usuário encontra ferramentas para visualização gráfica, diversos métodos de normalização dos dados, a implementação do sistema *HTself* para encontrar genes diferencialmente expressos e alguns algoritmos de agrupamento.

As ferramentas implementadas no sistema *SpotWhatR* foram utilizadas e testadas em dados de microarranjos de DNA do fitopatógeno *X. fastidiosa* e do fungo aquático *B. emersonii*. Muitos dos programas também foram utilizados em dados de microarranjos de DNA de outros organismos como cana-de-açúcar (Papini-Terzi *et al.*, 2005) e *Trypanossoma cruzi* (Baptista *et al.*, 2004). Estes programas foram adaptados para serem utilizados numa interface amigável. Assim, o pesquisador pode testar diversos procedimentos de análise nos

seus dados, sem necessidade de programação. O sistema está implementado na linguagem estatística R (http://www.r-project.org), que é um programa de acesso aberto e gratuito. Desta forma, o sistema SpotWhatR pode ser adaptado com novas ferramentas, de acordo com a necessidade do pesquisador. O sistema SpotWhatR, assim como o manual para a sua utilização estão disponíveis português inglês sítio: em em no e http://blasto.iq.usp.br/~tkoide/SpotWhatR.

Na visualização dos dados, o sistema oferece três tipos diferentes de gráficos: o gráfico de dispersão de Cy3xCy5, o gráfico MxA e o gráfico PxQ. O gráfico MxA permite a visualização da dependência da razão com a intensidade dos pontos da lâmina, já o gráfico PxQ auxilia na visualização de dados em que um gene não é expresso em uma das condições de estudo, o que leva a razões de valor indeterminado como infinito ou menos infinito. Além disso, SpotWhatR permite ampliar uma região do gráfico; identificar os pontos no gráfico com uma determinada propriedade e também mostrar um determinado valor de corte, como ilustrado na Figura 8.

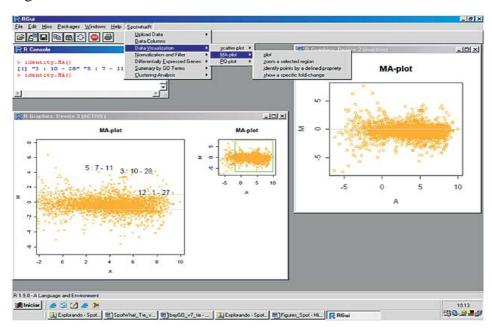
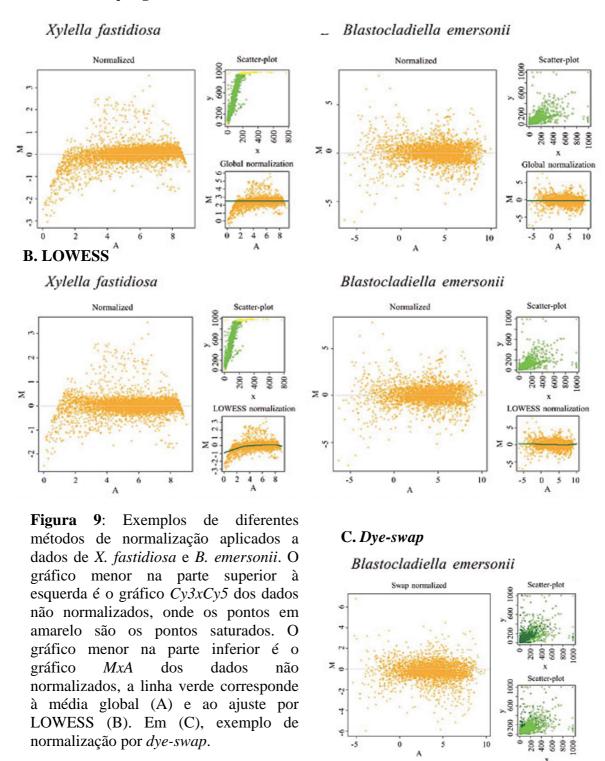
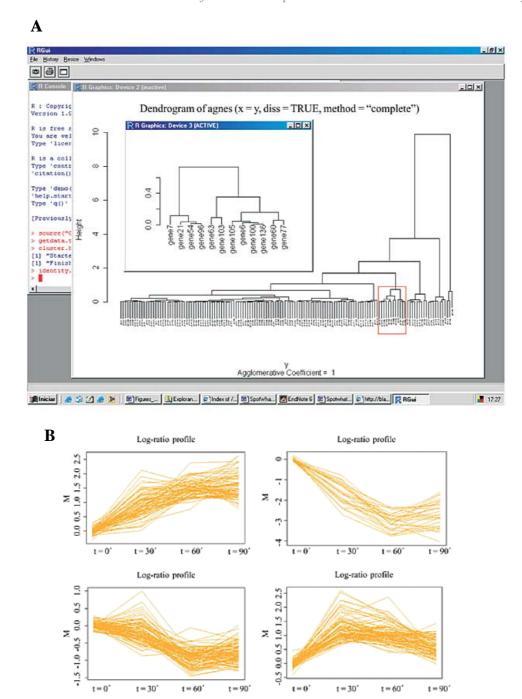




Figura 8: Interface com menus interativos para a utilização de ferramentas de análises de dados de microarranjos de DNA. Neste exemplo, está ilustrado o gráfico MxA e as opções de visualização gráfica disponíveis no sistema.

A etapa de normalização dos dados de microarranjos é muito importante, dadas as diferenças de incorporação e intensidade de fluorescência dos fluoróforos Cy3 e Cy5. Existem diversos métodos de normalização e cabe ao usuário definir o que é mais adequado ao seu conjunto de dados (Quackenbush, 2002; Yang et al., 2002). No sistema SpotWhatR, foram incluídas três opções para a normalização: global, LOWESS e dye-swap. Nos dois primeiros métodos implementados, assume-se a hipótese de que a maioria dos genes não tem a sua expressão alterada, portanto, a média dos valores de razão deve ser 1 (ou log da razão = 0). Entretanto, dependendo do contexto biológico, assumir esta hipótese pode não ser um procedimento adequado, pois podem ocorrer mudanças globais nos níveis de expressão onde a maioria dos genes apresenta aumento ou diminuição nos valores de expressão (van de Peppel et al., 2003). Esta informação é perdida quando se assume que não há mudança global, e nestes casos recomenda-se a utilização da normalização por dye-swap. O sistema permite que o usuário utilize um filtro nos dados antes da normalização, excluindo pontos de baixa intensidade, saturados, ou que apresentem algum problema na hibridização.

No método de normalização global, calcula-se uma constante para corrigir todos os pontos no experimento, correspondendo a uma translação nos valores de log da razão de forma a balancear a intensidade dos canais (Quackenbush, 2001). Por sua vez, o LOWESS leva em conta a dependência não-linear dos valores de log da razão com a intensidade do ponto. Na normalização por dye-swap, são necessários dois experimentos para se obter os valores de razão normalizada (Yang et al., 2002). As diferenças entre os métodos aplicados aos dados de X. fastidiosa e B. emersonii estão ilustrados na Figura 9. É interessante notar que, dependendo do comportamento dos dados, a normalização pode ser feita por diferentes métodos, como no caso dos dados de B. emersoni, obtendo-se resultados semelhantes. Em outros casos, como nos dados de X. fastidiosa, observa-se que diferentes métodos resultam em comportamentos bastante distintos, onde a normalização não é adequada, como no caso da normalização global.


### A. Normalização global



Para a determinação de genes diferencialmente expressos, implementou-se no sistema SpotWhatR o programa Htself para determinar cortes (intervalos de credibilidade) com base em experimentos homotípicos (ver seção III.2.1) (Vencio & Koide, 2005) e também a busca por genes que se encontram fora da distribuição, ou outliers. Neste método, os intervalos de credibilidade são definidos com base no próprio experimento sob análise, de forma a definir os genes que estão mais distantes da distribuição da maioria, definindo-se por exemplo, um intervalo de credibilidade de 80% e selecionando-se os 20% que se encontram fora do intervalo.

Além disso, o sistema oferece algoritmos de agrupamento para reunir genes com perfis de expressão semelhante. Os três algoritmos implementados são: agrupamento hierárquico, DIANA e K-means. Os diferentes métodos permitem que o usuário teste o algoritmo mais adequado à organização dos seus dados, visto que a escolha é feita de maneira empírica (Datta, 2003). Na análise de agrupamentos, calcula-se a distância entre os perfis de expressão dos genes, e para isso, foram implementados no programa SpotWhatR duas medidas de distância distintas: a medida euclideana clássica e uma medida de distância que incorpora as medidas repetidas dos experimentos de microarranjos (Yeung et al., 2003). No agrupamento hierárquico, que é um algoritmo aglomerativo, o número inicial de grupos é igual ao número de genes e os genes com perfis semelhantes são sucessivamente agrupados, sem que haja mobilidade entre os grupos. No algoritmo DIANA, que é um algoritmo divisivo, todos os genes são inicialmente atribuídos a um único grupo e a cada passo, o grupo é sucessivamente dividido. Por sua vez, o algoritmo K-means é um algoritmo iterativo, onde o número inicial de grupos é determinado pelo usuário. O programa também permite a visualização dos agrupamentos através de dendogramas ou visualização dos perfis de expressão (Figura 10).

A versatilidade e código aberto da ferramenta permitem que o pesquisador explore seus dados de microarranjos de DNA sem a necessidade de programação, além de permitir a implentação de novas ferramentas.



**Figura 10**: Visualização dos agrupamentos: Hierárquico (A) e *K-means* (B) dos dados de *B*. emersonii, utilizando as ferramentas disponíveis no sistema SpotWhatR. Em (A), o dendograma mostra 150 genes que foram agrupados pelo método hierárquico aglomerativo e a região destacada em vermelho é mostrada com um aumento maior. Em (B), são mostrados os perfis de expressão, onde o eixo y corresponde aos valores de M (M=log<sub>2</sub>(Cy5/Cy3) e o eixo *x* corresponde aos tempos.

3. Análise global da expressão gênica de *Xylella fastidiosa* em resposta a estresses ambientais

#### 3.1. Choque térmico

#### 3.1.1. Análise global da expressão gênica durante o choque térmico

Para determinar as mudanças na expressão gênica de *X. fastidiosa* cepa 9a5c em resposta ao choque térmico, foram realizados experimentos em uma série temporal, transferindo as células de 29°C para 40°C e extraindo amostras de RNA após diferentes tempos. As condições de estresse utilizadas foram determinadas a partir de experimentos de *Northern blot* utilizando como sonda o gene *groEL* de *X. fastidiosa*, onde se detectou uma maior indução do gene a 40°C, com pico por volta dos 20 min de exposição a alta temperatura (M. Avedissian, dados não publicados).

Após a síntese e marcação do cDNA, as amostras foram hibridizadas nos microarranjos de DNA utilizando como referência a temperatura normal de cultivo (29°C). Os genes foram classificados como diferencialmente expressos durante o choque térmico se pelo menos 80% das réplicas estivessem fora do intervalo de credibilidade definido pelos experimentos homotípicos, utilizando no mínimo 5 réplicas, conforme descrito em Material e Métodos. Globalmente, cerca de 20% dos genes foram significativamente induzidos ou reprimidos no período de 45 minutos após o aumento da temperatura: 261 genes foram induzidos (9,7%) e 222 genes foram reprimidos (8,3%). O número de genes diferencialmente expressos em cada um dos tempos de choque térmico (7, 15, 25 e 45 min) foram: 28, 90, 182 e 166 para os genes induzidos e 3, 49, 128 e 156 para os genes reprimidos, respectivamente. Dentre os genes diferencialmente expressos, 110 originalmente classificados como hipotéticos ou hipotéticos conservados foram reanotados utilizando as ferramentas BlastP (Altschul *et al.*, 1997) e Pfam (Bateman *et al.*, 2004). Um total de 67 genes tiveram uma provável função

atribuída com base na anotação eletrônica e 43 genes passaram de hipotéticos para hipotéticos conservados. Uma lista completa dos genes diferencialmente expressos está disponível no sítio do projeto e nas Tabelas S2 e S3. Além disso, o mapa do genoma de *X. fastidiosa* e mapas do KEGG das vias metabólicas coloridos de acordo com a expressão (induzidos / reprimidos / sem alteração) estão disponíveis no sítio do projeto.

A classificação funcional dos genes diferencialmente expressos de acordo com o banco de dados do genoma de *X. fastidiosa* está apresentada na Figura 11. Muitos genes codificando proteínas hipotéticas e hipotéticas conservadas apresentaram níveis alterados no choque térmico. Dentre os genes induzidos, 37 (14,2%) codificam proteínas hipotéticas conservadas e 44 (16,8%) codificam proteínas hipotéticas. Dentre os genes reprimidos, 33 codificam hipotéticas conservadas (14,8%) e 31 codificam proteínas hipotéticas (13,9%). Apesar dos genes hipotéticos corresponderem a aproximadamente 31% dos genes induzidos e 29% dos genes reprimidos, estes números não são maiores do que os observados no genoma total de *X. fastidiosa*, onde 51% dos genes anotados são hipotéticos ou hipotéticos conservados.

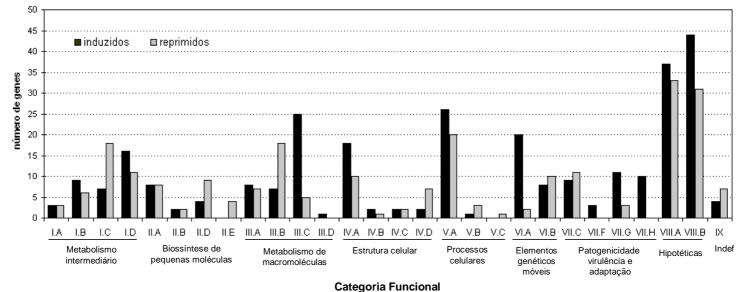



Figura 11: Genes diferencialmente expressos no choque térmico, agrupados por categorias funcionais, de acordo com o banco de dados de X. fastidiosa. As colunas pretas se referem ao número de genes induzidos e as cinzas, aos genes reprimidos durante o choque térmico. Categoria I: Metabolismo intermediário, I.A: Degradação, I.B: Metabolismo Intermediário Central, I.C: Metabolismo energético, I.D: Funções regulatórias. Categoria II: Biossíntese de pequenas moléculas, II.A: Biossíntese de aminoácidos, II.B: Biossíntese de nucleotídeos, II.D: Cofatores, grupos prostéticos, biossíntese de carregadores, II.E: Biossíntese de ácidos graxos e ácido fosfatídico. Categoria III: Metabolismo de macromoléculas, III.A: Metabolismo de DNA, III.B: Metabolismo de RNA, III.C: Metabolismo de proteína, III.D: Metabolismo de outras macromoléculas. Categoria IV: Estrutura Celular, IV.A: Componentes de membrana, IV.B. Peptidoglicano, IV.C: Polissacarídeos de superfície, lipopolissacarídeos e antígenos, IV.D: Estruturas de superfície. Categoria V: Processos Celulares, V.A: Transporte, V.B: Divisão celular, V.C: Quimiotaxia e motilidade. Categoria VI: Elementos genéticos móveis, VI.A: Funções relacionadas a fagos, VI.B: Funções plasmidiais. Categoria VII: Patogenicidade, virulência e adaptação. VII.C: Produção de toxinas e detoxificação, VII.F: Proteínas de superfície, VII.G: Adaptação a condições atípicas, VII.H. Outros. Categoria VIII: Proteínas hipotéticas, VIII.A: Proteínas hipotéticas conservadas, VIII.B: Proteínas hipotéticas. Categoria IX: ORFs com categoria indefinida.

#### 3.1.2. Série temporal

Para obter uma visão estruturada dos perfis de expressão ao longo do tempo dos genes que apresentaram expressão diferencial durante o choque térmico, foi feito um agrupamento dos perfis de expressão ao longo do tempo utilizando o algoritmo K-means com 6 grupos. O número de grupos foi determinado através da análise de componentes principais, como ilustrado na Figura 12. As componentes (autovalores) são ordenadas de acordo com a sua contribuição para a variabilidade total e é calculada a diferença entre as componentes sucessivas (delta autovalor). O gráfico mostra que não há contribuição relevante após a 6<sup>a</sup> componente, indicando que, teoricamente, não há ganho de informação ao se utilizar mais de 6 grupos.

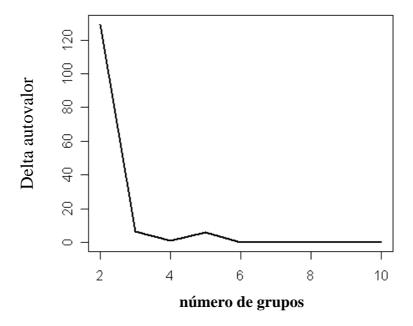
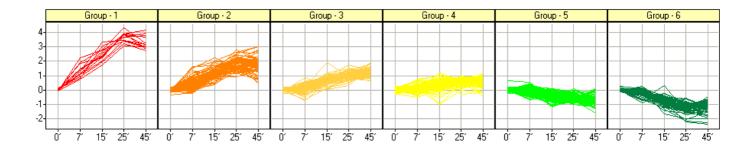




Figura 12: Análise de componentes principais para os genes diferencialmente expressos durante o choque térmico. O eixo x mostra o número de grupos e o eixo y, o delta autovalor, ou seja, a diferença entre as componentes principais sucessivas. Observa-se que não há diferenca entre a 7<sup>a</sup> e 6<sup>a</sup> componente, indicando que, teoricamente, não é necessário utilizar mais do que 6 grupos. Este número de grupos foi utilizado como entrada no algoritmo K*means* de agrupamento.

Para caracterizar cada um dos grupos com base nas categorias funcionais, foi feita uma busca pelas categorias mais representadas em cada grupo. Na Figura 13, mostramos o agrupamento utilizando K-means e uma tabela indicando as categorias funcionais mais representadas em cada grupo. A lista completa dos genes em cada grupo está na Tabela suplementar 4.



| Grupo | Categorias funcionais altamente representadas                                                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Chaperones, Degradação de proteínas, Adaptação a condições atípicas                                                                                                     |
| 2     | Funções relacionadas a fagos, Degradação de pequenas moléculas, Proteínas hipotéticas e hipotéticas conservadas.                                                        |
| 3     | Tradução e modificação, Componentes de Membrana, Membrana Interna, Proteínas hipotéticas                                                                                |
| 4     | Patogenicidade, virulência e adaptação: produção de toxinas e detoxificação, outros.  Transporte, Secreção de peptídeos e proteínas.                                    |
| 5     | Respiração aeróbica, Biossíntese de pequenas moléculas, Proteínas ribossomais, Síntese de RNA, Aminoacil-tRNA sintetases.                                               |
| 6     | Metabolismo energético, ciclo do TCA, produção de ATP, Reparo de DNA, Estrutura celular: polissacarídeos de superfície, lipopolissacarídeos e estruturas de superfície. |

Figura 13: Agrupamento dos genes diferencialmente expressos durante o choque térmico. O algoritmo utilizado foi o *K-means* com 6 grupos, utilizando os perfis de expressão dos genes que apresentavam a série temporal completa. O eixo y mostra os valores de M  $(M=\log_2(40^{\circ}\text{C}/29^{\circ}\text{C}))$  e o eixo x mostra os tempos de choque térmico. A tabela mostra as categorias funcionais altamente representadas em cada um dos grupos. Uma categoria funcional foi considerada como altamente representada se a sua presença no grupo fosse significante (P < 0.05)).

Dentre os genes induzidos no choque térmico, pode-se observar dois padrões

principais: genes que apresentam um rápido aumento no nível do transcrito, seguido por uma redução (grupo 1); e os que apresentam uma taxa de aumento constante e mais suave (grupos 3 e 4). O grupo 2 é um híbrido destes dois padrões. O grupo 1 contém genes que codificam chaperones e proteases, que apresentaram os maiores níveis relativos de expressão. Além disso, os genes no grupo 1 apresentam um aumento transitório, característico de genes de choque térmico, dado que podemos observar uma redução nos níveis dos transcritos após 45 minutos de exposição a 40°C. O grupo 2 é caracterizado pela presença de genes relacionados a fagos e proteínas hipotéticas. Cerca de metade dos genes no grupo 2 (33 genes) apresenta padrão de expressão similar ao grupo1, ou seja, uma cinética característica de genes de choque térmico, porém, com níveis de expressão mais baixos. O grupo 3 contém genes relacionados à síntese e modificação de proteínas e a componentes de membrana. O grupo 4 é o que apresenta os menores níveis de indução e agrupa 15 genes relacionados a patogenicidade, virulência e adaptação. Entre eles, 8 são relacionados à produção de toxinas e detoxificação. A categoria de secreção de proteínas e peptídeos também foi altamente representada neste grupo.

O grupo 5 é composto por genes que foram reprimidos no choque térmico e contém genes relacionados à respiração aeróbica, biossíntese de pequenas moléculas, proteínas ribossômicas, síntese de RNA e aminoacil-tRNA sintetases. O grupo 6 contém genes com os maiores níveis de repressão, os quais estão relacionados a estruturas celulares como estruturas de superfície e polissacarídeos. Muitos dos genes envolvidos com estruturas de superfície estão relacionadas à fímbria do tipo IV. Além disso, o grupo 6 contém genes relacionados ao metabolismo energético. A repressão de genes relacionados ao metabolismo e à síntese de proteínas indica uma atividade metabólica diminuída durante o choque térmico.

#### Mudança global nos níveis de mRNA

Os genes descritos como relacionados à resposta ao choque térmico foram selecionados com base nos níveis de expressão relativos à maioria dos genes, procedimento usual adotado na análise de dados de microarranjos de DNA. Na normalização por LOWESS utilizada, assume-se que a expressão da maioria dos genes não se altera durante o choque térmico e a normalização é feita estimando-se uma constante dependente da intensidade dos pontos. Existem outros métodos de normalização, dentre eles o *dye-swap*, que não assume a hipótese de que a expressão da maioria dos genes não se altera, pois a normalização é feita de forma a cancelar as constantes envolvidas. Para isso, utiliza-se um par de experimentos onde as amostras A e B são marcadas com Cy3 e Cy5, no experimento 1 e com Cy5 e Cy3 no experimento 2, respectivamente. Um trabalho recente mostrou que é possível estimar mudanças globais na expressão gênica através da utilização de controles externos bem calibrados ou utilizando *dye-swap*. A mudança global na expressão gênica foi detectada em células endoteliais humanas submetidas ao choque térmico (van de Peppel *et al.*, 2003).

Dada a disponibilidade de um conjunto de experimentos passíveis de serem normalizados por *dye-swap*, que não assume que a maioria dos genes não se altera, investigamos se esta mudança global nos níveis de expressão ocorre durante o choque térmico em *Xylella*. A normalização por *dye-swap* foi aplicada a um par de lâminas de microarranjos de cada um dos seguintes tempos de choque térmico: 7, 25 e 45 minutos. A figura 14 mostra a distribuição do logarítmo na base 2 dos valores de razão (M) dos dados de *dye-swap* normalizados para os tempos de choque térmico considerados. As curvas mostram a função densidade de probabilidade (DP), que podem ser intuitivamente consideradas como histogramas suavizados, ou seja, o eixo y mostra o número de genes (normalizados para que a área sob a curva seja igual a 1) que apresentam o valor de M na faixa de valores considerada. Por exemplo, a curva de 25 min é intuitivamente equivalente a um histograma em que a maioria das observações apresenta valores de M entre -2 e -1.



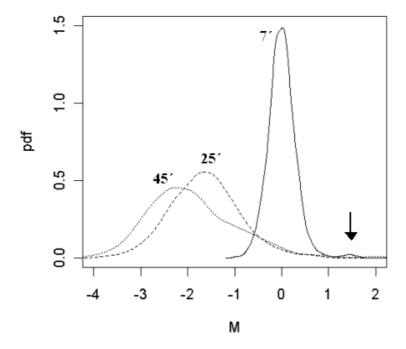



Figura 14: Mudanças globais na expressão gênica em resposta ao choque térmico. O gráfico mostra os histogramas suavizados (DP) dos log das razões de expressão (M=log<sub>2</sub>(40°C/29°C)) para 7, 25 e 45 minutos de choque térmico, conforme indicado. A seta mostra os genes induzidos aos 7 minutos de choque térmico.

Pode-se notar que, à medida que o tempo de choque térmico aumenta, há um desvio da distribuição dos valores de M para valores negativos, indicando uma redução global nos níveis de expressão à medida que as células são expostas a altas temperaturas por períodos mais longos.

No primeiro ponto de choque térmico (7 min), pode-se observar que a maioria dos genes está distribuída em torno de M=0, indicando que não houve mudança global nos níveis de expressão. A seta na Figura 14 mostra um pequeno pico que corresponde aos genes induzidos aos 7 minutos de choque térmico. Nos tempos seguintes, há um desvio das razões de expressão para valores de M negativos, indicando uma possível redução global nos níveis de mRNA durante o choque térmico. Quanto maior o período de exposição, maior o desvio da distribuição de M para valores negativos. Esta redução global nos níveis de transcrição durante o choque térmico pode ser devido à redução da estabilidade do fator sigma vegetativo σ<sup>70</sup> a temperaturas elevadas, como foi demonstrado para *E. coli* e *Caulobacter crescentus* (Blaszczak *et al.*, 1995; Simao *et al.*, 2005).

#### 3.1.3. Validação dos perfis de expressão por RT-PCR quantitativo

Para validar os perfis de expressão, foram realizados experimentos de RT-PCR quantitativo para 10 genes selecionados, utilizando três réplicas biológicas independentes de cada um dos tempos de choque térmico. A correlação entre os valores de razão de expressão (M = log<sub>2</sub>(40°C/29°C)) obtidos nos experimentos de microarranjos de DNA e RT-PCR quantitativo foi de 0.89, indicando uma alta concordância entre os experimentos. A figura 15 mostra os dados comparando os resultados de microarranjos e RT-PCR quantitativo para os genes selecionados.

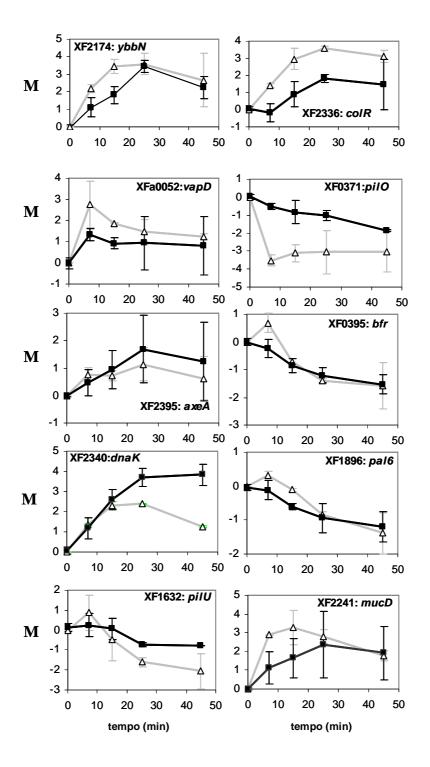



Figura 15: Níveis de expressão durante o choque térmico de 10 genes selecionados, analisada por RT-PCR quantitativo (linha cinza, triângulos) e por microarranjos de DNA (linha preta, quadrados), onde M=log<sub>2</sub>(40°C/29°C). Os resultados são a mediana de três réplicas biológicas independentes para os dados de microarranjos e RT-PCR quantitativo.

### 3.1.4. Função dos genes diferencialmente expressos

### Genes de choque térmico

Os experimentos de microarranjos revelaram a indução de genes codificando proteínas de diferentes famílias de Hsps que tem sido caracterizadas como envolvidas na resposta ao choque térmico em diferentes organismos: as chaperones GrpE (Hsp20), DnaK (Hsp70), DnaJ (Hsp40), GroES (Hsp10), GroEL (Hsp60), ClpB (Hsp100), agrupadas no grupo 1, proteases dependentes de ATP como Lon, ClpP (grupo 4), ClpA (grupo2), HslU (grupo 2), HslV (grupo 1) e outras proteínas de choque térmico como HtpX (grupo 1), HlsO (Hsp33-grupo 4), HtpG (Hsp90-grupo 2) e HspA (α-Hsp-grupo 1). Dentre os genes induzidos, identificamos 3 originalmente anotados como proteínas hipotéticas: XF0862 (grupo 3), XF0882 (grupo 3) e XF2594 (grupo 1), que foram reanotadas neste trabalho como peptidases.

Os genes pertencentes ao grupo 1 foram os que apresentam os maiores valores de indução (Tabela 4) e, exceto pelos genes XF2174 e Xfa0048, todos os outros genes codificam Hsps clássicas que são reguladas pelo fator  $\sigma^{32}$  em outras bactérias gram-negativas (Yura & Nakahigashi, 1999). Para obter uma seqüência consenso para prováveis promotores dependentes de  $\sigma^{32}$  em *X. fastidiosa*, realizamos ensaios de extensão de oligonucleotídeos com transcriptase reversa para determinar o início de transcrição de seis genes do grupo 1 : dnaK, grpE, clpB, groES, htpX e hspA.

| Gene    | Função                        | Nome do       | Indução |        |        |        |
|---------|-------------------------------|---------------|---------|--------|--------|--------|
|         |                               | gene          | 7 min   | 15 min | 25 min | 45 min |
| XF0381  | Chaperone                     | clpB          | 2.1     | 4.9    | 14.4   | 13.8   |
| XF0615  | Chaperone                     | groEL         | 3.6     | 4.7    | 15.2   | 7.2    |
| XF0616  | Chaperone                     | groES         | 3.8     | 6.9    | 19.8   | 9.3    |
| XF1484  | Protease                      | hslV          | 1.9     | 3.9    | 9.4    | 6.7    |
| XF2174  | Tiorredoxina                  | ybbN          | 2.1     | 4.1    | 10.8   | 9.0    |
| XF2233  | Chaperone                     | dnaJ          | 2.5     | 6.3    | 14.8   | 18.0   |
| XF2234  | Chaperone                     | hspA          | 2.5     | 10.2   | 10.9   | 7.9    |
| XF2340  | Chaperone                     | dnaK          | 2.2     | 5.9    | 12.5   | 13.7   |
| XF2341  | Fator de troca de nucleotídeo | grpE          | 2.7     | 5.0    | 13.9   | 8.5    |
| XF2594  | Protease                      | <i>b</i> 2494 | 1.7     | 8.2    | 12.6   | 15.0   |
| XF2625  | Protease                      | htpX          | 2.8     | 5.2    | 14.2   | 12.5   |
| XFa0048 | Provável proteína de          | mobC          | 4.6     | 6.9    | 10.4   | 7.6    |
|         | mobilização                   |               |         |        |        |        |

O início de transcrição de cada gene foi mapeado utilizando como molde o RNA total de células cultivadas a temperatura normal (29°C) e de células isoladas após 25 minutos de choque térmico a 40°C, quando foi observado o pico de indução destes genes. A figura 16 mostra o tamanho do produto de extensão obtido para cada genes e o alinhamento das prováveis regiões promotoras -35 e -10, determinadas a partir do início de transcrição. Podemos observar que, para todos os seis genes testados, a quantidade de produto é maior a 40°C do que a 29°C, confirmando os aumentos nos níveis de mRNA durante o choque térmico observados nos experimentos de microarranjos de DNA.

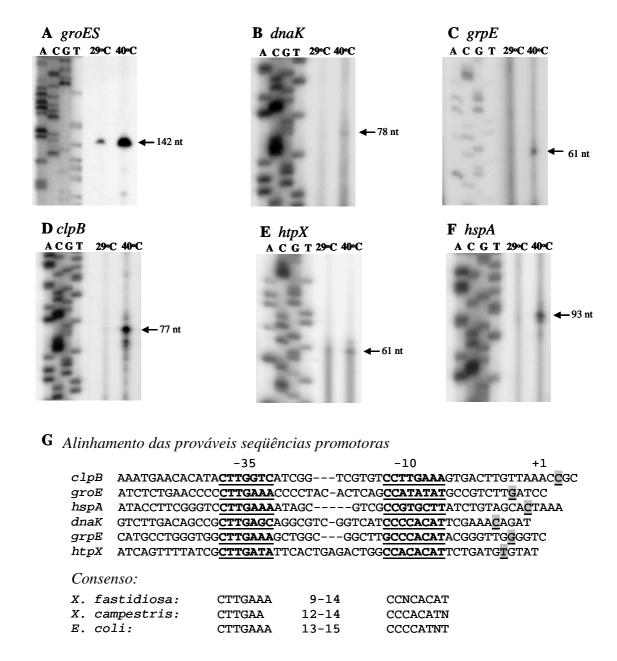
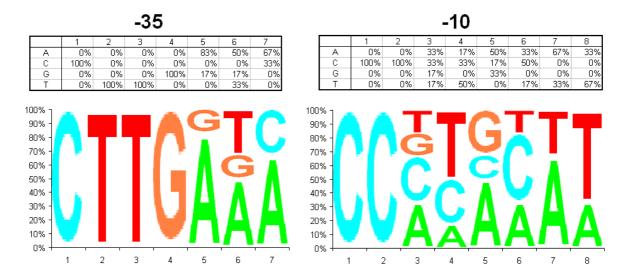



Figura 16: Determinação do início de transcrição dos os genes groES (A), dnaK (B), grpE (C), clpB (D), htpX (E) e hspA(F) em experimentos de extensão de oligonucleotídeo. A seqüência de referência utilizada é a do fago M13mp18. O tamanho dos produtos de extensão estão indicados na figura. Em (G), é mostrado o alinhamento das regiões -35 e -10 das prováveis seqüências promotoras, determinadas a partir do início de transcrição, indicado com o quadrado cinza. A sequência consenso para os promotores de  $\sigma^{32}$  em *Xanthomonas* campestris e E. coli estão mostradas para comparação.


Em *Xylella*, *groES* está organizado num provável operon com *groEL* e sua provável região promotora apresenta regiões –35 e –10 muito semelhantes ao consenso para promotores dependentes de σ<sup>32</sup> de *E. coli* (Figura 16A). O operon *groESL* de *Xylella* também possui o elemento CIRCE (*Controlling Inverted Repeat of Chaperone Expression*: TTAGCACTC-N9-GAGTGCTAA), localizado 48 nucleotídeos a montante do início de tradução de *groES*. Esta seqüência regulatória é o sítio de ligação da proteína repressora HrcA, constituindo o sistema CIRCE-HrcA que regula a expressão de genes de choque térmico em diversas bactérias. Nas gram-positivas, o sistema CIRCE-HrcA controla a indução de diversos genes de choque térmico em resposta ao aumento da temperatura, enquanto que em gram-negativas como *C. crescentus* e *Agrobacterium tumefaciens*, a seqüência CIRCE só é encontrada a 5'do operon *groESL* e seu papel é restrito à repressão deste operon em condições sem estresse (Avedissian & Gomes, 1996; Baldini *et al.*, 1998; Nakahigashi *et al.*, 1999). Em *X. fastidiosa*, o elemento CIRCE também é encontrado somente no operon *groESL*, porém, sua função no controle deste operon em condições de choque térmico ainda deverá ser investigada.

Quanto ao gene *dnaK*, seu início de transcrição foi mapeado e uma provável região promotora dependente de σ<sup>32</sup> foi encontrada. Porém, o sinal correspondendo ao início de transcrição apresentou-se com intensidade muito fraca, mesmo a 40°C (Figura 16B). Este resultado não é compatível com os altos níveis de expressão de *dnaK* observados nos experimentos de microarranjos de DNA e confirmados por RT-PCR quantitativo. O gene *dnaK* (XF2340) está organizado num provável operon compreendendo *hrcA-grpE-dnaK-dnaJ*. Observando o produto de extensão de 61 nucleotídeos obtido para o gene *grpE* (Figura 16C), verifica-se que o nível de mRNA é muito mais alto no choque térmico, o que pode indicar que o gene *dnaK* seja transcrito principalmente a partir do promotor localizado a 5' de *grpE*. O início de transcrição do gene *grpE* foi mapeado próximo ao início de tradução proposto por Weng e colaboradores (Weng *et al.*, 2001). É interessante notar que o gene *hrcA* 

não foi classificado como sendo diferencialmente expresso nos experimentos de microarranjos pois não passou nos critérios estatísticos estabelecidos.

# Determinação de uma sequência consenso para promotores dependentes de $\sigma^{32}$ em X. fastidiosa

Comparação das regiões -35 e -10 determinadas pelo mapeamento do início de transcrição de seis genes codificando Hsps permitiu a proposição de uma provável seqüência consenso para os promotores dependentes de  $\sigma^{32}$  em *X. fastidiosa.* Utilizando a informação obtida experimentalmente, foram construídas matrizes de probabilidade e foi utilizada uma abordagem *in silico* para sugerir prováveis promotores dependentes de  $\sigma^{32}$ . A Figura 17 mostra as matrizes de probabilidade utilizadas nas buscas para as regiões -35 e -10, juntamente com os *logo-plots* das seqüências. As matrizes foram utilizadas separadamente no programa Patser implementados na ferramenta *Regulatory Sequence Analysis tools* (van Helden, 2003) para descobrir os prováveis promotores dependentes de  $\sigma^{32}$ .



**Figura 17**: Matriz de probabilidade para os promotores dependentes de  $\sigma^{32}$ . A figura mostra as matrizes para as regiões -35 e -10, juntamente como os *logo-plots* das seqüências. As matrizes foram utilizadas separadamente como entrada no programa PATSER.

Como mostra a Figura 16G, o consenso obtido para *Xylella* é similar aos propostos em outras bactérias gram-negativas, principalmente na região -35, porém, o espaçamento apresenta maior variação. Realizamos buscas por esta seqüência consenso na região 5' dos 261 genes que apresentaram indução no choque térmico em *Xylella*, conforme descrito em Material e Métodos. A busca resultou em 42 prováveis membros do regulon  $\sigma^{32}$  que apresentaram aumento nos níveis de transcrição durante o choque térmico. Este número é estatisticamente significante (P<0.05) quando comparado com a proporção de prováveis promotores encontrados nos genes não-induzidos.

Dentre os 42 genes, além dos seis a partir do qual o consenso foi obtido, encontramos genes relacionados ao choque térmico como htrA, que codifica uma protease, hslV que está organizada em um provável operon com hslU, que codifica um sistema de proteassomo e hslO, da família Hsp33. Além disso, 5 genes relacionados a fago e nove genes codificando proteínas hipotéticas ou hipotéticas conservadas apresentaram prováveis promotores dependentes de  $\sigma^{32}$  na região 5' não-codificadora. É importante ressaltar que esta análise deve ser cuidadosamente considerada visto que a busca foi feita nos 200 nucleotídeos a 5' do início de tradução, sem conhecimento do início de transcrição de cada um dos genes. Uma lista completa do genes e da provável região promotora está na Tabela S5.

## Resposta ao estresse extracitoplasmático

Entre os genes que apresentaram indução no choque térmico, foram encontrados diversos genes relacionados com o envelope celular. Por exemplo, encontrou-se *rfbA* (XF0256, grupo 4) e *glmU* (XF1140, grupo 3) envolvidos na biossíntese de lipopolissacarídeo, assim como *rfbU* (XF0879, grupo 3), *mltB* (XF2184, grupo3), *rlpA* (XF2185, grupo2) e *murA* (XF1415, group4), envolvidos na biossíntese de peptidoglicano. Dado que alterações na estrutura do lipopolissacarídeo afetam a proporção de proteínas de membrana externa, a transcrição diferencial de genes relacionados ao envelope celular indica

o envolvimento da resposta a estresses extracitoplasmáticos. Em E. coli, estudos caracterizando o regulon de  $\sigma^{E}$  indicam que este fator sigma alternativo controla a expressão de genes relacionados ao dobramento de proteínas no periplasma, genes relacionados à biossíntese do lipídeo A e genes que codificam lipoproteínas (Alba & Gross, 2004). Além disso, foi observada a indução de diversos genes caracterizados como membros do regulon de σ<sup>E</sup> em E. coli como mucD (XF2241, grupo 2) e degP (XF0285, grupo3), que codificam proteases periplasmáticas envolvidas em virulência em Pseudomonas aeruginosa, Shigella flexinery e Klebsiella pneumoniae (Raivio & Silhavy, 2001); rseA (XF2240, grupo 2), que atua como regulator negativo da atividade de  $\sigma^{E}$  em E. coli; bacA (XF1841, grupo 2), que está envolvido na montagem do lipopolissacarídeo e biossíntese de peptidoglicano (Rezuchova et al., 2003; Rhodius et al., 2006); e dsbA (XF1436, grupo 4), que auxilia na formação de pontes dissulfeto em proteínas extracitoplasmáticas. É interessante notar que dsbA assim como degP têm sido caracterizadas em muitos patógenos bacterianos como importantes fatores de virulência (Raivio, 2005). Em Xylella, dsbA apresentou uma indução modesta durante o choque térmico (grupo 4), enquanto que os homólogos de degP apresentaram altos valores de indução (*mucD*-grupo 2 e *htrA*-grupo 3).

### Genes envolvidos na biossíntese de proteínas

Durante o choque térmico, foi observada a repressão de nove genes codificando proteínas ribossômicas (*rplV*, *rplP*, *rpsQ*, *rplN*, *rplX*, *rpsE*, *rplO*, *rplJ*; grupo 5 e *rpsD* - grupo 6) e quatro genes codificando aminoacil-tRNA sintetases (*tyrS*, *proS*, *thrS*, *hisS* - grupo 5), indicando um desligamento na expressão da maquinaria de síntese protéica . Em *E. coli*, a regulação da sintese de RNA ribossômico é provocada por mudanças na concentração intracelular de ppGpp. Sob condições de limitação de aminoácidos e acúmulo de tRNAs nãocarregados, RelA, que é a sintetase de ppGpp é induzida e os altos níveis de ppGpp levariam à redução da transcrição a partir dos promotores de rRNA (Paul *et al.*, 2004). É interessante

notar que genes relA e spoT, envolvidos no metabolismo de ppGpp foram induzidos no choque térmico em X. fastidiosa (grupo 3). Corroborando estes fatos, foi recentemente demonstrado que a capacidade de  $\sigma^{32}$  competir com  $\sigma^{70}$  pelo cerne da RNA polimerase é diminuída em células sem ppGpp (Jishage et~al., 2002).

## Elementos genéticos móveis

Durante toda a série temporal de choque térmico, foi observada a indução de um grupo de genes do mega-plasmídeo pXF51 (XFa0047, XFa0049 a XFa0052 – grupo2, e XFa0048 – grupo1) codificando a *nickase* TaxC, a proteína de mobilização MobC, uma proteína hipotética, uma proteína envolvida em estabilidade StbB, outra proteína hipotética e uma proteína associada à virulência VapD, respectivamente. A proteína VapD está associada à virulência em *Dichelobacter nodosus* (Katz *et al.*, 1992) e ortólogos foram identificados em outras bactérias patogênicas, porém, sua função em *Xylella* ainda é desconhecida (Marques *et al.*, 2001). Além de genes relacionados a plasmídeos, genes dos quatro fagos que se encontram integrados no genoma de *X. fastidiosa* 9a5c foram também induzidos no choque térmico: onze genes do fago XfP1, nove genes do fago XfP2, um gene do fago XfP3 e oito genes do fago XfP4. Estes genes codificam proteínas relacionadas a fago, proteínas hipotéticas ou hipotéticas conservadas.

## Metabolismo intermediário

Muitos genes relacionados à respiração aeróbica foram reprimidos durante o choque térmico em *Xylella*, principalmente após a exposição prolongada a altas temperaturas. Por exemplo, os genes *nuoA*, *nuoD*, *nuoH* e *nuoL* (grupo5), que codificam subunidades da NADH desidrogenase; genes relacionados ao ciclo do TCA (*sucB*, *sucC* e *sucD* - grupo 6), à glicólise (*pfk*6 e *gapA5* – grupo 5) e à síntese de ATP (*atpH*, *atpF* e *atpE* - grupo 6) foram reprimidos durante o choque térmico.

Com relação à cadeia de transporte de elétrons, os genes codificando a Citocromo O ubiquinol oxidase também foram reprimidos (*cyoD*, *cyoC*, *cyoB* - grupo 6). Durante o choque térmico, o aumento na temperatura parece causar um declínio na pressão de oxigênio devido à diminuição da sua solubilidade dos gases, como já foi descrito em estudos em *Campylobacter jejuni* (Stintzi, 2003) and *Neisseria meningitis* (Guckenberger *et al.*, 2002). Além disso, foi observada a indução de *cycJ* e *ccmB* (grupo 3), genes envolvidos na biogênese do Citocromo C, que têm sido descritos como sendo induzidos em condição de baixa concentração de oxigênio (Thony-Meyer *et al.*, 1995).

## Genes relacionados ao metabolismo de ferro

Outro indício para a hipótese de baixa concentração de oxigênio durante o choque térmico foi a observação de que o gene XF0932 (grupo 4), relacionado ao transporte de íon ferroso, foi induzido durante o estresse de temperatura. Como o íon ferroso é mais estável em condições de baixa concentração de oxigênio e pode ser imediatamente utilizado pela bactéria (Andrews *et al.*, 2003), *Xylella* poderia favorecer este sistema de transporte durante o choque térmico. Além disso, o gene *bfr* (grupo 6), que codifica uma bacterioferritina, revelou-se reprimido. Esta proteína atua no armazenamento de ferro e auxilia no aumento da aerotolerância por sequestrar o ferro e limitar o estresse oxidativo que pode resultar de uma reação de Fenton (Smoot *et al.*, 2001; Andrews *et al.*, 2003).

## Patogenicidade, virulência e adaptação

Além da indução de *degP* e *vapD*, outros genes relacionados à patogenicidade, virulência e adaptação mostraram-se diferencialmente expressos durante o choque térmico. Observou-se a indução de dois genes codificando exotoxinas formadoras de poro, da família RTX (Meidanis *et al.*, 2002): uma hemolisina (XF0668 – grupo 4) e uma bacteriocina (XF2407- grupo 4). Estas toxinas são secretadas via sistema de secreção do tipo I e se inserem

na membrana da célula hospedeira ou de outra bactéria (Gentschev *et al.*, 2002). Além disso, dois genes envolvidos na secreção de hemolisinas (XF2397 e XF2398 – grupo 4) foram induzidos. O aumento nos níveis de mRNA de hemolisinas com o aumento da temperatura também foi descrito em *Borrelia burgdoreferi* (Ojaimi *et al.*, 2003) e *Streptococcus* do grupo A (Smoot *et al.*, 2001), que são patógenos de mamíferos. O aumento da expressão do gene da bacteriocina durante o choque térmico pode auxiliar na sobrevivência de *Xylella* em condições de estresse, garantindo vantagens competitivas. É interessante notar que a expressão de genes relacionados à produção de colicinas foi reduzida no choque térmico: o gene do precursor da colicina V (*cvaC*) e da proteína de secreção de colicina (*cvaA*) foram reprimidas aos 45 minutos de choque térmico.

Dois genes que codificam enzimas provavelmente envolvidas na degradação de xilano foram induzidas durante o choque térmico em *Xylella*: XF0878 (polissacarídeo desacetilase – grupo 2) e XF2395 (acetilxilano esterase – grupo 2). Xilano é o componente majoritário da hemicelulose das paredes celulares de plantas (Collins *et al.*, 2005), que podem ser degradadas pelas enzimas acima para o fornecimento de carbono ou para facilitar a migração da bactéria entre os vasos do xilema.

Um conjunto de seis genes relacionados ao sistema de secreção do tipo II foi induzido durante o estresse térmico: *xpsE* (XF1517 - grupo 2), *xpsF* (XF1518 - grupo 2), *xpsH* (XF1520– grupo 4), *xpsJ* (XF1522 - grupo 3), *pefL* (XF1524 - grupo4) and *xpsM* (XF1525 - grupo4). Dentre eles, *xpsE* e *xpsF* (grupo 2) são membros da família de exportadores de fimbrilina. Eles apresentaram uma indução de aproximadamente 3 vezes após 25 minutos de choque térmico (grupo 2) enquanto que os outros genes do sistema de secreção do tipo II foram induzidos principalmente após 45 minutos de choque térmico e apresentaram valores modestos de indução (aproximadamente 1,5 vezes). O sistema de secreção do tipo II está envolvido na exportação de diferentes fatores de virulência como toxinas e enzimas hidrolíticas (Sandkvist, 2001). Coerente com a indução do sistema de secreção do tipo II, foi

observada também a indução de alguns genes do sistema Sec (secA, secF e secG) que atua na translocação de proteínas do citoplasma para o periplasma.

Observou-se ainda a indução de genes relacionados a adesinas não relacionadas à fimbria: genes codificando proteínas secretadas semelhantes à hemaglutinina, (XF2196 - grupo2 e XF2775 -grupo3) e à adesina *uspA1* (XF1516 - grupo3). É interessante notar que o gene *uspA1* foi descrito como expresso em níveis mais elevados em células de *X. fastidiosa* recém isoladas da planta do que em culturas que se tornaram menos virulentas após diversas passagens, indicando um possível papel deste gene na virulência (de Souza *et al.*, 2003). Com relação a genes relacionados à hemaglutinina, um estudo recente na cepa Temecula de *X. fastidiosa* mostrou que mutantes nesses genes provocaram sintomas mais graves em videiras do que a cepa selvagem, ao contrário do que se mostrou em outras bactérias patogênicas, onde os mutantes mostraram-se menos virulentos (Guilhabert & Kirkpatrick, 2005). Os autores sugerem que, em *Xylella*, as hemaglutininas atuam na atenuação da capacidade de colonização, apesar de apresentarem um papel na agregação celular para formação de colônias e contribuirem para a formação do biofilme.

Além disso, *phoQ* (XF0390 - grupo 4) e *colR* (XF2336 - grupo 2, e XF2354 - grupo 3), que são genes relacionados a sistemas de dois componentes, foram induzidos no choque térmico em *Xylella*. É interessante notar que o sistema PhoPQ é necessário para a virulência em diversas bactérias como *Salmonella*, *Yersinia* e o fitopatógeno *Erwinia carotovora* (Groisman, 2001). O gene *colR* também foi caracterizado como relacionado à patogenicidade em *Pseudomonas fluorescens*, visto que mutações em *colR* impedem a colonização do hospedeiro (Dekkers *et al.*, 1998). O gene XF1020 (grupo 4) que codifica uma proteína relacionada à virulência também apresentou aumento nos níveis de transcrito durante o choque térmico. Mutações no seu ortólogo em *Xanthomonas campestris* resultaram na redução da virulência, apesar da sua função ainda ser desconhecida (Osbourn *et al.*, 1990).

#### 3.2. Estresse salino e osmótico

# 3.2.1. Análise global da expressão gênica durante o choque salino e osmótico

As condições de estresse utilizadas nos experimentos de choque salino e osmótico foram determinadas a partir de curvas de crescimento com concentrações de NaCl que variaram de 0 a 250 mM e de sacarose de 0 a 300 mM, além de análise de sobrevivência das células. Inicialmente, utilizou-se a concentração de NaCl 85 mM e sacarose 150 mM, concentração na qual as culturas de *X. fastidiosa* atingiram aproximadamente metade da DO observada na cultura controle após 8 dias de incubação a 29°C (Figura 18). Foram extraídas amostras de RNA após 30 e 60 minutos de incubação das bactérias nestas concentrações de sal e sacarose, porém, os ensaios de microarranjos de DNA não indicaram diferença de expressão entre as amostras teste e controle.

Foram realizados ensaios para verificar a sobrevivência após choque salino ou osmótico por diferentes intervalos de tempo. Adicionou-se NaCl ou sacarose nas concentrações de 100mM, 200mM, 300mM por 0, 7, 15, 25 e 45 minutos e em seguida, uma alíquota dessa cultura foi plaqueada em PW ágar. Devido ao crescimento lento e agregado de *Xylella*, a obtenção de colônias isoladas para contagem de unidades formadoras de colônias é um processo muito difícil e demorado. Foi feito então um ensaio semiquantitativo, verificando a maior ou menor sobrevivência nas placas, como indicado na Tabela 5.

Com base nos resultados obtidos, decidiu-se utilizar nos experimentos de microarranjos de DNA a concentração máxima testada nas curvas de crescimento (Figura 18), onde as células não cresceram mas mantiveram-se viáveis, apesar de apresentarem crescimento reduzido (Tabela 5). O estresse osmótico tem sido classicamente estudado em diversas bactérias verificando-se a expressão após a adição de NaCl, porém, sabe-se que, além do estresse osmótico, o NaCl pode causar efeitos tóxicos para a célula. Desta forma, estudando o perfil de expressão gênica induzido por NaCl e por sacarose, é possível determinar os genes relacionados a resposta ao estresse salino e ao estresse osmótico.

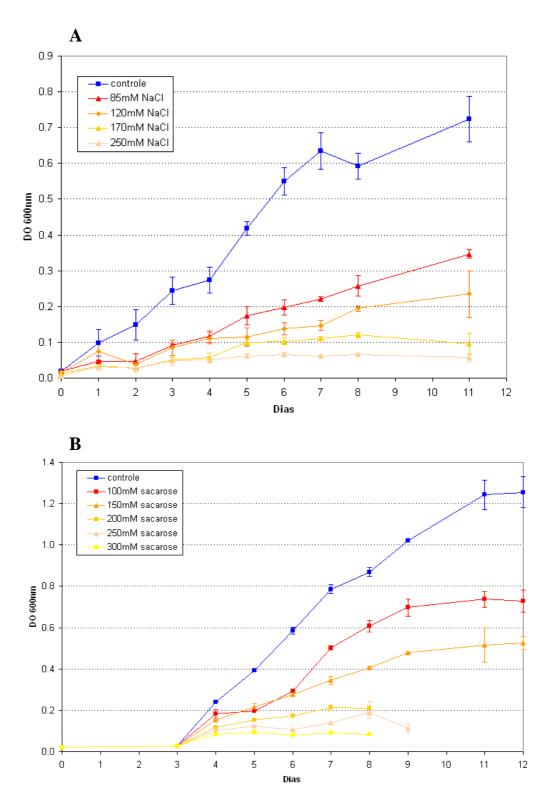



Figura 18: Curvas de crescimento de X. fastidiosa cepa 9a5c em meio PW, na presença de diferentes concentrações de NaCl (A) ou sacarose (B). Os pontos representam a média de pelo menos 3 medidas de absorbância a 600 nm.

Tabela 5: Sobrevivência após choque salino (A) ou choque osmótico (B). A formação de colônias nas placas foi observada 1 mês após o plaqueamento.

# A. Sobrevivência após choque salino.

|        | Tempo de choque salino |                                                                     |     |    |   |  |  |  |  |
|--------|------------------------|---------------------------------------------------------------------|-----|----|---|--|--|--|--|
| [NaCl] | controle               | controle         7 min         15 min         25 min         45 min |     |    |   |  |  |  |  |
| 100 mM | +++++                  | ++++                                                                | +++ | ++ | + |  |  |  |  |
| 200 mM | ++++                   | +++                                                                 | ++  | +  | + |  |  |  |  |
| 300 mM | +++++                  | +++                                                                 | +++ | ++ | + |  |  |  |  |

# B. Sobrevivência após choque osmótico.

|            | Tempo de choque osmótico                                            |      |      |     |    |  |  |
|------------|---------------------------------------------------------------------|------|------|-----|----|--|--|
| [sacarose] | controle         7 min         15 min         25 min         45 min |      |      |     |    |  |  |
| 100 mM     | ++++                                                                | ++++ | ++++ | +++ | ++ |  |  |
| 200 mM     | +++++ ++++                                                          |      | +++  | ++  | ++ |  |  |
| 300 mM     | ++++                                                                | ++++ | ++   | ++  | +  |  |  |

#### Legenda:

+: poucas colônias isoladas ++: muitas colônias isoladas

placas confluentes, baixa densidade +++: placas confluentes, média densidade ++++: placas confluentes, alta densidade ++++:

Para determinar as mudanças na expressão gênica de X. fastidiosa cepa 9a5c em resposta ao choque osmótico e salino, foram realizados experimentos em uma série temporal, adicionando-se às culturas crescidas por 7 dias a 29°C em meio PW (fase exponencial), sacarose na concentração final de 300 mM e NaCl 250 mM, respectivamente. Amostras de células foram coletadas para extração de RNA após diferentes tempos de incubação a 29°C (0, 7, 15, 30 e 60 min). Após a síntese e marcação do cDNA, as amostras foram hibridizadas nos microarranjos de DNA, utilizando como referência a cultura na ausência de NaCl ou sacarose (tempo zero). Foram classificados como diferencialmente expressos os genes que em pelo menos 80% das réplicas estivessem fora do intervalo de credibilidade definido pelos experimentos homotípicos, utilizando-se no mínimo 3 réplicas biológicas independentes, conforme descrito em Material e Métodos.

Na presença de NaCl, foram encontrados 334 genes com expressão aumentada e 166 genes com expressão diminuída em pelo menos um dos tempos de incubação. Já em sacarose, 186 genes foram induzidos e 79 genes foram reprimidos, em pelo menos um dos tempos de incubação. Dentre os genes induzidos, 142 são comuns aos dois estresses (salino e osmótico) e apenas 38 são comuns entre os genes reprimidos. Na Tabela 6, indicamos o número de genes diferencialmente expressos somente em NaCl, somente em sacarose, bem como o número de genes comuns aos dois tratamentos, para cada um dos tempos de estresse considerados.

Tabela 6: Número de genes diferencialmente expressos somente em NaCl, somente em sacarose e comuns aos dois estresses, em cada um dos tempos de estresse e considerando todos os tempos analisados. (A) Genes induzidos (B) Genes reprimidos.

# A. Genes com expressão aumentada

| Tempo (min)     | Somente em NaCl | NaCl e sacarose | Somente em sacarose |
|-----------------|-----------------|-----------------|---------------------|
| 7               | 39              | 14              | 7                   |
| 15              | 113             | 57              | 27                  |
| 30              | 113             | 46              | 37                  |
| 60              | 202             | 72              | 23                  |
| Todos os tempos | 192             | 142             | 44                  |

# B. Genes com expressão diminuída

| Tempo (min)     | Somente em NaCl | Somente em NaCl   NaCl e sacarose |    |
|-----------------|-----------------|-----------------------------------|----|
| 7               | 1               | 1                                 | 8  |
| 15              | 16              | 0                                 | 5  |
| 30              | 64              | 11                                | 22 |
| 60              | 109             | 27                                | 27 |
| Todos os tempos | 128             | 38                                | 41 |

Dentre os genes diferencialmente expressos, 194 originalmente classificados como hipotéticos ou hipotéticos conservados foram reanotados utilizando as ferramentas BlastP (Altschul et al., 1997) e Pfam (Bateman et al., 2004). Um total de 56 genes tiveram uma provável função atribuída com base na anotação eletrônica e 138 genes codificando proteínas

0 62

hipotéticas foram classificados como proteínas hipotéticas conservadas. Uma lista completa dos genes diferencialmente expressos está disponível no site do projeto e nas Tabela S6 e S7 (NaCl) e Tabelas S8 e S9 (sacarose). Além disso, o mapa do genoma de *X. fastidiosa* e mapas do KEGG das vias metabólicas coloridos de acordo com a expressão (induzidos / reprimidos / sem alteração) estão disponíveis no site do projeto.

A classificação funcional dos genes diferencialmente expressos de acordo com o banco de dados do genoma de *X. fastidiosa* está apresentada nas Figuras 19 e 20, para NaCl e sacarose, respectivamente. Os níveis dos transcritos de genes codificando muitas proteínas hipotéticas e hipotéticas conservadas apresentaram-se alterados no choque osmótico e salino. Dentre os genes induzidos por NaCl, 54,8% (183 genes) codificam proteínas hipotéticas e hipotéticas conservadas, enquanto no estresse causado por sacarose, a proporção destes genes é de 56,9% (106 genes). Dentre os 142 genes induzidos nos dois estresses, 57% são hipotéticos ou hipotéticos conservados (81 genes), números altos considerando que a proporção de genes hipotéticos no genoma é de aproximadamente 50%. Dentre os genes reprimidos, a proporção de genes hipotéticos apresentada foi baixa, 22,9% em NaCl (38 genes) e 26,6% em sacarose (21 genes).



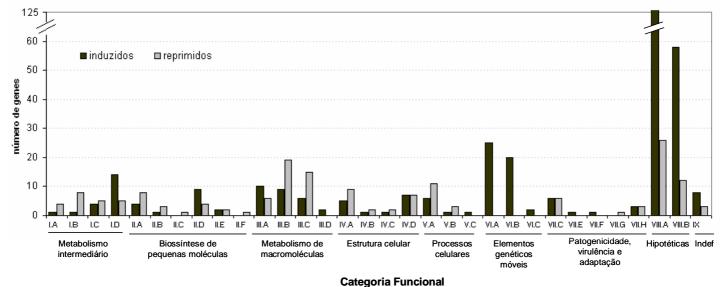
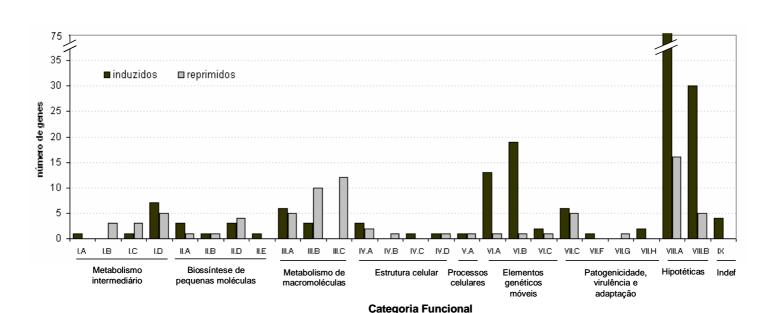




Figura 19: Genes diferencialmente expressos no estresse causado por NaCl, agrupados por categorias funcionais, de acordo com o banco de dados de X. fastidiosa. As colunas pretas representam o número de genes induzidos e as cinzas, os genes reprimidos durante o estresse salino. Categoria I: Metabolismo intermediário, I.A: Degradação, I.B: Metabolismo Intermediário Central, I.C: Metabolismo energético, I.D: Funções regulatórias. Categoria II: Biossíntese de pequenas moléculas, II.A: Biossíntese de aminoácidos, II.B: Biossíntese de nucleotídeos, II.C: Biossíntese de açúcares, II.D: Cofatores, grupos prostéticos, biossíntese de carregadores, II.E: Biossíntese de ácidos graxos e ácido fosfatídico. II.F: Biossíntese de poliaminas. Categoria III: Metabolismo de macromoléculas, III.A: Metabolismo de DNA, III.B: Metabolismo de RNA, III.C: Metabolismo de proteina, III.D: Metabolismo de outras macromoléculas. Categoria IV: Estrutura Celular, IV.A: membrana, IV.B. Peptidoglicano, IV.C: Polissacarídeos de de lipopolissacarídeos e antígenos, IV.D: Estruturas de superfície. Categoria V: Processos Celulares, V.A: Transporte, V.B: Divisão celular, V.C: Quimiotaxia e motilidade. Categoria VI: Elementos genéticos móveis, VI.A: Funções relacionadas a fagos, VI.B: Funções plasmidiais, VI.C: Transposon e funções intrônicas. Categoria VII: Patogenicidade, virulência e adaptação. VII.C: Produção de toxinas e detoxificação, VII.E: Exopolissacarídeos, VII.F: Proteínas de superfície, VII.G: Adaptação a condições atípicas, VII.H. Outros. Categoria VIII: Proteínas hipotéticas, VIII.A: Proteínas hipotéticas conservadas, VIII.B: Proteínas hipotéticas. Categoria IX: ORFs com categoria indefinida



**Figura 20**: Genes diferencialmente expressos no estresse causado por sacarose, agrupados por categorias funcionais, de acordo com o banco de dados de X. fastidiosa. As colunas pretas representam o número de genes induzidos e as cinzas, os genes reprimidos durante o estresse osmótico. Categoria I: Metabolismo intermediário, I.A: Degradação, I.B: Metabolismo Intermediário Central, I.C: Metabolismo energético, I.D: Funções regulatórias. Categoria II: Biossíntese de pequenas moléculas, II.A: Biossíntese de aminoácidos, II.B: Biossíntese de nucleotídeos, II.D: Cofatores, grupos prostéticos, biossíntese de carregadores, II.E: Biossíntese de ácidos graxos e ácido fosfatídico. Categoria III: Metabolismo de macromoléculas, III.A: Metabolismo de DNA, III.B: Metabolismo de RNA, III.C: Metabolismo de proteina. Categoria IV: Estrutura Celular, IV.A: Componentes de membrana, IV.B. Peptidoglicano, IV.C: Polissacarídeos de superfície, lipopolissacarídeos e antígenos, IV.D: Estruturas de superfície. Categoria V: Processos Celulares, V.A: Transporte. Categoria VI: Elementos genéticos móveis, VI.A: Funções relacionadas a fagos, VI.B: Funções plasmidiais, VI.C: Transposon e funções intrônicas. Categoria VII: Patogenicidade, virulência e adaptação. VII.C: Produção de toxinas e detoxificação, VII.F: Proteínas de superfície, VII.G: Adaptação a condições atípicas, VII.H. Outros. Categoria VIII: Proteínas hipotéticas, VIII.A: Proteínas hipotéticas conservadas, VIII.B: Proteínas hipotéticas. Categoria IX: ORFs com categoria indefinida

# 3.2.2. Série temporal

Para obter uma visão dos perfis de expressão, ao longo do tempo, dos genes que apresentaram expressão diferencial durante o choque osmótico ou choque salino, foi feito um agrupamento dos perfis de expressão dos genes utilizando o algoritmo K-means com 5 grupos. O número de grupos foi determinado através da análise de componentes principais, como ilustrado na Figura 21. Usualmente, as componentes são ordenadas de acordo com a sua contribuição para a variabilidade total (variância). Calculou-se então a diferença entre as componentes sucessivas (delta autovalor) para descobrir quando esta torna-se praticamente zero, ou seja, não há mais diferença relevante entre as componentes. O gráfico mostra que não há contribuição relevante após a 5<sup>a</sup> componente, tanto nos dados de NaCl quanto em sacarose, indicando que teoricamente, não é necessário utilizar mais do que 5 grupos.

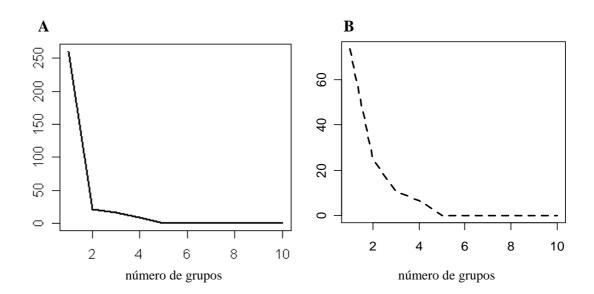
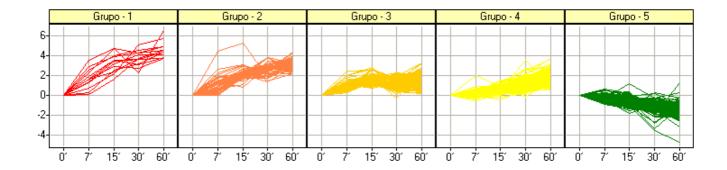




Figura 21: Análise de componentes principais para os dados de NaCl (A) e sacarose (B). O eixo x mostra o número de grupos e o eixo y, o delta autovalor, ou seja, a diferença entre as componentes principais sucessivas. Observa-se que, nos dois gráficos não há diferença entre a 6<sup>a</sup> e 5<sup>a</sup> componente, indicando que, teoricamente, não é necessário utilizar mais do que 5 grupos. Este número de grupos foi utilizado como entrada no algoritmo K-means de agrupamento.

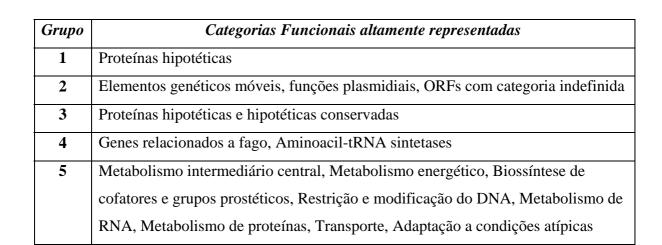
Para caracterizar cada um dos grupos com base nas categorias funcionais, foi feita uma busca pelas categorias mais representadas em cada grupo. Nas Figuras 22 e 23, mostramos o agrupamento utilizando *K-means* para os genes diferencialmente expressos em NaCl e sacarose, respectivamente, juntamente com uma tabela indicando as categorias funcionais mais representadas em cada grupo. O grande número de genes que codificam proteínas hipotéticas ou hipotéticas conservadas e que mostraram ser diferencialmente expressos durante os estresses fica novamente evidente nestas análises. A lista completa dos genes em cada grupo está nas Tabelas S10 e S11. De maneira geral, o estresse por sacarose apresentou níveis menores de indução do que os observados no tratamento com NaCl.

No estresse causado por NaCl (Figura 22), o grupo 1 no qual se observou os maiores valores de indução não apresentou nenhuma categoria funcional altamente representada. Este grupo é composto por 13 genes (Tabela 7), dos quais 5 fazem parte do mega-plasmídeo pXF51: dois estão envolvidos na replicação plasmidial e o restante codificam proteínas hipotéticas ou hipotéticas conservadas. Ainda no grupo 1, encontram-se genes codificando uma proteína sensora de um sistema de dois componentes, uma provável oxidoredutase, uma proteína relacionada a fago, uma antranilato sintase, uma proteína de membrana e três proteínas hipotéticas ou hipotéticas conservadas. Já o grupo 2 apresentou muitos genes codificando proteínas hipotéticas e hipotéticas conservadas, além de genes relacionados a funções plasmidiais. Os genes do grupo 3 apresentaram uma pequena queda nos valores de M aos 30 minutos de estresse. Neste grupo, além de genes codificando proteínas hipotéticas, observamos a presença de 6 genes relacionados ao metabolismo de DNA e 3 genes relacionados à patogenicidade, virulência e adaptação. O grupo 4 apresentou indução principalmente aos 30 e 60 minutos de choque salino e agrupa diversos genes relacionados a fagos e 11 ORFs com categoria indefinida. Por outro lado, no grupo 5, estão presentes a maioria dos genes que foram reprimidos em algum dos tempos de estresse, incluindo genes relacionados ao metabolismo intermediário com destaque para o metabolismo energético e metabolismo intermediário central, além de genes relacionados ao metabolismo de macromoléculas como genes que codificam as proteínas ribossômicas e genes envolvidos no metabolismo de proteínas como chaperones e proteases. Genes relacionados à estrutura celular, incluindo componentes da membrana e membrana externa e genes relacionados a transporte também estão altamente representados no grupo 5.



| Grupo | Categorias Funcionais altamente representadas                                |
|-------|------------------------------------------------------------------------------|
| 1     | Nenhuma categoria                                                            |
| 2     | Elementos genéticos móveis, Funções plasmidiais, Proteínas hipotéticas e     |
|       | hipotéticas conservadas                                                      |
| 3     | Proteínas hipotéticas, Metabolismo de DNA, Patogenicidade, virulência e      |
|       | adaptação                                                                    |
| 4     | Proteínas hipotéticas e hipotéticas conservadas, Elementos genéticos móveis, |
|       | Genes relacionados a fago, ORFs com categoria indefinida                     |
| 5     | Degradação de pequenas moléculas, Metabolismo intermediário central,         |
|       | Metabolismo energético, Biossíntese de pequenas moléculas, Metabolismo de    |
|       | RNA e proteínas, Componentes de membrana, Componentes de membrana            |
|       | externa, Transporte, Divisão celular                                         |

Figura 22: Agrupamento dos genes diferencialmente expressos em NaCl 250mM. O algoritmo utilizado foi o *K-means* com 5 grupos, utilizando os perfis de expressão dos genes que apresentavam a série temporal completa. O eixo y mostra os valores de M (M=log<sub>2</sub>(NaCl/controle)) e o eixo x mostra os tempos de choque salino. A tabela mostra as categorias funcionais altamente representadas em cada um dos grupos. Uma categoria funcional foi considerada como altamente representada se a sua presença no grupo fosse significante (P < 0.05).


Tabela 7: Genes com os maiores níveis de indução durante o choque salino (grupo 1 no agrupamento *K-means*)

| Gene    | Função                          | Nome do gene | Indução |        |        |        |
|---------|---------------------------------|--------------|---------|--------|--------|--------|
|         |                                 |              | 7 min   | 15 min | 30 min | 60 min |
| XF0323  | Proteína sensora de sistema de  | tctE         | 7.3     | 14.6   | 18.9   | 22.3   |
|         | dois componentes                |              |         |        |        |        |
| XF0391  | Proteína hipotética             |              | 3.8     | 11.6   | 12.4   | 13.0   |
| XF0493  | Proteína hipotética conservada  |              | 1.6     | 4.3    | 33.8   | 52.7   |
| XF0529  | Proteína hipotética conservada  |              | 2.6     | 11.1   | 11.9   | 20.3   |
| XF1594  | Proteína relacionada a fago     |              | 3.1     | 5.1    | 13.3   | 23.6   |
| XF1915  | Antranilato sintase,            | trpG         | 11.2    | 26.2   | 4.9    | 91.8   |
|         | componente II                   |              |         |        |        |        |
| XF2257  | Provável proteína de membrana   | yebN         | 3.1     | 11.3   | 8.2    | 13.8   |
| XF2390  | Provável oxidoredutase          |              | 4.8     | 25.3   | 18.5   | 30.1   |
| XFa0021 | Proteína hipotética             |              | 1.2     | 5.7    | 8.7    | 20.5   |
| XFa0054 | Proteína hipotética conservada  |              | 3.0     | 7.5    | 6.5    | 13.1   |
| XFa0059 | Proteína de replicação/partição | spoOJ        | 1.1     | 3.1    | 13.5   | 23.3   |
|         | de plasmídeo                    |              |         |        |        |        |
| XFa0060 | Proteína de replicação de       | incC         | 2.3     | 8.9    | 16.4   | 17.0   |
|         | plasmídeo                       |              |         |        |        |        |
| XFa0064 | Proteína hipotética conservada  |              | 5.8     | 15.6   | 22.3   | 29.7   |

No estresse osmótico causado pela adição de sacarose (Figura 23), observou-se no grupo 1 a alta representação de genes codificando proteínas hipotéticas. No grupo 2, que apresentou indução principalmente após os 15 minutos de estresse, verificou-se a alta incidência de genes relacionados a funções plasmidiais e outros elementos genéticos móveis, além de ORFs com categoria indefinida. No grupo 3, que apresentou um pico de indução aos 15 minutos, seguido por uma queda aos 30 minutos, e um novo aumento ou manutenção dos níveis aos 60 minutos de estresse, apenas a categoria de genes codificando proteínas hipotéticas e hipotéticas conservadas foram altamente representadas. Este grupo apresentou os maiores níveis de indução e estão mostrados na Tabela 8. O grupo 4 também apresentou um pico de indução aos 15 minutos, porém, com valores que atingem no máximo 4 vezes, seguido por uma redução a níveis iguais ao da amostra controle. Neste grupo, foram altamente representadas as categorias de genes relacionados a fagos. No grupo 5, estão agrupados os genes que apresentaram diminuição nos seus níveis em pelo menos um dos tempos de estresse osmótico. Estes genes estão principalmente relacionados ao metabolismo intermediário, com destaque para o metabolismo intermediário central e metabolismo energético, além de metabolismo de macromoléculas como genes relacionados à restrição do DNA, proteínas ribossomais e chaperones. Outras categorias representadas neste grupo foram a de transporte e adaptação a condições atípicas.

Grupo - 4





ďΫ

Grupo - 3

151 301 601

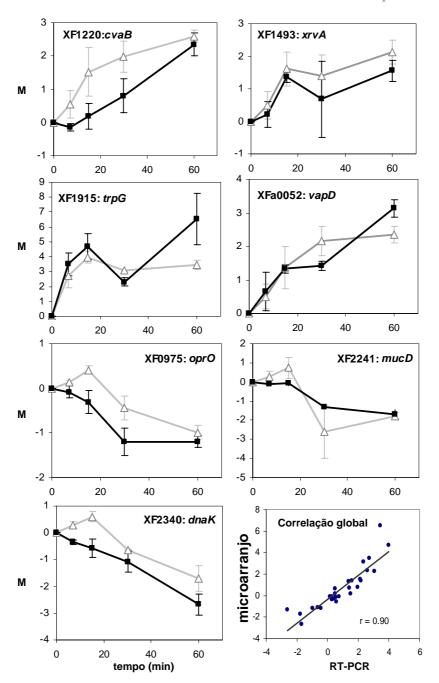
Ō'

Grupo - 1

6

2· 0· ·2· Grupo - 2

151 301 601


**Figura 23:** Agrupamento dos genes diferencialmente expressos em sacarose 300mM. O algoritmo utilizado foi o *K-means* com 5 grupos, utilizando os perfis de expressão dos genes que apresentavam a série temporal completa. O eixo y mostra os valores de M  $(M=\log_2(\text{sacarose/controle}))$  e o eixo x mostra os tempos de choque osmótico. A tabela mostra as categorias funcionais altamente representadas em cada um dos grupos. Uma categoria funcional foi considerada como altamente representada se a sua presença no grupo fosse significante (P < 0.05).

**Tabela 8**: Genes com os maiores níveis de indução durante o choque osmótico (grupo 3 no agrupamento *K-means*)

|        |                                    |                 | Indução |        |        |        |  |
|--------|------------------------------------|-----------------|---------|--------|--------|--------|--|
| Gene   | Função                             | Nome<br>do gene |         |        |        |        |  |
| 5 55   | 2 4113410                          |                 | 7 min   | 15 min | 30 min | 60 min |  |
| XF0112 | Proteína hipotética                |                 | 2.3     | 2.2    | 1.4    | 2.0    |  |
| XF0154 | Proteína hipotética conservada     |                 | 2.0     | 5.7    | 1.7    | 1.8    |  |
| XF0250 | Proteína hipotética conservada     |                 | 3.2     | 3.8    | 1.2    | 1.1    |  |
| XF0323 | Proteína sensora de sistema de     | tctE            | 3.9     | 8.5    | 2.3    | 6.2    |  |
|        | dois componentes                   |                 |         |        |        |        |  |
| XF0529 | Proteína hipotética conservada     |                 | 1.5     | 5.1    | 2.0    | 2.5    |  |
| XF0531 | Proteína hipotética conservada     |                 | 2.1     | 3.5    | 1.9    | 1.9    |  |
| XF0663 | Proteína hipotética conservada     |                 | 2.4     | 4.3    | 1.4    | 1.9    |  |
| XF0667 | Proteína hipotética conservada     |                 | 2.2     | 5.0    | 0.7    | 0.8    |  |
| XF0787 | Proteína hipotética conservada     |                 | 2.4     | 5.6    | 1.7    | 2.5    |  |
| XF0808 | Proteína hipotética                |                 | 3.4     | 3.3    | 1.8    | 1.3    |  |
| XF0953 | GTP ciclohidrolase II/3,4-         | ribA            | 3.8     | 5.3    | 1.0    | 0.9    |  |
|        | dihidroxi-2-butanone 4-phosfato    |                 |         |        |        |        |  |
|        | sintase                            |                 |         |        |        |        |  |
| XF1249 | Proteína hipotética conservada     |                 | 2.9     | 3.2    | 2.0    | 2.4    |  |
| XF1528 | Proteína hipotética conservada     |                 | 3.6     | 7.8    | 2.3    | 0.6    |  |
| XF1705 | Proteína relacionada a fago        |                 | 2.6     | 5.8    | 2.2    | 4.2    |  |
| XF1915 | Antranilato sintase, componente II | trpG            | 7.1     | 12.6   | 1.1    | 0.9    |  |
| XF1917 | Proteína hipotética conservada     |                 | 1.9     | 5.3    | 2.2    | 2.9    |  |
| XF1973 | Proteína hipotética conservada     |                 | 3.1     | 13.2   | 2.2    | 1.3    |  |
| XF1974 | Proteína hipotética                |                 | 3.2     | 4.3    | 4.1    | 4.4    |  |
| XF2307 | Proteína hipotética conservada     |                 | 2.0     | 4.1    | 2.2    | 2.2    |  |

# 3.2.3. Validação dos perfis de expressão por RT-PCR quantitativo

Para validar os perfis de expressão, foram realizados experimentos de RT-PCR quantitativo para 7 genes selecionados, utilizando duas réplicas biológicas independentes de cada um dos tempos de choque osmótico e salino. A correlação entre os valores de razão de expressão (M = log<sub>2</sub> (estresse/controle) ) obtidos nos experimentos de microarranjos de DNA e RT-PCR quantitativo foi de 0.90, indicando uma alta concordância entre os experimentos. As figuras 24 e 25 mostram os dados comparando os resultados de microarranjos e RT-PCR quantitativo para os genes selecionados na presença de NaCl e sacarose, respectivamente.



**Figura 24**: Níveis de expressão de 7 genes durante o estresse salino analisados por RT-PCR quantitativo (linha cinza, triângulos) e por microarranjos de DNA (linha preta, quadrados), onde M=log<sub>2</sub>(NaCl/controle). Os resultados são a mediana de três réplicas biológicas independentes para os dados de microarranjos e de duas nos experimentos de RT-PCR quantitativo. O último painel à direita mostra a correlação global dos valores de M nos experimentos de RT-PCR e de microarranjos.

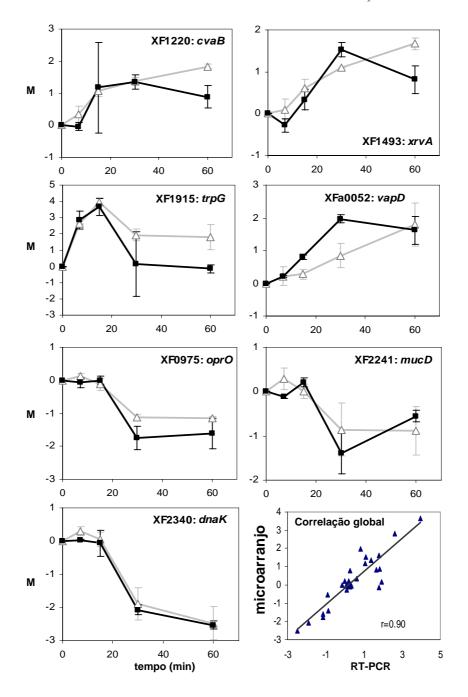



Figura 25: Níveis de expressão de 7 genes durante o estresse causado por sacarose, analisados por RT-PCR quantitativo (linha cinza, triângulos) e por microarranjos de DNA (linha preta, quadrados), onde M=log<sub>2</sub>(sacarose/controle). Os resultados são a mediana de três réplicas biológicas independentes para os dados de microarranjos e de duas nos experimentos de RT-PCR quantitativo. O último painel à direita mostra a correlação global dos valores de M nos experimentos de RT-PCR e de microarranjos.

# 3.2.4. Função dos genes diferencialmente expressos em condições de estresse

## Genes com expressão aumentada na presença de NaCl e sacarose

O estresse osmótico pode ser causado pela adição de NaCl e sacarose, porém, o NaCl causa ainda o estresse salino devido à ação tóxica dos íons que o compõem. Desta forma, os genes induzidos nas duas condições testadas podem fornecer um panorama mais preciso sobre os genes envolvidos na resposta geral ao estresse osmótico.

Dos 142 genes que apresentaram expressão aumentada tanto por NaCl como por sacarose, 55 codificam proteínas hipotéticas conservadas e 26 proteínas hipotéticas, constituindo 57% dos genes induzidos, com diferentes padrões de expressão (grupos 1 a 4 em NaCl e sacarose). Desta forma, a maioria dos genes induzidos não apresenta função conhecida na literatura. Entretanto, com base nos dados experimentais obtidos, há fortes indícios de que estes genes devem exercer algum papel na resposta ao estresse osmótico.

Genes localizados nos fagos integrados no genoma de *X. fastidiosa* também se apresentaram induzidos na presença de NaCl e sacarose: 1 gene do fago XfP1, 5 genes do XfP3, 6 genes do XfP4 e 4 genes do XfP2. Além disso, 17 genes relacionados a funções plasmidiais, 7 localizados no cromossomo e 10 no mega-plasmídeo pXF51 também se apresentaram induzidos. É interessante notar que no total, 21 genes do mega-plasmídeo pXF51 foram induzidos, dos quais 17 são hipotéticos ou hipotéticos conservados.

Dentre os genes relacionados com patogenicidade, virulência e adaptação, dois genes que codificam proteínas com domínios de beta-lactamase foram induzidos. O gene *cvaB*, que codifica um transportador do tipo ABC envolvido na secreção de colicina V foi induzido a partir dos 15 minutos do estresse com sacarose (grupo2) e a partir dos 30 minutos em NaCl (grupo 4). É interessante notar que genes que codificam as colicinas também foram induzidos, porém, o gene XF0263 foi induzido somente em sacarose e o gene XF0264 foi induzido somente em NaCl. Em um estudo recente, relatou-se o aumento da expressão de genes

relacionados a colicina V no cultivo com altas concentrações de glicose, que também podem provocar o estresse osmótico (Pashalidis *et al.*, 2005). Observamos também a indução do gene XF0300, que codifica uma proteína de resistência a acriflavina, além do regulador de virulência *xrvA* (XF1493) e *vapD* (XFa0052), localizado no plasmídeo pXF51, que codifica uma proteína associada à virulência. É interessante notar que *xrvA* codifica uma proteína da família H-NS, proteínas semelhantes às histonas que estão envolvidas na estrutura do nucleóide e afetam a expressão gênica em algumas condições específicas. O gene *xrvA* foi implicado na virulência de *Xanthomonas oryzae*, embora sua função ainda seja desconhecida (Bertin *et al.*, 1999).

Cinco genes que codificam proteínas com funções regulatórias no metabolismo intermediário também se apresentaram induzidos: genes das proteínas sensoras de sistema de dois compontentes TctE (XF0323: grupo 1 em NaCl, grupo3 em Sacarose) e PhoQ (XF0390: grupo 3 em NaCl, grupo 1 em sacarose), do repressor de transcrição KorC (XF2062: grupo 4 em NaCl e grupo 2 em sacarose), do regulador de transcrição da famíla AcrR (XF2085: grupo 2 NaCl grupo 2 Sacarose) e de um regulador transcricional do mega plasmídeo pXF51 (XFa0046: grupo 3 NaCl e grupo2 em sacarose). É interessante notar que o gene *phoQ* também foi induzido no choque térmico e em outras bactérias patogênicas como *Salmonella*, mutantes em *phoQ* apresentam virulência atenuada. Já reguladores da família AcrR estão relacionados com a regulação da transcrição de diversos genes, incluindo bombas de efluxo, vias de biossíntese de antibióticos, em resposta a estresse osmótico e moléculas tóxicas, estando também envolvidos na diferenciação e patogenicidade em certas bactérias.

É interessante notar que os genes trpE e trpG, codificando subunidades da enzima antranilato sintase da via de biossíntese do triptofano, foram altamente induzidos (trpG grupo 1 NaCl e grupo 3 em sacarose; trpE grupo 4 em NaCl e grupo 1 em sacarose). Em D. vulgaris, genes relacionados à síntese de triptofano também foram induzidos por NaCl, porém, a adição do aminoácido ao meio de cultura não atuou como osmoprotetor

(Mukhopadhyay et al., 2006). Em Xylella, há dois operons de biossíntese de triptofano e foi proposto recentemente que a região contendo os genes trpG e trpE foi adquirida por transferência lateral, visto que apresenta baixo conteúdo GC quando comparado com o restante do genoma (Xie et al., 2003). Os genes desta região (XF1914-XF1919), organizados numa provável unidade transcricional foram altamente induzidos por NaCl e por Sacarose: os genes trpG (ou trpAa), trpE (ou trpAb), acl, genes codificando uma proteína hipotética, um regulador transcricional, e uma flavoproteína ferro-enxofre. Esta região compreende ainda o gene XF1920, que está localizado na orientação oposta aos genes XF1914-XF1919 e codifica o repressor da via de triptofano TrpR, induzido somente na presença de NaCl. O gene acl (XF1916), anotado originalmente como uma sintetase de coenzima F390, provavelmente codifica uma fenilacetato-CoA ligase que leva à ativação do antranilato e pode catalisar um passo da biossíntese de sideróforos ou antibióticos que são montados por um mecanismo de síntese não-ribossomal de peptídeos (NRPS) (Xie et al., 2003). É interessante notar que o gene XF1021 (grupo 4 em NaCl, grupo 2 em sacarose) codificando uma acil tioesterase II potencialmente envolvida na NRPS também foi induzido.

Um grupo de genes possivelmente envolvidos na resposta a estresse oxidativo foi induzido por estresse salino e osmótico. Dentre eles, o gene codificando uma provável oxidoredutase (XF2390: grupo 1 em NaCl) homóloga à proteína de *Ralstonia solanacearum*; o gene de uma proteína hipotética reanotada neste trabalho como *ubiG* (XF1397: grupo 3 em NaCl, grupo1 em sacarose), que catalisa o último passo da síntese de ubiquinona; e uma proteína periplasmática ligante de ferro (XF0324, grupo 3 em NaCl e grupo 4 em sacarose). A ubiquinona tem sido caracterizada com um papel fundamental na resposta ao estresse oxidativo, atuando como um antioxidante em altas concentrações e também na regulação gênica (Soballe & Poole, 1999). Em *Streptomyces coelicolor*, o estresse causado pela adição de KCl também levou à indução de genes relacionados à resposta ao estresse oxidativo (Lee *et al.*, 2005).

Quatro genes relacionados ao metabolismo de DNA também foram induzidos: *topA* (XFa0003: grupo 4 em NaCl e grupo 2 em sacarose) e *rin* (XFa0019: grupo 3 em NaCl e grupo 2 em sacarose) do plasmídeo pXF51, além de *ruvA* (XF1904: grupo 3 em NaCl e grupo 2 em sacarose) e *sphlM* (XF1804: grupo 3 em NaCl e grupo 1 em sacarose), codificando uma helicase envolvida em recombinação e uma metiltransferase, respectivamente. Em relação ao metabolismo de RNA, genes codificando uma tirosil-tRNA sintetase, uma ribonuclease P (XF0169 e XF2781 respectivamente: grupo 3 em NaCl e grupo 4 em sacarose), e a proteína NusA envolvida na terminação e antiterminação da transcrição (XF0234: grupo 4 em NaCl e grupo 2 em sacarose) foram induzidos.

Três genes relacionados a componentes celulares também se apresentaram induzidos: *lyc*, envolvido na hidrólise de ligações beta 1,4 no peptidoglicano entre acetil-D-glucosamina e ácido N-acetilmurâmico (XF2392: grupo 3 em NaCl, grupo 2 em sacarose), *yebN* que codifica uma provável proteína de membrana (XF2257: grupo 1 em NaCl) e o gene codificando uma proteína envolvida na biogênese da fímbria do tipo IV (XF0966: grupo 4 em NaCl e sacarose).

## Genes com expressão diminuída na presença de NaCl e Sacarose

Apenas 38 genes apresentaram expressão diminuída nas duas condições de estresse testadas. Dentre eles, destacamos 5 genes codificando proteínas ribossômicas da subunidade 50S (*rplE*, *rpmB*, *rpmG*, *rpmA* e *rplU*) e diversos genes codificando Hsps: *clpB*, *groEL*, *groES*, *dnaK*, *dnaJ*, *grpE*, *hslU*, *hspA*, além da protease periplasmática *mucD* e da protease integral de membrana *hflK*. Em muitas bactérias, o estresse osmótico induz a expressão de Hsps, porém, nos dados obtidos, todos estes genes apresentaram-se reprimidos após os 30 minutos de estresse, mas não apresentaram mudanças nos níveis nos primeiros tempos de choque osmótico ou salino. Observou-se também a repressão de *exbB* e *exbD* (XF0010 e XF0012), envolvidos no transporte de biopolímeros, *phoX* (XF2141) que codifica uma

proteína ligante de fosfato de um transportador do tipo ABC, e *oprO* que codifica uma porina seletiva a pirofosfato e uma proteína integral de membrana (XF2252).

## Genes diferencialmente expressos apenas na presença de NaCl

Além dos genes discutidos anteriormente, um conjunto de 192 genes apresentou expressão aumentada apenas após a adição de NaCl. Dentre eles, destacamos genes relacionados à resposta ao estresse oxidativo, todos com perfil de expressão semelhante que foram agrupados no grupo 4: *msrA* que codifica uma metionina-sulfóxido redutase (XF1940), enzima antioxidante que atua no reparo de resíduos de metionina oxidados (Ezraty *et al.*, 2005); *visC* e *visB* (XF0834 e XF0835), envolvidos na síntese de ubiquinona (Soballe & Poole, 1999); *trxA* que codifica uma tioredoxina (XF2698) com ação antioxidante, *aao* que codifica uma L-ascorbato oxidase (XF2677), e ainda a indução de um gene codificando a Hsp33 (XF1713), que é uma chaperone regulada pelo estado redox da célula. Em *E. coli*, o estresse oxidativo severo causa a inativação da chaperone DnaK e ativa a Hsp33 (Winter *et al.*, 2005).

Observou-se também a indução de genes envolvidos no metabolismo de proteínas, principalmente relacionados aos aminoácidos prolina e metionina. Em relação a metionina, além de *msrA*, observou-se a indução de *map* (XF0111: grupo 3), que codifica uma metionina aminopeptidase responsável pela remoção de metionina da extremidade amino de proteínas recém-sintetizadas. Além disso, o gene *metK* (XF0392: grupo 3), envolvido na síntese de S-adenosil metionina e *metF* (XF1121: grupo 4), envolvido na síntese de metionina foram também induzidos. Em relação a prolina, o gene de uma prolina dipeptidase (XF0220: grupo 4) e *pepP* (XF2009: grupo 4) que codifica uma aminopeptidase a qual libera aminoácidos ligados a prolina foram induzidos. É interessante notar que alguns genes envolvidos na utilização de glutamato foram reprimidos durante o estresse por NaCl (XF1000, XF1002, XF1004, XF1956), o que pode indicar uma economia da utilização deste aminoácido para o

acúmulo de glutamato como um soluto compatível. Observou-se também a indução do gene *asd* (XF1371: grupo 4) que codifica uma aspartato semialdeído desidrogenase. Além de estar envolvida na via de biossíntese de lisina, um homólogo desta enzima em *Corynebacterium glutamicum* foi capaz de complementar o gene *proA* envolvido na biossíntese do aminoácido prolina em mutantes *proA*<sup>-</sup> de *E. coli*, indicando seu papel na biossíntese de prolina (Serebrijski *et al.*, 1995).

Diversos genes relacionados a transporte também se mostraram induzidos: XF0874 (grupo 3) e XF0875 (grupo 4), que codificam uma permease e uma proteína ligante a ATP de um transportador do tipo ABC que têm com substrato aminoácidos polares como glutamato e aspartato que podem atuar como osmoprotetores; *ygjT* (XF0406: grupo 4) que codifica uma proteína envolvida na exportação, provavelmente no efluxo de íons; XF1749 (grupo 4) da superfamilia de facilitadores de transporte além de XF0437 (grupo 3), re-anotada como o canal mecanosensível MscS. Esta última proteína está envolvida na resposta ao estresse hipoosmótico, permitindo a extrusão de água. Estudos recentes demonstraram que a síntese do seu mRNA é induzida em condições de estresse hiperosmótico, como preparação da célula para voltar aos níveis normais ou hipoosmóticos de osmolaridade e balancear rapidamente os níveis de solutos celulares com a osmolaridade do meio (Stokes *et al.*, 2003).

Seis genes relacionados à fímbria foram também induzidos, todos com perfis de expressão semelhantes foram classificados no grupo 3: duas fimbrilinas (XF0538 e XF1791), a proteína *fimV* (XF1372), uma pilina (XF1792), uma peptidase de pré-pilina lider (XF2537) e uma proteína de fímbria (XF2539). Por outro lado, outros 7 genes relacionados foram reprimidos (grupo 5), principalmente após os 30 minutos de estresse: XF0083, codificando o precursor da subunidade da fímbria; XF0369 a XF0371, codificando proteínas de membrana envolvidas na montagem da fímbria; XF0372 e XF0373 envolvidas na montagem do pili e ainda XF2544 codificando uma proteína da biogênese da fímbria. Ainda relacionado à adesão,

o gene *uspA1* (XF1516: grupo 4) também foi induzido assim como *gumJ* (XF2362: grupo 3), envolvido na biossíntese de goma.

Em relação ao metabolismo de DNA, além do conjunto de genes induzidos em comum nos estresses por NaCl e sacarose, outros 4 genes apresentaram indução: no grupo 3 encontram-se *dnaA* (XF0001), *rin* (XF2028) que codifica uma recombinase, uma DNA metilase (XF2297) e no grupo 4, uma metilase do sistema de restrição do tipo I (XF2728).

Genes relacionados à membrana externa e peptidoglicano também apresentaram indução: glmU (XF1140) envolvido na biossíntese de peptidoglicano e ompP que codifica uma porina de membrana externa envolvida no transporte de ácidos graxos de cadeia longa (XF1053) no grupo 3; bacA (XF1840) que contribui para a montagem do LPS, pbp4 (XF1614) que codifica uma proteína ligante a penicilina e lpxD (XF1419) envolvida na biossíntese de lipídeo A, todas no grupo 4. Um conjunto de genes envolvido na biossintese de fosfolipídeos também apresentou indução: gpsA (grupo3) que catalisa o primeiro passo da biossíntese de fosfolipídeos, plsC (grupo3) que atua na produção de ácido fosfatídico, pgsA (grupo 4) envolvido na síntese de fosfatidilglicerol e psd (grupo4) que atua na síntese de fosfatidiletanolamina.

Além dos 5 genes relacionados com funções regulatórias que foram induzidos na presença de NaCl e sacarose, 9 outros genes foram induzidos somente em NaCl. No grupo 3, agruparam-se *colS* (XF2535), que codifica uma proteína sensora de sistema de dois componentes, que também apresentou indução no choque térmico e dois reguladores de transcrição do mega-plasmídeo pXF51 (XFa0001 e XFa0057). No grupo 4, encontram-se dois genes codificando reguladores transcricionais da família LysR (XF0833 e XF1752), uma proteína regulatória de sistema de dois componentes (XF0401), um provável regulador transcricional (XF1596) e o repressor do operon do triptofano (XF1920), já mencionado acima. É interessante notar que um regulador transcricional da família LysR em *Pseudomonas putida* foi caracterizado como induzido em condições de estresse osmótico e estresse

oxidativo (Lee *et al.*, 2006). Além disso, 16 genes relacionados a fagos, 70 genes codificando proteínas hipotéticas conservadas e 32 genes codificando proteínas hipotéticas apresentaram indução por NaCl.

Dentre os genes com expressão diminuída somente em NaCl, destacamos outros genes que codificam proteínas ribossômicas (*rplB*, *rplV*, *rpsC*, *rpmE*, *rpsT*, *rpsR*, *rpsF*), genes relacionados à divisão celular (*ftsA* e *minD*), genes relacionados ao transporte de fosfato *pstA*, *pstB* e um gene codificando uma permease de ATP, além de *phoX* que foi reprimido nas duas condições de estresse. Em adição, o gene XF0749 codificando uma proteína associada à virulência XrvA foi reprimido, em contraste com XF1493, que também codifica uma proteína homologa com 55% de identidade, que apresentou indução por sal e sacarose. Estas proteínas são da família H-NS que se ligam a DNA.

## Genes com expressão alterada somente na presença de sacarose

A maioria dos genes que apresentou expressão aumentada exclusivamente em sacarose codifica proteínas hipotéticas e hipotéticas conservadas (5 hipotéticas e 20 hipotéticas conservadas). Além disso, 7 genes relacionados a elementos genéticos móveis apresentaram indução: 4 relacionados a fagos, 2 relacionados à conjugação do mega-plasmídeo pXF51 *trbE* e *trbH* (XFa0041 e XFa0044: grupo 2) e uma transposase (XF1931: grupo 2).

Dentre os genes relacionados à virulência, destacam-se aqueles codificando a colicina V (XF0263: grupo 2), uma bacteriocina (XF2407: grupo 2) e a hemaglutinina *pspA* (XF2775: grupo 4). O gene *ahpF* (XF1531: grupo 2), que é uma subunidade da alquil hidroperóxido redutase envolvida na resposta ao estresse oxidativo também apresentou indução. Esta enzima é considerada uma das mais importantes na defesa contra o estresse causado por hidroperóxidos orgânicos (Poole, 2005). Além disso, observou-se a indução de *fabD* (XF0670: grupo 4), envolvido na síntese de ácidos graxos; *ribA* (XF0953: grupo3), envolvido na síntese de riboflavina e possivelmente relacionado com a redução e tomada de ferro do

meio (Worst *et al.*, 1998), o gene *oafA* de uma acetilase de antígeno O (XF0778: grupo 1), o gene codificando um precursor da beta manosidase (XF0846: grupo 2) envolvido na degradação de glicano e o gene codificando uma corismato mutase (XF1141: grupo 2). O corismato pode ser utilizado para a síntese de antranilato, ubiquinona ou folato. É interessante notar que os genes *trpE* e *trpG* codificando a antranilato sintase e genes de biossíntese de ubiquinona também apresentaram indução na presença de sacarose. Dois genes originalmente anotados como proteínas hipotéticas conservadas e reanotados como reguladores da transcrição também apresentaram expressão aumentada.

## IV. DISCUSSÃO FINAL

### 1. Métodos para análise de dados de microarranjos de DNA

O desenvolvimento de ferramentas para a análise de dados de microarranjos de DNA permitiu que os dados experimentais obtidos em relação à resposta a estresses ambientais em *X. fastidiosa* fossem analisados de forma crítica e também contribuíram com alguns métodos originais na área de bioinformática.

A metodologia *HTself* para determinar genes diferencialmente expressos (Vencio & Koide, 2005) tem sido utilizada com sucesso, conforme se verificou nos experimentos de validação por RT-PCR quantitativo, que confirmaram os resultados de microarranjos. Mais ainda, diversos projetos desenvolvidos no Instituto de Química da USP e outras instituições como o Hospital do Câncer A.C. Camargo e o Hospital Israelita Albert Einstein, adotaram também o sistema *HTself* como ferramenta de trabalho para análises de dados de microarranjos. A utilização de um valor de corte arbitrário para considerar os genes como diferencialmente expressos, em geral duas vezes mais expressos, tem sido amplamente utilizada na literatura pois os primeiros artigos de microarranjos de DNA utilizaram este corte. Entretanto, não há evidências de que este seja um valor universal adequado para qualquer experimento (Hoheisel, 2006). A flexibilidade na utilização de poucas réplicas experimentais e o uso de experimentos homotípicos permite a determinação de valores de corte mais realistas para classificar um gene como diferencialmente expresso.

Uma vez que os genes diferencialmente expressos tenham sido selecionados, a utilização da ferramenta *BayGO* para encontrar categorias funcionais altamente representadas pode auxiliar na interpretação e na construção de hipóteses a partir dos dados experimentais. Na área de bioinformática, a novidade consiste no uso de uma metodologia bayesiana de análise dos dados, utilizando medidas de associação e de estimativa de barras de erros (Vencio *et al.*, 2006).

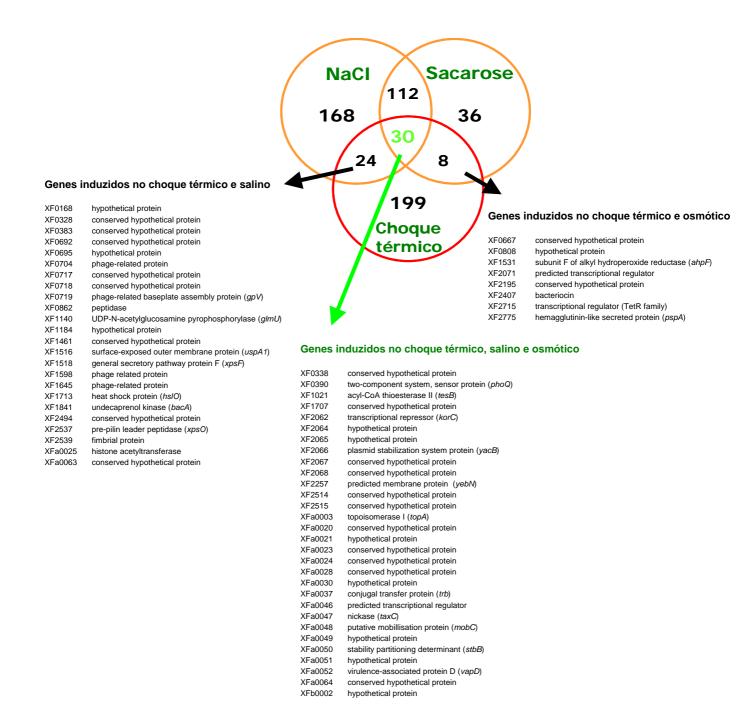
Uma das dificuldades comumente encontradas para realizar a análise de dados de microarranjos de DNA é a utilização de ferramentas computacionais que envolvem linguagens de programação, com as quais nem todos os pesquisadores estão habituados. A organização das ferramentas necessárias nas diversas etapas de análise dos dados no sistema *SpotWhatR* permite que os programas computacionais desenvolvidos sejam amplamente utilizados (Koide *et al.*, 2006a).

Para que outros pesquisadores pudessem ter acesso às metodologias desenvolvidas, todas as ferramentas citadas possuem uma interface amigável, seja como uma ferramenta *on-line* ou como um programa com interface de janelas, e estão disponíveis livremente e gratuitamente na *Internet*.

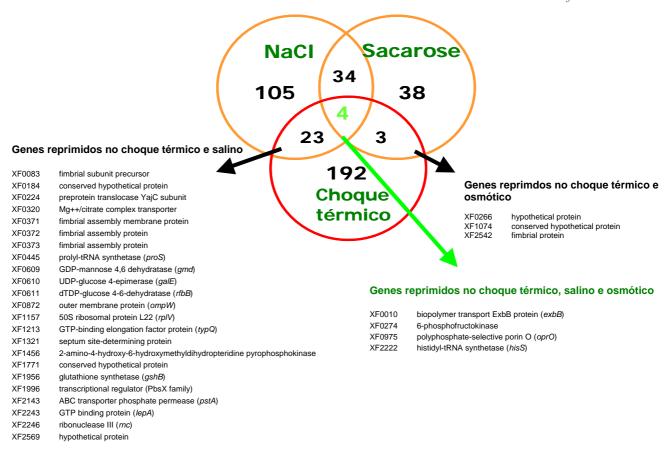
### 2. Resposta a estresses ambientais

A resposta a estresses ambientais tem sido caracterizada em diversas bactérias e com o advento de tecnologias para estudos em larga escala, é possível obter uma visão geral dos mecanismos envolvidos na resposta a estresses. Em bactérias fitopatogênicas, pouco tem sido caracterizado em relação à resposta a estresses ambientais, de forma que o estudo da resposta aos estresses térmico, osmótico e salino em *X. fastidiosa* visa contribuir para a maior compreensão da fisiologia deste fitopatógeno.

A comparação da resposta aos estresses térmico, salino e osmótico revelou apenas 30 genes induzidos em comum nas três condições testadas (Figura 26). Dentre eles, 16 estão localizados no mega-plasmídeo pXF51, incluindo genes que codificam proteínas relacionadas à conjugação e mobilização do plasmídeo (MobC e TrbB), a nickase TaxC, a proteína associada à virulência VapD, um regulador de transcrição, a topoisomerase TopA, uma proteína relacionada à estabilidade do plasmídeo e 10 genes que codificam proteínas hipotéticas ou hipotéticas conservadas. A indução destes genes pode indicar que em condições de estresse, o plasmídeo pXF51 é mobilizado. Dos 14 genes localizados no cromossomo


principal, a região que compreende os genes XF2062 a XF2068 contém proteínas relacionadas à estabilidade do plasmídeo YacB, um repressor transcricional KorC envolvido com sistemas de incompatibilidade de plasmídeos e 4 proteínas hipotéticas ou hipotéticas conservadas; já os genes XF2514 e XF2515 que codificam proteínas hipotéticas conservadas estão localizados no fago XfP2. Assim, a maioria dos genes induzidos em comum nos três estresses está relacionada a elementos genéticos móveis, indicando uma mobilização destes elementos em condições ambientais adversas.

Destacam-se ainda os genes *phoQ*, *tesB* e *yebN*. PhoQ é uma proteína sensora de um sistema de dois componentes que ativa o regulador de resposta PhoP, na presença de cátions divalentes como magnésio e cálcio. Mutantes em *phoQ* apresentaram virulência reduzida em *Salmonella*, *Y.pestis* e *Erwinia carotovora* (Groisman, 2001), enquanto em *P. aeruginosa* este gene apresentou alta indução no estresse osmótico (Aspedon *et al.*, 2006). TesB é uma acilcoA tioesterase II, que pode estar envolvida tanto na biossíntese de ácidos graxos como também na biossíntese não-ribossômica de peptídeos. Por sua vez, YebN é uma provável proteína de membrana, de função desconhecida.


Com relação aos genes induzidos somente no estresse térmico e salino, destacam-se 4 genes relacionados a fagos, 14 proteínas hipotéticas ou hipotéticas conservadas, uma peptidase, as proteínas BacA e GlmU envolvidas na biossíntese de LPS e peptidoglicano, XpsF e XpsO, relacionados ao sistema de secreção do tipo II, e a proteína UspA1, envolvida em adesão. Estas últimas proteínas estão relacionadas a estuturas da superfície celular que podem ser afetadas durante o estresse.

Somente 8 genes foram induzidos tanto no choque térmico como osmótico: o gene *ahpF* envolvido na resposta a peróxidos, dois genes que codificam um regulador transcricional putativo e outro regulador da família TetR, dois genes que codificam uma bacteriocina e uma hemaglutinina, e três genes que codificam proteínas hipotéticas ou hipotéticas conservadas. A família TetR de reguladores transcricionais é bastante ampla e está

envolvida no controle de diversos processos celulares envolvidos na adaptação a modificações ambientais, atuando geralmente como um repressor (Ramos *et al.*, 2005).



**Figura 26**: Genes com expressão aumentada em mais de um dos estresses testados em *X*. *fastidiosa*.



**Figura 27**: Genes com expressão diminuída em mais de um dos estresses testados em *X*. *fastidiosa*.

Dentre os genes que apresentaram expressão diminuída, somente 4 são comuns aos três estresses testados, 3 somente nos estresses térmico e osmótico, e 23 somente no estresse térmico e salino (Figura 27), com destaque para um conjunto de 3 genes relacionados à fímbria do tipo IV.

Vale ressaltar que 199 genes foram induzidos exclusivamente no choque térmico, com destaque para os genes que codificam Hsps. Em X. fastidiosa, somente o choque térmico provocou a indução do regulon de  $\sigma^{32}$ , com exceção do gene hslO da família Hsp33, que foi também induzido no estresse salino. Os genes grpE, dnaK, dnaJ, groES, groEL, clpB e hspA foram altamente induzidos no choque térmico, com uma cinética característica de indução transiente, com pico de expressão aos 25 minutos de exposição à alta temperatura. Além disso, experimentos para determinar o início de transcrição permitiram propor um provável consenso para promotores dependentes de  $\sigma^{32}$  em X. fastidiosa: CTTGAAA{9-

14}CCNCACAT (Koide *et al.*, 2006b). Por sua vez, durante o estresse salino e osmótico em X. fastidiosa, os genes codificando Hsps apresentaram níveis de expressão menores do que o controle após a exposição ao estresse por 30 e 60 minutos, diferentemente do que ocorre em outras bactérias, onde a expressão é induzida. Por exemplo, em E. coli observou-se a indução do regulon de  $\sigma^{32}$  (Bianchi & Baneyx, 1999), e em Lactococcus, a indução de dnaK (Xie et al., 2004) na presença de estresse osmótico.

Alguns genes do regulon de  $\sigma^{E}$  em outras bactérias também apresentaram alta indução no choque térmico, com destaque para mucD, que codifica uma protease periplasmática e rseA, um regulador negativo da atividade de  $\sigma^E$ . O regulon de  $\sigma^E$  de X. fastidiosa foi determinado recentemente, compreendendo 22 genes que codificam proteínas envolvidas na degradação e dobramento de proteínas, em transmissão de sinal, proteínas relacionados à modificação e restrição do DNA, além de proteínas hipotéticas (da Silva Neto et al., submetido). Desses 22 genes, 10 apresentaram indução no choque térmico. Este fator sigma alternativo, envolvido na resposta a estresse extracitoplasmático foi caracterizado em diversas bactérias com um papel também na resposta ao estresse osmótico. Entretanto, em X. fastidiosa, experimentos preliminares comparando a cepa selvagem com o mutante no fator  $\sigma^{E}$ , durante os estresses salino e osmótico, não revelaram genes regulados por este fator sigma (dados não mostrados). No mutante nulo em  $\sigma^E$ , seis genes apresentaram níveis de mRNA um pouco reduzidos na presença de NaCl e dez genes na presença de sacarose. Entretanto, nenhum deles foi induzido nos estresses salino ou osmótico (dados não mostrados). Vale notar que não foram encontrados genes relacionados à síntese de LPS no regulon  $\sigma^{E}$  de X. fastidiosa (da Silva Neto et al., submetido), apesar de alguns deles terem sido diferencialmente expressos no choque térmico.

Desta forma, a resposta ao choque térmico em X. fastidiosa é regulada tanto pelo fator  $\sigma^{32}$  como pelo fator  $\sigma^{E}$ , enquanto a resposta aos estresses salino e osmótico não parece ser regulada por esses fatores sigma alternativos. É importante ressaltar que ao contrário do  $\sigma^{E}$ ,

para o qual foi possível obter um mutante nulo, não foi possível obter um mutante nulo em rpoH, gene que codifica o fator  $\sigma^{32}$ , indicando que sua função é provavelmente essencial para a célula, mesmo em temperaturas normais (J.F. da Silva Neto e M.V. Marques, comunicação pessoal).

Além do fator  $\sigma^{32}$  e do fator  $\sigma^{E}$ , somente dois outros fatores sigma foram identificados no genoma de *X. fastidiosa*: o sigma principal  $\sigma^{70}$  e um membro da família do fator  $\sigma^{54}$ . Em várias bactérias, o fator  $\sigma^{54}$  está relacionado com a resposta à carência de nitrogênio e está envolvido com a regulação de genes relacionados à fímbria (Mattick, 2000). Assim, os genes que respondem aos estresses salino e osmótico devem ser provavelmente transcritos pelo sigma principal  $\sigma^{70}$  em *Xylella*, em conjunto com outros reguladores transcricionais. É interessante notar que três genes codificando reguladores transcricionais foram induzidos tanto na presença de NaCl como de sacarose, oito somente com NaCl e dois somente com sacarose (Figura 28).

A busca por promotores dependentes de  $\sigma^{70}$  na região compreendendo até 200 pb a partir do início de tradução dos 142 genes induzidos tanto por NaCl e como por sacarose resultou em 125 promotores putativos (Tabela S12), dando suporte à hipótese de transcrição mediada por  $\sigma^{70}$ , cuja ativação ou repressão deve depender de outros reguladores de transcrição. É importante ressaltar que esta busca deve ser interpretada cautelosamente, dado que foram utilizadas matrizes de probabilidade derivadas de promotores  $\sigma^{70}$  de *E. coli* (Harley & Reynolds, 1987). Além disso, o início de transcrição destes genes não foi mapeado e nem sempre o promotor putativo com maior pontuação corresponde ao promotor verdadeiro (Huerta & Collado-Vides, 2003). Huerta e colaboradores mostraram que em *E. coli*, o verdadeiro promotor dependente de  $\sigma^{70}$  está localizado em uma região contendo diversas seqüências com similaridade a promotores, o que dificulta o reconhecimento do promotor verdadeiro sem o conhecimento do início de transcrição do gene (Huerta & Collado-Vides, 2003).

Dentre os genes induzidos somente na presença de NaCl e sacarose, destaca-se com níveis bastante elevados de indução o gene anotado como tctE (XF0323), que codifica um provável sensor de um sistema de dois componentes. Este gene está organizado num provável operon com o gene tctD (XF0322) a montante, gene este que codifica um regulador de resposta da família OmpR, mas não mostrou alteração nos níveis de seu transcrito durante o estresse. A jusante de tctE, encontra-se o gene afuA (XF0324), que codifica uma proteína periplasmática ligante de ferro, o qual também foi induzido na presença de NaCl e sacarose. A alta indução somente em condições de estresse salino e osmótico do gene XF0323, mas não durante o choque térmico, pode indicar que este gene esteja relacionado com a regulação da resposta a estresse osmótico. O sensor poderia atuar de forma semelhante a EnvZ, sensor relacionado à resposta a estresse osmótico ou a CpxA, proteína sensora relacionada com estresses no envelope celular, cuja autofosforilação em resíduos de histidina levaria à ativação do regulador de resposta para a transcrição de genes que atuam em resposta ao estresse hiperosmótico. A proteína codificada por XF0323 apresenta 26% de identidade e 45% de similaridade com CpxA e 25% de indentidade e 44% de similaridade com EnvZ, ambas de E. coli.

Muitos dos genes classicamente caracterizados com papel na resposta ao estresse osmótico e salino não foram anotados no genoma de *X. fastidiosa*. Desta forma, o estudo da resposta ao estresse salino e osmótico aqui apresentado permitiu delinear alguns mecanismos de resposta a estes estresses em nível transcricional em *Xylella*. As categorias funcionais que mais se destacaram, tanto em número de genes (Figura 28) como em valores de indução, foram as dos genes codificando proteínas hipotéticas e hipotéticas conservadas, indicando um possível papel dessas proteínas na resposta a esses estresses. Os estudos pós-genômicos têm ainda muito a desvendar a respeito da função desta grande quantidade de genes, destacando a importância dos estudos em larga escala para auxiliar a delinear funções para os genes codificando proteínas hipotéticas.

### Genes induzidos no choque osmótico

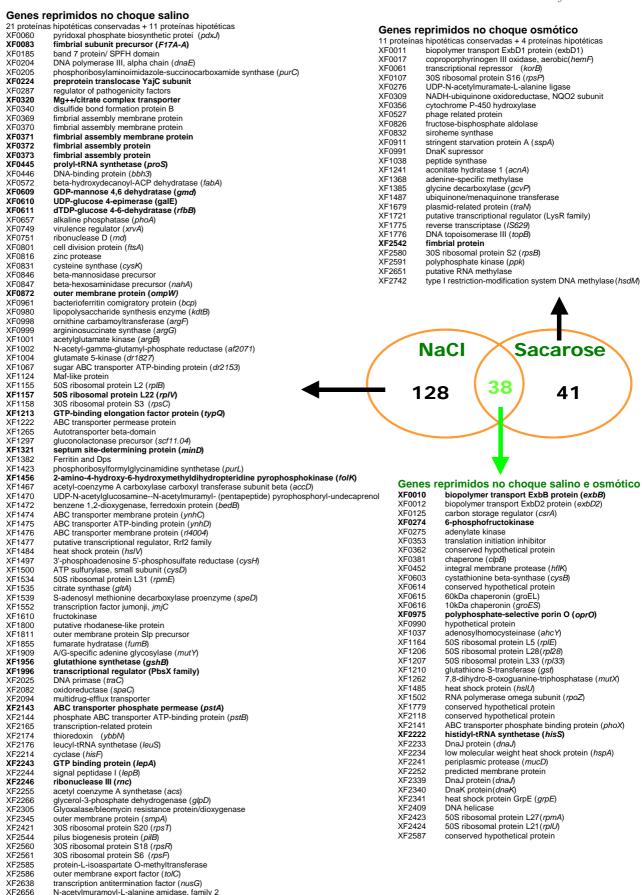

#### 20 proteínas hipotéticas conservadas e 5 proteínas hipotéticas XF0263 XF0654 colicin V precursor putative NPL/P60 Genes induzidos no choque salino XF0670 XF0680 malonyl CoA-ACP transacylase (fabD) 70 proteínas hipotéticas conservadas + 32 proteínas hipotéticas Fagos: 20 genes relacionados a elementos genéticos móveis phage-related protein O-antigen acetylase (oafA) beta-mannosidase precursor XF0778 XF0001 chromosomal replication initiator (dnaA) XF0846 competence protein F (comF) XF0063 XF0953 GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase (ribA) XF0111 methionine aminopeptidase (map) XF0193 6-pyruvoyl tetrahydrobiopterin synthase (ygcM) XF1531 subunit F of alkyl hydroperoxide reductase (ahpF) XF0197 acyltransferase XF1718 XF1931 phage-related integrase (int) XF0220 proline dipeptidase transposase (tnpA) XF0264 colicin V precursor XF2071 predicted transcriptional regulator XF0392 XF0401 methionine adenosyltransferase (metK) XF2407 bacteriocin two-component system, regulatory protein XF2501 XF2715 phage-related protein transcriptional regulator (TetR family) XF0406 XF0437 export protein (ygjT) Mechanosensitive ion channel (mscS) phage related protein hemagglutinin-like secreted protein (pspA) XF2765 XF0538 XF0552 fimbrillin tetrapyrrole methylase family protein phenylalanyl-tRNA sinthetase beta chain (pheT) siroheme synthase (cysG) XF2775 XFa0041 conjugal transfer protein (trbH XF0742 XFa0044 conjugal transfer protein (trbE) XF0832 transcriptional regulator (LysR family) (cysB) Ubiquinone biosynthesis hydroxylase (visC) XF0833 XF0834 XF0835 2-octaprenyl-6-methoxyphenol hydroxylase (visB) XF0839 XF0862 pyridoxal phosphate biosynthetic protein (pdxA) peptidase ABC transporter permease protein ABC transporter ATP-binding protein Sacarose XF0874 XF0875 NaCl XF0887 XF1053 mannosyltransferase (mtfA) outer membrane protein (ompP1) 192 142 44 XF1054 XF1121 XF1140 XF1146 rhomboid-like protein 5,10-methylenetetrahydrofolate reductase (*metF*) UDP-N-acetylglucosamine pyrophosphorylase (glmU) ATP synthase, delta chain (atpH) XF1149 ATP synthase, A chain (atpB) phosphatidylserine decarboxylase (psd) XF1365 XF1371 aspartate-B-semialdehyde dehydrogenase (asd) XF1372 XF1419 acetyltransferase (IpxD) Genes induzidos no choque salino e osmótico XF1516 XF1518 surface-exposed outer membrane protein (*uspA1*) general secretory pathway protein F (*xpsF*) XF1596 XF1614 predicted transcriptional regulator penicillin binding protein (*pbp4*) 55 proteínas hipotéticas conservadas + 26 proteínas hipotéticas = 57% dos genes induzidos Fagos: 1 gene do fago XfP1, 5 genes do XfP3, 6 genes do XfP4 e 4 genes do XfP2 Funções plasmidiais: 7 localizados no cromossomo e 10 no mega-plasmídeo pXF51. XF0169 tyrosyl-tRNA synthetase (tyrS) XF1711 XF1713 Endoribonuclease L-PSP heat shock protein HSP33 (hs/O) XF1749 XF1752 major facilitator superfamily transcriptional regulator (LysR family) XF0234 XF0300 N utilization substance protein A acriflavin resistance protein XF1791 fimbrillin XF0323 XF0324 two-component system, sensor protein XF1792 XF1797 Fimbrial protein pilin periplasmic iron-binding protein porphyrin biosynthesis protein (hem Y) glycerol-3-phosphate dehydrogenase (gpsA) ATPase XF0390 two-component system, sensor protein XF1802 XF1828 XF0765 YeeE/YedE integral membrane protein YeeE/YedE integral membrane protein beta-lactamase-like XF0766 **XF1841** XF1894 undecaprenol kinase (bacA) XF0768 XF0811 radical activating enzyme predicted methyltransferase type 4 fimbrial biogenesis protein XF1920 XF1940 XF0966 XF1021 Trp operon transcriptional repressor (trpR) peptide methionine sulfoxide reductase (msrA) acvl-CoA thioesterase II (tesB) CheW like protein tRNA/rRNA methylase (yibK) aminopeptidase P (pepP) site-specific recombinase (rin) XF1950 XF1972 XF1220 XF1361 colicin V secretion ABC transporter ATP-binding protein (cvaB) Beta-lactamase-like XF1397 XF1493 XF2009 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-benzoquinol methylase (*ubiG*) XF2028 virulence regulator (xrvA) XF2297 DNA methylase XF1804 XF1904 site-specific DNA-methyltransferase (sphIM) holliday junction binding protein, DNA helicase (ruvA) XF2310 CDP-diacylglycerol-glycerol-3-phosphate 3phosphatidyltransferase (pgsA) GumJ protein (gumJ) XF1914 XF1915 anthranilate synthase component I (trpE) anthranilate synthase component II (trpG) XF2362 transcriptional regulator ribosomal protein S6 modification protein (rimK) XF1916 XF1919 coenzyme F390 synthetase (af1671) iron-sulfur flavoprotein XF2491 XF2532 XF2535 two-component system, sensor protein (colS) XF2062 XF2085 transcriptional repressor (korC) transcriptional regulator XF2537 XF2539 pre-pilin leader peptidase (xpsO) fimbrial protein XF2122 Zn-finger, CHC2 type predicted membrane protein (yebN) XF2563 XF2677 asparaginyl-tRNA synthetase (asnS) XF2257 L-ascorbate oxidase (aao) XF2390 XF2392 XF2439 putative oxidoreductase protein thioredoxin (trxA) type I restriction-modification system DNA methylase XF2698 autolytic lysozyme (lyc) XF2728 cytidylate kinase (cmkA) XFa0001 transcriptional regulator histone acetyltransferase XF2781 XFa0003 ribonuclease P (mpA) topoisomerase I (topA) XFa0025 XFa0057 transcriptional regulator (korA) XFa0019 XFa0046 site-specific recombinase (rin) predicted transcriptional regulator

Figura 28: Genes induzidos nos estresses salino e osmótico em X. fastidiosa. Os genes

XFa0052

virulence-associated protein D (vapD)

indicados em negrito também foram induzidos no choque térmico.



**Figura 29**: Genes com expressão diminuída nos estresses salino e osmótico em *X*. *fastidiosa*. Os genes indicados em negrito também foram reprimidos no choque térmico.

thiophene and furan oxidation protein (thdF)

XF2778

Foram observados ainda alguns mecanismos provavelmente envolvidos com o acúmulo de solutos compatíveis na presença de NaCl, como a repressão de genes envolvidos na utilização do glutamato, indicando uma economia deste aminoácido, assim como a indução de um gene que pode estar envolvido na biossíntese de prolina e genes de transportadores de aminoácidos polares. Além disso, genes que alteram a topologia do DNA também apresentaram expressão diferencial, como genes da família H-NS, topoisomerases e helicases (Figuras 28 e 29). No estresse osmótico, ocorre um aumento do superenovelamento negativo do DNA, que pode controlar a expressão de genes relacionados à resposta ao estresse (Cheung et al., 2003).

No choque osmótico, foi descrito um aumento na proporção de fosfolipídeos aniônicos em relação aos zwitteriônicos, pois a adição de cargas à membrana auxiliaria na manutenção da hidratação da interface (Sleator & Hill, 2002). Nos experimentos realizados, genes relacionados à biossíntese de fosfatidiletanolamina (zwitteriônica) e do fosfatidilglicerol (aniônico) foram induzidos em níveis semelhantes, enquanto um gene relacionado à síntese de fosfatidilcolina foi reprimido. Este fato pode indicar a reposição dos fosfolipídeos devido a danos na membrana causados pelo estresse e possivelmente, um aumento da carga negativa da membrana em *X. fastidiosa* durante o estresse salino. É interessante notar que o gene *psd* envolvido na síntese de fosfatidiletanolamina, que é induzido na presença de NaCl em *Xylella*, é regulado pelo sistema de dois componentes CpxAR em *E. coli* (Rowley *et al.*, 2006), que tem como homólogo putativo em *X. fastidiosa* o gene XF0323. A indução de genes relacionados à biossíntese de peptidoglicano e LPS é também um indicativo do estresse na parede celular bacteriana.

No estresse causado por NaCl, observamos ainda a indução de um gene que codifica uma proteína provavelmente relacionada ao efluxo de íons. Outros genes codificando transportadores como *antiporters* de Na<sup>+</sup> não apresentaram expressão diferencial. Em *D. vulgaris*, também não foram observadas alterações nos níveis de mensageiro de genes

relacionados ao efluxo de sódio (Mukhopadhyay *et al.*, 2006). É possível que estes genes não sejam regulados em nível de transcrição, visto que o transporte e o efluxo de íons devem ser feitos rapidamente por proteínas já existentes na membrana celular. O mesmo raciocínio pode ser aplicado para a indução de genes relacionados ao canal mecanosensível MscS durante o estresse hiperosmótico, apesar desta proteína ser ativada em condições de estresse hipoosmótico. Conforme descrito em *E.coli* (Stokes *et al.*, 2003), esta indução funcionaria como uma preparação da célula para voltar aos níveis normais de osmolaridade do meio, dado que os canais mecanosensíveis são ativados pela tensão da membrana de modo que o efluxo de solutos e água seja realizado numa escala de nanosegundos e as proteínas já devem estar prontas para responder rapidamente ao estresse.

Destacamos ainda no estresse osmótico e salino, a indução da região do genoma de *Xylella* que apresenta baixo conteúdo GC (XF1914-XF1919), região que inclui genes provavelmente envolvidos na biossíntese de sideróforos. A limitação de ferro em condições de estresse hiperosmótico tem sido descrita em diversas bactérias (Hoffmann *et al.*, 2002). Em *X. fastidiosa*, a resposta provavelmente ocorre através síntese de sideróforos, utilizando a maquinaria de síntese não ribossômica de peptídeos (Xie *et al.*, 2003). Além disso, a proteína de periplasma AfuA ligante de ferro, também deve funcionar como auxiliar na tomada de ferro do meio. Na presença de sacarose, a indução de *ribA* pode ainda auxiliar a redução de Fe<sup>+3</sup> (Worst *et al.*, 1998). É interessante notar que no choque térmico, genes relacionados ao transporte de íon Fe<sup>+2</sup> foram induzidos.

Alguns genes relacionados ao estresse oxidativo foram induzidos no estresse por NaCl e sacarose, sendo que um maior número de genes apresentou indução na presença de sal. Experimentos preliminares de exposição a H<sub>2</sub>O<sub>2</sub> em *X. fastidiosa* indicaram a indução de um conjunto de genes relacionados à resposta ao estresse oxidativo distintos dos que foram observados no estresse salino e osmótico (J.F. da Silva Neto, T. Koide, S. L. Gomes, M. V. Marques, em preparação).

Em X. fastidiosa, foram diferencialmente expressos em resposta a modificações no meio ambiente diversos genes relacionados com patogenicidade, virulência e adaptação. Muitos deles não têm uma função conhecida mas foram caracterizados como relacionados com patogenicidade em outras bactérias, visto que mutantes desses genes causaram a perda e/ou redução da virulência, como vapD, XF1020 e xrvA. No caso do choque térmico, há diversas evidências de que muitas chaperones moleculares estão envolvidas em outras funções celulares além do dobramento de proteínas, contribuindo para a infecção do hospedeiro (Henderson et al., 2006). É interessante notar que o progresso da doença CVC, causada por X. fastidiosa, é mais acentuado nos meses de primavera e verão. Os sintomas da doença apresentam-se mais severos nessa época do ano associada a altas temperaturas, assim como em condições de estresse hídrico (Martins et al., 2000). Pode-se especular que a expressão de alguns genes relacionados à virulência e adaptação induzidos nos estresses testados poderia contribuir, pelo menos em parte, para o sucesso da bactéria na infecção do hospedeiro. Como a resposta a estresses ambientais é de importância primordial para patógenos em geral, este estudo deve auxiliar na compreensão dos mecanismos de virulência e adaptação em X. fastidiosa.

## V. CONCLUSÕES:

- Os métodos de bioinformática *HTself*, *BayGO* e *SpotWhatR* foram utilizados com sucesso nas análises de dados de microarranjos de DNA e estão disponíveis livremente para outros pesquisadores
- Os genes que apresentaram maior indução no choque térmico codificam chaperones e proteases, com pico de expressão aos 25 minutos. Já no estresse osmótico, os genes codificando proteínas hipotéticas e hipotéticas conservadas apresentaram maiores valores de indução, assim como ocorreram em maior número, indicando uma possível função na resposta a este estresse.
- A partir da determinação do início de transcrição de 6 genes codificando Hsps que foram altamente induzidos, foi proposto um consenso para os promotores dependentes de  $\sigma^{32}$  em *X.fastidiosa*: CTTGAAA (9-14nt) CCNCACAT. Este consenso é semelhante ao consenso de promotores dependentes de  $\sigma^{32}$  de outras bactérias gram-negativas, sugerindo que a regulação desses genes é mediada por  $\sigma^{32}$ . No choque térmico, observou-se também a indução de genes relacionados ao estresse extracitoplasmático, que são regulados pelo fator sigma alternativo  $\sigma^E$ . No choque osmótico e salino, genes codificando a maioria das Hsps foram reprimidos na exposição prolongada a esses estresses, indicando que a resposta não é mediada por  $\sigma^{32}$  ou  $\sigma^E$ .
- Durante os estresses ambientais testados, observou-se a repressão de genes relacionados ao metabolismo intermediário e à síntese protéica, indicando uma atividade metabólica diminuída nesses estresses.
- Detectou-se também alteração na expressão de genes relacionados à virulência: aumento da expressão de toxinas como hemolisinas no choque térmico e colicinas no estresse salino e osmótico, hemaglutininas e outras adesinas nos três estresses testados.

## VI. REFERÊNCIAS BIBLIOGRÁFICAS

- ALBA, B.M.; GROSS, C.A. Regulation of the *Escherichia coli* sigma-dependent envelope stress response. **Mol Microbiol**, v. 52, n. 3, p. 613-619, 2004.
- ALTSCHUL, S.F.; MADDEN, T.L.; SCHAFFER, A.A.; ZHANG,J.; ZHANG,Z.; MILLER, W.; LIPMAN, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. **Nucleic Acids Res,** v. 25, n. 17, p. 3389-3402, 1997.
- ANDREWS, S.C.; ROBINSON, A.K.; RODRIGUEZ-QUINONES, F. Bacterial iron homeostasis. **FEMS Microbiol Rev,** v. 27, n. 3, p. 215-237, 2003.
- ASHBURNER, M.; BALL, C. A.; BLAKE, J. A.; BOTSTEIN, D.; BUTLER, H.; CHERRY, J. M.; DAVIS, A. P.; DOLINSKI, K.; DWIGHT, S. S.; EPPIG, J. T.; HARRIS, M. A.; HILL, D. P.; ISSEL-TARVER, L.; KASARSKIS, A.; LEWIS, S.; MATESE, J. C.; RICHARDSON, J. E.; RINGWALD, M.; RUBIN, G. M.; SHERLOCK, G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. **Nat Genet**, v. 25, n. 1, p. 25-29, 2000.
- ASPEDON, A.; PALMER, K.; WHITELEY, M. Microarray analysis of the osmotic stress response in *Pseudomonas aeruginosa*. **J Bacteriol**, v. 188, n. 7, p. 2721-2725, 2006.
- AVEDISSIAN, M.; GOMES, S. L. Expression of the *groESL* operon is cell-cycle controlled in *Caulobacter* crescentus. **Mol Microbiol**, v. 19, n. 1, p. 79-89, 1996
- BALDINI, R. L.; AVEDISSIAN, M.; GOMES, S. L. The CIRCE element and its putative repressor control cell cycle expression of the *Caulobacter crescentus groESL* operon. **J Bacteriol**, v. 180, n.7, p. 1632-1641, 1998
- BAPTISTA, C.S.; VENCIO, R.Z.; ABDALA, S.; VALADARES, M.P.; MARTINS, C.; DE BRAGANCA PEREIRA, C.A.; ZINGALES, B. DNA microarrays for comparative genomics and analysis of gene expression in *Trypanosoma cruzi*. **Mol Biochem Parasitol**, v. 138, n. 2, p. 183-194, 2004
- BARRETT, T.; SUZEK, T.O.; TROUP, D.B.; WILHITE, S.E.; NGAU, W.C.; LEDOUX, P.; RUDNEV, D.; LASH, A.E.; FUJIBUCHI, W.; EDGAR, R. NCBI GEO: mining millions of expression profiles-database and tools. **Nucleic Acids Res**, v. 33, p. D562-566, 2005.
- BATEMAN, A.; COIN, L.; DURBIN, R.; FINN, R.D.; HOLLICH, V.; GRIFFITHS-JONES, S.; KHANNA, A.; MARSHALL, M.; MOXON, S.; SONNHAMMER, E.L.; STUDHOLME, D.J.; YEATS, C.; EDDY, S.R. The Pfam protein families database. **Nucleic Acids Res**, v. 32, p. 138-141, 2004
- BERTIN, P.; BENHABILES, N.; KRIN, E.; LAURENT-WINTER, C.; TENDENG, C.; TURLIN, E.; THOMAS, A.; DANCHIN, A.; BRASSEUR, R. The structural and functional organization of H-NS-like proteins is evolutionarily conserved in gram-negative bacteria. **Mol Microbiol**, v. 31, n. 1, p. 319-29, 1999
- BHATTACHARYYA, A.; STILWAGEN, S.; IVANOVA, N.; D'SOUZA, M.; BERNAL, A.; LYKIDIS, A.; KAPATRAL, V.; ANDERSON, I.; LARSEN, N.; LOS, T.; REZNIK, G.; SELKOV, E.; WALUNAS, T.L.; FEIL, H.; FEIL, W.S.; PURCELL, A.; LASSEZ, J.L.; HAWKINS, T.L.; HASELKORN, R.; OVERBEEK, R.; PREDKI, P. F.; KYRPIDES, N.C. Whole-genome comparative analysis of three phytopathogenic *Xylella fastidiosa* strains. **Proc Natl Acad Sci USA**, v. 99, n. 19, p. 12403-12408, 2002

- BHATTACHARYYA, A.; STILWAGEN, S.; REZNIK, G.; FEIL, H.; FEIL, W.S.; ANDERSON, I.; BERNAL, A.; D'SOUZA, M.; IVANOVA, N.; KAPATRAL, V.; LARSEN, N.; LOS, T.; LYKIDIS, A.; SELKOV, E.; WALUNAS, T.L.; PURCELL, A.; EDWARDS, R.A.; HAWKINS, T.; HASELKORN, R.; OVERBEEK, R.; KYRPIDES, N.C.; PREDKI, P.F. Draft sequencing and comparative genomics of *Xylella fastidiosa* strains reveal novel biological insights. **Genome Res**, v. 12, n. 10, p. 1556-1563, 2002
- BIANCHI, A.A.; BANEYX, F. Hyperosmotic shock induces the  $\sigma^{32}$  and  $\sigma^{E}$  stress regulons of *Escherichia coli*. **Mol Microbiol**, v. 34, n. 5, p. 1029-1038, 1999.
- BLASZCZAK, A.; ZYLICZ, M.; GEORGOPOULOS, C.; LIBEREK, K. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in *Escherichia coli* by regulating the switch between  $\sigma^{70}$  and  $\sigma^{32}$  factors assembled with RNA polymerase. **Embo J**, v. 14, n.20, p. 5085-5093, 1995.
- BOOTH, I.R.; LOUIS, P. Managing hypoosmotic stress: aquaporins and mechanosensitive channels in *Escherichia coli*. **Curr Opin Microbiol**, v. 2, n. 2, p. 166-169, 1999
- BOWTELL, D.D. Options available--from start to finish--for obtaining expression data by microarray. **Nat Genet**, v. 21, p. 25-32, 1999.
- BREMER, E.; KRÄMER, R. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In: STORZ. G.; HENGGE-ARONIS, R. **Bacterial Stress Responses**. Washington DC: ASM Press, p. 79-96, 2000.
- BUCK, M.; GALLEGOS, M.T.; STUDHOLME, D.J.; GUO, Y.; GRALLA, J.D. The bacterial enhancer-dependent σ<sup>54</sup> transcription factor. **J Bacteriol**, v. 182, n. 15, p. 4129-4136, 2000.
- CAVALIERI, D.; DE FILIPPO, C. Bioinformatic methods for integrating whole-genome expression results into cellular networks. **Drug Discov Today**, v. 10, n. 10, p. 727-734, 2005
- CHEUNG, K.J.; BADARINARAYANA, V.; SELINGER, D.W.; JANSE, D.; CHURCH, G.M. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of *Escherichia coli*. **Genome Res**, v. 13, n. 2, p. 206-215, 2003.
- CHUAQUI, R.F.; BONNER, R.F.; BEST, C.J.; GILLESPIE, J.W.; FLAIG, M.J.; HEWITT, S.M.; PHILLIPS, J.L.; KRIZMAN, D.B.; TANGREA, M.A.; AHRAM, M.; LINEHAN, W.M.; KNEZEVIC, V.; EMMERT-BUCK, M.R. Post-analysis follow-up and validation of microarray experiments. **Nat Genet**, v. 32, p. 509-514, 2002
- COLLINS, T.; GERDAY, C.; FELLER, G. Xylanases, xylanase families and extremophilic xylanases. **FEMS**Microbiol Lett, v. 29, n. 1, p. 3-23, 2005.
- COSTA DE OLIVEIRA, R.; YANAI, G.M.; MUTO, N.H.; LEITE, D.B.; DE SOUZA, A.A.; COLETTA FILHO, H.D.; MACHADO, M.A.; NUNES, L.R. Competitive hybridization on spotted microarrays as a tool to conduct comparative genomic analyses of *Xylella fastidiosa* strains. **FEMS Microbiol Lett**, v. 216, n. 1, p. 15-21, 2002.
- CUI, X.; CHURCHILL, G.A. Statistical tests for differential expression in cDNA microarray experiments. **Genome Biol**, v. 4, n. 4, p. 210, 2003.
- DA SILVA NETO, J.F.; KOIDE, T.; GOMES, S.L.; MARQUES, M.V. Site-directed gene disruption in *Xylella fastidiosa*. **FEMS Microbiol Lett**, v. 210, n. 1, p. 105-110.

- DA SILVA NETO, J.F.; KOIDE, T.; GOMES, S.L.; MARQUES, M.V. The single ECF sigma factor of *Xylella fastidiosa* is involved in the heat shock response and presents an unusual regulatory mechanism. Sumetido.
- DA SILVA, A.C.; SIMAO, R.C.; SUSIN, M.F.; BALDINI, R.L.; AVEDISSIAN, M.; GOMES, S.L. Downregulation of the heat shock response is independent of DnaK and  $\sigma^{32}$  levels in *Caulobacter crescentus*. **Mol Microbiol**, v. 49, n. 2, p. 541-553, 2003.
- DATTA, S. Comparisons and validation of statistical clustering techniques for microarray gene expression data. **Bioinformatics**, v. 19, n. 4, p. 459-466, 2003.
- DAVIS, M.J.; FRENCH, W.J.; SCHAAD, N.W. Axenic culture of the bacteria associated with phony disease of peach and plum leaf scald. **Curr Microbiol**, v. 6, n. 5, p. 309-314, 1981.
- DE SOUZA, A.A.; TAKITA, M.A.; COLETTA-FILHO, H.D.; CALDANA, C.; GOLDMAN, G.H.; YANAI, G.M.; MUTO, N.H.; DE OLIVEIRA, R.C.; NUNES, L.R.; MACHADO, M.A. Analysis of gene expression in two growth states of *Xylella fastidiosa* and its relationship with pathogenicity. **Mol Plant Microbe Interact**, v. 16, n. 10, p. 867-875, 2003.
- DE SOUZA, A.A.; TAKITA, M.A.; COLETTA-FILHO, H.D.; CALDANA, C.; YANAI, G.M.; MUTO, N.H.; DE OLIVEIRA, R.C.; NUNES, L.R.; MACHADO, M.A. Gene expression profile of the plant pathogen *Xylella fastidiosa* during biofilm formation *in vitro*. **FEMS Microbiol Lett**, v. 237, n. 2, p. 341-353.
- DEKKERS, L.C.; BLOEMENDAAL, C.J.; DE WEGER, L.A.; WIJFFELMAN, C.A.; SPAINK, H.P.; LUGTENBERG, B.J. A two-component system plays an important role in the root-colonizing ability of *Pseudomonas fluorescens* strain WCS365. **Mol Plant Microbe Interact**, v. 11, n. 1, p 45-56, 1998.
- DOW, J.M.; DANIELS, M.J. *Xylella* genomics and bacterial pathogenicity to plants. **Yeast**, v. 17, n. 4, p. 263-271, 2000.
- DUGGAN, D.J.; BITTNER, M.; CHEN, Y.; MELTZER, P.; TRENT, J.M. Expression profiling using cDNA microarrays. **Nat Genet**, v. 21, p. 10-14, 1999.
- EZRATY, B.; AUSSEL, L.; BARRAS, F. Methionine sulfoxide reductases in prokaryotes. **Biochim Biophys Acta**, v. 1703, n. 2, p. 221-229, 2005.
- FEIL, H.; FEIL, W.S.; DETTER, J.C.; PURCELL, A.; LINDOW, S.E. Site-directed disruption of the *fimA* and *fimF* fimbrial genes of *Xylella fastidiosa*. **Phytopathology**, v. 93, p. 675-682.
- GAO, H.; WANG, Y.; LIU, X.; YAN, T.; WU, L.; ALM, E.; ARKIN, A.; THOMPSON, D. K.; ZHOU, J. Global transcriptome analysis of the heat shock response of *Shewanella oneidensis*. **J Bacteriol**, v. 186, n. 22, p. 7796-7803, 2004.
- GENTSCHEV, I.; DIETRICH, G.; GOEBEL, W. The *E. coli* alpha-hemolysin secretion system and its use in vaccine development. **Trends Microbiol**, v. 10, n. 1, p. 39-45, 2000.
- GOODMAN, L.; KRUSKAL, W. Measures of association for cross classifications. **Journal of the American Statistical Association**, v. 49, p. 732-764, 1954.
- GROISMAN, E.A. The pleiotropic two-component regulatory system PhoP-PhoQ. **J Bacteriol**, v. 183, n. 6, p. 1835-42, 2001.
- GROSS, C.A. Function and regulation of the heat shock proteins. In: NEIDHARDT, F.C. *Escherichia coli* and *Salmonella*: Cellular and Molecular Biology. ASM Press, p. 1382-1399, 1996.
- GRUBER, T.M.; GROSS, C.A. Multiple sigma subunits and the partitioning of bacterial transcription space. **Annu Rev Microbiol**, v. 57, p. 441-66, 2003.

- GUCKENBERGER, M.; KURZ, S.; AEPINUS, C.; THEISS, S.; HALLER, S.; LEIMBACH, T.; PANZNER, U.; WEBER, J.; PAUL, H.; UNKMEIR, A.; FROSCH, M.; DIETRICH, G. Analysis of the heat shock response of *Neisseria meningitidis* with cDNA- and oligonucleotide-based DNA microarrays. **J Bacteriol**, v. 184, n. 9, p. 2546-2551, 2004.
- GUILHABERT, M.R.; KIRKPATRICK, B.C. Identification of *Xylella fastidiosa* antivirulence genes: hemagglutinin adhesins contribute to biofilm maturation and colonization and attenuate virulence. **Mol Plant Microbe Interact**, v. 18, n. 8, p. 856-868, 2005.
- GUILHABERT, M.R.; HOFFMAN, L.M.; MILLS, D.A.; KIRKPATRICK, B.C. Transposon mutagenesis of *Xylella fastidiosa* by electroporation of Tn5 synaptic complexes. **Mol Plant Microbe Interact**, v. 14, n. 6, p. 701-706, 2001.
- GUISBERT, E.; HERMAN, C.; LU, C.Z.; GROSS, C.A. A chaperone network controls the heat shock response in *E. coli*. **Genes Dev**, v. 18, n. 22, p. 2812-21, 2004.
- HAN, Y.; ZHOU, D.; PANG, X.; ZHANG, L.; SONG, Y.; TONG, Z.; BAO, J.; DAI, E.; WANG, J.; GUO, Z.; ZHAI, J.; DU, Z.; WANG, X.; HUANG, P.; YANG, R. Comparative transcriptome analysis of *Yersinia pestis* in response to hyperosmotic and high-salinity stress. **Res Microbiol**, v. 156, n. 3, p 403-415, 2005.
- HARLEY, C.B.; REYNOLDS, R.P. Analysis of *E. coli* promoter sequences. **Nucleic Acids Res**, v. 15, n. 5, p. 2343-2361, 1987.
- HEERMANN, R.; JUNG, K. Structural features and mechanisms for sensing high osmolarity in microorganisms. **Curr Opin Microbiol**, v. 7, n. 2, p. 168-174, 2004.
- HELMANN, J.D.; WU, M.F.; KOBEL, P.A.; GAMO, F.J.; WILSON, M.; MORSHEDI, M.M.; NAVRE, M.; PADDON, C. Global transcriptional response of *Bacillus subtilis* to heat shock. **J Bacteriol**, v. 183, n. 24, p. 7318-7328, 2001.
- HENDERSON, B.; ALLAN, E.; COATES, A. R. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. **Infect Immun**, v. 74, n. 7, p. 3693-3706, 2006.
- HOFFMANN, T.; SCHUTZ, A.; BROSIUS, M.; VOLKER, A.; VOLKER, U.; BREMER, E. High-salinity-induced iron limitation in *Bacillus subtilis*. J Bacteriol, v. 184, n. 3, p. 718-727, 2002.
- HOHEISEL, J.D. Microarray technology: beyond transcript profiling and genotype analysis. **Nat Rev Genet**, v. 7, n. 3, p. 200-210, 2006.
- HOLLOWAY, A.J.; VAN LAAR, R.K.; TOTHILL, R.W.; BOWTELL, D.D. Options available--from start to finish--for obtaining data from DNA microarrays II. **Nat Genet**, v. 32, p. 481-489, 2002
- HOPKINS, D.L. *Xylella fastidiosa*: xylem limited bacterial pathogens of plants. **Annu Rev Phytopathol**, v. 27, p. 271-290, 1989.
- HUERTA, A.M.; COLLADO-VIDES, J.  $\sigma^{70}$  promoters in *Escherichia coli*: specific transcription in dense regions of overlapping promoter-like signals. **J Mol Biol**, v. 333, n. 2, p. 261-78, 2003.
- HUGOUVIEUX-COTTE-PATTAT, N.; CONDEMINE, G.; NASSER, W.; REVERCHON, S. Regulation of pectinolysis in *Erwinia chrysanthemi*. **Annu Rev Microbiol**, v. 50, p. 213-57, 1996.
- JISHAGE, M.; KVINT, K.; SHINGLER, V.; NYSTROM, T. Regulation of sigma factor competition by the alarmone ppGpp. **Genes Dev**, v. 16, n. 10, p. 1260-1270, 2002.
- KANEHISA, M.; GOTO, S. KEGG: kyoto encyclopedia of genes and genomes. **Nucleic Acids Res**, v. 28, n. 1, p. 27-30, 2000.

- KATZ, M.E.; STRUGNELL, R.A.; ROOD, J.I. Molecular characterization of a genomic region associated with virulence in *Dichelobacter nodosus*. **Infect Immun**, v. 60, n. 11, p. 4586-4592, 1992.
- KAZMIERCZAK, M.J.; WIEDMANN, M.; BOOR, K.J. Alternative sigma factors and their roles in bacterial virulence. **Microbiol Mol Biol Rev**, v. 69, n. 4, p. 527-543, 2005.
- KHATRI, P.; DRAGHICI, S. Ontological analysis of gene expression data: current tools, limitations, and open problems. **Bioinformatics**, v. 21, n. 18, p. 3587-3595, 2005.
- KIM, C.C.; JOYCE, E.A.; CHAN, K.; FALKOW, S. Improved analytical methods for microarray-based genome-composition analysis. **Genome Biol**, v. 3, n. 11, p. 65, 2002.
- KOIDE, T.; DA SILVA NETO, J.F.; GOMES, S.L.; MARQUES, M.V. Insertional transposon mutagenesis in the *Xylella fastidiosa* Citrus Variegated Chlorosis strain with transposome. **Curr Microbiol**, v. 48, n. 4, p. 247-250, 2004.
- KOIDE, T.; ZAINI, P.A.; MOREIRA, L.M.; VENCIO, R.Z.; MATSUKUMA, A.Y.; DURHAM, A.M.; TEIXEIRA, D.C.; EL-DORRY, H.; MONTEIRO, P.B.; DA SILVA, A.C.; VERJOVSKI-ALMEIDA, S.; DA SILVA, A.M.; GOMES, S.L. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of *Xylella fastidiosa* delineates genes important for bacterial virulence. J Bacteriol, v. 186, n. 16, p. 5442-5449, 2004.
- KOIDE, T.; SALEM-IZACC, S.M.; GOMES, S.L.; VENCIO, R.Z. SpotWhatR: a user-friendly microarray data analysis system. **Genet Mol Res**, v. 5, p. 93-107, 2006a.
- KOIDE, T.; VENCIO, R.Z.; GOMES, S.L. Global gene expression analysis of the heat shock response in the phytopathogen *Xylella fastidiosa*. **J Bacteriol**, no prelo. 2006b.
- LAMBAIS, M.R.; GOLDMAN, M.H.; CAMARGO, L.E.; GOLDMAN, G.H. A genomic approach to the understanding of *Xylella fastidiosa* pathogenicity. **Curr Opin Microbiol**, v. 3, n. 5, p. 459-462, 2000.
- LEE, E. J.; KAROONUTHAISIRI, N.; KIM, H.S.; PARK, J.H.; CHA, C.J.; KAO, C.M.; ROE, J.H. A master regulator σ<sup>B</sup> governs osmotic and oxidative response as well as differentiation via a network of sigma factors in *Streptomyces coelicolor*. **Mol Microbiol**, v. 57, n.5, p. 1252-1264, 2005.
- LEE, R.F.; DERRICK, K.S.; BERETTA, M.J.G.; AL, E. Citrus variegated chlorosis: a new destructive disease of citrus in Brazil. **Citrus Ind.**, v. 72, p. 12-15, 1991.
- LEE, Y.; PENA-LLOPIS, S.; KANG, Y.S.; SHIN, H.D.; DEMPLE, B.; MADSEN, E.L.; JEON, C.O.; PARK, W. Expression analysis of the *fpr* (ferredoxin-NADP+ reductase) gene in *Pseudomonas putida* KT2440. **Biochem Biophys Res Commun**, v. 339, n. 4, p. 1246-1254, 2006.
- LINDQUIST, S.; CRAIG, E.A. The heat-shock proteins. Annu Rev Genet, v. 22, p. 631-677, 1988.
- LIU, Y.; GAO, W.; WANG, Y.; WU, L.; LIU, X.; YAN, T.; ALM, E.; ARKIN, A.; THOMPSON, D.K.; FIELDS, M.W.; ZHOU, J. Transcriptome analysis of *Shewanella oneidensis* MR-1 in response to elevated salt conditions. **J Bacteriol**, v. 187, n. 7, p. 2501-2507, 2005.
- LIVAK, K.J.; SCHMITTGEN, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2<sup>(-ΔΔCt)</sup> Method. **Methods**, v. 25, n. 4, p. 402-408, 2001.
- MARQUES, M.V.; DA SILVA, A.M.; GOMES, S.L. Genetic organization of plasmid pXF51 from the plant pathogen *Xylella fastidiosa*. **Plasmid**, v. 45, n. 3, p. 184-199, 2001.
- MARTINS, M.L.; CEOTTO, G.; ALVES, S.G.; BUFON, C.C.; SILVA, J.M.; LARANJEIRA, F.F. Cellular automata model for citrus variegated chlorosis. **Phys Rev E Stat Phys**, v. 62, p. 7024-7030, 2000.
- MATTICK, J. S. Type IV pili and twitching motility. Annu Rev Microbiol, v. 56, p. 289-314, 2002.

- MEIDANIS, J.; BRAGA, M.D.; VERJOVSKI-ALMEIDA, S. Whole-genome analysis of transporters in the plant pathogen *Xylella fastidiosa*. **Microbiol Mol Biol Rev**, v. 66, n. 2, p. 272-299, 2002.
- MONTEIRO, P.B.; TEIXEIRA, D.C.; PALMA, R.R.; GARNIER, M.; BOVE, J.M.; RENAUDIN, J. Stable transformation of the *Xylella fastidiosa* citrus variegated chlorosis strain with *oriC* plasmids. **Appl Environ Microbiol**, v. 67, n. 5, p. 2263-2269, 2001.
- MORITA, M.T.; TANAKA, Y.; KODAMA, T.S.; KYOGOKU, Y.; YANAGI, H.; YURA, T. Translational induction of heat shock transcription factor  $\sigma^{32}$ : evidence for a built-in RNA thermosensor. **Genes Dev**, v. 13, n. 6, p. 655-665, 1999.
- MOTIN, V.L.; GEORGESCU, A. M.; FITCH, J.P.; GU, P.P.; NELSON, D.O.; MABERY, S.L.; GARNHAM, J.B.; SOKHANSANJ, B.A.; OTT, L.L.; COLEMAN, M.A.; ELLIOTT, J.M.; KEGELMEYER, L.M.; WYROBEK, A.J.; SLEZAK, T.R.; BRUBAKER, R.R.; GARCIA, E. Temporal global changes in gene expression during temperature transition in *Yersinia pestis*. **J Bacteriol**, v. 186, n. 18, p. 6298-6305, 2004.
- MUKHOPADHYAY, A.; HE, Z.; ALM, E.J.; ARKIN, A.P.; BAIDOO, E.E.; BORGLIN, S.C.; CHEN, W.; HAZEN, T.C.; HE, Q.; HOLMAN, H.Y.; HUANG, K.; HUANG, R.; JOYNER, D.C.; KATZ, N.; KELLER, M.; OELLER, P.; REDDING, A.; SUN, J.; WALL, J.; WEI, J.; YANG, Z.; YEN, H.C.; ZHOU, J.; KEASLING, J.D. Salt stress in *Desulfovibrio vulgaris* Hildenborough: an integrated genomics approach. **J Bacteriol**, v. 188, n. 11, p. 4068-4078, 2006.
- MUNCHBACH, M.; DAINESE, P.; STAUDENMANN, W.; NARBERHAUS, F.; JAMES, P. Proteome analysis of heat shock protein expression in *Bradyrhizobium japonicum*. **Eur J Biochem**, v. 264, n. 1, p. 39-48, 1999.
- NADON, R.; SHOEMAKER, J. Statistical issues with microarrays: processing and analysis. **Trends Genet**, v. 18, n. 5, p. 265-71, 2002.
- NAKAHIGASHI, K.; RON, E.Z.; YANAGI, H.; YURA, T. Differential and independent roles of a  $\sigma^{32}$  homolog (RpoH) and an HrcA repressor in the heat shock response of *Agrobacterium tumefaciens*. **J Bacteriol**, v. 181, n. 24, p. 7509-7515, 1999.
- NEWMAN, K.L.; ALMEIDA, R.P.; PURCELL, A.H.; LINDOW, S.E. Cell-cell signaling controls *Xylella fastidiosa* interactions with both insects and plants. **Proc Natl Acad Sci USA**, v. 101, n. 6, p. 1737-1742, 2004.
- NUNES, L.R.; ROSATO, Y.B.; MUTO, N.H.; YANAI, G.M.; DA SILVA, V S.; LEITE, D.B.; GONCALVES, E.R.; DE SOUZA, A.A.; COLETTA-FILHO, H.D.; MACHADO, M.A.; LOPES, S.A.; DE OLIVEIRA, R.C. Microarray analyses of *Xylella fastidiosa* provide evidence of coordinated transcription control of laterally transferred elements. **Genome Res**, v. 13, n. 4, p. 570-8, 2003.
- OJAIMI, C.; BROOKS, C.; CASJENS, S.; ROSA, P.; ELIAS, A.; BARBOUR, A.; JASINSKAS, A.; BENACH, J.; KATONA, L.; RADOLF, J.; CAIMANO, M.; SKARE, J.; SWINGLE, K.; AKINS, D.; SCHWARTZ, I. Profiling of temperature-induced changes in *Borrelia burgdorferi* gene expression by using whole genome arrays. **Infect Immun**, v. 71, n. 4, p. 1689-1705, 2003.
- OSBOURN, A.E.; CLARKE, B.R.; DANIELS, M.J. Identification and DNA sequence of a pathogenicity gene of *Xanthomonas campestris pv. campestris*. **Mol Plant Microbe Interact**, v. 3, n. 5, p. 280-285, 1990.
- OTANI, M.; TABATA, J.; UEKI, T.; SANO, K.; INOUYE, S. Heat-shock-induced proteins from *Myxococcus xanthus*. **J Bacteriol**, v. 183, n. 21, p. 6282-6287, 2001.

- PADAN, E.; KRULWICH, T.A. Sodium Stress. In: STORZ.G.; HENGGE-ARONIS, R.. Bacterial Stress Responses. ASM Press, p. 117-130, 2000.
- PAGET, M.S.; HELMANN, J.D. The  $\sigma^{70}$  family of sigma factors. **Genome Biol**, v. 4, n. 1, p. 203, 2003.
- PAPINI-TERZI, F.S.; ROCHA, F.R.; VENCIO, R.Z.; OLIVEIRA, K.C.; FELIX JDE, M.; VICENTINI, R.; ROCHA, S.; SIMOES, A.C.; ULIAN, E.C.; DI MAURO, S.M.; DA SILVA, A.M.; PEREIRA, C.A.; MENOSSI, M.; SOUZA, G.M. Transcription profiling of signal transduction-related genes in sugarcane tissues. **DNA Res**, v. 12, n. 1, p. 27-38, 2005.
- PASHALIDIS, S.; MOREIRA, L.M.; ZAINI, P.A.; CAMPANHARO, J.C.; ALVES, L.M.; CIAPINA, L.P.; VENCIO, R.Z.; LEMOS, E.G.; DA SILVA, A.M.; DA SILVA, A.C. Whole-genome expression profiling of *Xylella fastidiosa* in response to growth on glucose. **Omics**, v. 9, n. 1, p. 77-90, 2005.
- PAUL, B.J.; ROSS, W.; GAAL, T.; GOURSE, R.L. rRNA transcription in *Escherichia coli*. **Annu Rev Genet**, v. 38, p. 749-770, 2004.
- POOLE, L.B. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. **Arch Biochem Biophys**, v. 433, n. 1, p. 240-254, 2005.
- QUACKENBUSH, J. Computational analysis of microarray data. Nat Rev Genet, v. 2, n. 6, p. 418-427, 2001.
- QUACKENBUSH, J. Microarray data normalization and transformation. Nat Genet, v. 32, p. 496-501, 2002.
- RAIVIO, T.L. Envelope stress responses and Gram-negative bacterial pathogenesis. **Mol Microbiol**, v. 56, n. 5, p. 1119-1128, 2005.
- RAIVIO, T.L.; SILHAVY, T.J. Periplasmic stress and ECF sigma factors. **Annu Rev Microbiol**, v. 55, p. 591-624, 2001.
- RAMOS, J.L.; MARTINEZ-BUENO, M.; MOLINA-HENARES, A.J.; TERAN, W.; WATANABE, K.; ZHANG, X.; GALLEGOS, M.T.; BRENNAN, R.; TOBES, R. The TetR family of transcriptional repressors. **Microbiol Mol Biol Rev**, v. 69, n. 2, p. 326-356, 2005.
- REDAK, R.A.; PURCELL, A.H.; LOPES, J.R.; BLUA, M.J.; MIZELL, R.F.; 3RD; ANDERSEN, P.C. The biology of xylem fluid-feeding insect vectors of *Xylella fastidiosa* and their relation to disease epidemiology. **Annu Rev Entomol**, v. 49, p. 243-270, 2004.
- REZUCHOVA, B.; MITICKA, H.; HOMEROVA, D.; ROBERTS, M.; KORMANEC, J. New members of the *Escherichia coli* σ<sup>E</sup> regulon identified by a two-plasmid system. **FEMS Microbiol Lett**, v. 225, n. 1, p. 1-7, 2003.
- RHODIUS, V.A.; SUH, W.C.; NONAKA, G.; WEST, J.; GROSS, C.A. Conserved and variable functions of the  $\sigma^E$  stress response in related genomes. **PLoS Biol**, v. 4, n. 1, p. e2, 2006.
- RICHMOND, C.S.; GLASNER, J.D.; MAU, R.; JIN, H.; BLATTNER, F.R. Genome-wide expression profiling in *Escherichia coli* K-12. **Nucleic Acids Res**, v. 27, n. 19, p. 3821-3835, 1999.
- ROESSLER, M.; SEWALD, X.; MULLER, V. Chloride dependence of growth in bacteria. **FEMS Microbiol** Lett, v. 225, n. 1, p. 161-165, 2003.
- ROSEN, R.; BUTTNER, K.; BECHER, D.; NAKAHIGASHI, K.; YURA, T.; HECKER, M.; RON, E.Z. Heat shock proteome of *Agrobacterium tumefaciens*: evidence for new control systems. **J Bacteriol**, v. 184, n. 6, p. 1772-1778, 2002.
- ROSSETI, V.; GARNIER, M.; BOVE, J.M.; BERETTA, M.J.G.; TEIXEIRA, A.R.R.; QUAGGIO, J.A.; DE NIGRI, J.D. Présence de bactérie dans le xyllème d'oragers atteints de chlorose variégée, une nouvelle maladie des agrumes au Brésil. C. R. Acad. Sci. Ser, v. III, n. 310, p. 345-349, 1990.

- ROWLEY, G.; SPECTOR, M.; KORMANEC, J.; ROBERTS, M. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. **Nat Rev Microbiol**, v. 4, n. 5, p. 383-394, 2006.
- ROZEN, S.; SKALETSKY, H. Primer3 on the WWW for general users and for biologist programmers. **Methods Mol Biol**, v. 132, p. 365-386, 2000.
- SANDKVIST, M. Type II secretion and pathogenesis. Infect Immun, v. 69, n. 6, p. 3523-3535, 2001.
- SCHENA, M.; SHALON, D.; DAVIS, R.W.; BROWN, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. **Science**, v. 270, n. 5235, p. 467-470, 1995.
- SCHUMANN, W. The *Bacillus subtilis* heat shock stimulon. **Cell Stress Chaperones**, v. 8, n. 3, p. 207-17, 2003.
- SEREBRIJSKI, I.; WOJCIK, F.; REYES, O.; LEBLON, G. Multicopy suppression by *asd* gene and osmotic stress-dependent complementation by heterologous *proA* in *proA* mutants. **J Bacteriol**, v. 177, n. 24, p. 7255-7560, 1995.
- SETUBAL, J.C.; MOREIRA, L.M.; DA SILVA, A.C. Bacterial phytopathogens and genome science. **Curr Opin Microbiol**, v. 8, n. 5, p. 595-600, 2005.
- SILVERMAN, B.W. Density Estimation. London, Chapman and Hall, 1986.
- SIMAO, R.C.; SUSIN, M.F.; ALVAREZ-MARTINEZ, C.E.; GOMES, S.L. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in *Caulobacter crescentus*. **Mol Microbiol**, v. 57, n. 2, p.592-603, 2005.
- SIMPSON, A.J.; REINACH, F.C.; ARRUDA, P.; ABREU, F.A.; ACENCIO, M.; ALVARENGA, R.; ALVES, L.M.; ARAYA, J.E.; BAIA, G.S.; BAPTISTA, C.S.; BARROS, M.H.; BONACCORSI, E.D.; BORDIN, S.; BOVE, J.M.; BRIONES, M.R.; BUENO, M.R.; CAMARGO, A.A.; CAMARGO, L.E.; CARRARO, D.M.; CARRER, H.; COLAUTO, N.B.; COLOMBO, C.; COSTA, F.F.; COSTA, M.C.; COSTA-NETO, C.M.; COUTINHO, L.L.; CRISTOFANI, M.; DIAS-NETO, E.; DOCENA, C.; EL-DORRY, H.; FACINCANI, A.P.; FERREIRA, A.J.; FERREIRA, V.C.; FERRO, J.A.; FRAGA, J.S.; FRANCA, S.C.; FRANCO, M.C.; FROHME, M.; FURLAN, L.R.; GARNIER, M.; GOLDMAN, G.H.; GOLDMAN, M.H.; GOMES, S.L.; GRUBER, A.; HO, P.L.; HOHEISEL, J.D.; JUNQUEIRA, M.L.; KEMPER, E.L.; KITAJIMA, J.P.; KRIEGER, J.E.; KURAMAE, E.E.; LAIGRET, F.; LAMBAIS, M.R.; LEITE, L.C.; LEMOS, E.G.; LEMOS, M.V.; LOPES, S.A.; LOPES, C.R.; MACHADO, J.A.; MACHADO, M.A.; MADEIRA, A.M.; MADEIRA, H.M.; MARINO, C.L.; MARQUES, M.V.; MARTINS, E.A.; MARTINS, E.M.; MATSUKUMA, A.Y.; MENCK, C.F.; MIRACCA, E.C.; MIYAKI, C.Y.; MONTERIRO-VITORELLO, C.B.; MOON, D.H.; NAGAI, M.A.; NASCIMENTO, A.L.; NETTO, L.E.; NHANI, A.; JR.; NOBREGA, F.G.; NUNES, L.R.; OLIVEIRA, M.A.; DE OLIVEIRA, M.C.; DE OLIVEIRA, R.C.; PALMIERI, D.A.; PARIS, A.; PEIXOTO, B.R.; PEREIRA, G.A.; PEREIRA, H.A.; JR.; PESQUERO, J.B.; QUAGGIO, R.B.; ROBERTO, P.G.; RODRIGUES, V.; DE, M.R.A.J.; DE ROSA, V.E.; JR.; DE SA, R.G.; SANTELLI, R.V.; SAWASAKI, H.E.; DA SILVA, A.C.; DA SILVA, A.M.; DA SILVA, F.R.; DA SILVA, W.A.; JR.; DA SILVEIRA, J.F.; SILVESTRI, M.L.; SIQUEIRA, W.J.; DE SOUZA, A.A.; DE SOUZA, A.P.; TERENZI, M.F.; TRUFFI, D.; TSAI, S.M.; TSUHAKO, M.H.; VALLADA, H.; VAN SLUYS, M.A.; VERJOVSKI-ALMEIDA, S.; VETTORE, A.L.; ZAGO, M.A.; ZATZ, M.; MEIDANIS, J.; SETUBAL, J.C. The genome sequence of the plant pathogen Xylella fastidiosa. Nature, v. 406, n. 6792, p. 151-157, 2000.
- SLEATOR, R.D.; HILL, C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. **FEMS Microbiol Rev**, v. 26, n. 1, p. 49-71, 2000.

- SLONIM, D.K. From patterns to pathways: gene expression data analysis comes of age. **Nat Genet**, v. 32, p. 502-508, 2002.
- SMOLKA, M.B.; MARTINS, D.; WINCK, F.V.; SANTORO, C.E.; CASTELLARI, R.R.; FERRARI, F.; BRUM, I.J.; GALEMBECK, E.; COLETTA FILHO, H.; MACHADO, M.A.; MARANGONI, S.; NOVELLO, J.C. Proteome analysis of the plant pathogen *Xylella fastidiosa* reveals major cellular and extracellular proteins and a peculiar codon bias distribution. Proteomics, v. 3, n. 2, p. 224-237, 2003.
- SMOOT, L.M.; SMOOT, J.C.; GRAHAM, M.R.; SOMERVILLE, G.A.; STURDEVANT, D.E.; MIGLIACCIO, C.A.; SYLVA, G.L.; MUSSER, J.M. Global differential gene expression in response to growth temperature alteration in group A *Streptococcus*. **Proc Natl Acad Sci USA**, v. 98, n. 18, p. 10416-10421, 2001.
- SOBALLE, B.; POOLE, R.K. Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. **Microbiology**, v. 145, p. 1817-1830, 1999.
- STEIL, L.; HOFFMANN, T.; BUDDE, I.; VOLKER, U.; BREMER, E. Genome-wide transcriptional profiling analysis of adaptation of *Bacillus subtilis* to high salinity. **J Bacteriol**, v. 185, n. 21, p. 6358-70, 2003.
- STINTZI, A. Gene expression profile of *Campylobacter jejuni* in response to growth temperature variation. **J Bacteriol**, v. 185, n. 6, p. 2009-2016, 2003.
- STOKES, N.R.; MURRAY, H.D.; SUBRAMANIAM, C.; GOURSE, R.L.; LOUIS, P.; BARTLETT, W.; MILLER, S.; BOOTH, I.R. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. **Proc Natl Acad Sci USA**, v. 100, n. 26, p. 15959-15964, 2003.
- STOLOVITZKY, G. Gene selection in microarray data: the elephant, the blind men and our algorithms. **Curr Opin Struct Biol**, v. 13, n. 3, p. 370-376, 2003.
- THONY-MEYER, L.; FISCHER, F.; KUNZLER, P.; RITZ, D.; HENNECKE, H. *Escherichia coli* genes required for cytochrome c maturation. **J Bacteriol**, v. 177, n. 15, p. 4321-4326, 1995.
- TROYANSKAYA, O.G.; GARBER, M.E.; BROWN, P.O.; BOTSTEIN, D.; ALTMAN, R.B. Nonparametric methods for identifying differentially expressed genes in microarray data. **Bioinformatics**, v. 18, n. 11, p. 1454-1461, 2002.
- TU, Y.; STOLOVITZKY, G.; KLEIN, U. Quantitative noise analysis for gene expression microarray experiments. **Proc Natl Acad Sci USA**, v. 99, n. 22, p. 14031-14036, 2002
- TUSHER, V.G.; TIBSHIRANI, R.; CHU, G. Significance analysis of microarrays applied to the ionizing radiation response. **Proc Natl Acad Sci USA**, v. 98, n. 9, p. 5116-5121.
- VAN DE PEPPEL, J.; KEMMEREN, P.; VAN BAKEL, H.; RADONJIC, M.; VAN LEENEN, D.; HOLSTEGE, F.C. Monitoring global messenger RNA changes in externally controlled microarray experiments. **EMBO Rep**, v. 4, n. 4, p. 387-393, 2003.
- VAN DER WERF, M. J.; PIETERSE, B.; VAN LUIJK, N.; SCHUREN, F.; VAN DER WERFF-VAN DER VAT, B.; OVERKAMP, K.; JELLEMA, R.H. Multivariate analysis of microarray data by principal component discriminant analysis: prioritizing relevant transcripts linked to the degradation of different carbohydrates in *Pseudomonas putida* S12. **Microbiology**, v. 152, p. 257-272, 2006.
- VAN HELDEN, J. Regulatory sequence analysis tools. Nucleic Acids Res, v. 31, n. 13, p. 3593-3596, 2003.
- VAN SLUYS, M.A.; DE OLIVEIRA, M.C.; MONTEIRO-VITORELLO, C.B.; MIYAKI, C.Y.; FURLAN, L.R.; CAMARGO, L.E.; DA SILVA, A.C.; MOON, D.H.; TAKITA, M.A.; LEMOS, E.G.; MACHADO, M.A.; FERRO, M.I.; DA SILVA, F.R.; GOLDMAN, M.H.; GOLDMAN, G.H.; LEMOS,

- M.V.; EL-DORRY, H.; TSAI, S.M.; CARRER, H.; CARRARO, D.M.; DE OLIVEIRA, R.C.; NUNES, L.R.; SIQUEIRA, W.J.; COUTINHO, L.L.; KIMURA, E.T.; FERRO, E.S.; HARAKAVA, R.; KURAMAE, E.E.; MARINO, C.L.; GIGLIOTI, E.; ABREU, I.L.; ALVES, L.M.; DO AMARAL, A.M.; BAIA, G.S.; BLANCO, S.R.; BRITO, M.S.; CANNAVAN, F.S.; CELESTINO, A.V.; DA CUNHA, A.F.; FENILLE, R.C.; FERRO, J.A.; FORMIGHIERI, E.F.; KISHI, L.T.; LEONI, S.G.; OLIVEIRA, A.R.; ROSA, V.E.; JR.; SASSAKI, F.T.; SENA, J.A.; DE SOUZA, A.A.; TRUFFI, D.; TSUKUMO, F.; YANAI, G.M.; ZAROS, L.G.; CIVEROLO, E.L.; SIMPSON, A.J.; ALMEIDA, N.F.; JR.; SETUBAL, J.C.; KITAJIMA, J.P. Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of *Xylella fastidiosa*. **J Bacteriol**, v. 185, n. 3, p. 1018-1026, 2003.
- VELCULESCU, V.E.; ZHANG, L.; VOGELSTEIN, B.; KINZLER, K.W. Serial analysis of gene expression. Science, v. 270, n. 5235, p. 484-487, 1995.
- VENCIO, R.Z.; KOIDE, T. HTself: Self-Self Based Statistical Test for Low Replication Microarray Studies. **DNA Res**, v. 12, n. 3, p. 211-214, 2005.
- VENCIO, R.Z.; KOIDE, T.; GOMES, S.L.; PEREIRA, C.A. BayGO: Bayesian analysis of ontology term enrichment in microarray data. **BMC Bioinformatics**, v. 7, n. 1, p. 86, 2006.
- WEBER, A.; JUNG, K. Profiling early osmostress-dependent gene expression in *Escherichia coli* using DNA macroarrays. **J Bacteriol**, v. 184, n. 19, p. 5502-5507, 2002.
- WEINER, J.; 3RD ZIMMERMAN, C.U.; GOHLMANN, H.W.; HERRMANN, R. Transcription profiles of the bacterium *Mycoplasma pneumoniae* grown at different temperatures. **Nucleic Acids Res**, v. 31, n. 21, p. 6306-6320, 2003.
- WELLS, J.M.; RAJU, B.C.; HUNG, H.Y.; WEISBERG, W.G.; MANDELCO-PAUL, L.; BRENNER, D.J. *Xylella fastidiosa* new-genus new-species gram-negative xylem-limited fastidious plant bacteria related to *Xanthomonas spp.* **Int J Syst Bacteriol**, v. 37, p. 136-143, 1987.
- WENG, S.F.; TAI, P.M.; YANG, C.H.; WU, C.D.; TSAI, W.J.; LIN, J.W.; TSENG, Y.H. Characterization of stress-responsive genes, *hrcA-grpE-dnaK-dnaJ*, from phytopathogenic *Xanthomonas campestris*. **Arch Microbiol**, v. 176, p. 121-128, 2001.
- WINTER, J.; LINKE, K.; JATZEK, A.; JAKOB, U. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. **Mol Cell**, v. 17, n. 3, p. 381-392, 2005.
- WORST, D.J.; GERRITS, M.M.; VANDENBROUCKE-GRAULS, C.M.; KUSTERS, J.G. *Helicobacter pylori ribBA*-mediated riboflavin production is involved in iron acquisition. **J Bacteriol**, v. 180, n. 6, p. 1473-1479, 1998.
- XIE, G.; BONNER, C.A.; BRETTIN, T.; GOTTARDO, R.; KEYHANI, N.O.; JENSEN, R.A. Lateral gene transfer and ancient paralogy of operons containing redundant copies of tryptophan-pathway genes in *Xylella* species and in heterocystous cyanobacteria. **Genome Biol**, v. 4, n. 2, p. R14, 2003.
- XIE, Y.; CHOU, L.S.; CUTLER, A.; WEIMER, B. DNA Macroarray profiling of *Lactococcus lactis subsp. lactis* IL1403 gene expression during environmental stresses. **Appl Environ Microbiol**, v. 70, n. 11, p. 6738-6747, 2004.
- YANG, I.V.; CHEN, E.; HASSEMAN, J.P.; LIANG, W.; FRANK, B.C.; WANG, S.; SHAROV, V.; SAEED, A. I.; WHITE, J.; LI, J.; LEE, N.H.; YEATMAN, T.J.; QUACKENBUSH, J. Within the fold: assessing differential expression measures and reproducibility in microarray assays. **Genome Biol**, v. 3, n. 11, p. 62, 2002.

- YANG, Y.H.; DUDOIT, S.; LUU, P.; LIN, D.M.; PENG, V.; NGAI, J.; SPEED, T.P. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.

  Nucleic Acids Res, v. 30, n. 4, p. e15, 2002.
- YEUNG, K.Y.; MEDVEDOVIC, M.; BUMGARNER, R.E. Clustering gene-expression data with repeated measurements. **Genome Biol**, v. 4, n. 5, p. R34, 2003.
- YUE, L.; REISDORF, W.C. Pathway and ontology analysis: emerging approaches connecting transcriptome data and clinical endpoints. **Curr Mol Med**, v. 5, n. 1, p. 11-21, 2005.
- YURA, T.; NAKAHIGASHI, K. Regulation of the heat-shock response. **Curr Opin Microbiol**, v. 2, n. 2, p. 153-158, 1999.
- ZHAO, Y.; PAN, W. Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments. **Bioinformatics**, v. 19, n. 9, p. 1046-1054, 2003.

# MATERIAL SUPLEMENTAR

Tabela S1: Categorias funcionais dos genes de X. fastidiosa (Simpson et al., 2000)

| I.     | Metabolismo intermediário                        | II.     | Biossíntese de pequenas moléculas                |
|--------|--------------------------------------------------|---------|--------------------------------------------------|
| I.A    | Degradação                                       | II.A.   | Biossíntes de aminoácidos                        |
| I.A.1  | Degradação de polissacarídeos                    | II.A.1  | Família do glutamato, assimilação de             |
| I.A.2  | Degradação de pequenas moléculas                 | II.A.2  | nitrogênio<br>Família do aspartato, piruvato     |
| I.B    | Metabolismo intermediário central                | II.A.3  | Família da glicina-serina, metabolismo de        |
| I.B.1  | Amino açúcares                                   |         | enxofre                                          |
| I.B.2  | Entner-Douderoff                                 | II.A.4  | Família de aminoácidos aromáticos                |
| I.B.3  | Gliconeogênese                                   | II.A.5  | Histidina                                        |
| I.B.4  | Via do Glioxilato                                | II.B    | Biossíntese de nucleotídeos                      |
| I.B.5  | Miscelânea, metabolismo de glicose               | II.B.1  | Ribonucleotídeos - purina                        |
| I.B.6  | Via das pentose fosfato, não oxidativa           | II.B.2  | Ribonucleotídeos - pirimidina                    |
| I.B.7  | Hidrólise de nucleotídeo                         | II.B.3  | 2´-Deoxiribonucleotídeos                         |
| I.B.8  | Interconversões de nucleotídeo                   | II.B.4  | Economia de nucleosídeos e nucleotídeos          |
| I.B.9  | Fósforo                                          | II.C    | Biossíntese de açúcares e sugar                  |
| I.B.10 | Conversões multifuncionais                       | II.D    | nucleotides Biossíntese de cofatores, grupos     |
| I.B.11 | Biossíntese de açúcares-nucleotideos, conversões | II.D.1  | prostéticos e carregadores<br>Biotina            |
| I.B.12 | Metabolismo de enxofre                           | II.D.2  | Ácido fólico                                     |
| I.C    | Metabolismo energético, carbono                  | II.D.3  | Lipoato                                          |
| I.C.1  | Respiração aeróbica                              | II.D.4  | Molibdopterina                                   |
| I.C.2  | Respiração anaeróbica e fermentação              | II.D.5  | Pantotenato                                      |
| I.C.3  | Transporte de elétrons                           | II.D.6  | Piridoxina                                       |
| I.C.4  | Glicólise                                        | II.D.7  | Piridina                                         |
| I.C.5  | Via das pentose fosfato, oxidativa               | II.D.8  | Tiamina                                          |
| I.C.6  | Piruvato desidrogenase                           | II.D.9  | Riboflavina                                      |
| I.C.7  | Ciclo do TCA                                     | II.D.10 | Tioredoxina, glutaredoxina, glutationa           |
| I.C.8  | Sintese de ATP                                   | II.D.11 | Menaquinona, ubiquinona                          |
| I.D    | Funções regulatórias                             | II.D.12 | Heme, porfirina                                  |
|        |                                                  | II.D.13 | BCCP- proteína carregadora de biotina            |
|        |                                                  | II.D.14 | Cobalamina                                       |
|        |                                                  | II.D.15 | Enteroquelina                                    |
|        |                                                  | II.D.16 | Biopterina                                       |
|        |                                                  | II.D.17 | Outros                                           |
|        |                                                  | II.E    | Biossíntese de ácidos graxos e ácido fosfatídico |
|        |                                                  | II.F    | Biossíntese de poliaminas                        |

| III.                                                                                                       | Metabolismo de macromoléculas                                                                                                                                                                                                                                                                                                                                                                                     | VI.              | Elementos genéticos móveis                              |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|
| III.A                                                                                                      | Metabolismo de DNA                                                                                                                                                                                                                                                                                                                                                                                                | VI.A             | Funções relacionadas a fagos e profagos                 |
| III.A.1                                                                                                    | Replicação                                                                                                                                                                                                                                                                                                                                                                                                        | VI.B             | Funções relacionadas a plasmídeos                       |
| III.A.2                                                                                                    | Proteínas ligantes a DNA                                                                                                                                                                                                                                                                                                                                                                                          | VI.C             | Funções relacionadas a transposons e introns            |
| III.A.3                                                                                                    | Recombinação                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                         |
| III.A.4                                                                                                    | Reparo                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                         |
| III.A.5                                                                                                    | Restrição, modificação                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                         |
| III.B                                                                                                      | Metabolismo de RNA                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                         |
| III.B.1                                                                                                    | RNAs ribossômicos e RNAs estáveis                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                         |
| III.B.2                                                                                                    | Proteínas ribossômicas                                                                                                                                                                                                                                                                                                                                                                                            | VII.             | Patogenicidade, virulência e adaptação                  |
| III.B.3                                                                                                    | Ribossomos - maturação e modificação<br>Aminoacil tRNA sintetases, modificação de                                                                                                                                                                                                                                                                                                                                 | VII.A            | Avirulência                                             |
| III.B.4                                                                                                    | tRNAs                                                                                                                                                                                                                                                                                                                                                                                                             | VII.B            | Resposta hipersensitiva e patogenicidade                |
| III.B.5                                                                                                    | Síntese de RNA, modificação, transcrição                                                                                                                                                                                                                                                                                                                                                                          | VII.C            | Produção de toxinas e detoxificação                     |
| III.B.6                                                                                                    | Degradação de RNA                                                                                                                                                                                                                                                                                                                                                                                                 | VII.D            | Degradação de parede celular do hospedeiro              |
| III.C                                                                                                      | Metabolismo de proteínas                                                                                                                                                                                                                                                                                                                                                                                          | VII.E            | Exopolissacarídeos                                      |
| III.C.1                                                                                                    | Tradução e modificação                                                                                                                                                                                                                                                                                                                                                                                            | VII.F            | Proteínas de superfície                                 |
| III.C.2                                                                                                    | Chaperones                                                                                                                                                                                                                                                                                                                                                                                                        | VII.G            | Adaptação a condições atípicas                          |
| III.C.3                                                                                                    | Degradação de proteínas                                                                                                                                                                                                                                                                                                                                                                                           | VII.H            | Outros                                                  |
| III.D                                                                                                      | Metabolismo de outras macromoléculas                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                         |
| III.D.1                                                                                                    | Polissacarídeos                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                         |
| III.D. I                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                         |
| III.D.2                                                                                                    | Fosfolipídeos  Estrutura Celular                                                                                                                                                                                                                                                                                                                                                                                  | VIII.            | Hipotéticas                                             |
| III.D.2                                                                                                    | Estrutura Celular                                                                                                                                                                                                                                                                                                                                                                                                 | VIII.            | Hipotéticas  Proteínas hipotéticas conservadas          |
| III.D.2                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | •                                                       |
| IV.                                                                                                        | Estrutura Celular Componentes de membrana                                                                                                                                                                                                                                                                                                                                                                         | VIII.A           | Proteínas hipotéticas conservadas                       |
| IV. IV.A IV.A.1                                                                                            | Estrutura Celular  Componentes de membrana  Membrana interna                                                                                                                                                                                                                                                                                                                                                      | VIII.A           | Proteínas hipotéticas conservadas                       |
| IV.A IV.A.1 IV.A.2 IV.B                                                                                    | Estrutura Celular  Componentes de membrana  Membrana interna  Componentes de membrana externa  Mureína, peptidoglicano Polissacarídeos de superfície,                                                                                                                                                                                                                                                             | VIII.A           | Proteínas hipotéticas conservadas                       |
| IV.A IV.A.1 IV.A.2 IV.B IV.C                                                                               | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos                                                                                                                                                                                                                                | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| IV.A IV.A.1 IV.A.2 IV.B IV.C                                                                               | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares                                                                                                                                                                                  | VIII.A           | Proteínas hipotéticas conservadas                       |
| IV.A IV.A.1 IV.A.2 IV.B IV.C IV.D V.                                                                       | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares Transporte                                                                                                                                                                       | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| IV.A IV.A.1 IV.A.2 IV.B IV.C IV.D V.                                                                       | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas                                                                                                                                                  | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| IV.A IV.A.1 IV.A.2 IV.B IV.C IV.D V.                                                                       | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions                                                                                                                                           | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| III.D.2  IV.A  IV.A.1  IV.A.2  IV.B  IV.C  IV.D  V.  V.A  V.A.1  V.A.2  V.A.3                              | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool                                                                                                     | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| IV.A IV.A.1 IV.A.2 IV.B IV.C IV.D V. V.A V.A.1 V.A.2 V.A.3 V.A.3                                           | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool Cátions                                                                                             | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| III.D.2  IV.A  IV.A.1  IV.A.2  IV.B  IV.C  IV.D  V.  V.A  V.A.1  V.A.2  V.A.3  V.A.4  V.A.5                | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool Cátions Nucleosídeos, purinas, pirimidinas                                                          | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| III.D.2  IV.A  IV.A.1  IV.A.2  IV.B  IV.C  IV.D  V.A  V.A.1  V.A.2  V.A.3  V.A.4  V.A.5  V.A.6             | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool Cátions Nucleosídeos, purinas, pirimidinas Secreção de proteínas e peptídeos                        | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| IV.A IV.A.1 IV.A.2 IV.B IV.C IV.D  V. V.A.1 V.A.2 V.A.3 V.A.4 V.A.5 V.A.6 V.A.7                            | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool Cátions Nucleosídeos, purinas, pirimidinas Secreção de proteínas e peptídeos Outros                 | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| III.D.2  IV.A  IV.A.1  IV.A.2  IV.B  IV.C  IV.D  V.A  V.A.1  V.A.2  V.A.3  V.A.4  V.A.5  V.A.6  V.A.7  V.B | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool Cátions Nucleosídeos, purinas, pirimidinas Secreção de proteínas e peptídeos                        | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |
| IV.A IV.A.1 IV.A.2 IV.B IV.C IV.D  V. V.A.1 V.A.2 V.A.3 V.A.4 V.A.5 V.A.6 V.A.7                            | Estrutura Celular  Componentes de membrana Membrana interna Componentes de membrana externa Mureína, peptidoglicano Polissacarídeos de superfície, lipopolissacarídeos e antígenos Estruturas de Superfície  Processos celulares  Transporte Aminoácidos, aminas Ânions Carboidrato, ácidos orgânicos, álcool Cátions Nucleosídeos, purinas, pirimidinas Secreção de proteínas e peptídeos Outros Divisão celular | VIII.A<br>VIII.B | Proteínas hipotéticas conservadas Proteínas hipotéticas |

**Tabela S2**: Genes induzidos durante o choque térmico. Os genes estão ordenados de acordo com a categoria funcional definida por Simpson *et al*, 2000. M = log da razão da intensidade de fluorescência no choque térmico em relação à condição controle. Os valores em negrito correspondem aos valores de M considerados induzidos.

|                  |                                                                                     |                 |                     |           | M = log₂(40°C/29 |                     | 0°C/29°C)           | °C)          |  |  |
|------------------|-------------------------------------------------------------------------------------|-----------------|---------------------|-----------|------------------|---------------------|---------------------|--------------|--|--|
| Gene.ID          | Produto                                                                             | Nome do<br>gene | Categoria funcional | reanotada | 7min             | 15min               | 25min               | 45min        |  |  |
| XF0878           | predicted polysaccharide deacetylase                                                |                 | I.A.2               | Χ         | 0.25             | 1.57                | 2.16                | 2.70         |  |  |
| XF1472           | benzene 1,2-dioxygenase, ferredoxin protein                                         | bedB            | I.A.2               |           | 0.25             | 1.91                | 1.40                | 1.82         |  |  |
| XF2395           | acetylxylan esterase                                                                | axeA            | I.A.2               |           | 0.46             | 0.93                | 1.88                | 1.50         |  |  |
| XF2013           | 5-formyltetrahydrofolate cyclo-ligase                                               |                 | I.B                 | Χ         | -0.13            | -0.06               | 0.41                | 0.76         |  |  |
| XF0880           | carbonic anhydrase                                                                  | yadF            | I.B.10              |           | -0.05            | 0.22                | 0.51                | 0.64         |  |  |
| XF2171           | inorganic pyrophosphatase                                                           | ppa             | I.B.10              |           | 0.26             | 1.56                | 2.51                | 2.98         |  |  |
| XF2255<br>XF0259 | acetyl coenzyme A synthetase                                                        | acs             | I.B.10              |           | 0.16             | 0.58                | 1.23                | 1.63         |  |  |
|                  | phosphomannose isomerase-GDP-mannose pyrophosphorylase                              | xanB            | I.B.11              |           | 0.13             | 0.28                | 0.72                | 1.01         |  |  |
| XF0848<br>XF2015 | glycosyl hydrolase, family 18                                                       |                 | I.B.2               | Х         | 0.13             | 0.49                | 0.88                | 1.31         |  |  |
| XF1747           | ribose-5-phosphate isomerase A                                                      | rpiA            | I.B.6               |           | 0.12             | 1.67                | 2.11                | 2.27         |  |  |
| XF0254           | nucleoside-diphosphate-sugar epimerases electron transfer flavoprotein beta subunit |                 | I.C                 | Х         | -0.28            | 0.48                | 0.80                | 0.92         |  |  |
| XF0910           | ubiquinol cytochrome C oxidoreductase, cytochrome C1 subunit                        | etfB            | I.C.3               |           | 0.00             | -0.02               | 0.39                | 1.00         |  |  |
| XF1298           | electron transfer flavoprotein ubiquinone oxidoreductase                            | petC            | I.C.3               |           | 0.10             | 0.44                | 0.83                | 0.79         |  |  |
| XF2459           | c-type cytochrome biogenesis protein                                                | etfQO           | I.C.3               |           | 0.31             | 0.68                | 1.21                | 0.77         |  |  |
| XF1144           | ATP synthase, gamma chain                                                           | cycJ            | I.C.3               |           | -0.17            | 0.61                | 0.78                | 1.10         |  |  |
| XF0352           | pentaphosphate guanosine-3'-pyrophosphohydrolase                                    | atpG            | I.C.8               |           | -0.44            | 0.66                | 0.56                | 0.72         |  |  |
| XF0390           | two-component system, sensor protein                                                | spoT            | I.D                 |           | -0.08            | 1.22                | 1.45                | 1.26         |  |  |
| XF1316           | ATP:GTP 3'-pyrophosphotranferase                                                    | phoQ            | I.D                 |           | -0.11            | 0.33                | 0.58                | 0.74         |  |  |
| XF1354           | transcriptional regulator (MarR family)                                             | relA            | I.D                 |           | 0.44             | 0.52                | 0.81                | 1.28         |  |  |
| XF1625           | two-component system, sensor protein                                                | yybA<br>alaZ    | I.D                 |           | 0.09             | 0.23                | 0.41                | 0.68         |  |  |
| XF1721           | putative transcriptional regulator (LysR family)                                    | algZ            | I.D                 | V         | -0.24            | 0.19                | 0.26                | 0.59         |  |  |
|                  | transcriptional regulator                                                           | h = f           | I.D                 | X         | -0.15            | 1.11                | 1.62                | 1.36         |  |  |
| XF2062           | transcriptional regulator                                                           | baf             | I.D                 | Х         | -0.05            | -0.06               | 0.55                | 0.75         |  |  |
| XF2071           | predicted transcriptional regulator                                                 | korC            | I.D                 | V         | -0.29            | 0.24                | 0.50                | 0.70         |  |  |
| XF2240           | negative regulator of sigma E activity                                              | roo A           | I.D                 | X<br>X    | -0.05<br>0.61    | 0.21                | 0.55<br><b>1.55</b> | 0.96<br>1.33 |  |  |
| XF2336           | two-component system, regulatory protein                                            | rseA<br>coIR    | I.D<br>I.D          | ^         | -0.10            | <b>1.30</b><br>0.92 | 1.80                | 2.03         |  |  |
| XF2534           | two-component system, regulatory protein                                            | colR            | I.D                 |           | 0.10             | 0.92                | 1.12                | 1.13         |  |  |
| XF2546           | two-component system, sensor protein                                                | pilS            | I.D                 |           | 0.27             | 1.02                | 1.69                | 1.63         |  |  |
| XF2578           | two-component system, regulatory protein                                            | actR            | I.D                 |           | 0.19             | 0.43                | 0.60                | 0.64         |  |  |
| XF2715           | transcriptional regulator (TetR family)                                             | auin            | I.D                 | Х         | 0.75             | 1.41                | 0.83                | 0.41         |  |  |
|                  | predicted transcriptional regulator                                                 |                 | I.D                 | X         | 0.73             | 0.71                | 0.67                | -0.44        |  |  |
| XF1000           | acetylornithine deacetylase                                                         | argE            | II.A.1              | ^         | -0.03            | -0.55               | 0.31                | 0.57         |  |  |
| XF1003           | argininosuccinate lyase                                                             | asl             | II.A.1              |           | 0.03             | -0.38               | 0.27                | 1.01         |  |  |
| XF1004           | glutamate 5-kinase                                                                  | dr1827          | II.A.1              |           | 0.08             | -0.99               | -0.01               | 1.21         |  |  |
| XF2709           | glutamate synthase, beta subunit                                                    | gltD            | II.A.1              |           | 0.42             | 0.80                | 0.75                | 0.77         |  |  |
| XF1473           | aminotransferase                                                                    | nifS            | II.A.2              |           | 0.37             | 0.65                | 1.17                | 1.01         |  |  |
| XF1374           | N-(5'-phosphoribosyl) anthranilate isomerase                                        | trpF            | II.A.4              |           | 0.07             | 0.86                | 1.45                | 2.07         |  |  |
| XF1375           | tryptophan synthase beta chain                                                      | trpB            | II.A.4              |           | 0.04             | 0.20                | 0.37                | 0.60         |  |  |
| XF0560           | GMP synthase                                                                        | scf55.27        | II.B.1              |           | 0.21             | 0.65                | 0.53                | 0.49         |  |  |
| XF0580           | thymidylate kinase                                                                  | ph1695          | II.B.3              |           | 0.07             | 1.01                | 0.88                | 1.11         |  |  |
| XF2174           | thioredoxin                                                                         | ybbN            | II.D.10             |           | 1.08             | 2.03                | 3.43                | 3.17         |  |  |
| XF2648           | glutamyl-tRNA reductase                                                             | hemA            | II.D.12             |           | 0.08             | 0.55                | 0.48                | 0.51         |  |  |
| XF0378           | thiamin-phosphate pyrophosphorylase                                                 | thiE            | II.D.8              |           | -0.26            | 0.36                | 0.98                | 0.75         |  |  |
| XF0950           | riboflavin-specific deaminase                                                       | ribD            | II.D.9              |           | 0.12             | 0.77                | 0.65                | 0.52         |  |  |
| XF0882           | ATP-dependent helicase                                                              | yoaA            | III.A.1             |           | -0.02            | 0.90                | 0.83                | 1.87         |  |  |
| XF1383           | helicase, ATP dependent                                                             | hrpA            | III.A.1             |           | 0.83             | 1.35                | 2.18                | 1.69         |  |  |
| XF2558           | chromosome segregation protein                                                      | smc             | III.A.2             |           | -0.49            | -0.02               | 0.65                | 0.94         |  |  |
| XF0354           | ATP-dependent DNA helicase                                                          | recG            | III.A.3             |           | -0.70            | 0.60                | 1.38                | 1.43         |  |  |
| XF0295           | type I restriction-modification system endonuclease                                 | mth940          | III.A.5             |           | 0.13             | 0.55                | 0.69                | 0.08         |  |  |
| XF2739           | type I restriction-modification system endonuclease                                 |                 | III.A.5             |           | 0.43             | 1.43                | 2.08                | 2.18         |  |  |
| XFa0025          | histone acetyltransferase                                                           |                 | III.B               | Х         | -0.35            | 0.46                | 0.79                | 1.09         |  |  |
| XF1151           | 30S ribosomal protein S10                                                           | rpsJ            | III.B.2             | •         | -0.07            | -0.27               | 0.77                | 1.06         |  |  |
| XF2580           | 30S ribosomal protein S2                                                            | rpsB            | III.B.2             |           | 0.89             | 0.97                | 1.30                | 1.36         |  |  |
| XF0741           | phenylalanyl-tRNA synthetase alpha chain                                            | pheS            | III.B.4             |           | 0.25             | 0.03                | 0.82                | 0.74         |  |  |
| XF1314           | S-adenosylmethionine: tRNA ribosyltransferase-isomerase                             | queA            | III.B.4             |           | -0.05            | 0.14                | 0.40                | 0.88         |  |  |
| XF1373           | tRNA pseudouridine synthase A                                                       | truA            | III.B.4             |           | 0.07             | 0.76                | 1.41                | 1.96         |  |  |
|                  | oligoribonuclease                                                                   | orn             | III.B.6             |           | 0.18             | 0.58                | 1.68                | 1.90         |  |  |
| XF1257           | oligoriboriuciease                                                                  | UIII            |                     |           |                  |                     |                     | 1.30         |  |  |
| XF1257<br>XF0167 | peptidase                                                                           | OIII            | III.C.1             | Х         | 0.07             | 0.50                | 0.58                | 1.11         |  |  |

|                  |                                                                    |               |                     |           |                     | $M = log_2(4)$ | 0 0,20 0,    |                     |
|------------------|--------------------------------------------------------------------|---------------|---------------------|-----------|---------------------|----------------|--------------|---------------------|
| Gene.ID          | Produto                                                            | Nome do gene  | Categoria funcional | reanotada | 7min                | 15min          | 25min        | 45min               |
| XF1018           | arginine-tRNA-protein transferase                                  | ate1          | III.C.1             |           | 0.22                | 0.82           | 1.13         | 1.31                |
| XF1436           | disulfide oxidoreductase                                           | dsbA          | III.C.1             |           | 0.14                | 0.23           | 0.47         | 0.58                |
| XF2579<br>XF0381 | elongation factor Ts                                               | tsf           | III.C.1             | .,        | 0.60                | 0.91           | 0.82         | 0.63                |
| XF0615           | chaperone<br>60kDa chaperonin                                      | clpB          | III.C.2             | Х         | 1.07                | 2.30           | 3.85         | 3.79                |
| XF0616           | 10kDa chaperonin                                                   | groEL         | III.C.2             |           | 1.86                | 2.22           | 3.93         | 2.85                |
| XF0978           | heat shock protein G                                               | groES<br>htnC | III.C.2<br>III.C.2  |           | 1.93<br><b>1.03</b> | 2.79<br>1.51   | 4.31<br>2.06 | <b>3.21</b><br>1.94 |
| XF2233           | DnaJ protein                                                       | htpG<br>dnaJ  | III.C.2             |           | 1.32                | 2.66           | 3.89         | 4.17                |
| XF2339           | DnaJ protein                                                       | dnaJ          | III.C.2             |           | 0.66                | 1.29           | 2.80         | 2.11                |
| XF2340           | DnaK protein                                                       | dnaK          | III.C.2             |           | 1.15                | 2.57           | 3.64         | 3.78                |
| XF2341           | heat shock protein GrpE                                            | grpE          | III.C.2             |           | 1.42                | 2.32           | 3.80         | 3.08                |
| XF0093           | protease                                                           | ftsH          | III.C.3             | Χ         | -0.06               | 0.65           | 0.87         | 1.35                |
| XF0862           | peptidase                                                          |               | III.C.3             | Χ         | 0.21                | 0.96           | 1.36         | 1.10                |
| XF0881           | peptidase                                                          |               | III.C.3             | Χ         | -0.23               | 0.97           | 1.48         | 1.88                |
| XF1187           | ATP-dependent Clp protease proteolytic subunit                     | clpP          | III.C.3             |           | -0.01               | 0.41           | 0.64         | 0.54                |
| XF1189           | ATP-dependent serine proteinase La                                 | lon           | III.C.3             |           | 0.13                | 0.58           | 0.63         | 0.61                |
| XF1443           | ATP-dependent Clp protease subunit                                 | clpA          | III.C.3             |           | 0.69                | 1.47           | 2.23         | 1.87                |
| XF1484           | heat shock protein                                                 | hsIV          | III.C.3             |           | 0.91                | 1.97           | 3.24         | 2.75                |
| XF1485           | heat shock protein                                                 | hslU          | III.C.3             |           | 0.56                | 1.31           | 2.25         | 2.04                |
| XF2241           | periplasmic protease                                               | mucD          | III.C.3             |           | 1.20                | 1.62           | 2.46         | 2.19                |
| XF2594           | peptidase                                                          |               | III.C.3             | Χ         | 0.79                | 3.04           | 3.65         | 3.91                |
| XF2170           | phospholipid-binding protein (COG1881)                             |               | IV.A                | Χ         | 0.24                | 0.80           | 2.10         | 2.80                |
| XF0256           | glucose-1-phosphate thymidylyltransferase                          | rfbA          | IV.A.1              |           | 0.24                | 0.49           | 0.37         | 0.80                |
| XF0777           | membrane protein                                                   | actII-3       | IV.A.1              |           | 0.03                | 0.49           | 0.74         | 0.95                |
| XF1126           | predicted membrane protein                                         |               | IV.A.1              | Х         | 0.49                | 0.56           | 0.79         | 1.07                |
| XF1140           | UDP-N-acetylglucosamine pyrophosphorylase                          | glmU          | IV.A.1              |           | 0.08                | 0.98           | 0.94         | 0.65                |
| XF1278           | predicted membrane protein                                         |               | IV.A.1              | Х         | -0.08               | 1.15           | 1.68         | 1.82                |
| XF1640           | ankyrin-like protein                                               | ank2          | IV.A.1              |           | 0.31                | 0.53           | 0.49         | 0.19                |
| XF2186<br>XF2252 | conserved rhomboid like protein                                    |               | IV.A.1              | X         | 0.35                | 0.52           | 1.21         | 0.95                |
| XF2257           | predicted membrane protein predicted membrane protein              |               | IV.A.1              | X         | 0.55                | 0.61           | 1.04         | 1.19                |
| XF0384           | outer membrane hemin receptor                                      | yebN<br>      | IV.A.1              | Х         | -0.10               | 0.76           | 0.35         | 0.51                |
| XF0847           | beta-hexosaminidase precursor                                      | phuR          | IV.A.2              |           | 0.11                | 0.09           | 0.52         | 0.13                |
| XF2184           | membrane-bound lytic transglycosylase                              | nahA<br>mltB  | IV.A.2<br>IV.A.2    |           | 0.14                | 0.03<br>0.68   | 0.33         | 1.57<br>0.91        |
| XF0759           | N-acetylmuramoyl-L-alanine amidase precursor                       | amiC          | IV.A.2<br>IV.B      |           | 0.18<br>0.58        | 0.66           | 1.08<br>1.10 | 0.97                |
| XF2185           | rare lipoprotein A                                                 | rlpA          | IV.B                |           | 0.36                | 0.83           | 1.59         | 1.25                |
| XF0879           | lipopolysaccharide biosynthesis protein                            | rfbU          | IV.C                |           | -0.14               | 0.39           | 0.69         | 1.17                |
| XF1415           | UDP-N-acetylglucosamine 1-carboxyvinyltransferase                  | murA          | IV.C                |           | -0.04               | 0.32           | 0.62         | 0.83                |
| XF2537           | pre-pilin leader peptidase                                         | xpsO          | IV.D                |           | 0.23                | 0.35           | 0.55         | 0.54                |
| XF2539           | fimbrial protein                                                   | 7,000         | IV.D                |           | 0.39                | 0.81           | 1.60         | 0.54                |
| XF0556           | predicted GTPases (COG1162)                                        | engC          | IX                  | Χ         | 0.27                | 0.48           | 0.70         | 0.83                |
| XF1021           | acyl-CoA thioesterase II                                           | tesB          | IX                  | Χ         | 0.01                | 0.41           | 1.13         | 1.26                |
| XF1668           | HicB-related protein                                               | drb0141       | IX                  |           | 0.18                | 1.23           | 1.50         | 0.80                |
| XF1796           | bifunctional transcriptional repressor of the biotin operon/biotin |               |                     |           |                     |                |              |                     |
| VE0140           | acetyl-CoA-carboxylase synthetase                                  | birA          | IX                  |           | -0.04               | 0.33           | 1.07         | 1.23                |
| XF0140<br>XF0976 | predicted permease C4-dicarboxylate transport protein              | yjgQ          | V.A                 | Х         | -0.02               | 0.16           | 0.48         | 0.74                |
| XF2267           | glycerol uptake facilitator protein                                | dctA          | V.A.3               |           | 0.40                | 0.73           | 0.97         | 0.97                |
| XF0367           | voltage-gated potassium channel beta subunit                       | glpF          | V.A.3               |           | 0.17                | 0.50           | 0.86         | 0.22                |
| XF0932           | ferrous iron transport protein                                     | d=1220        | V.A.4               |           | 0.24                | 0.53           | 1.15         | 1.06                |
| XF1426           | ion transporter                                                    | dr1220        | V.A.4               |           | 0.17                | <b>0.70</b>    | 0.93         | 0.64<br><b>0.51</b> |
| XF2019           | Na+:H+ antiporter                                                  | dr0830        | V.A.4<br>V.A.4      |           | -0.26               | 0.61           | 0.51         |                     |
| XF0304           | protein-export membrane protein                                    | yjcE<br>secG  | V.A.4<br>V.A.6      |           | 0.29<br>0.19        | 0.01<br>1.22   | 0.75<br>0.78 | 0.85<br>0.89        |
| XF0806           | preprotein translocase SecA subunit                                | secA          | V.A.6               |           | 0.19                | 1.40           | 1.90         | 2.06                |
| XF2261           | oligopeptide transporter                                           | hl0561/560    |                     |           | 0.28                | 0.47           | 0.55         | 0.64                |
| XF2456           | heme ABC transporter membrane protein                              | ccmB          | V.A.6               |           | -0.02               | 0.53           | 0.93         | 1.32                |
| XF2639           | preprotein translocase subunit                                     | secE          | V.A.6               |           | -0.02               | 0.03           | 0.63         | 0.41                |
| XF1258           | small conductance mechanosensitive ion channel                     | yggB          | V.A.7               |           | 0.12                | 0.17           | 0.56         | 0.67                |
| XF1474           | ABC transporter membrane protein                                   | ynhC          | V.A.7               |           | 0.29                | 0.46           | 1.64         | 1.71                |
| XF1475           | ABC transporter ATP-binding protein                                | ynhD          | V.A.7               |           | 0.11                | 0.35           | 1.00         | 0.67                |
| XF2251           | solute:Na+ symporter                                               | рра           | V.A.7               |           | 0.42                | 1.00           | 1.21         | 1.40                |
| XF2582           | ABC transporter ATP-binding protein                                | dra0349       | V.A.7               |           | -0.05               | 0.30           | 0.73         | 0.98                |
| XF0483           | phage-related protein                                              |               | VI.A                | Х         | 0.08                | 0.14           | 0.45         | 0.54                |
| XF0540           | phage-related lysozyme                                             |               | VI.A                | Х         | 0.15                | 0.53           | 0.64         | 0.27                |
| XF0678           | phage-related integrase                                            | int           | VI.A                |           | -0.30               | 0.37           | 0.44         | 0.79                |

|                  |                                                                         |                 |                     | -         |                      | $M = log_2(4$       | 0°C/29°C)           |                     |
|------------------|-------------------------------------------------------------------------|-----------------|---------------------|-----------|----------------------|---------------------|---------------------|---------------------|
| Gene.ID          | Produto                                                                 | Nome do<br>gene | Categoria funcional | reanotada | 7min                 | 15min               | 25min               | 45min               |
| XF0684           | phage-related protein                                                   |                 | VI.A                |           | 0.90                 | 1.21                | 1.28                | 1.45                |
| XF0685           | phage-related protein                                                   |                 | VI.A                |           | 0.57                 | 0.84                | 1.31                | 0.86                |
| XF0686<br>XF0704 | phage-related protein                                                   |                 | VI.A                |           | 0.83                 | 0.52                | 1.62                | 0.22                |
| XF1598           | phage-related protein phage related protein                             |                 | VI.A                |           | 0.07                 | 0.54                | 1.50                | 0.92                |
| XF1645           | phage-related protein                                                   |                 | VI.A                | Х         | 0.91                 | 1.22                | 1.74                | 2.69                |
| XF1647           | phage-related protein                                                   |                 | VI.A<br>VI.A        | Х         | -0.03<br><b>0.66</b> | 0.57                | 1.65                | 1.74                |
| XF1663           | phage-related protein                                                   |                 | VI.A<br>VI.A        | ^         | 0.98                 | 0.39<br><b>1.03</b> | 0.02<br><b>1.18</b> | -0.20<br>0.72       |
| XF1703           | phage-related protein                                                   |                 | VI.A                | Х         | 0.67                 | 0.67                | 0.53                | 0.72                |
| XF1864           | phage-related protein                                                   |                 | VI.A                | ^         | 0.88                 | 0.19                | 0.62                | 1.89                |
| XF2129           | prophage antirepressor                                                  |                 | VI.A                | Х         | 0.40                 | 0.54                | 1.15                | 1.22                |
| XF2314           | phage-related lysozyme                                                  | lycV            | VI.A                |           | 0.02                 | 0.28                | 0.56                | 0.68                |
| XF2522           | phage-related protein                                                   | ,               | VI.A                |           | 0.76                 | 1.35                | 1.69                | 1.31                |
| XF2523           | phage-related protein                                                   |                 | VI.A                |           | 0.37                 | 0.53                | 1.42                | 0.80                |
| XF2525           | phage-related DNA polymerase                                            | dpoL            | VI.A                |           | 0.43                 | 0.85                | 2.21                | 0.44                |
| XF2761           | phage-related integrase                                                 |                 | VI.A                | Χ         | 0.03                 | 0.27                | 0.71                | 0.83                |
| XF2031           | plasmid stabilization protein                                           | parD            | VI.B                |           | 0.41                 | 0.72                | 1.09                | 0.93                |
| XF2048           | conjugal transfer protein                                               | trbJ            | VI.B                |           | 0.61                 | 0.64                | -0.28               | -0.18               |
| XF2066           | plasmid stabilization system protein                                    | yacB            | VI.B                | Χ         | 0.48                 | 1.45                | 1.19                | 1.42                |
| XF2068           | putative stability determinant                                          |                 | VI.B                | Χ         | 0.35                 | 0.79                | 1.02                | 1.34                |
|                  | conjugal transfer protein                                               | trbL            | VI.B                |           | 0.44                 | 0.85                | 0.58                | 0.59                |
| XFa0047          |                                                                         | taxC            | VI.B                |           | 1.60                 | 1.97                | 2.03                | 2.12                |
|                  | putative mobillisation protein                                          | mobC            | VI.B                | Χ         | 2.21                 | 2.79                | 3.38                | 2.93                |
|                  | stability partitioning determinant                                      | stbB            | VI.B                | Χ         | 1.64                 | 1.71                | 1.43                | 1.64                |
| XF0165           | beta-lactamase induction signal transducer protein                      | ampG            | VII.C               |           | 0.35                 | 0.58                | 0.63                | 0.83                |
| XF0598           | prolyl 4-hydroxylase (P4Hc) alpha subunit                               |                 | VII.C               | Х         | 0.29                 | 0.22                | 0.63                | 0.36                |
| XF0668           | hemolysin-type calcium binding protein                                  | frpC            | VII.C               |           | 0.76                 | 0.98                | 0.33                | 0.58                |
| XF1531<br>XF1841 | subunit F of alkyl hydroperoxide reductase                              | ahpF            | VII.C               |           | 0.31                 | 0.67                | 0.40                | 0.18                |
| XF2397           | undecaprenol kinase toxin secretion ABC transporter ATP-binding protein | bacA            | VII.C               |           | -0.13                | 1.33                | 1.60                | 1.85                |
| XF2398           | hemolysin secretion protein D                                           | hlyB            | VII.C               |           | 0.16                 | 0.51                | 0.75                | 0.81                |
| XF2407           | bacteriocin                                                             | hlyD            | VII.C<br>VII.C      |           | 0.10                 | 0.25                | 0.92                | 0.96                |
| XF2666           | multiple antibiotic transporter                                         | uhaN            | VII.C<br>VII.C      | Х         | 0.68<br><b>0.14</b>  | 0.97<br>0.63        | 0.63<br><b>0.65</b> | 0.30<br><b>0.30</b> |
| XF1516           | surface-exposed outer membrane protein                                  | yhgN<br>uspA1   | VII.E<br>VII.F      | ^         | 0.42                 | 0.48                | 0.81                | 0.99                |
| XF2196           | hemagglutinin-like secreted protein                                     | pspA<br>pspA    | VII.F               |           | 0.42                 | 0.44                | 1.30                | 2.19                |
| XF2775           | hemagglutinin-like secreted protein                                     | pspA<br>pspA    | VII.F               |           | 0.43                 | 0.70                | 0.98                | 1.20                |
| XF0285           | heat shock protein                                                      | htrA            | VII.G               |           | 0.52                 | 0.86                | 1.15                | 1.18                |
| XF0432           | BrkB protein                                                            | brk             | VII.G               |           | -0.03                | 0.32                | 0.45                | 0.59                |
| XF0785           | sulfur deprivation response regulator                                   | sac1            | VII.G               |           | 0.32                 | 0.48                | 0.85                | 0.88                |
| XF0959           | predicted ATPase related to phosphate starvation                        |                 |                     |           |                      |                     |                     |                     |
| VE4744           | inducible protein                                                       |                 | VII.G               | Χ         | 0.03                 | 0.40                | 1.63                | 1.47                |
| XF1714           | heat shock protein HSP33                                                | hsIO            | VII.G               | Х         | 0.19                 | 0.41                | 0.56                | 0.64                |
| XF2234           | low molecular weight heat shock protein                                 | hspA            | VII.G               |           | 1.33                 | 3.35                | 3.44                | 2.98                |
| XF2625           | heat shock protein                                                      | htpX            | VII.G               |           | 1.48                 | 2.39                | 3.83                | 3.64                |
| XF1020<br>XF1517 | pathogenicity-related protein general secretory pathway protein E       | _               | VII.H               |           | 0.25                 | 0.43                | 0.66                | 0.52                |
| XF1517           | general secretory pathway protein F                                     | xpsE            | VII.H               |           | 0.45                 | 0.93                | 1.47                | 1.53                |
| XF1520           | general secretory pathway protein H precursor                           | xpsF            | VII.H               |           | 0.20                 | 0.81                | 1.51                | 1.93                |
| XF1522           | general secretory pathway protein J precursor                           | xpsF            | VII.H               |           | 0.11                 | 0.33                | 0.51                | 0.60                |
| XF1588           | putative virulence-associated protein                                   | xpsJ            | VII.H<br>VII.H      | X         | -0.01<br>0.23        | 0.24<br><b>1.11</b> | 0.68<br><b>0.84</b> | 1.22<br>1.02        |
|                  | virulence-associated protein D                                          | vanD            | VII.H               | ^         | 1.36                 | 0.93                | 0.90                | 1.35                |
| XF0328           | conserved hypothetical protein                                          | vapD            | VIII.A              | Х         | -0.07                | 0.46                | 0.65                | 0.66                |
| XF0338           | conserved hypothetical protein                                          | hl0033          | VIII.A              | ^         | -0.33                | 0.40                | 0.35                | 0.61                |
| XF0383           | conserved hypothetical protein                                          | 1110000         | VIII.A              | X         | -0.26                | 0.38                | 0.44                | 0.87                |
| XF0517           | conserved hypothetical protein                                          |                 | VIII.A              | X         | 0.00                 | -0.09               | 0.61                | 0.48                |
| XF0525           | conserved hypothetical protein                                          |                 | VIII.A              | X         | -0.02                | 0.25                | 0.56                | 0.46                |
| XF0583           | conserved hypothetical protein                                          |                 | VIII.A              | - •       | -0.21                | 0.03                | 0.97                | 1.55                |
| XF0623           | conserved hypothetical protein                                          |                 | VIII.A              | Х         | 0.61                 | 0.41                | 1.11                | 0.82                |
| XF0688           | conserved hypothetical protein                                          |                 | VIII.A              | X         | 0.87                 | 0.89                | 1.28                | 0.77                |
| XF0717           | conserved hypothetical protein                                          |                 | VIII.A              | X         | 0.39                 | 0.81                | 1.52                | 1.00                |
| XF0718           | conserved hypothetical protein                                          |                 | VIII.A              |           | 0.66                 | 0.91                | 2.04                | 1.56                |
| XF1006           | conserved hypothetical protein                                          |                 | VIII.A              | Х         | 0.59                 | 1.11                | 1.58                | 1.73                |
| XF1008           | conserved hypothetical protein                                          |                 | VIII.A              | X         | 0.93                 | 1.29                | 1.30                | 1.43                |
| XF1010           | conserved hypothetical protein                                          |                 | VIII.A              | Х         | 0.66                 | 1.32                | 1.51                | 1.70                |
| XF1056           | conserved hypothetical protein                                          |                 | VIII.A              | Χ         | -0.08                | 0.50                | 1.79                | 2.03                |

|                  |                                                               |                 |                     |           |              | $M = log_2(4$       | 0°C/29°C)    |                     |
|------------------|---------------------------------------------------------------|-----------------|---------------------|-----------|--------------|---------------------|--------------|---------------------|
| Gene.ID          | Produto                                                       | Nome do<br>gene | Categoria funcional | reanotada | 7min         | 15min               | 25min        | 45min               |
| XF1318           | conserved hypothetical protein                                |                 | VIII.A              | Х         | -0.03        | 0.64                | 0.78         | 0.88                |
| XF1384           | conserved hypothetical protein                                | pqaA            | VIII.A              |           | 0.35         | 0.42                | 0.89         | 0.16                |
| XF1459<br>XF1461 | conserved hypothetical protein conserved hypothetical protein |                 | VIII.A              | X         | -0.68        | 0.13                | 0.47         | 1.47                |
| XF1486           | conserved hypothetical protein                                | 22406.24        | VIII.A              | Х         | -0.14        | 0.89                | 0.76         | 1.15                |
| XF1654           | conserved hypothetical protein                                | sc4G6.34        | VIII.A<br>VIII.A    | Х         | 0.09<br>0.31 | 0.57<br><b>1.20</b> | 2.14<br>1.12 | 2.03<br>1.37        |
| XF1659           | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | X         | 0.25         | 0.86                | 0.96         | 1.46                |
| XF1686           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.30         | 0.70                | 0.00         | 0.00                |
| XF1712           | conserved hypothetical protein                                |                 | VIII.A              | ,,        | 0.12         | 1.40                | 1.94         | 2.17                |
| XF2014           | conserved hypothetical protein                                | dr0566          | VIII.A              |           | -0.11        | 0.44                | 0.97         | 1.91                |
| XF2190           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.49         | 0.47                | 0.91         | 0.77                |
| XF2195           | conserved hypothetical protein                                |                 | VIII.A              | Х         | 0.36         | 0.30                | 0.52         | 0.61                |
| XF2494           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.38         | 1.50                | 2.12         | 1.97                |
| XF2495           | conserved hypothetical protein                                |                 | VIII.A              | Х         | 0.24         | 1.19                | 1.67         | 1.92                |
| XF2510           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.18         | 0.93                | 1.52         | 2.07                |
| XF2514           | conserved hypothetical protein                                |                 | VIII.A              | Х         | 0.76         | 2.01                | 2.59         | 2.57                |
| XF2515           | conserved hypothetical protein                                |                 | VIII.A              | X         | -0.17        | 0.93                | 2.44         | 0.79                |
| XF2517<br>XF2624 | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.27         | 0.52                | 0.80         | 1.02                |
| XF2651           | conserved hypothetical protein conserved hypothetical protein |                 | VIII.A              | Х         | 0.19         | 1.23                | 1.37         | 1.60                |
|                  | conserved hypothetical protein                                | ycbY            | VIII.A              |           | 0.24         | 0.46                | 0.73         | 0.62                |
|                  | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | Х         | 0.04<br>0.13 | 0.64                | 1.34<br>1.42 | 1.82<br>2.03        |
|                  | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | X         | -0.51        | <b>0.90</b><br>0.94 | 0.70         | 2.03<br>0.86        |
| XF0038           | hypothetical protein                                          |                 | VIII.A<br>VIII.B    | ^         | 0.62         | 1.10                | 1.86         | 0.96                |
| XF0168           | hypothetical protein                                          |                 | VIII.B              |           | 0.27         | 1.91                | 0.85         | 0.63                |
| XF0542           | hypothetical protein                                          |                 | VIII.B              |           | 0.03         | 1.17                | 0.63         | -0.17               |
| XF0558           | hypothetical protein                                          |                 | VIII.B              |           | 0.25         | 0.58                | 1.12         | 1.05                |
| XF0578           | hypothetical protein                                          |                 | VIII.B              |           | 0.39         | 1.08                | 2.08         | 1.89                |
| XF0579           | hypothetical protein                                          |                 | VIII.B              |           | 0.43         | 1.27                | 1.95         | 1.75                |
| XF0626           | hypothetical protein                                          |                 | VIII.B              |           | -0.23        | 0.18                | 0.07         | 0.68                |
| XF0667           | hypothetical protein                                          |                 | VIII.B              |           | 0.95         | 0.59                | -0.34        | -0.50               |
| XF0692           | hypothetical protein                                          |                 | VIII.B              |           | 0.17         | 1.12                | 1.84         | 2.01                |
| XF0807           | hypothetical protein                                          |                 | VIII.B              |           | 0.10         | 1.04                | 1.81         | 1.59                |
| XF0808           | hypothetical protein                                          |                 | VIII.B              |           | 0.00         | 1.24                | 1.22         | 0.90                |
| XF1034           | hypothetical protein                                          |                 | VIII.B              |           | 0.06         | 0.10                | 0.48         | 0.63                |
| XF1184           | hypothetical protein                                          |                 | VIII.B              |           | 0.29         | 0.75                | 0.74         | 0.34                |
| XF1693<br>XF1694 | hypothetical protein<br>hypothetical protein                  |                 | VIII.B              |           | 0.56         | 1.27                | 2.40         | 2.31                |
|                  | hypothetical protein                                          |                 | VIII.B              |           | 0.78         | 1.74                | 3.04         | 2.99                |
| XF1777           | hypothetical protein                                          |                 | VIII.B              |           | 0.60         | 0.50                | 0.13         | 0.39                |
| XF1867           | hypothetical protein                                          |                 | VIII.B<br>VIII.B    |           | 0.04<br>0.15 | 0.14<br>0.56        | 0.45<br>0.72 | 0.62<br>1.01        |
| XF2016           | hypothetical protein                                          |                 | VIII.B<br>VIII.B    |           | 0.13         | 1.09                | 2.16         | 1.65                |
| XF2064           | hypothetical protein                                          |                 | VIII.B              |           | 0.01         | 0.68                | 0.97         | 1.19                |
| XF2065           | hypothetical protein                                          |                 | VIII.B              |           | 0.13         | 1.27                | 1.51         | 1.25                |
| XF2067           | hypothetical protein                                          |                 | VIII.B              |           | 0.36         | 0.79                | 1.20         | 1.32                |
| XF2166           | hypothetical protein                                          |                 | VIII.B              |           | -0.06        | 0.92                | 1.73         | 1.30                |
| XF2173           | hypothetical protein                                          |                 | VIII.B              |           | 0.41         | 1.30                | 2.28         | 2.03                |
| XF2181           | hypothetical protein                                          |                 | VIII.B              |           | -0.12        | 0.55                | 0.94         | 0.67                |
| XF2231           | hypothetical protein                                          |                 | VIII.B              |           | 0.38         | 0.61                | 1.37         | 1.39                |
| XF2256           | hypothetical protein                                          |                 | VIII.B              |           | 0.26         | 0.66                | 1.00         | 0.91                |
| XF2318           | hypothetical protein                                          |                 | VIII.B              |           | 0.19         | 0.29                | 0.38         | 0.71                |
| XF2337           | hypothetical protein                                          |                 | VIII.B              |           | 0.04         | 1.42                | 1.79         | 2.20                |
| XF2377           | hypothetical protein                                          |                 | VIII.B              |           | 0.20         | 0.70                | 0.80         | 1.68                |
| XF2581           | hypothetical protein                                          |                 | VIII.B              |           | 0.19         | 1.10                | 0.65         | -0.17               |
| XF2769<br>XF2771 | hypothetical protein hypothetical protein                     |                 | VIII.B              |           | 0.25         | 0.52                | 1.34         | 1.39                |
| XF2777           | hypothetical protein                                          |                 | VIII.B              |           | 0.01         | 0.07                | 0.24         | 0.75                |
|                  | hypothetical protein                                          |                 | VIII.B              |           | 0.02         | 0.18                | 0.88         | 0.69                |
|                  | hypothetical protein                                          |                 | VIII.B              |           | 0.21         | 1.07                | 0.91         | 0.63                |
|                  | hypothetical protein                                          |                 | VIII.B<br>VIII.B    |           | 0.42<br>0.23 | 0.58<br>0.67        | 1.43<br>1.18 | 0.99<br><b>0.79</b> |
|                  | hypothetical protein                                          |                 | VIII.B              |           | -0.40        | 0.80                | 0.73         | 1.47                |
|                  | hypothetical protein                                          |                 | VIII.B<br>VIII.B    |           | 1.52         | 2.25                | 1.55         | 2.09                |
|                  | hypothetical protein                                          |                 | VIII.B              |           | 1.20         | 1.25                | 0.91         | 1.34                |
|                  | hypothetical protein                                          |                 | VIII.B              |           | 0.09         | 0.45                | 0.91         | 0.94                |
|                  |                                                               |                 | _                   |           |              |                     |              |                     |

Tabela S3: Genes reprimidos durante o choque térmico. Os genes estão organizados de acordo com a categoria funcional definida por Simpson et al, 2000. M = log da razão da intensidade de fluorescência no choque térmico em relação à condição controle. Os valores em negrito correspondem aos valores de M considerados reprimidos.

|                  |                                                                                                                  |                 |                     | -         |                | M = log <sub>2</sub> (4 | 0°C/29°C)             | )              |
|------------------|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-----------|----------------|-------------------------|-----------------------|----------------|
| Gene.ID          | Produto                                                                                                          | Nome do<br>gene | Categoria funcional | reanotada | 7min           | 15min                   | 25min                 | 45min          |
| XF0366           | ribokinase                                                                                                       | rbsK            | I.A.2               |           | -0.05          | -0.65                   | -0.65                 | 0.08           |
| XF0610           | UDP-glucose 4-epimerase                                                                                          | galE<br>-       | I.A.2               |           | -0.13          | -0.37                   | -0.92                 | -1.03          |
| XF0609           | GDP-mannose 4,6 dehydratase                                                                                      | gmD             | I.B.11              |           | -0.05          | -0.14                   | -0.82                 | -1.22          |
| XF0994           | SufE protein probably involved in Fe-S center assembly                                                           |                 | I.B.12              | Х         | -0.06          | -0.57                   | -0.87                 | -1.10          |
| XF2283           | Zn-dependent hydrolases                                                                                          |                 | I.B.4               | Х         | -0.07          | -0.44                   | -0.95                 | -1.21          |
| XF1936           | transketolase 1                                                                                                  | tktA            | I.B.6               |           | -0.30          | -1.01                   | -1.44                 | -1.47          |
| XF2088           | predicted mannose-6-phosphate isomerase                                                                          |                 | I.C                 | Х         | 0.09           | 0.06                    | -0.28                 | -0.87          |
| XF0305           | NADH-ubiquinone oxidoreductase, NQO7 subunit                                                                     | nuoA            | I.C.1               |           | -0.19          | -0.42                   | -0.15                 | -0.81          |
| XF0308           | NADH-ubiquinone oxidoreductase, NQO4 subunit                                                                     | nuoD            | I.C.1               |           | 0.04           | -0.23                   | -0.54                 | -0.81          |
| XF0312           | NADH-ubiquinone oxidoreductase, NQO8 subunit                                                                     | nuoH            | I.C.1               |           | 0.03           | 0.00                    | -0.13                 | -0.84          |
| XF0316           | NADH-ubiquinone oxidoreductase, NQO12 subunit                                                                    | nuoL            | I.C.1               |           | 0.07           | -0.01                   | -0.56                 | -0.75          |
| XF0347           | D-lactate dehydrogenase                                                                                          | dld1            | I.C.1               | .,        | -0.64          | -0.46                   | -0.75                 | -0.42          |
| XF0115           | arsenate reductase                                                                                               | a D             | I.C.3               | Х         | -0.33          | -0.22                   | -0.76                 | -0.58          |
| XF1387           | cytochrome O ubiquinol oxidase, subunit IV                                                                       | cyoD            | I.C.3               |           | -0.11          | -0.54                   | -1.22                 | -1.03          |
| XF1388           | cytochrome O ubiquinol oxidase, subunit III                                                                      | cyoC            | I.C.3               |           | 0.18           | -0.64                   | -1.08                 | -1.24          |
| XF1389<br>XF0274 | cytochrome O ubiquinol oxidase, subunit I                                                                        | cyoB<br>nflsA   | I.C.3<br>I.C.4      |           | -0.35          | -0.73                   | -1.20                 | -1.09          |
| XF0274<br>XF0457 | 6-phosphofructokinase                                                                                            | pfkA            | 1.C.4<br>1.C.4      |           | 0.09           | -1.04                   | -0.91                 | -0.87          |
|                  | glyceraldehyde-3-phosphate dehydrogenase                                                                         | gapA            | 1.C.4<br>1.C.7      |           | -0.06          | -0.65                   | -0.87<br>-0.95        | -0.64          |
| XF1549<br>XF2547 | dihydrolipoamide S-succinyltransferase                                                                           | sucB            |                     |           | -0.29          | -0.43                   | -0.95<br>-1.70        | -1.28<br>-1.52 |
| XF2547<br>XF2548 | succinyl-CoA synthetase, beta subunit                                                                            | sucC            | I.C.7<br>I.C.7      |           | -0.12<br>-0.18 | -1.03                   |                       | -1.52<br>-1.18 |
|                  | succinyl-CoA synthetase, alpha subunit                                                                           | sucD            |                     |           |                | -0.67                   | -1.26                 |                |
| XF1146           | ATP synthase, delta chain                                                                                        | atpH            | I.C.8               |           | 0.04           | -1.20                   | -1.18                 | -1.10          |
| XF1147           | ATP synthase, B chain                                                                                            | atpF            | I.C.8               |           | -0.09          | -1.12                   | -1.03                 | -0.64          |
| XF1148           | ATP synthase, C chain                                                                                            | atpE            | I.C.8               | .,        | -0.40          | -0.96                   | -1.37                 | -1.31          |
| XF0240           | predicted transcriptional regulator                                                                              |                 | I.D                 | X         | -0.11          | -0.36                   | -0.88                 | -0.93          |
| XF0401           | two-component system, regulatory protein                                                                         |                 | I.D                 | Х         | -0.30          | -0.44                   | -0.49                 | -0.83          |
| XF0450           | two-component system, regulatory protein                                                                         | pilH            | I.D                 |           | -0.11          | -0.43                   | -1.07                 | -0.65          |
| XF0821           | transcriptional regulator (Fur family)                                                                           | zur             | I.D                 |           | 0.01           | -0.57                   | -1.19                 | -1.11          |
| XF1275           | poly(hydroxyalcanoate) granule associated protein                                                                | phaF            | I.D                 |           | -0.17          | -0.05                   | -0.87                 | -0.85          |
| XF1408           | RNA polymerase sigma-54 factor                                                                                   | rpoN            | I.D                 |           | -0.15          | -0.76                   | -0.96                 | -0.95          |
| XF1540           | transcriptional regulator (Crp/Fnr family)                                                                       | clp             | I.D                 |           | -0.09          | -0.21                   | -0.40                 | -0.73          |
| XF1813           | methanol dehydrogenase regulatory protein                                                                        | dr0621          | I.D                 |           | -0.06          | -0.88                   | -0.79                 | -0.58          |
| XF1849           | two-component system, sensor protein                                                                             | ntrB            | I.D                 |           | -0.19          | -0.14                   | -0.26                 | -0.46          |
| XF1996           | transcriptional regulator (PbsX family)                                                                          |                 | I.D                 |           | 0.22           | -0.52                   | -0.75                 | -0.65          |
| XF2545           | two-component system, regulatory protein                                                                         | pilR<br>"       | I.D                 |           | -0.09          | -0.26                   | -0.55                 | -0.77          |
| XF0099           | dihydroxy-acid dehydratase                                                                                       | ilvD            | II.A.2              |           | -0.22          | -0.81                   | -0.98                 | -1.01          |
| XF0114<br>XF1999 | 2,3,4,5-tetrahydropyridine-2-carboxylate N-<br>succinyltransferase<br>branched-chain amino acid aminotransferase | dapD<br>ilvE    | II.A.2<br>II.A.2    |           | -0.06<br>-0.17 | -0.35<br>-0.66          | -0.58<br><b>-0.58</b> | -0.68<br>-0.53 |
| XF2224           | homoserine kinase                                                                                                | thrB            | II.A.2              |           | 0.26           | -0.00<br>- <b>0.93</b>  | -0.36<br>-0.25        | 0.61           |
| XF0946           |                                                                                                                  |                 | II.A.2              |           | 0.20           |                         |                       | -0.58          |
| XF0946<br>XF0211 | serine hydroxymethyltransferase anthranilate synthase component II                                               | glyA<br>trpG    | II.A.3<br>II.A.4    |           | 0.22           | 0.10<br>-0.38           | -0.55<br><b>-0.51</b> | -0.52          |
|                  |                                                                                                                  |                 |                     |           |                |                         |                       |                |
| XF0212           | anthranilate phosphoribosyltransferase                                                                           | trpD<br>trpC    | II.A.4              |           | -0.03          | -0.23                   | -0.43                 | -0.60          |
| XF0213<br>XF0587 | indole-3-glycerol phosphate synthase                                                                             | trpC            | II.A.4<br>II.B.1    |           | -0.21<br>-0.17 | -0.26                   | -0.70                 | -1.23          |
|                  | 5'-phosphoribosyl-5-aminoimidazole synthetase                                                                    | purM            |                     |           |                | -0.81                   | -0.64                 | -0.70          |
| XF0988<br>XF1956 | dihydroorotase                                                                                                   | pyrC<br>aphP    | II.B.2              |           | -0.13          | -0.49                   | -0.85                 | -0.44          |
|                  | glutathione synthetase                                                                                           | gshB<br>bom!!   | II.D.10             |           | 0.12           | -0.26                   | -0.62                 | -0.53          |
| XF0566           | ferrochelatase                                                                                                   | hemH            | II.D.12             |           | -0.34          | -0.45                   | -0.63                 | -1.17          |
| XF1797<br>XF0228 | porphyrin biosynthesis protein  2-amino-4-hydroxy-6-hydroxymethyldihydropteridine                                | hemY<br>folK    | II.D.12<br>II.D.2   |           | -0.64<br>-0.15 | -0.25<br>0.00           | <b>-0.90</b><br>-0.26 | -1.26<br>-0.68 |
| XF1456           | pyrophosphokinase 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase                            | folK            | II.D.2              |           | -0.33          | -0.16                   | -0.47                 | -0.73          |
| XF0839           | pyridoxal phosphate biosynthetic protein                                                                         | pdxA            | II.D.6              |           | -0.50          | -0.42                   | -0.79                 | -0.87          |
| XF1923           | quinolinate synthetase A                                                                                         | nadA            | II.D.7              |           | -0.27          | -0.60                   | -0.95                 | -0.71          |
| XF1924           | L-aspartate oxidase                                                                                              | sce94.33        | II.D.7              |           | -0.01          | -0.59                   | -0.68                 | -0.67          |
| XF0954           | 6,7-dimethyl-8-ribityllumazine synthase                                                                          | ribH            | II.D.9              |           | -0.12          | -0.28                   | -0.38                 | -0.67          |
| XF0319           | acetoacetyl-CoA reductase                                                                                        | phbB            | II.E                |           | -0.02          | -0.86                   | -1.34                 | -1.82          |
| XF0670           | malonyl CoA-ACP transacylase                                                                                     | fabD            | II.E                |           | -0.10          | -0.36                   | -0.63                 | -0.79          |
| XF0672           | acyl carrier protein                                                                                             | acpP            | II.E                |           | 0.10           | -0.17                   | -0.25                 | -0.61          |
| XF1044           | (3r)-hydroxymyristoyl ACP dehydrase                                                                              | fabZ            | II.E                |           | 0.06           | -0.67                   | -0.69                 | -0.07          |
| XF0676           | DNA polymerase III, delta subunit                                                                                | holB            | III.A.1             |           | -0.19          | -0.24                   | -0.46                 | -0.68          |
| XF0920           | DNA topoisomerase I                                                                                              | topA            | III.A.1             |           | -0.12          | -0.92                   | -1.07                 | -0.73          |
| XF0660           | exodeoxyribonuclease small subunit                                                                               | xseB            | III.A.4             |           | -0.10          | -0.86                   | -0.97                 | -1.03          |
| XF1902           | holliday junction binding protein, DNA helicase                                                                  | ruvB            | III.A.4             |           | 0.00           | -0.22                   | -0.55                 | -1.04          |
| XF1904           | holliday junction binding protein, DNA helicase                                                                  | ruvA            | III.A.4             |           | -0.87          | -0.22                   | -0.03                 | -1.55          |
| 1504             |                                                                                                                  | IUVA            |                     |           | 5.01           | 0.22                    | 1.00                  | 1.55           |

|                  |                                                                          |              |                     | -         |                | M = log <sub>2</sub> (4 | 0°C/29°C)              | 1              |
|------------------|--------------------------------------------------------------------------|--------------|---------------------|-----------|----------------|-------------------------|------------------------|----------------|
| Gene.ID          | Produto                                                                  | Nome do gene | Categoria funcional | reanotada | 7min           | 15min                   | 25min                  | 45min          |
| XF1905           | holliday junction resolvase, endodeoxyribonuclease                       | ruvC         | III.A.4             |           | -0.46          | -0.59                   | -0.82                  | -0.69          |
| XF0296           | type I restriction-modification system specificity determinant           |              | III.A.5             |           | -0.37          | -0.36                   | -0.61                  | -0.50          |
| XF1442           | ATP-dependent Clp protease adaptor protein ClpS                          | clpS         | III.B               | Х         | -0.15          | -0.52                   | -0.57                  | -0.82          |
| XF1157           | 50S ribosomal protein L22                                                | rpIV         | III.B.2             |           | 0.52           | -0.72                   | 0.10                   | -0.56          |
| XF1159           | 50S ribosomal protein L16                                                | rpIP         | III.B.2             |           | -0.19          | -0.02                   | -0.22                  | -0.55          |
| XF1161           | 30S ribosomal protein S17                                                | rpsQ         | III.B.2             |           | 0.05           | -0.35                   | -0.34                  | -1.02          |
| XF1162           | 50S ribosomal protein L14                                                | rpIN         | III.B.2             |           | -0.01          | -0.16                   | -0.52                  | -1.32          |
| XF1163           | 50S ribosomal protein L24                                                | rpIX         | III.B.2             |           | 0.13           | -0.15                   | -0.30                  | -0.69          |
| XF1169           | 30S ribosomal protein S5                                                 | rpsE         | III.B.2             |           | 0.30           | -0.52                   | -0.98                  | -1.14          |
| XF1171           | 50S ribosomal protein L15                                                | rpIO         | III.B.2             |           | 0.30           | -0.16                   | -0.73                  | -0.97          |
| XF1175           | 30S ribosomal protein S4                                                 | rpsD         | III.B.2             |           | -0.02          | -0.64                   | -0.80                  | -1.01          |
| XF2635           | 50S ribosomal protein L10                                                | rplJ         | III.B.2             |           | -0.07          | -0.39                   | -0.61                  | -0.82          |
| XF0169           | tyrosyl-tRNA synthetase                                                  | tyrS         | III.B.4             |           | -0.37          | -0.59                   | -0.84                  | -0.74          |
| XF0445           | prolyl-tRNA synthetase                                                   | proS         | III.B.4             |           | -0.09          | -0.21                   | -0.69                  | -1.00          |
| XF0736           | threonyl-tRNA synthetase                                                 | thrS         | III.B.4             |           | 0.02           | -0.12                   | -0.48                  | -0.56          |
| XF2222           | histidyl-tRNA synthetase                                                 | hisS         | III.B.4             |           | 0.35           | -1.09                   | -0.59                  | -0.57          |
| XF0192           | ATP-dependent RNA helicase                                               | rhIE         | III.B.5             |           | -0.38          | -0.46                   | -0.64                  | -0.69          |
| XF0955           | transcription termination factor                                         | nusB         | III.B.5             |           | -0.13          | -0.17                   | -0.40                  | -0.84          |
| XF1176           | RNA polymerase alpha subunit                                             | rpoA         | III.B.5             |           | 0.01           | -0.45                   | -0.51                  | -0.77          |
| XF2246           | ribonuclease III                                                         | rnc          | III.B.6             |           | -0.10          | -0.99                   | -0.99                  | -0.84          |
| XF0184           | membrane protein implicated in regulation of membrane protease activity  | dr2142       | III.C               | X         | 0.17           | -1.07                   | -0.50                  | -0.88          |
| XF1191           | peptidyl-prolyl cis-trans isomerase                                      | ppiD         | III.C.1             |           | -0.19          | -0.79                   | -0.49                  | -0.49          |
| XF1605           | peptidyl-prolyl cis-trans isomerase                                      | tp0862       | III.C.1             |           | -0.19          | -0.44                   | -0.72                  | -0.63          |
| XF1026           | serine protease                                                          | pspB         | III.C.3             |           | 0.12           | -0.10                   | -0.86                  | -0.64          |
| XF1944           | peptidyl-dipeptidase                                                     | dcp          | III.C.3             |           | 0.04           | -0.31                   | -0.71                  | -0.67          |
| XF1183           | polysaccharide biosynthetic protein                                      | vipA         | IV.A.1              |           | -0.11          | -0.41                   | -0.39                  | -0.90          |
| XF2277           | predicted membrane protein                                               |              | IV.A.1              | X         | -0.24          | -0.43                   | -0.66                  | -0.59          |
| XF0363           | OmpA family protein                                                      | yiaD         | IV.A.2              | X         | -0.05          | -0.14                   | -0.63                  | -1.03          |
| XF0601           | outer membrane protein UptE precursor                                    |              | IV.A.2              | X         | 0.03           | -0.06                   | -0.60                  | -0.55          |
| XF0653           | putative lipoprotein                                                     | 14/          | IV.A.2              | Х         | -0.08          | -0.31                   | -0.46                  | -0.46          |
| XF0872           | outer membrane protein                                                   | ompW         | IV.A.2              |           | 0.14           | -1.04                   | -0.63                  | -1.21          |
| XF0938           | putative lipoprotein (competence related)                                | 0            | IV.A.2              | Х         | -0.07          | -0.88                   | -1.14                  | -1.11          |
| XF0975           | polyphosphate-selective porin O                                          | oprO         | IV.A.2              |           | 0.19           | -0.72                   | -0.68                  | -0.50          |
| XF1814           | glycosyl transferase                                                     |              | IV.A.2              | Х         | -0.25          | -0.38                   | -0.44                  | -0.48          |
| XF1896           | outer membrane protein P6 precursor                                      | pal<br>fb.D  | IV.B                |           | -0.13          | -0.63                   | -0.89                  | -1.45          |
| XF0611           | dTDP-glucose 4-6-dehydratase                                             | rfbB         | IV.C                |           | -0.15          | -0.62                   | -1.34                  | -1.56          |
| XF2588           | UDP-2,3-diacylglucosamine hydrolase                                      | ybbF         | IV.C                | Х         | -0.73          | -0.40                   | -0.88                  | -1.26          |
| XF0031           | PilX protein                                                             | pilX         | IV.D                |           | -0.47          | -0.84                   | -0.36                  | -0.47          |
| XF0083           | fimbrial subunit precursor                                               | f17A-A       | IV.D                |           | 0.28           | -1.14                   | -0.87                  | -1.50          |
| XF0371           | fimbrial assembly membrane protein                                       | pilO         | IV.D                |           | -0.52          | -0.79                   | -0.96                  | -1.77          |
| XF0372           | fimbrial assembly protein                                                | pilP<br>:10  | IV.D                |           | -0.26          | -0.50                   | -0.94                  | -1.15          |
| XF0373           | fimbrial assembly protein                                                | pilQ         | IV.D                |           | -0.32          | -0.38                   | -1.08                  | -0.87          |
| XF1632           | twitching motility protein                                               | pilU         | IV.D                |           | 0.24           | 0.01                    | -0.81                  | -0.86          |
| XF2542           | fimbrial protein                                                         |              | IV.D                |           | -0.33          | -0.82                   | -2.22                  | -2.36          |
| XF0102           | glycosyl transferase                                                     | rfaG         | IX                  | X         | 0.26           | -0.78                   | -1.54                  | -0.63          |
| XF1085           | phosphohistidine phosphatase SixA                                        | sixA         | IX                  | Х         | -0.11          | -0.08                   | -0.38                  | -0.60          |
| XF1213           | GTP-binding elongation factor protein                                    | typA         | IX                  |           | -0.01          | -0.50                   | -0.36                  | -0.58          |
| XF1323           | predicted acetyltransferase, GNAT superfamily                            |              | IX                  | Х         | -0.37          | -0.48                   | -0.61                  | -0.47          |
| XF1828           | ATPase                                                                   | spbc115      | IX                  |           | -0.66          | -1.19                   | -1.42                  | -1.93          |
| XF1894           | radical activating enzyme                                                | 4 4          | IX                  | Х         | -0.39          | -0.47                   | -1.06                  | -1.09          |
| XF2243           | GTP binding protein                                                      | <i>lepA</i>  | IX                  |           | -0.11          | -0.35                   | -0.37                  | -0.51          |
| XF1300           | ABC-type uncharacterized transport system, auxiliary component           |              | V                   | v         | -0.05          | -1.12                   | -0.73                  | -0.29          |
| XF0214           | phosphoserine phosphatase                                                |              | V.A.1               | X<br>X    | -0.05          | -0.31                   | -0.73                  | -0.29<br>-0.94 |
| XF2207           | cationic amino acid transporter                                          | sc1c3.02     | V.A.1               |           | 0.35           | -0.09                   | -0.19                  | -0.71          |
| XF2143           | ABC transporter phosphate permease                                       | pstA         | V.A.2               |           | -0.04          | -1.04                   | -0.81                  | 0.06           |
| XF0320           | Mg++/citrate complex transporter                                         | citN         | V.A.2<br>V.A.3      |           | -0.04          | -0.51                   | <b>-0.66</b>           | <b>-0.78</b>   |
| XF0324           | periplasmic iron-binding protein                                         | afuA         | V.A.4               |           | -0.14          | -0.62                   | -0.63                  | -0.45          |
| XF0395           | bacterioferritin                                                         | bfr          | V.A.4<br>V.A.4      |           | -0.14          | -0.85                   | -1.13                  | -1.56          |
| XF2713           | tonB-dependent receptor cirA                                             | λII          | V.A.4<br>V.A.4      | х         | -0.08          | -0.03<br>-0.71          | -0.89                  | -0.49          |
| XF0224           | preprotein translocase YajC subunit                                      | yajC         | V.A.4<br>V.A.6      | ^         | -0.23          | -0.71<br>-0.47          | -0.39                  | -1.00          |
| XF0406           | export protein                                                           | yajC<br>ygjT | V.A.0<br>V.A.7      |           | -0.23          | -0.47                   | -0.59<br>-0.57         | -0.50          |
| XF0406<br>XF0550 | TonB-dependent receptor protein                                          | уул          | V.A.7<br>V.A.7      | x         | 0.40           | -0.32<br>-0.15          | -0.57<br>- <b>0.55</b> | -0.46          |
| XF1223           | ABC transporter ATP-binding protein                                      | yadG         | V.A.7<br>V.A.7      | ^         | -0.37          | 0.10                    | -0.55<br>-0.61         | -0.46<br>-0.61 |
| XF1223<br>XF1409 | ABC transporter ATP-binding protein  ABC transporter ATP-binding protein | yauG         | V.A.7<br>V.A.7      |           | -0.37<br>-0.01 | -0.66                   | -0.61<br>-0.76         | -0.61<br>-0.47 |
|                  |                                                                          | rfh.⊏        |                     |           |                |                         |                        |                |
| XF2568<br>XF1321 | ABC transporter ATP-binding protein                                      | rfbE<br>minD | V.A.7<br>V.B        |           | -0.20<br>0.02  | -1.11<br>-0.27          | -1.42<br>-0.84         | -1.26<br>-0.79 |
| XF1321<br>XF1910 | septum site-determining protein                                          | minD<br>ftsV | v.B<br>V.B          |           | -0.32          | -0.27<br><b>-1.18</b>   | <b>-0.84</b>           | - <b>0.79</b>  |
|                  | cell division protein                                                    | fts Y        |                     |           |                |                         | -0.27                  | 0.67           |
| XF2282           | chromosome partitioning protein                                          | parA         | V.B                 |           | -0.38          | -0.55                   | -0.88                  | -0.98          |

|                    |                                                               |              |                     | =         |                | M = log <sub>2</sub> (4 | 0°C/29°C)              |                        |
|--------------------|---------------------------------------------------------------|--------------|---------------------|-----------|----------------|-------------------------|------------------------|------------------------|
| Gene.ID            | Produto                                                       | Nome do gene | Categoria funcional | reanotada | 7min           | 15min                   | 25min                  | 45min                  |
| XF1950             | CheW like protein                                             |              | V.C                 | Χ         | -0.26          | -0.12                   | -0.80                  | -0.89                  |
| XF2511             | phage-related protein                                         | ci           | VI.A                |           | 0.06           | -0.24                   | -0.63                  | -0.90                  |
| XF2526             | phage-related protein                                         |              | VI.A                |           | -0.09          | -0.37                   | -0.51                  | -0.48                  |
| XF1590             | plasmid stabilization protein                                 | y4jJ         | VI.B                |           | 0.05           | -0.25                   | 0.01                   | -0.53                  |
| XF2050             | conjugal transfer protein                                     | trbH         | VI.B                |           | -0.04          | 0.09                    | -0.11                  | -0.42                  |
| XF2444             | pheromone shutdown protein                                    | traB<br>trbC | VI.B<br>VI.B        |           | -0.38          | -1.02                   | -0.65<br>1.26          | -0.65<br>4.03          |
| XFa0005<br>XFa0008 | conjugal transfer protein conjugal transfer protein           | traC         | VI.B<br>VI.B        |           | 0.10<br>0.04   | -0.39<br>0.07           | -1.26<br>-0.65         | -1.02<br>-1.03         |
| XFa0036            | conjugal transfer protein                                     | trbN         | VI.B                |           | -0.61          | -0.17                   | -0.46                  | -0.04                  |
| XFa0042            | conjugal transfer protein                                     | trbG         | VI.B                |           | 0.23           | -0.21                   | -0.67                  | -1.59                  |
| XFa0043            | conjugal transfer protein                                     | trbF         | VI.B                |           | -0.21          | -0.21                   | -0.75                  | -0.92                  |
| XFa0059            | plasmid replication/partition protein                         | spo0J        | VI.B                |           | -0.10          | 0.09                    | -0.66                  | -0.55                  |
| XFa0060            | plasmid replication protein                                   | incC         | VI.B                |           | -0.65          | 0.33                    | -1.53                  | -1.75                  |
| XF0009             | TonB protein                                                  | tonB         | VII.C               |           | -0.04          | -0.52                   | -0.62                  | -0.67                  |
| XF0010             | biopolymer transport ExbB protein                             | exbB         | VII.C               |           | 0.02           | -0.12                   | -0.69                  | -0.83                  |
| XF0262             | colicin V precursor                                           | cvaC         | VII.C               |           | -0.51          | 0.08                    | -0.85                  | -1.13                  |
| XF0263             | colicin V precursor                                           | cvaC         | VII.C               |           | -0.73          | -0.82                   | -0.97                  | -1.43                  |
| XF0264             | colicin V precursor                                           |              | VII.C               | x         | -0.47          | 0.05                    | -0.68                  | -1.15                  |
| XF1216             | colicin V secretion protein                                   | cvaA         | VII.C               |           | -0.31          | -1.44                   | -1.60                  | -1.46                  |
| XF1827             | organic hydroperoxide resistance protein                      | ohr          | VII.C               |           | 0.02           | -0.27                   | -0.81                  | -1.00                  |
| XF1890             | glutathione peroxidase-like protein                           | gpo          | VII.C               |           | 0.01           | -0.25                   | -0.81                  | -0.72                  |
| XF1897             | TolB protein precursor                                        | topB         | VII.C               |           | -0.27          | -0.97                   | -0.96                  | -0.80                  |
| XF1898             | TolA protein                                                  | tolA         | VII.C               |           | -0.22          | -0.31                   | -0.46                  | -0.55                  |
| XF1900             | TolQ protein                                                  | toIQ         | VII.C               |           | -0.37          | -0.43                   | -0.79                  | -1.31                  |
| XF0418             | toluene tolerance protein                                     | ttg2D        | VII.G               |           | 0.03           | -1.19                   | -1.46                  | -0.45                  |
| XF0837             | organic solvent tolerance precursor                           | imp          | VII.G               |           | -0.09          | -0.71                   | -0.84                  | -0.23                  |
| XF2682<br>XF0066   | periplasmic glucan biosynthesis protein                       | mdoG<br>ylbK | VII.G<br>VIII.A     |           | -0.19          | -0.15                   | -0.59                  | -0.79                  |
| XF0196             | conserved hypothetical protein conserved hypothetical protein | yion         | VIII.A<br>VIII.A    |           | 0.07<br>0.09   | -0.46<br>-0.68          | -0.59<br>-0.89         | 1.14<br>-0.86          |
| XF0382             | conserved hypothetical protein                                |              | VIII.A<br>VIII.A    | x         | -0.04          | -1.13                   | -0.6 <del>9</del>      | -0.00<br>- <b>0.99</b> |
| XF0403             | conserved hypothetical protein                                |              | VIII.A              | X         | -0.28          | -0.73                   | -1.30                  | -0.94                  |
| XF0404             | conserved hypothetical protein                                |              | VIII.A              | ^         | -0.22          | -0.13                   | -0.70                  | -0.95                  |
| XF0407             | conserved hypothetical protein                                | yccW         | VIII.A              |           | -0.12          | -0.10                   | -0.19                  | -0.72                  |
| XF0497             | conserved hypothetical protein                                | rv2514c      | VIII.A              |           | -0.35          | -0.82                   | -0.90                  | -0.96                  |
| XF0565             | conserved hypothetical protein                                | tm0696       | VIII.A              |           | 0.29           | -0.40                   | -0.78                  | -0.71                  |
| XF0843             | conserved hypothetical protein                                | spaC         | VIII.A              |           | 0.27           | -1.31                   | 0.00                   | -0.11                  |
| XF0923             | conserved hypothetical protein                                | smG          | VIII.A              |           | -0.21          | -0.71                   | -1.09                  | -1.13                  |
| XF1074             | conserved hypothetical protein                                | ygfY         | VIII.A              |           | -0.64          | -0.57                   | -0.88                  | -0.85                  |
| XF1228             | conserved hypothetical protein                                |              | VIII.A              | x         | -0.25          | -0.61                   | -1.04                  | -1.18                  |
| XF1411             | conserved hypothetical protein                                |              | VIII.A              | x         | -0.20          | -0.51                   | -0.53                  | -0.67                  |
| XF1504             | conserved hypothetical protein                                |              | VIII.A              |           | -0.21          | -0.87                   | -1.13                  | -0.83                  |
| XF1628             | conserved hypothetical protein                                |              | VIII.A              |           | 0.26           | -0.61                   | -0.94                  | -0.49                  |
| XF1771             | conserved hypothetical protein                                |              | VIII.A              | x         | -0.14          | -0.94                   | -0.24                  | 0.56                   |
| XF1829             | conserved hypothetical protein                                | rp471        | VIII.A              |           | -0.37          | -0.55                   | -1.28                  | -0.95                  |
| XF1832             | conserved hypothetical protein                                |              | VIII.A              | Х         | -0.49          | -0.51                   | -0.64                  | -0.63                  |
| XF1835             | conserved hypothetical protein                                | , th ar⊏     | VIII.A              |           | 0.01           | -0.41                   | -0.60                  | -0.65                  |
| XF1895             | conserved hypothetical protein                                | ybgF         | VIII.A<br>VIII.A    |           | -0.25<br>-0.34 | -0.90                   | -1.34<br>-0.90         | -1.05                  |
| XF1906<br>XF2005   | conserved hypothetical protein conserved hypothetical protein |              | VIII.A<br>VIII.A    | ~         | -0.34          | <b>-0.62</b><br>-0.16   | -0. <b>90</b><br>-0.44 | -1.18<br><b>-0.62</b>  |
| XF2035             | conserved hypothetical protein                                |              | VIII.A              | X<br>X    | -0.21          | -0.10                   | -0.54                  | -0.50                  |
| XF2103             | conserved hypothetical protein                                |              | VIII.A              | X         | 0.03           | -0.15                   | -0.50                  | -0.48                  |
| XF2197             | conserved hypothetical protein                                |              | VIII.A              | X         | -0.07          | -0.84                   | -0.85                  | 0.11                   |
| XF2321             | conserved hypothetical protein                                |              | VIII.A              | X         | -0.04          | -0.81                   | -0.72                  | -0.97                  |
| XF2349             | conserved hypothetical protein                                | cpn0796      | VIII.A              |           | -0.17          | -0.54                   | -1.13                  | -1.11                  |
| XF2441             | conserved hypothetical protein                                | ,            | VIII.A              | Х         | -0.38          | -1.22                   | -0.54                  | 0.00                   |
| XF2451             | conserved hypothetical protein                                | ypuG         | VIII.A              |           | -0.30          | -0.73                   | -1.05                  | -0.61                  |
| XF2574             | conserved hypothetical protein                                | dr1355       | VIII.A              |           | -0.35          | -0.69                   | -0.87                  | -1.06                  |
| XF2650             | conserved hypothetical protein                                |              | VIII.A              | х         | 0.37           | -0.94                   | 0.36                   | -0.18                  |
| XFa0026            | conserved hypothetical protein                                |              | VIII.A              | х         | -0.14          | -0.24                   | -0.31                  | -0.79                  |
| XFa0062            | conserved hypothetical protein                                |              | VIII.A              | X         | 0.25           | 0.12                    | -0.58                  | -0.91                  |
| XF0079             | hypothetical protein                                          |              | VIII.B              |           | -0.07          | -0.42                   | -0.77                  | -0.86                  |
| XF0098             | hypothetical protein                                          |              | VIII.B              |           | -0.17          | -0.50                   | -0.66                  | -0.10                  |
| XF0100             | hypothetical protein                                          |              | VIII.B              |           | -0.07          | -0.53                   | -1.59                  | -1.07                  |
| XF0266             | hypothetical protein                                          |              | VIII.B              |           | 0.46           | -0.33                   | -0.43                  | -0.51                  |
| XF0440             | hypothetical protein                                          |              | VIII.B              |           | -0.09          | -0.52                   | 0.19                   | 0.03                   |
| XF0606             | hypothetical protein                                          |              | VIII.B              |           | -0.60          | -0.81                   | -1.13                  | -0.71                  |
| XF0890             | hypothetical protein                                          |              | VIII.B              |           | -0.04          | -0.17                   | -0.54                  | -0.54                  |
| XF0896             | hypothetical protein                                          |              | VIII.B              |           | -0.08          | -0.10                   | -0.69                  | -0.23                  |
| XF0922             | hypothetical protein                                          |              | VIII.B              |           | -0.01          | -0.35                   | -0.51                  | -0.91                  |

|         |                      |              |                     |           |       | M = log <sub>2</sub> (4 | 0°C/29°C) |       |
|---------|----------------------|--------------|---------------------|-----------|-------|-------------------------|-----------|-------|
| Gene.ID | Produ                | Nome do gene | Categoria funcional | reanotada | 7min  | 15min                   | 25min     | 45min |
| XF0937  | hypothetical protein |              | VIII.B              |           | -0.11 | -0.34                   | -0.45     | -0.86 |
| XF1135  | hypothetical protein |              | VIII.B              |           | -0.47 | -0.60                   | -0.07     | -0.15 |
| XF1215  | hypothetical protein |              | VIII.B              |           | 0.30  | -0.29                   | -0.52     | -0.30 |
| XF1217  | hypothetical protein |              | VIII.B              |           | -0.38 | -1.13                   | -2.04     | -1.48 |
| XF1218  | hypothetical protein |              | VIII.B              |           | -0.01 | -1.30                   | -2.15     | -2.26 |
| XF1219  | hypothetical protein |              | VIII.B              |           | 0.10  | -1.67                   | -1.96     | -1.97 |
| XF1305  | hypothetical protein |              | VIII.B              |           | -0.15 | -0.93                   | -0.56     | -1.17 |
| XF1551  | hypothetical protein |              | VIII.B              |           | 0.06  | -0.48                   | 0.17      | -0.14 |
| XF1826  | hypothetical protein |              | VIII.B              |           | 0.39  | -0.48                   | -0.76     | -0.60 |
| XF1991  | hypothetical protein |              | VIII.B              |           | -0.43 | -0.61                   | -0.76     | -0.22 |
| XF2006  | hypothetical protein |              | VIII.B              |           | -0.27 | -0.52                   | -0.69     | -0.80 |
| XF2280  | hypothetical protein |              | VIII.B              |           | -0.24 | -0.79                   | -0.17     | -1.29 |
| XF2285  | hypothetical protein |              | VIII.B              |           | -0.13 | -0.61                   | -1.10     | -0.63 |
| XF2569  | hypothetical protein |              | VIII.B              |           | -0.24 | -1.68                   | -1.34     | 0.00  |
| XF2697  | hypothetical protein |              | VIII.B              |           | 0.04  | -0.31                   | -0.32     | -0.72 |
| XFa0004 | hypothetical protein |              | VIII.B              |           | 0.01  | -0.46                   | -0.62     | -0.62 |
| XFa0009 | hypothetical protein |              | VIII.B              |           | 0.01  | -0.21                   | -0.71     | -1.01 |
| XFa0010 | hypothetical protein |              | VIII.B              |           | -0.03 | -0.55                   | -1.45     | -1.22 |
| XFa0018 | hypothetical protein |              | VIII.B              |           | 0.15  | -0.09                   | -0.64     | -0.53 |
| XFa0031 | hypothetical protein |              | VIII.B              |           | -0.70 | -0.87                   | -1.55     | -0.93 |
| XFa0054 | hypothetical protein |              | VIII.B              |           | 0.19  | -0.09                   | -0.69     | -0.51 |
| XFa0058 | hypothetical protein |              | VIII.B              |           | -0.34 | -0.36                   | -0.85     | -0.59 |

Tabela S4: Agrupamento dos genes diferencialmente expressos no choque térmico utilizando o algoritmo Kmeans com 6 grupos. M = log da razão da intensidade de fluorescência no choque térmico em relação à condição controle.



| 0′ 7′ 1 | 15' 25' 45'                             |                 |                        |       | M =  | log <sub>2</sub> (40°C/2 | 29°C) |       |
|---------|-----------------------------------------|-----------------|------------------------|-------|------|--------------------------|-------|-------|
| Gene.ID | Produto                                 | Nome do<br>gene | Categoria<br>funcional | 0min  | 7min | 15min                    | 25min | 45min |
| XF0381  | chaperone                               | clpB            | III.C.2                | -0.01 | 1.07 | 2.30                     | 3.85  | 3.79  |
| XF0615  | 60kDa chaperonin                        | mopA            | III.C.2                | -0.02 | 1.86 | 2.22                     | 3.93  | 2.85  |
| XF0616  | 10kDa chaperonin                        | groES           | III.C.2                | -0.02 | 1.93 | 2.79                     | 4.31  | 3.21  |
| XF1484  | heat shock protein                      | hsIV            | III.C.3                | 0.16  | 0.91 | 1.97                     | 3.24  | 2.75  |
| XF1694  | hypothetical protein                    |                 | VIII.B                 | -0.07 | 0.78 | 1.74                     | 3.04  | 2.99  |
| XF2174  | thioredoxin                             | ybbN            | II.D.10                | -0.02 | 1.08 | 2.03                     | 3.43  | 3.17  |
| XF2233  | DnaJ protein                            | dnaJ            | III.C.2                | 0.01  | 1.32 | 2.66                     | 3.89  | 4.17  |
| XF2234  | low molecular weight heat shock protein | hspA            | VII.G                  | -0.04 | 1.33 | 3.35                     | 3.44  | 2.98  |
| XF2340  | DnaK protein                            | dnaK            | III.C.2                | 0.05  | 1.15 | 2.57                     | 3.64  | 3.78  |
| XF2341  | heat shock protein GrpE                 | grpE            | III.C.2                | 0.05  | 1.42 | 2.32                     | 3.80  | 3.08  |
| XF2594  | peptidase                               |                 | III.C.3                | 0.07  | 0.79 | 3.04                     | 3.65  | 3.91  |
| XF2625  | heat shock protein                      | htpX            | VII.G                  | 0.05  | 1.48 | 2.39                     | 3.83  | 3.64  |
| XFa0048 | putative mobillisation protein          | mobC            | VI.B                   | -0.08 | 2.21 | 2.79                     | 3.38  | 2.93  |



| oʻ 7′ 15′ | 25′ 45′                                          |                 |                        |       | M =   | log₂(40°C/2 | 29°C) |       |
|-----------|--------------------------------------------------|-----------------|------------------------|-------|-------|-------------|-------|-------|
| Gene.ID   | Produto                                          | Nome do<br>gene | Categoria<br>funcional | 0min  | 7min  | 15min       | 25min | 45min |
| XF0038    | hypothetical protein                             |                 | VIII.B                 | 0.04  | 0.62  | 1.10        | 1.86  | 0.96  |
| XF0578    | hypothetical protein                             |                 | VIII.B                 | -0.04 | 0.39  | 1.08        | 2.08  | 1.89  |
| XF0579    | hypothetical protein                             |                 | VIII.B                 | -0.17 | 0.43  | 1.27        | 1.95  | 1.75  |
| XF0684    | phage-related protein                            |                 | VI.A                   | 0.06  | 0.90  | 1.21        | 1.28  | 1.45  |
| XF0688    | conserved hypothetical                           |                 | VIII.A                 | -0.03 | 0.87  | 0.89        | 1.28  | 0.77  |
| XF0692    | hypothetical protein                             |                 | VIII.B                 | 0.06  | 0.17  | 1.12        | 1.84  | 2.01  |
| XF0695    | hypothetical protein                             |                 | VIII.B                 | 0.08  | 1.00  | 1.65        | 2.19  | 2.08  |
| XF0717    | conserved hypothetical                           |                 | VIII.A                 | 0.15  | 0.39  | 0.81        | 1.52  | 1.00  |
| XF0718    | conserved hypothetical protein                   |                 | VIII.A                 | -0.07 | 0.66  | 0.91        | 2.04  | 1.56  |
| XF0719    | phage-related baseplate assembly protein         | gpV             | VI.A                   | 0.08  | 0.59  | 1.04        | 1.42  | 1.58  |
| XF0806    | preprotein translocase SecA subunit              | secA            | V.A.6                  | 0.02  | 0.44  | 1.40        | 1.90  | 2.06  |
| XF0807    | hypothetical protein                             |                 | VIII.B                 | 0.00  | 0.10  | 1.04        | 1.81  | 1.59  |
| XF0878    | predicted polysaccharide deacetylase             |                 | I.A.2                  | -0.09 | 0.25  | 1.57        | 2.16  | 2.70  |
| XF0881    | peptidase                                        |                 | III.C.3                | -0.08 | -0.23 | 0.97        | 1.48  | 1.88  |
| XF0959    | predicted ATPase related to phosphate starvation |                 |                        |       |       |             |       |       |
| VE0070    | inducible protein phoH                           |                 | VII.G                  | -0.01 | 0.03  | 0.40        | 1.63  | 1.47  |
| XF0978    | heat shock protein G                             | htpG            | III.C.2                | 0.02  | 1.03  | 1.51        | 2.06  | 1.94  |
| XF1006    | conserved hypothetical protein                   |                 | VIII.A                 | -0.01 | 0.59  | 1.11        | 1.58  | 1.73  |
| XF1008    | conserved hypothetical protein                   |                 | VIII.A                 | 0.15  | 0.93  | 1.29        | 1.30  | 1.43  |
| XF1010    | conserved hypothetical protein                   |                 | VIII.A                 | 0.12  | 0.66  | 1.32        | 1.51  | 1.70  |
| XF1056    | conserved hypothetical protein                   |                 | VIII.A                 | -0.04 | -0.08 | 0.50        | 1.79  | 2.03  |
| XF1257    | oligoribonuclease                                | orn             | III.B.6                | -0.07 | 0.18  | 0.58        | 1.68  | 1.90  |
| XF1278    | predicted membrane protein                       |                 | IV.A.1                 | -0.07 | -0.08 | 1.15        | 1.68  | 1.82  |
| XF1373    | tRNA pseudouridine synthase A                    | truA            | III.B.4                | -0.01 | 0.07  | 0.76        | 1.41  | 1.96  |
| XF1374    | N-(5'-phosphoribosyl) anthranilate isomerase     | trpF            | II.A.4                 | 0.06  | 0.07  | 0.86        | 1.45  | 2.07  |
| XF1383    | helicase, ATP dependent                          | hrpA            | III.A.1                | -0.03 | 0.83  | 1.35        | 2.18  | 1.69  |
| XF1443    | ATP-dependent Clp protease subunit               | clpA            | III.C.3                | -0.04 | 0.69  | 1.47        | 2.23  | 1.87  |
| XF1472    | benzene 1,2-dioxygenase, ferredoxin protein      | bedB            | I.A.2                  | 0.11  | 0.25  | 1.91        | 1.40  | 1.82  |
| XF1474    | ABC transporter membrane protein                 | ynhC            | V.A.7                  | 0.00  | 0.29  | 0.46        | 1.64  | 1.71  |
| XF1485    | heat shock protein                               | hslU            | III.C.3                | -0.01 | 0.56  | 1.31        | 2.25  | 2.04  |
| XF1486    | conserved hypothetical protein                   | sc4G6.34        | VIII.A                 | 0.03  | 0.09  | 0.57        | 2.14  | 2.03  |
| XF1517    | general secretory pathway protein E              | xpsE            | VII.H                  | -0.10 | 0.45  | 0.93        | 1.47  | 1.53  |
| XF1518    | general secretory pathway protein F              | xpsF            | VII.H                  | -0.03 | 0.20  | 0.81        | 1.51  | 1.93  |
|           |                                                  |                 |                        |       |       |             | -     |       |

| Grupo2  | (continuação)                                       |                                         |                        |       | M =   | :9°C) |       |       |
|---------|-----------------------------------------------------|-----------------------------------------|------------------------|-------|-------|-------|-------|-------|
| Gene.ID | Produto                                             | Nome do<br>gene                         | Categoria<br>funcional | 0min  | 7min  | 15min | 25min | 45min |
| XF1598  | phage related protein                               |                                         | VI.A                   | -0.09 | 0.91  | 1.22  | 1.74  | 2.69  |
| XF1645  | phage-related protein                               |                                         | VI.A                   | -0.03 | -0.03 | 0.57  | 1.65  | 1.74  |
| XF1654  | conserved hypothetical protein                      |                                         | VIII.A                 | -0.03 | 0.31  | 1.20  | 1.12  | 1.37  |
| XF1663  | phage-related protein                               |                                         | VI.A                   | 0.09  | 0.98  | 1.03  | 1.18  | 0.72  |
| XF1668  | HicB-related protein                                | drb0141                                 | IX                     | 0.12  | 0.18  | 1.23  | 1.50  | 0.80  |
| XF1693  | hypothetical protein                                |                                         | VIII.B                 | -0.03 | 0.56  | 1.27  | 2.40  | 2.31  |
| XF1712  | conserved hypothetical protein                      |                                         | VIII.A                 | 0.09  | 0.12  | 1.40  | 1.94  | 2.17  |
| XF1721  | putative transcriptional regulator (LysR family)    |                                         | I.D                    | -0.33 | -0.15 | 1.11  | 1.62  | 1.36  |
| XF1841  | undecaprenol kinase                                 | bacA                                    | VII.C                  | 0.00  | -0.13 | 1.33  | 1.60  | 1.85  |
| XF2015  | ribose-5-phosphate isomerase A                      | rpiA                                    | I.B.6                  | 0.09  | 0.12  | 1.67  | 2.11  | 2.27  |
| XF2016  | hypothetical protein                                |                                         | VIII.B                 | -0.01 | 0.32  | 1.09  | 2.16  | 1.65  |
| XF2065  | hypothetical protein                                |                                         | VIII.B                 | 0.06  | 0.13  | 1.27  | 1.51  | 1.25  |
| XF2066  | plasmid stabilization system protein                | yacB                                    | VI.B                   | 0.00  | 0.48  | 1.45  | 1.19  | 1.42  |
| XF2170  | phospholipid-binding protein (COG1881)              | •                                       | IV.A                   | -0.04 | 0.24  | 0.80  | 2.10  | 2.80  |
| XF2171  | inorganic pyrophosphatase                           | ppa                                     | I.B.10                 | 0.06  | 0.26  | 1.56  | 2.51  | 2.98  |
| XF2173  | hypothetical protein                                | • • • • • • • • • • • • • • • • • • • • | VIII.B                 | -0.08 | 0.41  | 1.30  | 2.28  | 2.03  |
| XF2185  | rare lipoprotein A                                  | rlpA                                    | IV.B                   | 0.03  | 0.15  | 0.83  | 1.59  | 1.25  |
| XF2196  | hemagglutinin-like secreted protein                 | pspA                                    | VII.F                  | 0.03  | 0.43  | 0.44  | 1.30  | 2.19  |
| XF2240  | negative regulator of sigma E activity              | rseA                                    | I.D                    | -0.03 | 0.61  | 1.30  | 1.55  | 1.33  |
| XF2241  | periplasmic protease                                | mucD                                    | III.C.3                | -0.02 | 1.20  | 1.62  | 2.46  | 2.19  |
| XF2336  | two-component system, regulatory protein            | colR                                    | I.D                    | 0.09  | -0.10 | 0.92  | 1.80  | 2.03  |
| XF2337  | hypothetical protein                                |                                         | VIII.B                 | -0.10 | 0.04  | 1.42  | 1.79  | 2.20  |
| XF2338  | chorismate mutase                                   | mth1640                                 | II.A.4                 | -0.03 | 0.23  | 2.00  | 2.61  | 3.02  |
| XF2339  | DnaJ protein                                        | dnaJ                                    | III.C.2                | -0.12 | 0.66  | 1.29  | 2.80  | 2.11  |
| XF2395  | acetylxylan esterase                                | axeA                                    | I.A.2                  | 0.01  | 0.46  | 0.93  | 1.88  | 1.50  |
| XF2494  | conserved hypothetical protein                      |                                         | VIII.A                 | 0.03  | 0.38  | 1.50  | 2.12  | 1.97  |
| XF2495  | conserved hypothetical protein                      |                                         | VIII.A                 | 0.01  | 0.24  | 1.19  | 1.67  | 1.92  |
| XF2510  | conserved hypothetical protein                      |                                         | VIII.A                 | -0.05 | 0.18  | 0.93  | 1.52  | 2.07  |
| XF2515  | conserved hypothetical protein                      |                                         | VIII.A                 | 0.19  | -0.17 | 0.93  | 2.44  | 0.79  |
| XF2522  | phage-related protein                               |                                         | VI.A                   | -0.06 | 0.76  | 1.35  | 1.69  | 1.31  |
| XF2525  | phage-related DNA polymerase                        | dpoL                                    | VI.A                   | -0.08 | 0.43  | 0.85  | 2.21  | 0.44  |
| XF2539  | fimbrial protein                                    | apoL                                    | IV.D                   | -0.13 | 0.39  | 0.81  | 1.60  | 0.54  |
| XF2546  | two-component system, sensor protein                | pilS                                    | I.D                    | 0.13  | 0.19  | 1.02  | 1.69  | 1.63  |
| XF2580  | 30S ribosomal protein S2                            | rpsB                                    | III.B.2                | -0.05 | 0.89  | 0.97  | 1.30  | 1.36  |
| XF2624  | conserved hypothetical protein                      | . psb                                   | VIII.A                 | 0.00  | 0.09  | 1.23  | 1.37  | 1.60  |
| XF2739  | type I restriction-modification system endonuclease | hsdR                                    | III.A.5                | 0.14  | 0.43  | 1.43  | 2.08  | 2.18  |
| XFa0024 | conserved hypothetical protein                      | noan                                    | VIII.A                 | 0.03  | 0.43  | 0.90  | 1.42  | 2.03  |
| XFa0047 | nickase                                             | taxC                                    | VIII.A<br>VI.B         | -0.06 | 1.60  | 1.97  | 2.03  | 2.12  |
| XFa0049 | hypothetical protein                                | iaxo                                    | VIII.B                 | -0.03 | 1.52  | 2.25  | 1.55  | 2.12  |
| XFa0050 | stability partitioning determinant                  | stbB                                    | VIII.B<br>VI.B         | -0.03 | 1.64  | 1.71  | 1.43  | 1.64  |
| XFa0051 | hypothetical protein                                | SIDD                                    | VIII.B                 | -0.04 | 1.20  | 1.25  | 0.91  | 1.34  |
|         | virulence-associated protein D                      | vapD                                    | VIII.B<br>VII.H        | -0.04 | 1.36  | 0.93  | 0.91  | 1.34  |



| 0′ 7′ 15′ | 25' 45'                                          |              |                     |       | M =   | log₂(40°C/29 | °C)   |       |
|-----------|--------------------------------------------------|--------------|---------------------|-------|-------|--------------|-------|-------|
| Gene.ID   | Produto                                          | Nome do gene | Categoria funcional | 0min  | 7min  | 15min        | 25min | 45min |
| XF0093    | protease                                         | ftsH         | III.C.3             | 0.08  | -0.06 | 0.65         | 0.87  | 1.35  |
| XF0167    | peptidase                                        |              | III.C.1             | 0.12  | 0.07  | 0.50         | 0.58  | 1.11  |
| XF0168    | hypothetical protein                             |              | VIII.B              | 0.02  | 0.27  | 1.91         | 0.85  | 0.63  |
| XF0285    | heat shock protein                               | htrA         | VII.G               | 0.03  | 0.52  | 0.86         | 1.15  | 1.18  |
| XF0304    | protein-export membrane protein                  | secG         | V.A.6               | -0.02 | 0.19  | 1.22         | 0.78  | 0.89  |
| XF0352    | pentaphosphate guanosine-3'-pyrophosphohydrolase | spoT         | I.D                 | -0.03 | -0.08 | 1.22         | 1.45  | 1.26  |
| XF0354    | ATP-dependent DNA helicase                       | recG         | III.A.3             | 0.03  | -0.70 | 0.60         | 1.38  | 1.43  |
| XF0367    | voltage-gated potassium channel beta subunit     |              | V.A.4               | -0.06 | 0.24  | 0.53         | 1.15  | 1.06  |
| XF0558    | hypothetical protein                             |              | VIII.B              | 0.02  | 0.25  | 0.58         | 1.12  | 1.05  |
| XF0580    | thymidylate kinase                               | ph1695       | II.B.3              | 0.01  | 0.07  | 1.01         | 0.88  | 1.11  |
| XF0583    | conserved hypothetical protein                   |              | VIII.A              | 0.00  | -0.21 | 0.03         | 0.97  | 1.55  |
| XF0623    | conserved hypothetical                           |              | VIII.A              | -0.02 | 0.61  | 0.41         | 1.11  | 0.82  |
| XF0649    | rhomboid-like protein                            |              | IV.A.1              | 0.18  | 0.19  | 0.73         | 1.48  | 1.35  |
| XF0652    | peptidyl-prolyl cis-trans isomerase              | slyD         | III.C.1             | -0.03 | 0.19  | 0.59         | 1.08  | 1.09  |

| Grupo 3 | (continuação)                                                                                   |                                         |                     |              | °C)          |              |              |       |
|---------|-------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|--------------|--------------|--------------|--------------|-------|
| Gene.ID | Produto                                                                                         | Nome do<br>gene                         | Categoria funcional | 0min         | 7min         | 15min        | 25min        | 45min |
| XF0685  | phage-related protein                                                                           |                                         | VI.A                | 0.04         | 0.57         | 0.84         | 1.31         | 0.86  |
| XF0704  | phage-related protein                                                                           |                                         | VI.A                | 0.05         | 0.07         | 0.54         | 1.50         | 0.92  |
| XF0759  | N-acetylmuramoyl-L-alanine amidase precursor                                                    | amiC                                    | IV.B                | -0.02        | 0.58         | 0.66         | 1.10         | 0.97  |
| XF0785  | sulfur deprivation response regulator                                                           | sac1                                    | VII.G               | -0.06        | 0.32         | 0.48         | 0.85         | 0.88  |
| XF0847  | beta-hexosaminidase precursor                                                                   | nahA                                    | IV.A.2              | 0.04         | 0.14         | 0.03         | 0.33         | 1.57  |
| XF0848  | glycosyl hydrolase, family 18                                                                   |                                         | I.B.2               | -0.02        | 0.13         | 0.49         | 0.88         | 1.31  |
| XF0862  | peptidase                                                                                       |                                         | III.C.3             | -0.06        | 0.21         | 0.96         | 1.36         | 1.10  |
| XF0879  | lipopolysaccharide biosynthesis protein                                                         | rfbU                                    | IV.C                | -0.08        | -0.14        | 0.39         | 0.69         | 1.17  |
| XF0882  | ATP-dependent helicase                                                                          | yoaA                                    | III.A.1             | 0.02         | -0.02        | 0.90         | 0.83         | 1.87  |
| XF0976  | C4-dicarboxylate transport protein                                                              | dctA                                    | V.A.3               | 0.03         | 0.40         | 0.73         | 0.97         | 0.97  |
| XF1018  | arginine-tRNA-protein transferase                                                               | ate1                                    | III.C.1             | -0.05        | 0.22         | 0.82         | 1.13         | 1.31  |
| XF1021  | acyl-CoA thioesterase II                                                                        | tesB                                    | IX                  | -0.06        | 0.01         | 0.41         | 1.13         | 1.26  |
| XF1126  | predicted membrane protein                                                                      |                                         | IV.A.1              | -0.06        | 0.49         | 0.56         | 0.79         | 1.07  |
| XF1140  | UDP-N-acetylglucosamine pyrophosphorylase electron transfer flavoprotein ubiquinone             | glmU                                    | IV.A.1              | -0.02        | 0.08         | 0.98         | 0.94         | 0.65  |
| XF1298  | oxidoreductase                                                                                  | etf-QO                                  | I.C.3               | 0.06         | 0.31         | 0.68         | 1.21         | 0.77  |
| XF1316  | ATP:GTP 3'-pyrophosphotranferase                                                                | relA                                    | I.D                 | 0.02         | 0.44         | 0.52         | 0.81         | 1.28  |
| XF1459  | conserved hypothetical protein                                                                  |                                         | VIII.A              | -0.08        | -0.68        | 0.13         | 0.47         | 1.47  |
| XF1461  | conserved hypothetical protein                                                                  |                                         | VIII.A              | 0.05         | -0.14        | 0.89         | 0.76         | 1.15  |
| XF1473  | aminotransferase                                                                                | nifS                                    | II.A.2              | -0.02        | 0.37         | 0.65         | 1.17         | 1.01  |
| XF1516  | surface-exposed outer membrane protein                                                          | uspA1                                   | VII.F               | -0.12        | 0.42         | 0.48         | 0.81         | 0.99  |
| XF1522  | general secretory pathway protein J precursor                                                   | xpsJ                                    | VII.H               | 0.03         | -0.01        | 0.24         | 0.68         | 1.22  |
| XF1588  | putative virulence-associated protein                                                           |                                         | VII.H               | 0.04         | 0.23         | 1.11         | 0.84         | 1.02  |
| XF1659  | conserved hypothetical protein                                                                  |                                         | VIII.A              | -0.11        | 0.25         | 0.86         | 0.96         | 1.46  |
| XF1747  | nucleoside-diphosphate-sugar epimerases<br>bifunctional transcriptional repressor of the biotin |                                         | I.C                 | 0.07         | -0.28        | 0.48         | 0.80         | 0.92  |
| XF1796  | operon/biotin acetyl-CoA-carboxylase synthetase                                                 | birA                                    | IX                  | -0.03        | -0.04        | 0.33         | 1.07         | 1.23  |
| XF1864  | phage-related protein                                                                           |                                         | VI.A                | -0.12        | 0.88         | 0.19         | 0.62         | 1.89  |
| XF1867  | hypothetical protein                                                                            |                                         | VIII.B              | -0.03        | 0.15         | 0.56         | 0.72         | 1.01  |
| XF2014  | conserved hypothetical protein                                                                  | dr0566                                  | VIII.A              | 0.02         | -0.11        | 0.44         | 0.97         | 1.91  |
| XF2031  | plasmid stabilization protein                                                                   | parD                                    | VI.B                | -0.03        | 0.41         | 0.72         | 1.09         | 0.93  |
| XF2064  | hypothetical protein                                                                            |                                         | VIII.B              | 0.01         | 0.01         | 0.68         | 0.97         | 1.19  |
| XF2067  | hypothetical protein                                                                            |                                         | VIII.B              | -0.29        | 0.36         | 0.79         | 1.20         | 1.32  |
| XF2068  | putative stability determinant                                                                  |                                         | VI.B                | -0.03        | 0.35         | 0.79         | 1.02         | 1.34  |
| XF2129  | prophage antirepressor                                                                          |                                         | VI.A                | 0.00         | 0.40         | 0.54         | 1.15         | 1.22  |
| XF2166  | hypothetical protein                                                                            |                                         | VIII.B              | 0.01         | -0.06        | 0.92         | 1.73         | 1.30  |
| XF2184  | membrane-bound lytic transglycosylase                                                           | mltB                                    | IV.A.2              | 0.22         | 0.18         | 0.68         | 1.08         | 0.91  |
| XF2186  | conserved rhomboid like protein                                                                 |                                         | IV.A.1              | 0.03         | 0.35         | 0.52         | 1.21         | 0.95  |
| XF2231  | hypothetical protein                                                                            |                                         | VIII.B              | 0.04         | 0.38         | 0.61         | 1.37         | 1.39  |
| XF2251  | solute:Na+ symporter                                                                            | рра                                     | V.A.7               | 0.07         | 0.42         | 1.00         | 1.21         | 1.40  |
| XF2252  | predicted membrane protein                                                                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | IV.A.1              | -0.10        | 0.55         | 0.61         | 1.04         | 1.19  |
| XF2255  | acetyl coenzyme A synthetase                                                                    | acs                                     | I.B.10              | -0.06        | 0.16         | 0.58         | 1.23         | 1.63  |
| XF2256  | hypothetical protein                                                                            |                                         | VIII.B              | 0.12         | 0.26         | 0.66         | 1.00         | 0.91  |
| XF2377  | hypothetical protein                                                                            |                                         | VIII.B              | 0.05         | 0.20         | 0.70         | 0.80         | 1.68  |
| XF2456  | heme ABC transporter membrane protein                                                           | ccmB                                    | V.A.6               | -0.05        | -0.02        | 0.53         | 0.93         | 1.32  |
| XF2459  | c-type cytochrome biogenesis protein                                                            | cycJ                                    | I.C.3               | -0.21        | -0.17        | 0.61         | 0.78         | 1.10  |
| XF2517  | conserved hypothetical protein                                                                  | 3,30                                    | VIII.A              | 0.00         | 0.27         | 0.52         | 0.80         | 1.02  |
| XF2523  | phage-related protein                                                                           |                                         | VI.A                | 0.17         | 0.37         | 0.53         | 1.42         | 0.80  |
| XF2534  | two-component system, regulatory protein                                                        | colR                                    | I.D                 | 0.07         | 0.27         | 0.89         | 1.12         | 1.13  |
| XF2579  | elongation factor Ts                                                                            | tsf                                     | III.C.1             | -0.03        | 0.60         | 0.03         | 0.82         | 0.63  |
| XF2769  | _                                                                                               | 131                                     |                     |              |              |              |              |       |
| XF2775  | hypothetical protein                                                                            | non A                                   | VIII.B<br>VII.F     | 0.02<br>0.03 | 0.25<br>0.10 | 0.52<br>0.70 | 1.34<br>0.98 | 1.39  |
|         | hemagglutinin-like secreted protein                                                             | pspA                                    |                     |              |              |              |              | 1.20  |
| XFa0020 | hypothetical protein                                                                            |                                         | VIII.B              | 0.05         | 0.21         | 1.07         | 0.91         | 0.63  |
| XFa0021 | hypothetical protein                                                                            |                                         | VIII.B              | -0.06        | 0.42         | 0.58         | 1.43         | 0.99  |
| XFa0023 | conserved hypothetical protein                                                                  |                                         | VIII.A              | 0.01         | 0.04         | 0.64         | 1.34         | 1.82  |
| XFa0025 | histone acetyltransferase                                                                       |                                         | III.B               | -0.01        | -0.35        | 0.46         | 0.79         | 1.09  |
| XFa0028 | hypothetical protein                                                                            |                                         | VIII.B              | -0.03        | 0.23         | 0.67         | 1.18         | 0.79  |
| XFa0030 | hypothetical protein                                                                            |                                         | VIII.B              | 0.04         | -0.40        | 0.80         | 0.73         | 1.47  |
| XFa0063 | hypothetical protein                                                                            |                                         | VIII.B              | 0.03         | 0.09         | 0.45         | 0.91         | 0.94  |
| XFa0064 | conserved hypothetical protein                                                                  |                                         | VIII.A              | 0.15         | -0.51        | 0.94         | 0.70         | 0.86  |



| 0′ 7′ 15′        | Grupo 4                                                   |               | -                   |                | M = 1         | og₂(40°C/29    |               |              |
|------------------|-----------------------------------------------------------|---------------|---------------------|----------------|---------------|----------------|---------------|--------------|
| Gene.ID          | Produto                                                   | Nome do gene  | Categoria funcional | 0min           | 7min          | 15min          | 25min         | 45min        |
| XF0140           | predicted permease                                        | yjgQ          | V.A                 | -0.02          | -0.02         | 0.16           | 0.48          | 0.74         |
| XF0165           | beta-lactamase induction signal transducer protein        | ampG          | VII.C               | 0.06           | 0.35          | 0.58           | 0.63          | 0.83         |
| XF0254           | electron transfer flavoprotein beta subunit               | etfB          | I.C.3               | -0.01          | 0.00          | -0.02          | 0.39          | 1.00         |
| XF0256           | glucose-1-phosphate thymidylyltransferase                 | rfbA          | IV.A.1              | -0.01          | 0.24          | 0.49           | 0.37          | 0.80         |
| XF0259           | phosphomannose isomerase-GDP-mannose pyrophosphorylase    | xanB          | I.B.11              | 0.01           | 0.13          | 0.28           | 0.72          | 1.01         |
| XF0295           | type I restriction-modification system endonuclease       | mth940        | III.A.5             | -0.08          | 0.13          | 0.55           | 0.69          | 0.08         |
| XF0328           | conserved hypothetical                                    |               | VIII.A              | 0.04           | -0.07         | 0.46           | 0.65          | 0.66         |
| XF0338           | conserved hypothetical protein                            | hl0033        | VIII.A              | -0.01          | -0.33         | 0.40           | 0.35          | 0.61         |
| XF0378           | thiamin-phosphate pyrophosphorylase                       | thiE          | II.D.8              | -0.14          | -0.26         | 0.36           | 0.98          | 0.75         |
| XF0383           | conserved hypothetical                                    |               | VIII.A              | -0.09          | -0.26         | 0.38           | 0.44          | 0.87         |
| XF0384           | outer membrane hemin receptor                             | phuR          | IV.A.2              | 0.01           | 0.11          | 0.09           | 0.52          | 0.13         |
| XF0390           | two-component system, sensor protein                      | phoQ          | I.D                 | -0.04          | -0.11         | 0.33           | 0.58          | 0.74         |
| XF0432           | BrkB protein                                              | brk           | VII.G               | -0.09          | -0.03         | 0.32           | 0.45          | 0.59         |
| XF0483           | phage-related protein                                     |               | VI.A                | 0.02           | 0.08          | 0.14           | 0.45          | 0.54         |
| XF0517           | conserved hypothetical                                    |               | VIII.A              | 0.07           | 0.00          | -0.09          | 0.61          | 0.48         |
| XF0525           | conserved hypothetical                                    |               | VIII.A              | -0.07          | -0.02         | 0.25           | 0.56          | 0.46         |
| XF0540           | phage-related lysozyme                                    |               | VI.A                | -0.04          | 0.15          | 0.53           | 0.64          | 0.27         |
| XF0542           | hypothetical protein                                      |               | VIII.B              | -0.09          | 0.03          | 1.17           | 0.63          | -0.17        |
| XF0556<br>XF0560 | predicted GTPases (COG1162) GMP synthase                  | engC          | IX                  | -0.17          | 0.27          | 0.48           | 0.70          | 0.83         |
| XF0582           | hypothetical protein                                      | scf55.27      | II.B.1              | -0.06          | 0.21          | 0.65           | 0.53          | 0.49         |
| XF0598           | prolyl 4-hydroxylase (P4Hc) alpha subunit                 |               | VIII.B<br>VII.C     | -0.03          | 0.13          | 0.02           | 0.64          | 0.69         |
| XF0626           | hypothetical protein                                      |               | VII.C<br>VIII.B     | -0.04<br>-0.15 | 0.29<br>-0.23 | 0.22<br>0.18   | 0.63<br>0.07  | 0.36<br>0.68 |
| XF0668           | hemolysin-type calcium binding protein                    | frpC          | VIII.C              | -0.19          | 0.76          | 0.18           | 0.07          | 0.58         |
| XF0678           | phage-related integrase                                   | int           | VII.C<br>VI.A       | 0.04           | -0.30         | 0.37           | 0.33          | 0.38         |
| XF0741           | phenylalanyl-tRNA synthetase alpha chain                  | pheS          | III.B.4             | 0.00           | 0.25          | 0.03           | 0.82          | 0.74         |
| XF0777           | membrane protein                                          | actII-3       | IV.A.1              | -0.23          | 0.03          | 0.49           | 0.74          | 0.95         |
| XF0880           | carbonic anhydrase                                        | yadF          | I.B.10              | 0.11           | -0.05         | 0.22           | 0.51          | 0.64         |
| XF0910           | ubiquinol cytochrome C oxidoreductase, cytochrome         | ,             |                     |                |               |                |               |              |
| VE0022           | C1 subunit                                                | petC          | I.C.3               | -0.05          | 0.10          | 0.44           | 0.83          | 0.79         |
| XF0932<br>XF0950 | ferrous iron transport protein                            | dr1220        | V.A.4               | -0.06          | 0.17          | 0.70           | 0.93          | 0.64         |
| XF1000           | riboflavin-specific deaminase acetylornithine deacetylase | ribD          | II.D.9              | -0.08          | 0.12          | 0.77           | 0.65          | 0.52         |
| XF1000           | argininosuccinate lyase                                   | argE          | II.A.1              | -0.29          | -0.03         | -0.55          | 0.31          | 0.57         |
| XF1004           | glutamate 5-kinase                                        | asl<br>dr1827 | II.A.1<br>II.A.1    | -0.03<br>0.00  | 0.03<br>0.08  | -0.38<br>-0.99 | 0.27<br>-0.01 | 1.01<br>1.21 |
| XF1020           | pathogenicity-related protein                             | ur 1627       | VII.H               | 0.00           | 0.06          | 0.43           | 0.66          | 0.52         |
| XF1034           | hypothetical protein                                      |               | VIII.B              | 0.04           | 0.25          | 0.43           | 0.48          | 0.63         |
| XF1144           | ATP synthase, gamma chain                                 | atpG          | I.C.8               | 0.18           | -0.44         | 0.66           | 0.56          | 0.72         |
| XF1151           | 30S ribosomal protein S10                                 | rpsJ          | III.B.2             | -0.03          | -0.07         | -0.27          | 0.77          | 1.06         |
| XF1184           | hypothetical protein                                      | .,,           | VIII.B              | -0.07          | 0.29          | 0.75           | 0.74          | 0.34         |
| XF1187           | ATP-dependent Clp protease proteolytic subunit            | clpP          | III.C.3             | -0.01          | -0.01         | 0.41           | 0.64          | 0.54         |
| XF1189           | ATP-dependent serine proteinase La                        | Ion           | III.C.3             | 0.03           | 0.13          | 0.58           | 0.63          | 0.61         |
| XF1258           | small conductance mechanosensitive ion channel            | yggB          | V.A.7               | -0.01          | 0.10          | 0.17           | 0.56          | 0.67         |
| XF1314           | S-adenosylmethionine: tRNA ribosyltransferase-            | A             | III D 4             | 0.00           | 0.05          | 0.44           | 0.40          | 0.00         |
| XF1318           | isomerase conserved hypothetical protein                  | queA          | III.B.4             | 0.00           | -0.05         | 0.14           | 0.40          | 0.88         |
| XF1354           | transcriptional regulator (MarR family)                   | va/bA         | VIII.A<br>I.D       | -0.18<br>0.02  | -0.03<br>0.09 | 0.64<br>0.23   | 0.78<br>0.41  | 0.88<br>0.68 |
| XF1375           | tryptophan synthase beta chain                            | yybA<br>trpB  | II.A.4              | -0.06          | 0.09          | 0.23           | 0.41          | 0.60         |
| XF1384           | conserved hypothetical protein                            | рдаА          | VIII.A              | 0.09           | 0.35          | 0.42           | 0.89          | 0.16         |
| XF1415           | UDP-N-acetylglucosamine 1-carboxyvinyltransferase         | murA          | IV.C                | -0.04          | -0.04         | 0.32           | 0.62          | 0.83         |
| XF1426           | ion transporter                                           | dr0830        | V.A.4               | -0.08          | -0.26         | 0.61           | 0.51          | 0.51         |
| XF1436           | disulfide oxidoreductase                                  | dsbA          | III.C.1             | -0.01          | 0.14          | 0.23           | 0.47          | 0.58         |
| XF1475           | ABC transporter ATP-binding protein                       | ynhD          | V.A.7               | 0.02           | 0.11          | 0.35           | 1.00          | 0.67         |
| XF1520           | general secretory pathway protein H precursor             | xpsH          | VII.H               | -0.03          | 0.11          | 0.33           | 0.51          | 0.60         |
| XF1524           | general secretory pathway protein L                       | pefL          | VII.H               | -0.14          | -0.07         | 0.27           | 0.69          | 0.69         |
| XF1525           | general secretion pathway protein                         | xpsM          | VII.H               | -0.04          | 0.16          | 0.43           | 0.57          | 0.45         |
| XF1531           | subunit F of alkyl hydroperoxide reductase                | ahpF          | VII.C               | 0.04           | 0.31          | 0.67           | 0.40          | 0.18         |
| XF1625           | two-component system, sensor protein                      | algZ          | I.D                 | 0.06           | -0.24         | 0.19           | 0.26          | 0.59         |
| VE4640           |                                                           |               |                     | 0.00           | 0.04          | 0.52           | 0.40          | 0.19         |
| XF1640           | ankyrin-like protein                                      | ank2          | IV.A.1              | -0.06          | 0.31          | 0.53           | 0.49          | 0.19         |
| XF1647           | phage-related protein                                     | ank2          | IV.A.1<br>VI.A      | -0.06          | 0.31          | 0.39           | 0.49          | -0.20        |
|                  | •                                                         | ank2          |                     |                |               |                |               |              |

| Grupo4  | (continuação)                                       |              |                        |       | M =   | log₂(40°C/29 | °C)   |       |
|---------|-----------------------------------------------------|--------------|------------------------|-------|-------|--------------|-------|-------|
| Gene.ID | Produto                                             | Nome do gene | Categoria<br>funcional | 0min  | 7min  | 15min        | 25min | 45min |
| XF1714  | heat shock protein HSP33                            | hsIO         | VII.G                  | -0.03 | 0.19  | 0.41         | 0.56  | 0.64  |
| XF1777  | hypothetical protein                                |              | VIII.B                 | -0.04 | 0.04  | 0.14         | 0.45  | 0.62  |
| XF1795  | transcriptional regulator                           | baf          | I.D                    | -0.07 | -0.05 | -0.06        | 0.55  | 0.75  |
| XF2013  | 5-formyltetrahydrofolate cyclo-ligase               |              | I.B                    | 0.00  | -0.13 | -0.06        | 0.41  | 0.76  |
| XF2019  | Na+:H+ antiporter                                   | yjcE         | V.A.4                  | 0.28  | 0.29  | 0.01         | 0.75  | 0.85  |
| XF2048  | conjugal transfer protein                           | trbJ         | VI.B                   | 0.08  | 0.61  | 0.64         | -0.28 | -0.18 |
| XF2062  | transcriptional repressor                           | korC         | I.D                    | 0.02  | -0.29 | 0.24         | 0.50  | 0.70  |
| XF2071  | predicted transcriptional regulator                 |              | I.D                    | 0.00  | -0.05 | 0.21         | 0.55  | 0.96  |
| XF2181  | hypothetical protein                                |              | VIII.B                 | 0.00  | -0.12 | 0.55         | 0.94  | 0.67  |
| XF2190  | conserved hypothetical protein                      |              | VIII.A                 | -0.29 | 0.49  | 0.47         | 0.91  | 0.77  |
| XF2195  | conserved hypothetical protein                      |              | VIII.A                 | -0.02 | 0.36  | 0.30         | 0.52  | 0.61  |
| XF2257  | predicted membrane protein                          | yebN         | IV.A.1                 | 0.01  | -0.10 | 0.76         | 0.35  | 0.51  |
| XF2261  | oligopeptide transporter                            | hI0561       | V.A.6                  | -0.01 | 0.28  | 0.47         | 0.55  | 0.64  |
| XF2267  | glycerol uptake facilitator protein                 | glpF         | V.A.3                  | -0.11 | 0.17  | 0.50         | 0.86  | 0.22  |
| XF2314  | phage-related lysozyme                              | lycV         | VI.A                   | 0.03  | 0.02  | 0.28         | 0.56  | 0.68  |
| XF2318  | hypothetical protein                                | ,            | VIII.B                 | 0.01  | 0.19  | 0.29         | 0.38  | 0.71  |
| XF2397  | toxin secretion ABC transporter ATP-binding protein | hlyB         | VII.C                  | 0.10  | 0.16  | 0.51         | 0.75  | 0.81  |
| XF2398  | hemolysin secretion protein D                       | hlyD         | VII.C                  | 0.07  | 0.10  | 0.25         | 0.92  | 0.96  |
| XF2407  | bacteriocin                                         |              | VII.C                  | 0.07  | 0.68  | 0.97         | 0.63  | 0.30  |
| XF2537  | pre-pilin leader peptidase                          | xpsO         | IV.D                   | -0.03 | 0.23  | 0.35         | 0.55  | 0.54  |
| XF2558  | chromosome segregation protein                      | smc          | III.A.2                | -0.27 | -0.49 | -0.02        | 0.65  | 0.94  |
| XF2578  | two-component system, regulatory protein            | actR         | I.D                    | 0.00  | 0.07  | 0.43         | 0.60  | 0.64  |
| XF2581  | hypothetical protein                                |              | VIII.B                 | -0.04 | 0.19  | 1.10         | 0.65  | -0.17 |
| XF2582  | ABC transporter ATP-binding protein                 | dra0349      | V.A.7                  | 0.00  | -0.05 | 0.30         | 0.73  | 0.98  |
| XF2639  | preprotein translocase subunit                      | secE         | V.A.6                  | -0.02 | -0.12 | 0.03         | 0.63  | 0.41  |
| XF2648  | glutamyl-tRNA reductase                             | hemA         | II.D.12                | -0.07 | 0.08  | 0.55         | 0.48  | 0.51  |
| XF2650  | conserved hypothetical protein                      |              | VIII.A                 | 0.09  | 0.37  | -0.94        | 0.36  | -0.18 |
| XF2651  | conserved hypothetical protein                      | ycbY         | VIII.A                 | -0.06 | 0.24  | 0.46         | 0.73  | 0.62  |
| XF2666  | multiple antibiotic transporter                     | yhgN         | VII.C                  | -0.14 | 0.14  | 0.63         | 0.65  | 0.30  |
| XF2709  | glutamate synthase, beta subunit                    | gltD         | II.A.1                 | -0.13 | 0.42  | 0.80         | 0.75  | 0.77  |
| XF2761  | phage-related integrase                             | J            | VI.A                   | -0.01 | 0.03  | 0.27         | 0.71  | 0.83  |
| XF2777  | hypothetical protein                                |              | VIII.B                 | -0.05 | 0.02  | 0.18         | 0.88  | 0.69  |
| XFa0003 | topoisomerase I                                     | topA         | III.A.1                | -0.02 | 0.07  | 0.33         | 0.18  | 0.75  |
| XFa0037 | conjugal transfer protein                           | trbL         | VI.B                   | -0.01 | 0.44  | 0.85         | 0.58  | 0.59  |
| XFa0046 | predicted transcriptional regulator                 |              | I.D                    | 0.03  | 0.67  | 0.71         | 0.67  | -0.44 |
| XFb0002 | hypothetical protein                                |              | VIII.B                 | -0.04 | -0.18 | 0.64         | 0.53  | 0.11  |



| 0' 7' 1          | 5′ 25′ 45′                                                                                         |                |                        |               | M = I          | og₂(40°C/29°   | °C)            |                |
|------------------|----------------------------------------------------------------------------------------------------|----------------|------------------------|---------------|----------------|----------------|----------------|----------------|
| Gene.ID          | Produto                                                                                            | Nome do gene   | Categoria<br>funcional | 0min          | 7min           | 15min          | 25min          | 45min          |
| XF0009           | TonB protein                                                                                       | tonB           | VII.C                  | -0.03         | -0.04          | -0.52          | -0.62          | -0.67          |
| XF0010           | biopolymer transport ExbB protein                                                                  | exbB           | VII.C                  | -0.05         | 0.02           | -0.12          | -0.69          | -0.83          |
| XF0031           | PilX protein                                                                                       | pilX           | IV.D                   | 0.00          | -0.47          | -0.84          | -0.36          | -0.47          |
| XF0079           | hypothetical protein                                                                               |                | VIII.B                 | -0.03         | -0.07          | -0.42          | -0.77          | -0.86          |
| XF0098           | hypothetical protein                                                                               |                | VIII.B                 | -0.05         | -0.17          | -0.50          | -0.66          | -0.10          |
| XF0114<br>XF0115 | 2,3,4,5-tetrahydropyridine-2-carboxylate N-<br>succinyltransferase<br>arsenate reductase           | dapD           | II.A.2<br>I.C.3        | 0.01<br>-0.01 | -0.06<br>-0.33 | -0.35<br>-0.22 | -0.58<br>-0.76 | -0.68<br>-0.58 |
| XF0169           | tyrosyl-tRNA synthetase                                                                            | tyrS           | III.B.4                | 0.02          | -0.37          | -0.59          | -0.84          | -0.74          |
| XF0184<br>XF0192 | membrane protein implicated in regulation of membrane protease activity ATP-dependent RNA helicase | dr2142<br>rhlE | III.C<br>III.B.5       | 0.01          | 0.17<br>-0.38  | -1.07<br>-0.46 | -0.50<br>-0.64 | -0.88<br>-0.69 |
| XF0211           | anthranilate synthase component II                                                                 | trpG           | II.A.4                 | 0.13          | 0.30           | -0.38          | -0.51          | -0.52          |
| XF0212           | anthranilate phosphoribosyltransferase                                                             | trpD           | II.A.4                 | 0.08          | -0.03          | -0.23          | -0.43          | -0.60          |
| XF0213           | indole-3-glycerol phosphate synthase                                                               | trpC           | II.A.4                 | 0.01          | -0.21          | -0.26          | -0.70          | -1.23          |
| XF0214           | phosphoserine phosphatase                                                                          | p              | V.A.1                  | 0.00          | -0.46          | -0.31          | -0.74          | -0.94          |
| XF0224           | preprotein translocase YajC subunit                                                                | yajC           | V.A.6                  | 0.02          | -0.23          | -0.47          | -0.39          | -1.00          |
| XF0228           | 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine                                                  | folk           | IID2                   | -0.08         | -0.15          | 0.00           | -0.26          | -0.68          |

| Grupo 5          | ō (continuação)                                                         |                 |                     | $M = log_2(40^{\circ}C/29^{\circ}C)$ |       |       |       |       |
|------------------|-------------------------------------------------------------------------|-----------------|---------------------|--------------------------------------|-------|-------|-------|-------|
| Gene.ID          | Produto                                                                 | Nome do<br>gene | Categoria funcional | 0min                                 | 7min  | 15min | 25min | 45min |
| VE0040           | pyrophosphokinase                                                       |                 |                     |                                      |       |       |       |       |
| XF0240           | predicted transcriptional regulator                                     | _               | I.D                 | 0.04                                 | -0.11 | -0.36 | -0.88 | -0.93 |
| XF0262           | colicin V precursor                                                     | cvaC            | VII.C               | -0.01                                | -0.51 | 0.08  | -0.85 | -1.13 |
| XF0264           | colicin V precursor                                                     |                 | VII.C               | -0.01                                | -0.47 | 0.05  | -0.68 | -1.15 |
| XF0266<br>XF0296 | hypothetical protein type I restriction-modification system specificity |                 | VIII.B              | 0.02                                 | 0.46  | -0.33 | -0.43 | -0.51 |
|                  | determinant                                                             |                 | III.A.5             | 0.03                                 | -0.37 | -0.36 | -0.61 | -0.50 |
| XF0305           | NADH-ubiquinone oxidoreductase, NQO7 subunit                            | nuoA            | I.C.1               | 0.09                                 | -0.19 | -0.42 | -0.15 | -0.81 |
| XF0308           | NADH-ubiquinone oxidoreductase, NQO4 subunit                            | nuoD            | I.C.1               | -0.02                                | 0.04  | -0.23 | -0.54 | -0.81 |
| XF0312           | NADH-ubiquinone oxidoreductase, NQO8 subunit                            | nuoH            | I.C.1               | 0.03                                 | 0.03  | 0.00  | -0.13 | -0.84 |
| XF0316           | NADH-ubiquinone oxidoreductase, NQO12 subunit                           | nuoL            | I.C.1               | 0.00                                 | 0.07  | -0.01 | -0.56 | -0.75 |
| XF0320           | Mg++/citrate complex transporter                                        | citN            | V.A.3               | -0.07                                | -0.11 | -0.51 | -0.66 | -0.78 |
| XF0324<br>XF0347 | periplasmic iron-binding protein                                        | afuA            | V.A.4               | 0.20                                 | -0.14 | -0.62 | -0.63 | -0.45 |
|                  | D-lactate dehydrogenase                                                 | dld1            | I.C.1               | -0.01                                | -0.64 | -0.46 | -0.75 | -0.42 |
| XF0363           | OmpA family protein                                                     | yiaD            | IV.A.2              | -0.05                                | -0.05 | -0.14 | -0.63 | -1.03 |
| XF0366<br>XF0382 | ribokinase conserved hypothetical protein                               | rbsK            | I.A.2               | 0.10                                 | -0.05 | -0.65 | -0.65 | 0.08  |
| XF0362<br>XF0401 | **                                                                      |                 | VIII.A              | 0.11                                 | -0.04 | -1.13 | -0.68 | -0.99 |
| XF0401<br>XF0404 | two-component system, regulatory protein                                |                 | I.D                 | 0.07                                 | -0.30 | -0.44 | -0.49 | -0.83 |
| XF0404<br>XF0406 | conserved hypothetical protein                                          |                 | VIII.A              | 0.01                                 | -0.22 | -0.13 | -0.70 | -0.95 |
|                  | export protein                                                          | ygjT            | V.A.7               | -0.05                                | -0.50 | -0.32 | -0.57 | -0.50 |
| XF0407           | conserved hypothetical protein                                          | yccW            | VIII.A              | 0.01                                 | -0.12 | -0.10 | -0.19 | -0.72 |
| XF0445           | prolyl-tRNA synthetase                                                  | proS            | III.B.4             | 0.01                                 | -0.09 | -0.21 | -0.69 | -1.00 |
| XF0457           | glyceraldehyde-3-phosphate dehydrogenase                                | gapA            | I.C.4               | 0.03                                 | -0.06 | -0.65 | -0.87 | -0.64 |
| XF0550           | TonB-dependent receptor protein                                         |                 | V.A.7               | 0.04                                 | 0.40  | -0.15 | -0.55 | -0.46 |
| XF0565           | conserved hypothetical protein                                          | tm0696          | VIII.A              | -0.01                                | 0.29  | -0.40 | -0.78 | -0.71 |
| XF0587           | 5'-phosphoribosyl-5-aminoimidazole synthetase                           | purM            | II.B.1              | 0.02                                 | -0.17 | -0.81 | -0.64 | -0.70 |
| XF0601           | outer membrane protein UptE precursor (PD1550)                          |                 | IV.A.2              | 0.00                                 | 0.03  | -0.06 | -0.60 | -0.55 |
| XF0609           | GDP-mannose 4,6 dehydratase                                             | gmd             | I.B.11              | 0.03                                 | -0.05 | -0.14 | -0.82 | -1.22 |
| XF0653           | putative lipoprotein                                                    |                 | IV.A.2              | 0.03                                 | -0.08 | -0.31 | -0.46 | -0.46 |
| XF0670           | malonyl CoA-ACP transacylase                                            | fabD            | II.E                | -0.03                                | -0.10 | -0.36 | -0.63 | -0.79 |
| XF0672           | acyl carrier protein                                                    | acpP            | II.E                | 0.05                                 | 0.10  | -0.17 | -0.25 | -0.61 |
| XF0676           | DNA polymerase III, delta subunit                                       | holB            | III.A.1             | 0.06                                 | -0.19 | -0.24 | -0.46 | -0.68 |
| XF0736           | threonyl-tRNA synthetase                                                | thrS            | III.B.4             | 0.04                                 | 0.02  | -0.12 | -0.48 | -0.56 |
| XF0837           | organic solvent tolerance precursor                                     | imp             | VII.G               | 0.01                                 | -0.09 | -0.71 | -0.84 | -0.23 |
| XF0839           | pyridoxal phosphate biosynthetic protein                                | pdxA            | II.D.6              | 0.10                                 | -0.50 | -0.42 | -0.79 | -0.87 |
| XF0890<br>XF0896 | hypothetical protein                                                    |                 | VIII.B              | 0.03                                 | -0.04 | -0.17 | -0.54 | -0.54 |
| XF0922           | hypothetical protein hypothetical protein                               |                 | VIII.B              | -0.03                                | -0.08 | -0.10 | -0.69 | -0.23 |
| XF0937           | hypothetical protein                                                    |                 | VIII.B              | -0.11                                | -0.01 | -0.35 | -0.51 | -0.91 |
| XF0946           | serine hydroxymethyltransferase                                         |                 | VIII.B              | -0.02                                | -0.11 | -0.34 | -0.45 | -0.86 |
| XF0946<br>XF0954 | 6,7-dimethyl-8-ribityllumazine synthase                                 | glyA            | II.A.3              | -0.02                                | 0.22  | 0.10  | -0.55 | -0.58 |
| XF0955           | transcription termination factor                                        | ribH            | II.D.9              | -0.11                                | -0.12 | -0.28 | -0.38 | -0.67 |
| XF0975           | polyphosphate-selective porin O                                         | nusB            | III.B.5             | -0.03                                | -0.13 | -0.17 | -0.40 | -0.84 |
| XF0975<br>XF0988 | dihydroorotase                                                          | oprO            | IV.A.2              | -0.08                                | 0.19  | -0.72 | -0.68 | -0.50 |
| XF1026           |                                                                         | pyrC            | II.B.2              | -0.03                                | -0.13 | -0.49 | -0.85 | -0.44 |
| XF1026<br>XF1044 | serine protease (3r)-hydroxymyristoyl ACP dehydrase                     | pspB            | III.C.3             | -0.01                                | 0.12  | -0.10 | -0.86 | -0.64 |
|                  | phosphohistidine phosphatase SixA                                       | fabZ            | II.E                | 0.03                                 | 0.06  | -0.67 | -0.69 | -0.07 |
| XF1085<br>XF1135 |                                                                         | sixA            | IX                  | 0.07                                 | -0.11 | -0.08 | -0.38 | -0.60 |
|                  | hypothetical protein 50S ribosomal protein L22                          |                 | VIII.B              | -0.05                                | -0.47 | -0.60 | -0.07 | -0.15 |
| XF1157           | 50S ribosomal protein L16                                               | rpIV            | III.B.2             | 0.64                                 | 0.52  | -0.72 | 0.10  | -0.56 |
| XF1159<br>XF1161 | •                                                                       | rpIP            | III.B.2             | -0.01                                | -0.19 | -0.02 | -0.22 | -0.55 |
|                  | 30S ribosomal protein S17                                               | rpsQ            | III.B.2             | 0.19                                 | 0.05  | -0.35 | -0.34 | -1.02 |
| XF1162<br>XF1163 | 50S ribosomal protein L24                                               | rpIN            | III.B.2             | 0.01                                 | -0.01 | -0.16 | -0.52 | -1.32 |
| XF1163           | 50S ribosomal protein L24                                               | rpIX            | III.B.2             | 0.05                                 | 0.13  | -0.15 | -0.30 | -0.69 |
| XF1169           | 30S ribosomal protein S5                                                | rpsE            | III.B.2             | 0.00                                 | 0.30  | -0.52 | -0.98 | -1.14 |
| XF1171<br>XF1176 | 50S ribosomal protein L15                                               | rpIO            | III.B.2             | -0.03                                | 0.30  | -0.16 | -0.73 | -0.97 |
| XF1176           | RNA polymerase alpha subunit                                            | rpoA            | III.B.5             | -0.04                                | 0.01  | -0.45 | -0.51 | -0.77 |
| XF1183           | polysaccharide biosynthetic protein                                     | vipA            | IV.A.1              | -0.04                                | -0.11 | -0.41 | -0.39 | -0.90 |
| XF1191           | peptidyl-prolyl cis-trans isomerase                                     | ppiD            | III.C.1             | -0.01                                | -0.19 | -0.79 | -0.49 | -0.49 |
| XF1213           | GTP-binding elongation factor protein                                   | typA            | IX                  | 0.04                                 | -0.01 | -0.50 | -0.36 | -0.58 |
| XF1215           | hypothetical protein                                                    |                 | VIII.B              | -0.07                                | 0.30  | -0.29 | -0.52 | -0.30 |
| XF1223           | ABC transporter ATP-binding protein                                     | yadG            | V.A.7               | 0.10                                 | -0.37 | 0.10  | -0.61 | -0.61 |
| XF1275           | poly(hydroxyalcanoate) granule associated protein                       | phaF            | I.D                 | 0.03                                 | -0.17 | -0.05 | -0.87 | -0.85 |
| XF1300           | ABC-type uncharacterized transport system, auxiliary component          |                 | V                   | -0.01                                | -0.05 | -1.12 | -0.73 | -0.29 |
| XF1321           | septum site-determining protein                                         | minD            | V.B                 | 0.00                                 | 0.02  | -0.27 | -0.84 | -0.79 |
|                  | <u>~ .</u>                                                              |                 | ٧.٥                 | 5.55                                 | 0.02  | U1    | 0.04  | 0.70  |

| Grupo            | 5 (continuação)                                                          |                 | -                   |               | °C)            |                |                |                |
|------------------|--------------------------------------------------------------------------|-----------------|---------------------|---------------|----------------|----------------|----------------|----------------|
| Gene.ID          | Produto                                                                  | Nome do<br>gene | Categoria funcional | 0min          | 7min           | 15min          | 25min          | 45min          |
| XF1323           | predicted acetyltransferase, GNAT superfamily                            |                 | IX                  | 0.02          | -0.37          | -0.48          | -0.61          | -0.47          |
| XF1409           | ABC transporter ATP-binding protein                                      | hl1148          | V.A.7               | -0.07         | -0.01          | -0.66          | -0.76          | -0.47          |
| XF1411           | conserved hypothetical protein                                           |                 | VIII.A              | -0.06         | -0.20          | -0.51          | -0.53          | -0.67          |
| XF1442           | ATP-dependent Clp protease adaptor protein ClpS                          | clpS            | III.B               | -0.07         | -0.15          | -0.52          | -0.57          | -0.82          |
| XF1456           | 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine<br>pyrophosphokinase   | folK            | II.D.2              | -0.02         | -0.33          | -0.16          | -0.47          | -0.73          |
| XF1540           | transcriptional regulator (Crp/Fnr family)                               | clp             | I.D                 | 0.07          | -0.09          | -0.21          | -0.40          | -0.73          |
| XF1590           | plasmid stabilization protein                                            | y4jJ            | VI.B                | 0.04          | 0.05           | -0.25          | 0.01           | -0.53          |
| XF1605           | peptidyl-prolyl cis-trans isomerase                                      | tp0862          | III.C.1             | 0.08          | -0.19          | -0.44          | -0.72          | -0.63          |
| XF1628           | conserved hypothetical protein                                           |                 | VIII.A              | 0.16          | 0.26           | -0.61          | -0.94          | -0.49          |
| XF1632           | twitching motility protein                                               | pilU            | IV.D                | 0.15          | 0.24           | 0.01           | -0.81          | -0.86          |
| XF1813           | methanol dehydrogenase regulatory protein                                | dr0621          | I.D                 | 0.02          | -0.06          | -0.88          | -0.79          | -0.58          |
| XF1814           | glycosyl transferase                                                     |                 | IV.A.2              | 0.16          | -0.25          | -0.38          | -0.44          | -0.48          |
| XF1826           | hypothetical protein                                                     |                 | VIII.B              | -0.05         | 0.39           | -0.48          | -0.76          | -0.60          |
| XF1827           | organic hydroperoxide resistance protein                                 | ohr             | VII.C               | 0.16          | 0.02           | -0.27          | -0.81          | -1.00          |
| XF1832           | conserved hypothetical protein                                           |                 | VIII.A              | -0.04         | -0.49          | -0.51          | -0.64          | -0.63          |
| XF1835<br>XF1849 | conserved hypothetical protein                                           |                 | VIII.A              | 0.01          | 0.01           | -0.41          | -0.60          | -0.65          |
| XF1890           | two-component system, sensor protein glutathione peroxidase-like protein | ntrB            | I.D                 | 0.01          | -0.19          | -0.14          | -0.26          | -0.46          |
| XF1898           | TolA protein                                                             | gpo             | VII.C               | -0.03         | 0.01           | -0.25          | -0.81          | -0.72          |
| XF1902           | holliday junction binding protein, DNA helicase                          | tolA            | VII.C               | -0.04         | -0.22          | -0.31          | -0.46          | -0.55          |
| XF1905           | holliday junction resolvase, endodeoxyribonuclease                       | ruvB<br>ruvC    | III.A.4             | -0.02         | 0.00           | -0.22          | -0.55          | -1.04          |
| XF1924           | L-aspartate oxidase                                                      | sce94.33c       | III.A.4<br>II.D.7   | 0.03<br>0.01  | -0.46<br>-0.01 | -0.59<br>-0.59 | -0.82<br>-0.68 | -0.69<br>-0.67 |
| XF1944           | peptidyl-dipeptidase                                                     | dcp             | III.C.3             | -0.01         | 0.04           | -0.39          | -0.08          | -0.67          |
| XF1950           | CheW like protein                                                        | иср             | V.C                 | 0.11          | -0.26          | -0.12          | -0.71          | -0.89          |
| XF1956           | glutathione synthetase                                                   | gshB            | II.D.10             | 0.01          | 0.12           | -0.26          | -0.62          | -0.53          |
| XF1991           | hypothetical protein                                                     | 902             | VIII.B              | -0.03         | -0.43          | -0.61          | -0.76          | -0.22          |
| XF1996           | transcriptional regulator (PbsX family)                                  |                 | I.D                 | 0.01          | 0.22           | -0.52          | -0.75          | -0.65          |
| XF1999           | branched-chain amino acid aminotransferase                               | ilvE            | II.A.2              | 0.11          | -0.17          | -0.66          | -0.58          | -0.53          |
| XF2005           | conserved hypothetical protein                                           |                 | VIII.A              | 0.02          | -0.21          | -0.16          | -0.44          | -0.62          |
| XF2006           | hypothetical protein                                                     |                 | VIII.B              | -0.06         | -0.27          | -0.52          | -0.69          | -0.80          |
| XF2035           | conserved hypothetical protein                                           |                 | VIII.A              | 0.02          | -0.07          | -0.13          | -0.54          | -0.50          |
| XF2050           | conjugal transfer protein                                                | trbH            | VI.B                | 0.04          | -0.04          | 0.09           | -0.11          | -0.42          |
| XF2088           | predicted mannose-6-phosphate isomerase                                  |                 | I.C                 | 0.11          | 0.09           | 0.06           | -0.28          | -0.87          |
| XF2103           | conserved hypothetical protein                                           |                 | VIII.A              | 0.05          | 0.03           | -0.55          | -0.50          | -0.48          |
| XF2143           | ABC transporter phosphate permease                                       | pstA            | V.A.2               | 0.02          | -0.04          | -1.04          | -0.81          | 0.06           |
| XF2197           | conserved hypothetical protein                                           |                 | VIII.A              | 0.10          | -0.07          | -0.84          | -0.85          | 0.11           |
| XF2207           | cationic amino acid transporter                                          | sc1c3.02        | V.A.1               | 0.07          | 0.35           | -0.09          | -0.19          | -0.71          |
| XF2222           | histidyl-tRNA synthetase                                                 | hisS            | III.B.4             | 0.00          | 0.35           | -1.09          | -0.59          | -0.57          |
| XF2243<br>XF2277 | GTP binding protein predicted membrane protein                           | <i>lepA</i>     | IX                  | -0.03         | -0.11          | -0.35          | -0.37          | -0.51          |
| XF2280           | hypothetical protein                                                     |                 | IV.A.1              | -0.11         | -0.24          | -0.43          | -0.66          | -0.59          |
| XF2321           | conserved hypothetical protein                                           |                 | VIII.B              | -0.22         | -0.24          | -0.79          | -0.17          | -1.29          |
| XF2444           | pheromone shutdown protein                                               | tro D           | VIII.A<br>VI.B      | 0.00          | -0.04          | -0.81          | -0.72          | -0.97          |
| XF2511           | phage-related protein                                                    | traB<br>ci      | VI.A                | 0.11<br>-0.02 | -0.38<br>0.06  | -1.02<br>-0.24 | -0.65<br>-0.63 | -0.65<br>-0.90 |
| XF2526           | phage-related protein                                                    | CI              | VI.A<br>VI.A        | 0.02          | -0.09          | -0.24          | -0.63<br>-0.51 | -0.90          |
| XF2545           | two-component system, regulatory protein                                 | pilR            | I.D                 | -0.11         | -0.09          | -0.37          | -0.55          | -0.48          |
| XF2635           | 50S ribosomal protein L10                                                | rpIJ            | III.B.2             | 0.06          | -0.07          | -0.39          | -0.61          | -0.82          |
| XF2682           | periplasmic glucan biosynthesis protein                                  | mdoG            | VII.G               | 0.10          | -0.19          | -0.15          | -0.59          | -0.79          |
| XF2697           | hypothetical protein                                                     |                 | VIII.B              | -0.02         | 0.04           | -0.31          | -0.32          | -0.72          |
| XF2713           | tonB-dependent receptor cirA                                             |                 | V.A.4               | 0.05          | -0.08          | -0.71          | -0.89          | -0.49          |
| XFa0004          | hypothetical protein                                                     |                 | VIII.B              | -0.04         | 0.01           | -0.46          | -0.62          | -0.62          |
| XFa0008          | conjugal transfer protein                                                | traC            | VI.B                | 0.08          | 0.04           | 0.07           | -0.65          | -1.03          |
| XFa0009          | hypothetical protein                                                     |                 | VIII.B              | -0.18         | 0.01           | -0.21          | -0.71          | -1.01          |
| XFa0018          | hypothetical protein                                                     |                 | VIII.B              | 0.05          | 0.15           | -0.09          | -0.64          | -0.53          |
| XFa0026          | conserved hypothetical protein                                           |                 | VIII.A              | 0.02          | -0.14          | -0.24          | -0.31          | -0.79          |
| XFa0036          | conjugal transfer protein                                                | trbN            | VI.B                | -0.01         | -0.61          | -0.17          | -0.46          | -0.04          |
| XFa0042          | conjugal transfer protein                                                | trbG            | VI.B                | 0.05          | 0.23           | -0.21          | -0.67          | -1.59          |
| XFa0043          | conjugal transfer protein                                                | trbF            | VI.B                | 0.02          | -0.21          | -0.21          | -0.75          | -0.92          |
| XFa0054          | hypothetical protein                                                     |                 | VIII.B              | 0.03          | 0.19           | -0.09          | -0.69          | -0.51          |
| XFa0058          | hypothetical protein                                                     |                 | VIII.B              | 0.10          | -0.34          | -0.36          | -0.85          | -0.59          |
| XFa0059          | plasmid replication/partition protein                                    | spo0J           | VI.B                | -0.01         | -0.10          | 0.09           | -0.66          | -0.55          |
| XFa0062          | conserved hypothetical protein                                           |                 | VIII.A              | 0.22          | 0.25           | 0.12           | -0.58          | -0.91          |



| 0 7 15           | 3´ 25′ 45′                                             |              | •                   | $M = log_2(40^{\circ}C/29^{\circ}C)$ |               |                |                |                |
|------------------|--------------------------------------------------------|--------------|---------------------|--------------------------------------|---------------|----------------|----------------|----------------|
| Gene.ID          | Produto                                                | Nome do gene | Categoria funcional | 0min                                 | 7min          | 15min          | 25min          | 45min          |
| XF0083           | fimbrial subunit precursor                             | f17A-A       | IV.D                | -0.05                                | 0.28          | -1.14          | -0.87          | -1.50          |
| XF0099           | dihydroxy-acid dehydratase                             | ilvD         | II.A.2              | 0.06                                 | -0.22         | -0.81          | -0.98          | -1.01          |
| XF0100           | hypothetical protein                                   |              | VIII.B              | 0.03                                 | -0.07         | -0.53          | -1.59          | -1.07          |
| XF0102           | glycosyl transferase                                   | rfaG         | IX                  | -0.06                                | 0.26          | -0.78          | -1.54          | -0.63          |
| XF0196           | conserved hypothetical protein                         |              | VIII.A              | 0.28                                 | 0.09          | -0.68          | -0.89          | -0.86          |
| XF0263           | colicin V precursor                                    | cvaC         | VII.C               | 0.02                                 | -0.73         | -0.82          | -0.97          | -1.43          |
| XF0274           | 6-phosphofructokinase                                  | pfkA         | I.C.4               | 0.06                                 | 0.09          | -1.04          | -0.91          | -0.87          |
| XF0319           | acetoacetyl-CoA reductase                              | phbB         | II.E                | -0.03                                | -0.02         | -0.86          | -1.34          | -1.82          |
| XF0371           | fimbrial assembly membrane protein                     | pilO         | IV.D                | 0.04                                 | -0.52         | -0.79          | -0.96          | -1.77          |
| XF0372           | fimbrial assembly protein                              | piIP         | IV.D                | 0.00                                 | -0.26         | -0.50          | -0.94          | -1.15          |
| XF0373           | fimbrial assembly protein                              | pilQ         | IV.D                | -0.02                                | -0.32         | -0.38          | -1.08          | -0.87          |
| XF0395           | bacterioferritin                                       | bfr          | V.A.4               | 0.00                                 | -0.30         | -0.85          | -1.13          | -1.56          |
| XF0403           | conserved hypothetical protein                         |              | VIII.A              | -0.03                                | -0.28         | -0.73          | -1.30          | -0.94          |
| XF0418           | toluene tolerance protein                              | ttg2D        | VII.G               | 0.09                                 | 0.03          | -1.19          | -1.46          | -0.45          |
| XF0450           | two-component system, regulatory protein               | pilH         | I.D                 | 0.05                                 | -0.11         | -0.43          | -1.07          | -0.65          |
| XF0497           | conserved hypothetical protein                         | rv2514c      | VIII.A              | 0.09                                 | -0.35         | -0.82          | -0.90          | -0.96          |
| XF0566           | ferrochelatase                                         | hemH         | II.D.12             | 0.06                                 | -0.34         | -0.45          | -0.63          | -1.17          |
| XF0606           | hypothetical protein                                   |              | VIII.B              | 0.03                                 | -0.60         | -0.81          | -1.13          | -0.71          |
| XF0610           | UDP-glucose 4-epimerase                                | galE         | I.A.2               | -0.05                                | -0.13         | -0.37          | -0.92          | -1.03          |
| XF0611           | dTDP-glucose 4-6-dehydratase                           | rfbB         | IV.C                | -0.09                                | -0.15         | -0.62          | -1.34          | -1.56          |
| XF0660           | exodeoxyribonuclease small subunit                     | xseB         | III.A.4             | 0.06                                 | -0.10         | -0.86          | -0.97          | -1.03          |
| XF0821           | transcriptional regulator (Fur family)                 | zur          | I.D                 | 0.03                                 | 0.01          | -0.57          | -1.19          | -1.11          |
| XF0872           | outer membrane protein                                 | ompW         | IV.A.2              | -0.03                                | 0.14          | -1.04          | -0.63          | -1.21          |
| XF0920           | DNA topoisomerase I                                    | topA         | III.A.1             | -0.02                                | -0.12         | -0.92          | -1.07          | -0.73          |
| XF0923           | conserved hypothetical protein                         | smg          | VIII.A              | 0.06                                 | -0.21         | -0.71          | -1.09          | -1.13          |
| XF0938           | putative lipoprotein (competence related)              |              | IV.A.2              | 0.05                                 | -0.07         | -0.88          | -1.14          | -1.11          |
| XF0994           | SufE protein probably involved in Fe-S center assembly | , of V       | I.B.12              | -0.03                                | -0.06         | -0.57          | -0.87          | -1.10          |
| XF1074<br>XF1146 | conserved hypothetical protein                         | ygfY         | VIII.A<br>I.C.8     | -0.07<br>-0.08                       | -0.64<br>0.04 | -0.57<br>-1.20 | -0.88<br>-1.18 | -0.85<br>-1.10 |
| XF1147           | ATP synthase, delta chain                              | atpH<br>atpE | I.C.8               | 0.03                                 | -0.09         | -1.12          | -1.03          | -0.64          |
| XF1147<br>XF1148 | ATP synthase, B chain ATP synthase, C chain            | atpF         | I.C.8               | 0.00                                 | -0.09         | -0.96          | -1.03          | -0.04          |
| XF1146<br>XF1175 | 30S ribosomal protein S4                               | atpE<br>rpsD | III.B.2             | 0.03                                 | -0.40         | -0.96          | -0.80          | -1.01<br>-1.01 |
| XF1216           | colicin V secretion protein                            | cvaA         | VII.C               | 0.03                                 | -0.02         | -1.44          | -1.60          | -1.46          |
| XF1217           | hypothetical protein                                   | CVAA         | VII.B               | 0.02                                 | -0.31         | -1.13          | -2.04          | -1.48          |
| XF1217           | hypothetical protein                                   |              | VIII.B              | -0.05                                | -0.01         | -1.13          | -2.04          | -2.26          |
| XF1219           | hypothetical protein                                   |              | VIII.B              | -0.03                                | 0.10          | -1.67          | -1.96          | -1.97          |
| XF1218           | conserved hypothetical protein                         |              | VIII.A              | -0.04                                | -0.25         | -0.61          | -1.04          | -1.18          |
| XF1305           | hypothetical protein                                   |              | VIII.B              | -0.02                                | -0.15         | -0.93          | -0.56          | -1.17          |
| XF1387           | cytochrome O ubiquinol oxidase, subunit IV             | cyoD         | I.C.3               | -0.04                                | -0.11         | -0.54          | -1.22          | -1.03          |
| XF1388           | cytochrome O ubiquinol oxidase, subunit III            | суоС         | I.C.3               | 0.06                                 | 0.18          | -0.64          | -1.08          | -1.24          |
| XF1389           | cytochrome O ubiquinol oxidase, subunit I              | суоВ         | I.C.3               | 0.01                                 | -0.35         | -0.73          | -1.20          | -1.09          |
| XF1408           | RNA polymerase sigma-54 factor                         | rpoN         | I.D                 | -0.05                                | -0.15         | -0.76          | -0.96          | -0.95          |
| XF1504           | conserved hypothetical protein                         | .,,          | VIII.A              | -0.07                                | -0.21         | -0.87          | -1.13          | -0.83          |
| XF1549           | dihydrolipoamide S-succinyltransferase                 | sucB         | I.C.7               | -0.05                                | -0.29         | -0.43          | -0.95          | -1.28          |
| XF1797           | porphyrin biosynthesis protein                         | hemY         | II.D.12             | 0.00                                 | -0.64         | -0.25          | -0.90          | -1.26          |
| XF1828           | ATPase                                                 | spbc115      | IX                  | 0.03                                 | -0.66         | -1.19          | -1.42          | -1.93          |
| XF1829           | conserved hypothetical protein                         | rp471        | VIII.A              | 0.01                                 | -0.37         | -0.55          | -1.28          | -0.95          |
| XF1894           | radical activating enzyme                              | -            | IX                  | -0.10                                | -0.39         | -0.47          | -1.06          | -1.09          |
| XF1895           | conserved hypothetical protein                         | ybgF         | VIII.A              | -0.05                                | -0.25         | -0.90          | -1.34          | -1.05          |
| XF1896           | outer membrane protein P6 precursor                    | pal          | IV.B                | -0.01                                | -0.13         | -0.63          | -0.89          | -1.45          |
| XF1897           | TolB protein precursor                                 | tolB         | VII.C               | -0.08                                | -0.27         | -0.97          | -0.96          | -0.80          |
| XF1900           | TolQ protein                                           | toIQ         | VII.C               | -0.02                                | -0.37         | -0.43          | -0.79          | -1.31          |
| XF1904           | holliday junction binding protein, DNA helicase        | ruvA         | III.A.4             | 0.00                                 | -0.87         | -0.22          | -1.08          | -1.55          |
| XF1906           | conserved hypothetical protein                         |              | VIII.A              | 0.01                                 | -0.34         | -0.62          | -0.90          | -1.18          |
| XF1923           | quinolinate synthetase A                               | nadA         | II.D.7              | 0.02                                 | -0.27         | -0.60          | -0.95          | -0.71          |
| XF1936           | transketolase 1                                        | tktA         | I.B.6               | -0.03                                | -0.30         | -1.01          | -1.44          | -1.47          |
|                  |                                                        |              |                     |                                      |               |                |                |                |

| Grupo 6 | ĉ (continuação)                        |                 |                        |       | M =   | og₂(40°C/29 | °C)   |       |
|---------|----------------------------------------|-----------------|------------------------|-------|-------|-------------|-------|-------|
| Gene.ID | Produto                                | Nome do<br>gene | Categoria<br>funcional | 0min  | 7min  | 15min       | 25min | 45min |
| XF2246  | ribonuclease III                       | rnc             | III.B.6                | -0.04 | -0.10 | -0.99       | -0.99 | -0.84 |
| XF2282  | chromosome partitioning protein        | parA            | V.B                    | -0.04 | -0.38 | -0.55       | -0.88 | -0.98 |
| XF2283  | Zn-dependent hydrolases                |                 | I.B.4                  | -0.02 | -0.07 | -0.44       | -0.95 | -1.21 |
| XF2285  | hypothetical protein                   |                 | VIII.B                 | 0.04  | -0.13 | -0.61       | -1.10 | -0.63 |
| XF2349  | conserved hypothetical protein         | cpn0796         | VIII.A                 | 0.09  | -0.17 | -0.54       | -1.13 | -1.11 |
| XF2451  | conserved hypothetical protein         | ypuG            | VIII.A                 | 0.20  | -0.30 | -0.73       | -1.05 | -0.61 |
| XF2542  | fimbrial protein                       |                 | IV.D                   | -0.03 | -0.33 | -0.82       | -2.22 | -2.36 |
| XF2547  | succinyl-CoA synthetase, beta subunit  | sucC            | I.C.7                  | 0.01  | -0.12 | -1.03       | -1.70 | -1.52 |
| XF2548  | succinyl-CoA synthetase, alpha subunit | sucD            | I.C.7                  | 0.04  | -0.18 | -0.67       | -1.26 | -1.18 |
| XF2568  | ABC transporter ATP-binding protein    | rfbE            | V.A.7                  | -0.08 | -0.20 | -1.11       | -1.42 | -1.26 |
| XF2574  | conserved hypothetical protein         | dr1355          | VIII.A                 | -0.08 | -0.35 | -0.69       | -0.87 | -1.06 |
| XF2588  | UDP-2,3-diacylglucosamine hydrolase    | ybbF            | IV.C                   | -0.03 | -0.73 | -0.40       | -0.88 | -1.26 |
| XFa0005 | conjugal transfer protein              | trbC            | VI.B                   | 0.00  | 0.10  | -0.39       | -1.26 | -1.02 |
| XFa0010 | hypothetical protein                   |                 | VIII.B                 | 0.07  | -0.03 | -0.55       | -1.45 | -1.22 |
| XFa0031 | hypothetical protein                   |                 | VIII.B                 | -0.07 | -0.70 | -0.87       | -1.55 | -0.93 |
| XFa0060 | plasmid replication protein            | incC            | VLB                    | 0.03  | -0.65 | 0.33        | -1 53 | -1 75 |

**Tabela S5**: Prováveis promotores dependentes de  $\sigma^{32}$ , encontrados pela análise *in silico* nos genes induzidos pelo choque térmico. A posição +1 corresponde ao códon de início da tradução.

| Gene      | Produto                                       | Nome do gene | Categoria funcional | Grupo | -35       | Espaça<br>mento | -10       | Pontuação | Início<br>-35 | Início<br>-10 |
|-----------|-----------------------------------------------|--------------|---------------------|-------|-----------|-----------------|-----------|-----------|---------------|---------------|
| XF0285    | heat shock protein                            | htrA         | VII.G               | 3     | ATTGATA   | 12              | CCATCTAT  | 2.98      | -167          | -148          |
| XF0352    | pentaphosphate guanosine-3'-                  | -            |                     |       | 0.170.110 |                 |           |           |               |               |
| XF0381    | pyrophosphohydrolase chaperone                | spoT         | I.D                 | 3     | CATGAAC   | 11              | CCGCGCAT  | 4.17      | -85           | -67           |
| XF0542    | hypothetical protein                          | clpB         | III.C.2             | 1     | CTTGGTC   | 11              | CCTTGAAA  | 5.33      | -97           | -79           |
| XF0556    | predicted GTPases (COG1162)                   |              | VIII.B              | 4     | ATTGGTA   | 14              | CCCAGAAA  | 2.36      | -122          | -101          |
| XF0583    | conserved hypothetical protein                | engC         | IX                  | 4     | TTTGGAA   | 9               | CCGTGCCT  | 0.83      | -40           | -24           |
| XF0616    | 10kDa chaperonin                              |              | VIII.A              | 3     | CTGGATC   | 16              | CCCCGATA  | 3.18      | -103          | -80           |
| XF0626    | hypothetical protein                          | groES        | III.C.2             | 1     | CTTGAAA   | 13              | CCATATAT  | 6.63      | -153          | -133          |
| XF0685    | phage-related protein                         |              | VIII.B              | 4     | CTTGAAA   | 15              | CCCAGCAC  | 4.32      | -79           | -57           |
| XF0717    | conserved hypothetical protein                |              | VI.A                | 3     | CTTGAGC   | 15              | CCACCCAA  | 6.19      | -69           | -47           |
| XF0718    | conserved hypothetical protein                |              | VIII.A              | 2     | CTTCAAA   | 12              | GCCCGCAT  | 1.34      | -114          | -95           |
| XF0719    | phage-related baseplate assembly              |              | VIII.A              | 2     | CTTTGAA   | 13              | CCCTGTTT  | 2.78      | -171          | -151          |
| 711 07 10 | protein                                       | gpV          | VI.A                | 2     | CTTGGTA   | 13              | CCATGCAG  | 3.86      | -110          | -90           |
| XF0847    | beta-hexosaminidase precursor                 | nahA         | IV.A.2              | 3     | CTGGGTA   | 14              | CCCCAAAA  | 3.11      | -35           | -14           |
| XF0879    | lipopolysaccharide biosynthesis protein       | rfbU         | IV.C                | 3     | CGTGGTC   | 13              | CCAACATT  | 1.89      | -119          | -99           |
| XF1003    | argininosuccinate lyase                       | asl          | II.A.1              | 4     | CTTGGCC   | 12              | CCGCCATT  | 2.84      | -101          | -82           |
| XF1021    | acyl-CoA thioesterase II                      | tesB         | IX                  | 3     | CTTGATC   | 16              | CCCCGCCA  | 4.14      | -140          | -117          |
| XF1144    | ATP synthase, gamma chain                     | atpG         | I.C.8               | 4     | CTTGAAT   | 16              | CCTCCCTA  | 3.29      | -50           | -27           |
| XF1373    | tRNA pseudouridine synthase A                 | truA         | III.B.4             | 2     | CTTGATT   | 15              | CCGCGCGT  | 1.61      | -152          | -130          |
| XF1384    | conserved hypothetical protein                | pqaA         | VIII.A              | 4     | CTCGATC   | 12              | CCATGAAA  | 3.34      | -96           | -77           |
| XF1426    | ion transporter                               | dr83         | V.A.4               | 4     | CTTGACC   | 14              | CCTGGCAT  | 1.76      | -158          | -137          |
| XF1474    | ABC transporter membrane protein              | ynhC         | V.A.7               | 2     | GTTGAAA   | 11              | CCCCACCA  | 1.39      | -108          | -90           |
| XF1484    | heat shock protein                            | hsIV         | III.C.3             | 1     | CTTGAAG   | 13              | CCCCATTT  | 3.77      | -51           | -31           |
| XF1486    | conserved hypothetical protein                | sc4G6.34     | VIII.A              | 2     | CATGAAC   | 15              | CCCTCAAA  | 3.41      | -153          | -131          |
| XF1520    | general secretory pathway protein H precursor | xpsF         | VII.H               | 4     | CTTGGTC   | 13              | CGCTGAAT  | 3.11      | -164          | -144          |
| XF1714    | heat shock protein HSP33                      | hsIO         | VII.G               | 4     | CTTTGAA   | 14              | CCATGCTT  | 3.31      | -98           | -77           |
| XF1795    | transcriptional regulator                     | baf          | I.D                 | 4     | CTTGGCA   | 9               | CCGCGCTA  | 3.38      | -186          | -170          |
| XF1864    | phage-related protein                         | bui          | VI.A                | 3     | CTTGATC   | 11              | CCGCAGAA  | 3.76      | -198          | -180          |
| XF2071    | predicted transcriptional regulator           |              | I.D                 | 4     | CTTGAAA   | 14              | CCATGCCA  | 4.30      | -105          | -84           |
| XF2234    | low molecular weight heat shock protein       | hspA         | VII.G               | 1     | CTTGAAA   | 9               | CCGTGCTT  | 6.88      | -100          | -84           |
| XF2240    | negative regulator of sigma E activity        | rseA         | I.D                 | 2     | CTAGAGA   | 13              | CCGCAAAC  | 0.87      | -38           | -18           |
| XF2257    | predicted membrane protein                    | yebN         | IV.A.1              | 4     | CTTGGGG   | 12              | CCACACAT  | 3.73      | -65           | -46           |
| XF2340    | DnaK protein                                  | dnaK         | III.C.2             | 1     | CTTGAGC   | 13              | CCCCACAT  | 7.07      | -86           | -66           |
| XF2341    | heat shock protein GrpE                       | grpE         | III.C.2             | 1     | CTTGAAA   | 12              | CCCACATA  | 5.58      | -72           | -53           |
| XF2395    | acetylxylan esterase                          | axeA         | I.A.2               | 2     | CGTGGAA   | 16              | GCCTGCAT  | 0.96      | -45           | -22           |
| XF2456    | heme ABC transporter membrane                 | ихол         | 1.7 \.2             | _     |           | 10              | 000100/11 | 0.50      | 40            | 22            |
| XF2459    | protein                                       | ccmB         | V.A.6               | 3     | CTTGGAC   | 10              | CCAACCTA  | 5.06      | -162          | -145          |
|           | c-type cytochrome biogenesis protein          | cycJ         | I.C.3               | 3     | CTTGCAC   | 14              | CGCCGCAA  | 1.13      | -59           | -38           |
| XF2494    | conserved hypothetical protein                |              | VIII.A              | 2     | CTTCAAA   | 12              | GCCCGCAT  | 1.34      | -114          | -95           |
| XF2523    | phage-related protein                         |              | VI.A                | 3     | CTTGAGC   | 15              | CCACCCAA  | 6.19      | -69           | -47           |
| XF2625    | heat shock protein                            | htpX         | VII.G               | 1     | CTTGATA   | 14              | CCACACAT  | 7.15      | -70           | -49           |
| XF2761    | phage-related integrase                       |              | VI.A                | 4     | CTTGGAA   | 14              | CCTCACGA  | 3.39      | -81           | -60           |
| XFa0037   | conjugal transfer protein                     | trbL         | VI.B                | 4     | CTTGCTC   | 16              | CGGTGCAT  | 0.95      | -196          | -173          |
| XFa0051   | hypothetical protein                          |              | VIII.B              | 2     | CTTGAAA   | 16              | CCAACAAA  | 5.73      | -76           | -53           |

Tabela S6: Genes induzidos na presença de NaCl. Os genes estão organizados de acordo com a categoria funcional definida por Simpson et al, 2000. M = log da razão da intensidade de fluorescência no choque salino em relação à condição controle. Os valores em negrito correspondem aos valores de M considerados induzidos.

|                   |                                                                                                                          |              |                     | ı         | M = log₂(NaCl/controle) |                     |                     |              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------|-------------------------|---------------------|---------------------|--------------|
| Gene.ID           | Produto                                                                                                                  | Nome do gene | Categoria funcional | reanotada | 7 min                   | 15 min              | 30 min              | 60 min       |
| XF2677            | L-ascorbate oxidase                                                                                                      | aao          | I.A.2               |           | -0.08                   | 0.75                | 1.27                | 1.85         |
| XF0392            | methionine adenosyltransferase                                                                                           |              | I.B.10              |           | 1.01                    | 1.28                | 1.82                | 1.75         |
| XF2390            | putative oxidoreductase protein                                                                                          |              | I.C                 | X         | 2.26                    | 4.66                | 4.21                | 4.91         |
| XF1802            | glycerol-3-phosphate dehydrogenase                                                                                       | gpsA         | I.C.1               |           | 1.22                    | 2.00                | 1.07                | 2.25         |
| XF1146<br>XF1149  | ATP synthase, delta chain                                                                                                | atpH         | I.C.8               |           | 0.22                    | 0.69                | 0.87                | 0.99         |
| XF0323            | ATP synthase, A chain                                                                                                    | atpB         | I.C.8               |           | 1.20                    | 1.98                | 2.27                | 2.18         |
| XF0390            | two-component system, sensor protein (tctE)                                                                              |              | I.D                 |           | 2.86                    | 3.87                | 4.24                | 4.48         |
| XF0401            | two-component system, sensor protein                                                                                     |              | I.D<br>I.D          | X         | <b>1.41</b><br>0.24     | <b>2.05</b><br>0.73 | <b>2.02</b><br>1.37 | 1.83<br>1.77 |
| XF0833            | two-component system, regulatory protein transcriptional regulator (LysR family)                                         | cysB         | I.D                 | ^         | 0.42                    | 0.73                | 1.37<br>1.19        | 0.93         |
| XF1596            | predicted transcriptional regulator                                                                                      | CySD         | I.D                 | Х         | 0.42                    | 1.11                | 1.91                | 1.99         |
| XF1752            | transcriptional regulator (LysR family)                                                                                  |              | I.D                 | χ         | -0.07                   | 0.68                | 2.15                | 3.17         |
| XF1920            | Trp operon transcriptional repressor                                                                                     | trpR         | I.D                 |           | 0.27                    | 0.79                | 0.49                | 1.29         |
| XF2062            | transcriptional repressor                                                                                                | korC         | I.D                 |           | 0.31                    | 1.20                | 1.53                | 2.38         |
| XF2085            | transcriptional regulator (AcrR family)                                                                                  |              | I.D                 |           | 0.36                    | 1.78                | 1.86                | 2.92         |
| XF2491            | transcriptional regulator                                                                                                |              | I.D                 | X         | 0.53                    | 1.56                | 1.72                | 2.13         |
| XF2535            | two-component system, sensor protein                                                                                     | colS         | I.D                 |           | 0.92                    | 1.32                | 0.82                | 0.57         |
| XFa0001           | transcriptional regulator                                                                                                |              | I.D                 |           | 1.10                    | 1.63                | 1.18                | 0.54         |
| XFa0046           | predicted transcriptional regulator                                                                                      |              | I.D                 | X         | 0.32                    | 1.23                | 0.60                | 2.20         |
| XFa0057           | transcriptional regulator                                                                                                | korA         | I.D                 |           | 0.06                    | 1.08                | 1.26                | 2.47         |
| XF1121            | 5,10-methylenetetrahydrofolate reductase                                                                                 | metF         | II.A.2              |           | 0.18                    | 0.27                | 1.62                | 0.83         |
| XF1371            | aspartate-B-semialdehyde dehydrogenase                                                                                   | asd          | II.A.2              |           | 0.45                    | 0.74                | 1.03                | 1.23         |
| XF1914            | anthranilate synthase component I                                                                                        | trpE         | II.A.4              |           | 0.32                    | 1.26                | -0.23               | 1.77         |
| XF1915            | anthranilate synthase component II                                                                                       | trpG         | II.A.4              |           | 3.49                    | 4.71                | 2.29                | 6.52         |
| XF2439            | cytidylate kinase                                                                                                        | cmkA         | II.B.2              |           | 1.14                    | 1.43                | 0.79                | 0.91         |
| XF2698<br>XF0834  | thioredoxin Ubiquinone biosynthesis hydroxylase,                                                                         | trxA         | II.D.10             | V         | 0.39                    | 0.52                | 0.23                | 1.07         |
| VE0025            | UbiH/UbiF/VisC/COQ6                                                                                                      | visC         | II.D.11             | Х         | -0.15                   | 0.02                | 0.89                | 0.76         |
| XF0835<br>XF1397  | 2-octaprenyl-6-methoxyphenol hydroxylase<br>2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-benzoquinol<br>methylase / ubiG | visB         | II.D.11<br>II.D.11  | X         | 0.21                    | 0.32<br><b>1.53</b> | 1.15<br><b>1.28</b> | 1.18<br>1.73 |
| XF0832            | siroheme synthase                                                                                                        | cysG         | II.D.12             |           | -0.26                   | 1.16                | -0.32               | -0.49        |
| XF1797            | porphyrin biosynthesis protein                                                                                           | hemY         | II.D.12             |           | 0.85                    | 1.83                | 1.96                | 1.99         |
| XF0193            | 6-pyruvoyl tetrahydrobiopterin synthase                                                                                  | ygcM         | II.D.16             |           | 1.03                    | 2.02                | 1.34                | 1.74         |
| XF1916            | coenzyme F390 synthetase                                                                                                 | af1671       | II.D.17             |           | 0.77                    | 2.40                | 2.61                | 3.83         |
| XF0839            | pyridoxal phosphate biosynthetic protein                                                                                 | pdxA         | II.D.6              |           | 0.72                    | 0.94                | 1.04                | 0.52         |
| XF0197            | acyltransferase                                                                                                          |              | II.E                | X         | 1.02                    | 1.49                | 0.82                | 1.61         |
| XF1365            | phosphatidylserine decarboxylase                                                                                         | psd          | II.E                |           | 0.19                    | 0.41                | 0.82                | 1.10         |
| XF0811            | predicted methyltransferase                                                                                              |              | III.                | X         | 1.25                    | 1.50                | 2.20                | 2.28         |
| XF2122            | Zn-finger, CHC2 type                                                                                                     |              | III.A               | X         | -0.58                   | 0.15                | 2.63                | 2.87         |
| XF0001            | chromosomal replication initiator                                                                                        | dnaA         | III.A.1             |           | 0.79                    | 0.93                | 1.16                | 1.28         |
| XFa0003           | topoisomerase I                                                                                                          | topA         | III.A.1             |           | -0.01                   | 1.19                | 1.23                | 2.32         |
| XF2028            | site-specific recombinase                                                                                                | rin          | III.A.3             |           | 1.04                    | 1.53                | 0.90                | 1.63         |
| XFa0019<br>XF1904 | site-specific recombinase                                                                                                | rin          | III.A.3             |           | 0.83                    | 1.33                | 1.38                | 2.81         |
| XF1804            | holliday junction binding protein, DNA helicase                                                                          | ruvA         | III.A.4             |           | 0.87                    | 1.82                | 1.84                | 2.34         |
| XF2297            | site-specific DNA-methyltransferase                                                                                      | sphIM        | III.A.5             |           | 1.09                    | 1.06                | 1.06                | 0.73         |
| XF2728            | DNA methylase                                                                                                            | sce134.11    | III.A.5             |           | 1.07                    | 0.72                | 1.29                | 1.03         |
| XF1711            | type I restriction-modification system DNA methylase Endoribonuclease L-PSP                                              | hp0850       | III.A.5             | V         | 0.26                    | 0.25                | 0.86                | 0.67         |
| XFa0025           | histone acetyltransferase                                                                                                |              | III.B<br>III.B      | X<br>X    | 1.17<br>0.64            | <b>2.71</b><br>1.43 | <b>2.39</b><br>0.90 | 2.34<br>1.70 |
| XF1972            | tRNA/rRNA methylase                                                                                                      | yibK         | III.B.3             | ^         | 0.04                    | 0.84                | 1.11                | 1.81         |
| XF2532            | ribosomal protein S6 modification protein                                                                                | rimK         | III.B.3             |           | 0.92                    | 1.29                | 1.04                | 1.13         |
| XF0169            | tyrosyl-tRNA synthetase                                                                                                  | tyrS         | III.B.4             |           | 1.78                    | 2.16                | 1.77                | 2.01         |
| XF0742            | phenylalanyl-tRNA sinthetase beta chain                                                                                  | pheT         | III.B.4             |           | 0.29                    | 0.49                | 0.70                | 0.91         |
| XF2563            | asparaginyl-tRNA synthetase                                                                                              | asnS         | III.B.4             |           | 0.97                    | 1.03                | 1.39                | 1.40         |
| XF2781            | ribonuclease P                                                                                                           | rnpA         | III.B.4             |           | 1.05                    | 1.37                | 0.31                | 0.23         |
| XF0234            | N utilization substance protein A                                                                                        | •            | III.B.5             |           | 0.28                    | 0.83                | 1.20                | 1.15         |
| XF1713            | heat shock protein HSP33                                                                                                 |              | III.C               | Χ         | 0.89                    | 0.91                | 1.90                | 1.88         |
| XF0111            | methionine aminopeptidase                                                                                                | тар          | III.C.1             |           | 1.16                    | 1.22                | 1.49                | 1.26         |
|                   |                                                                                                                          | -            |                     |           |                         |                     |                     |              |
| XF1940            | peptide methionine sulfoxide reductase                                                                                   | msrA         | III.C.1             |           | 0.40                    | 0.59                | 1.25                | 1.35         |

|                  |                                                               |                 |                     |           | M = log <sub>2</sub> (NaCl/controle) |                     |              |              |
|------------------|---------------------------------------------------------------|-----------------|---------------------|-----------|--------------------------------------|---------------------|--------------|--------------|
| Gene.ID          | Produto                                                       | Nome do<br>gene | Categoria funcional | reanotada | 7 min                                | 15 min              | 30 min       | 60 min       |
| XF1057           | conserved hypothetical protein                                |                 | VIII.A              | Х         | 0.99                                 | 1.18                | 0.97         | 1.16         |
| XF1075<br>XF1150 | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.26                                 | 0.64                | 1.36         | 0.61         |
| XF1185           | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | X<br>X    | <b>1.36</b><br>0.19                  | 1.89<br>1.86        | 1.49<br>1.67 | 1.70<br>3.09 |
| XF1243           | conserved hypothetical protein conserved hypothetical protein | yraM            | VIII.A<br>VIII.A    | ^         | -0.10                                | 1.53                | 0.39         | 1.19         |
| XF1245           | conserved hypothetical protein                                | yraivi          | VIII.A<br>VIII.A    | Χ         | 4.46                                 | 5.28                | 1.81         | 3.17         |
| XF1246           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.90                                 | 1.06                | 1.24         | 1.35         |
| XF1247           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.98                                 | 2.61                | 1.41         | 1.41         |
| XF1248           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 1.66                                 | 1.55                | 1.72         | 2.08         |
| XF1420           | conserved hypothetical protein                                |                 | VIII.A              | X         | -0.08                                | 0.35                | 0.95         | 1.60         |
| XF1439           | conserved hypothetical protein                                | ycfC            | VIII.A              |           | -0.42                                | 0.47                | 1.17         | 1.29         |
| XF1461           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.56                                 | 1.47                | 1.92         | 1.62         |
| XF1489           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.59                                 | 0.92                | 0.79         | 1.37         |
| XF1513           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.58                                 | 1.23                | 1.84         | 2.33         |
| XF1562           | conserved hypothetical protein                                |                 | VIII.A              |           | 0.06                                 | 0.33                | 0.45         | 0.91         |
| XF1597<br>XF1655 | conserved hypothetical protein                                |                 | VIII.A              | V         | 0.00                                 | 0.45                | 0.82         | 1.31         |
| XF1661           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.34                                 | 0.84                | 2.90         | 3.00         |
| XF1707           | conserved hypothetical protein                                |                 | VIII.A              | X<br>X    | 0.72                                 | 1.13                | 0.98         | 2.16         |
| XF1710           | conserved hypothetical protein conserved hypothetical protein |                 | VIII.A<br>VIII.A    | X         | 0.08<br>0.22                         | 0.11<br><b>1.52</b> | 0.83<br>1.84 | 1.43<br>2.49 |
| XF1712           | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | X         | 0.22                                 | 0.77                | 1.34         | 1.52         |
| XF1755           | conserved hypothetical protein                                | tiorf29         | VIII.A              | ^         | 0.12                                 | 1.88                | 2.66         | 3.32         |
| XF1756           | conserved hypothetical protein                                | 407120          | VIII.A              | Χ         | -0.04                                | 1.81                | 2.47         | 3.29         |
| XF1757           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.02                                 | 0.94                | 1.58         | 2.99         |
| XF1770           | conserved hypothetical protein                                |                 | VIII.A              | X         | -0.55                                | 0.18                | 1.12         | 1.49         |
| XF1780           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.63                                 | 1.11                | 1.53         | 2.18         |
| XF1789           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.09                                 | 1.36                | 0.44         | 0.57         |
| XF1790           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.33                                 | 1.42                | 1.07         | 0.64         |
| XF1798           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.85                                 | 1.60                | 2.14         | 2.18         |
| XF1814           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.04                                 | 1.77                | 2.23         | 1.95         |
| XF1860           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.32                                 | 0.79                | 1.44         | 2.36         |
| XF1865           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.53                                 | 0.00                | 1.82         | 2.63         |
| XF1868<br>XF1877 | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.73                                 | 1.59                | 0.92         | 1.44         |
| XF1917           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.11                                 | 1.96                | 2.02         | 2.53         |
| XF1918           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.21                                 | 2.00                | 1.70         | 2.31         |
| XF1973           | conserved hypothetical protein conserved hypothetical protein |                 | VIII.A<br>VIII.A    | X<br>X    | 0.80<br>1.55                         | <b>2.23</b><br>1.46 | 1.92<br>2.54 | 3.39<br>2.87 |
| XF2001           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.15                                 | 0.34                | 0.92         | 0.87         |
| XF2003           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.43                                 | 0.75                | 1.05         | 1.01         |
| XF2027           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.34                                 | 0.84                | 1.24         | 1.54         |
| XF2037           | conserved hypothetical protein                                | bioF2           | VIII.A              |           | 0.63                                 | 1.19                | 1.59         | 1.41         |
| XF2043           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.16                                 | 0.52                | 0.60         | 1.38         |
| XF2067           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.19                                 | 2.25                | 2.84         | 2.97         |
| XF2068           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.92                                 | 2.03                | 2.77         | 2.79         |
| XF2069           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.62                                 | 1.33                | 1.71         | 2.01         |
| XF2077           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.60                                 | 2.67                | 0.34         | 2.57         |
| XF2086           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.45                                 | 1.06                | 0.59         | 2.07         |
| XF2111           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.24                                 | 1.39                | 1.74         | 3.08         |
| XF2112<br>XF2113 | conserved hypothetical protein                                |                 | VIII.A              | .,        | 0.35                                 | 0.83                | 1.71         | 2.73         |
| XF2113<br>XF2130 | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.33                                 | 1.40                | 1.32         | 3.26         |
| XF2197           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.00                                 | 0.86                | 1.23         | 1.24         |
| XF2198           | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | X<br>X    | 0.65                                 | 1.89                | 2.31<br>1.01 | 3.62         |
| XF2199           | conserved hypothetical protein conserved hypothetical protein |                 | VIII.A<br>VIII.A    | X         | 0.59<br>0.23                         | 1.51<br>1.13        | 1.91<br>1.34 | 3.21<br>2.28 |
| XF2258           | conserved hypothetical protein                                |                 | VIII.A              | X         | 2.29                                 | 3.06                | 1.96         | 3.22         |
| XF2307           | conserved hypothetical protein                                |                 | VIII.A<br>VIII.A    | X         | 2.43                                 | 2.54                | 1.59         | 1.60         |
| XF2382           | conserved hypothetical protein                                |                 | VIII.A              | X         | 1.93                                 | 2.11                | 1.35         | 2.84         |
| XF2387           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.63                                 | 1.04                | 0.61         | 1.11         |
| XF2406           | conserved hypothetical protein                                |                 | VIII.A              | Х         | 0.59                                 | 1.32                | 0.86         | 2.14         |
| XF2451           | conserved hypothetical protein                                | ypuG            | VIII.A              |           | 0.12                                 | 0.76                | 0.98         | 1.08         |
| XF2490           | conserved hypothetical protein                                | ygiU            | VIII.A              |           | 0.78                                 | 1.12                | 1.23         | 1.92         |
| XF2493           | conserved hypothetical protein                                |                 | VIII.A              |           | -0.03                                | 0.38                | 1.16         | 2.31         |
| XF2494           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.05                                 | 0.32                | 1.74         | 2.46         |
| XF2507           | conserved hypothetical protein                                |                 | VIII.A              | Χ         | 0.50                                 | 1.01                | 0.64         | 1.31         |
| XF2508           | conserved hypothetical protein                                |                 | VIII.A              | X         | 0.38                                 | 0.90                | 0.56         | 1.54         |

|         |                      |         |              |                     | 1         | M = log₂(NaCl/controle) |        |        |        |  |
|---------|----------------------|---------|--------------|---------------------|-----------|-------------------------|--------|--------|--------|--|
| Gene.ID |                      | Produto | Nome do gene | Categoria funcional | reanotada | 7 min                   | 15 min | 30 min | 60 min |  |
| XF2467  | hypothetical protein |         |              | VIII.B              |           | 0.66                    | 0.92   | 1.27   | 1.47   |  |
| XF2468  | hypothetical protein |         |              | VIII.B              |           | 0.47                    | 0.80   | 1.08   | 1.74   |  |
| XF2690  | hypothetical protein |         |              | VIII.B              |           | 0.59                    | 1.66   | 1.10   | 1.83   |  |
| XF2745  | hypothetical protein |         |              | VIII.B              |           | 1.04                    | 0.78   | 1.76   | 1.84   |  |
| XF2751  | hypothetical protein |         |              | VIII.B              |           | 0.89                    | -0.01  | 0.00   | 0.00   |  |
| XF2776  | hypothetical protein |         |              | VIII.B              |           | 0.28                    | 1.40   | 1.56   | 2.17   |  |
| XFa0004 | hypothetical protein |         |              | VIII.B              |           | 0.40                    | 1.12   | 1.04   | 2.21   |  |
| XFa0021 | hypothetical protein |         |              | VIII.B              |           | 0.27                    | 2.51   | 3.12   | 4.36   |  |
| XFa0030 | hypothetical protein |         |              | VIII.B              |           | 1.08                    | 1.93   | 1.19   | 1.91   |  |
| XFa0031 | hypothetical protein |         |              | VIII.B              |           | 1.03                    | 1.28   | 0.44   | 1.54   |  |
| XFa0033 | hypothetical protein |         |              | VIII.B              |           | 0.94                    | 1.13   | 1.92   | 1.31   |  |
| XFa0049 | hypothetical protein |         |              | VIII.B              |           | 1.23                    | 2.24   | 3.81   | 3.25   |  |
| XFa0051 | hypothetical protein |         |              | VIII.B              |           | 0.55                    | 1.88   | 2.60   | 3.58   |  |
| XFa0053 | hypothetical protein |         |              | VIII.B              |           | 0.36                    | 1.72   | 0.97   | 2.53   |  |
| XFa0058 | hypothetical protein |         |              | VIII.B              |           | 0.40                    | 1.11   | 1.48   | 2.81   |  |
| XFb0002 | hypothetical protein |         |              | VIII.B              |           | 0.63                    | 1.06   | 3.42   | 3.31   |  |

Tabela S7: Genes reprimidos na presença de NaCl. Os genes estão organizados de acordo com a categoria funcional definida por Simpson et al, 2000. M = log da razão da intensidade de fluorescência no choque salino em relação à condição controle. Os valores em negrito correspondem aos valores de M considerados reprimidos.

|                  |                                                                        |                  |                     | -         | M = log <sub>2</sub> (NaCl/controle) |                       |                        |                       |
|------------------|------------------------------------------------------------------------|------------------|---------------------|-----------|--------------------------------------|-----------------------|------------------------|-----------------------|
| Gene.ID          | Produto                                                                | Nome do gene     | Categoria funcional | reanotada | 7 min                                | 15 min                | 30 min                 | 60 min                |
| XF0610           | UDP-glucose 4-epimerase                                                | galE             | I.A.2               |           | 0.00                                 | -0.36                 | -0.85                  | -0.92                 |
| XF0846           | beta-mannosidase precursor                                             | TM1624           | I.A.2               |           | -0.63                                | -1.60                 | -1.10                  | -1.97                 |
| XF1472           | benzene 1,2-dioxygenase, ferredoxin protein                            | bedB             | I.A.2               |           | -0.80                                | -0.80                 | -0.85                  | -1.24                 |
| XF1610<br>XF2305 | fructokinase                                                           |                  | I.A.2               |           | -0.27                                | -0.70                 | -0.57                  | -1.02                 |
| XF1037           | Glyoxalase/bleomycin resistance protein/dioxygenase                    | ahaV             | I.B                 | Х         | 0.41                                 | 0.20                  | -1.09                  | -0.53                 |
| XF2255           | adenosylhomocysteinase<br>acetyl coenzyme A synthetase                 | ahcY<br>acs      | I.B.10<br>I.B.10    |           | -0.58<br>-0.86                       | -0.80<br><b>-0.77</b> | <b>-1.64</b><br>-0.29  | -2.04<br>0.25         |
| XF0609           | GDP-mannose 4,6 dehydratase                                            | gmd              | I.B.10              |           | -0.21                                | -0.68                 | -0.29<br>-0.81         | -1.54                 |
| XF1497           | 3'-phosphoadenosine 5'-phosphosulfate reductase                        | cysH             | I.B.12              |           | -0.73                                | -0.00<br>-1.31        | 0.30                   | -0.27                 |
| XF1500           | ATP sulfurylase, small subunit                                         | cysD             | I.B.12              |           | -0.78                                | -1.29                 | -1.43                  | -1.69                 |
| XF1800           | putative rhodanese-like protein                                        | -,               | I.B.12              | Х         | -0.02                                | -0.36                 | -0.78                  | -0.89                 |
| XF0657           | alkaline phosphatase                                                   | phoA             | I.B.9               |           | -0.36                                | -0.60                 | -0.82                  | -1.26                 |
| XF2266           | glycerol-3-phosphate dehydrogenase                                     | glpD             | I.C.1               |           | -0.31                                | -0.87                 | -0.99                  | -1.45                 |
| XF2082           | oxidoreductase                                                         | spaC             | I.C.3               |           | -0.17                                | -0.54                 | -0.85                  | -1.33                 |
| XF0274           | 6-phosphofructokinase                                                  |                  | I.C.4               |           | -0.27                                | -0.92                 | -1.64                  | -2.39                 |
| XF1535           | citrate synthase                                                       | gltA             | I.C.7               |           | -0.01                                | -0.25                 | -0.33                  | -1.15                 |
| XF1855           | fumarate hydratase                                                     | fumB             | I.C.7               |           | -0.47                                | -0.53                 | -1.12                  | -1.25                 |
| XF0125           | carbon storage regulator                                               | csrA             | I.D                 |           | 0.02                                 | -0.53                 | -1.62                  | -1.58                 |
| XF1477           | putative transcriptional regulator, Rrf2 family                        |                  | I.D                 | Х         | -0.45                                | -0.58                 | -1.64                  | -1.83                 |
| XF1552           | transcription factor jumonji, jmjC                                     |                  | I.D                 | Х         | -0.10                                | -0.47                 | -0.33                  | -0.89                 |
| XF1996           | transcriptional regulator (PbsX family)                                | c2               | I.D                 |           | -0.13                                | -0.66                 | -1.11                  | -1.55                 |
| XF2165           | transcription-related protein                                          | tex              | I.D                 |           | -0.97                                | -1.35                 | -1.59                  | -2.56                 |
| XF0998<br>XF0999 | ornithine carbamoyltransferase                                         | argF             | II.A.1              |           | 0.16                                 | -0.10                 | 0.17                   | -0.95                 |
| XF1001           | argininosuccinate synthase                                             | argG             | II.A.1              |           | -0.22                                | -0.41                 | -0.29                  | -1.18                 |
| XF1001           | acetylglutamate kinase N-acetyl-gamma-glutamyl-phosphate reductase     | argB<br>af2071   | II.A.1<br>II.A.1    |           | -0.62<br>-0.59                       | <b>-0.96</b><br>-0.87 | -0.76<br>-0.52         | -1.17<br><b>-1.01</b> |
| XF1004           | glutamate 5-kinase                                                     | dr1827           | II.A.1              |           | -0.59                                | -0.76                 | -0.52<br>-0.61         | -1.01                 |
| XF0603           | cystathionine beta-synthase                                            | cysB             | II.A.3              |           | -0.32                                | -0.69                 | -0.83                  | -1.12                 |
| XF0831           | cysteine synthase                                                      | cysK             | II.A.3              |           | -0.33                                | -0.28                 | -0.90                  | -1.07                 |
| XF2214           | cyclase                                                                | hisF             | II.A.5              |           | -0.60                                | -0.47                 | -2.80                  | -0.99                 |
| XF0205           | phosphoribosylaminoimidazole-succinocarboxamide synthase               | purC             | II.B.1              |           | -0.32                                | -0.44                 | -0.66                  | -1.22                 |
| XF0275           | adenylate kinase                                                       | ,                | II.B.1              |           | -0.53                                | -0.67                 | -1.40                  | -1.89                 |
| XF1423           | phosphoribosylformylglycinamidine synthetase                           | purL or purl     | II.B.1              |           | -0.16                                | -0.56                 | -0.31                  | -0.88                 |
| XF1297           | gluconolactonase precursor                                             | scf11.04         | II.C                |           | -0.69                                | -1.09                 | -1.42                  | -1.92                 |
| XF1956           | glutathione synthetase                                                 | gshB             | II.D.10             |           | -0.24                                | -0.76                 | -0.96                  | -1.28                 |
| XF2174           | thioredoxin                                                            | ybbN             | II.D.10             |           | -0.30                                | -0.63                 | -0.47                  | -1.22                 |
| XF1456           | 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine<br>pyrophosphokinase | folK             | II.D.2              |           | 0.02                                 | -0.25                 | -1.11                  | -0.90                 |
| XF0060           | pyridoxal phosphate biosynthetic protein                               | pdxJ             | II.D.2              |           | -0.55                                | -0.23                 | -1.25                  | -0.90                 |
| XF0572           | beta-hydroxydecanoyl-ACP dehydratase                                   | fabA             | II.E                |           | -0.46                                | -0.89                 | -2.07                  | -2.10                 |
| XF1467           | acetyl-coenzyme A carboxylase carboxyl transferase subunit beta        | accD             | II.E                |           | -0.51                                | -0.68                 | -0.66                  | -1.29                 |
| XF1539           | S-adenosyl methionine decarboxylase proenzyme                          | speD             | II.F                |           | -0.23                                | -0.95                 | -1.20                  | -1.18                 |
| XF2409           | DNA helicase                                                           | •                | III.A               | Х         | 0.08                                 | 0.01                  | -1.63                  | -2.08                 |
| XF0204           | DNA polymerase III, alpha chain                                        | dnaE             | III.A.1             |           | -0.60                                | -1.03                 | -1.45                  | -1.78                 |
| XF2025           | DNA primase                                                            | traC             | III.A.1             |           | -0.10                                | -0.32                 | -1.26                  | -0.69                 |
| XF0446           | DNA-binding protein                                                    | bbh3             | III.A.2             |           | 0.22                                 | -0.07                 | -1.31                  | -1.43                 |
| XF1262           | 7,8-dihydro-8-oxoguanine-triphosphatase                                | mutX             | III.A.4             |           | -0.59                                | -0.90                 | -1.32                  | -1.69                 |
| XF1909           | A/G-specific adenine glycosylase                                       | mutY or          | III A 4             |           | 0.02                                 | 0.00                  | 0.03                   | 1 20                  |
| XF1155           | 50S ribosomal protein L2                                               | mutB<br>rplB     | III.A.4<br>III.B.2  |           | 0.02<br>0.02                         | -0.90<br>0.11         | -0.83<br><b>-1.42</b>  | <b>-1.28</b><br>-0.79 |
| XF1157           | 50S ribosomal protein L22                                              | гріБ<br>rplV     | III.B.2             |           | -0.14                                | -0.38                 | -1.42                  | -0.79<br>-1.33        |
| XF1158           | 30S ribosomal protein S3                                               | rpsC             | III.B.2             |           | 0.06                                 | -0.36                 | -0.88                  | -1.33                 |
| XF1164           | 50S ribosomal protein L5                                               | rplE             | III.B.2             |           | -0.24                                | -0.61                 | -0.97                  | -1.02                 |
| XF1206           | 50S ribosomal protein L28                                              | rpmB or<br>rpl28 | III.B.2             |           | -0.08                                | -0.31                 | -0.74                  | -1.29                 |
| XF1207           | EOS ribonomal protoin L22                                              | rpmG or          | III D O             |           | 0.04                                 | 0.07                  | 0.00                   | 4 02                  |
| XF1534           | 50S ribosomal protein L33 50S ribosomal protein L31                    | rpl33            | III.B.2<br>III.B.2  |           | -0.04<br>-0.10                       | -0.37<br>-0.43        | -0.89<br>-1.01         | -1.83<br>-1.69        |
| XF2421           | 30S ribosomal protein S20                                              | rpmE<br>rpsT     | III.B.2             |           | -0.10<br>0.64                        | -0.43<br>0.17         | -1.01<br>- <b>0.91</b> | -1.59                 |
| XF2423           | 50S ribosomal protein L27                                              | rpmA             | III.B.2             |           | -0.14                                | -0.42                 | -1.15                  | -1.66                 |
| XF2424           | 50S ribosomal protein L21                                              | rpIU             | III.B.2             |           | -0.14                                | -0.42                 | -1.84                  | -2.32                 |
| XF2560           | 30S ribosomal protein S18                                              | rpsR             | III.B.2             |           | 0.07                                 | -0.46                 | -1.01                  | -1.44                 |
|                  | The second protein and                                                 | .,,,,,,          |                     |           | 5.51                                 | 5.10                  |                        |                       |

|                  |                                                                                                                 |              |                     |           | M = log <sub>2</sub> (NaCl/controle) |                       |                       | le)                   |
|------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------|--------------------------------------|-----------------------|-----------------------|-----------------------|
| Gene.ID          | Produto                                                                                                         | Nome do gene | Categoria funcional | reanotada | 7 min                                | 15 min                | 30 min                | 60 min                |
| XF2561           | 30S ribosomal protein S6                                                                                        | rpsF         | III.B.2             |           | -0.14                                | -0.71                 | -1.24                 | -1.93                 |
| XF0445           | prolyl-tRNA synthetase                                                                                          | proS         | III.B.4             |           | -0.36                                | -0.52                 | -1.32                 | -1.19                 |
| XF0751           | ribonuclease D                                                                                                  | rnd<br>IC    | III.B.4             |           | -0.01                                | -0.45                 | -0.55                 | -1.06                 |
| XF2176<br>XF2222 | leucyl-tRNA synthetase                                                                                          | leuS<br>hisS | III.B.4             |           | -0.46<br>0.47                        | -0.65                 | -0.59                 | -1.19<br>1.01         |
| XF1502           | histidyl-tRNA synthetase RNA polymerase omega subunit                                                           | rpoZ         | III.B.4<br>III.B.5  |           | -0.47<br>-0.09                       | <b>-1.25</b><br>-0.65 | -1.23<br><b>-1.54</b> | -1.91<br><b>-2.40</b> |
| XF2638           | transcription antitermination factor                                                                            | nusG         | III.B.5             |           | 0.03                                 | -0.03                 | -0.97                 | -2.40<br>-1.06        |
| XF2246           | ribonuclease III                                                                                                | rnc          | III.B.6             |           | -0.06                                | -0.46                 | -0.53                 | -1.30                 |
| XF0353           | translation initiation inhibitor                                                                                |              | III.C.1             |           | -0.10                                | -0.62                 | -1.66                 | -1.84                 |
| XF2244           | signal peptidase I                                                                                              | lepB         | III.C.1             |           | -0.30                                | -0.55                 | -1.33                 | -1.68                 |
| XF2585           | protein-L-isoaspartate O-methyltransferase                                                                      | рст          | III.C.1             |           | -0.22                                | -0.62                 | -1.18                 | -1.32                 |
| XF0381           | chaperone                                                                                                       | clpB         | III.C.2             | X*        | -0.61                                | -0.52                 | -1.36                 | -2.43                 |
| XF0615           | 60kDa chaperonin                                                                                                | groEL        | III.C.2             |           | -0.16                                | -0.47                 | -1.29                 | -1.77                 |
| XF0616           | 10kDa chaperonin                                                                                                | groES        | III.C.2             |           | -0.15                                | -0.46                 | -0.94                 | -2.11                 |
| XF2233           | DnaJ protein                                                                                                    | dnaJ         | III.C.2             |           | -0.27                                | -0.59                 | -0.43                 | -1.16                 |
| XF2339           | DnaJ protein                                                                                                    | dnaJ         | III.C.2             |           | -0.25                                | -0.56                 | -1.18                 | -2.01                 |
| XF2340           | DnaK protein                                                                                                    | dnaK         | III.C.2             |           | -0.34                                | -0.58                 | -1.08                 | -2.68                 |
| XF2341           | heat shock protein GrpE                                                                                         | grpE         | III.C.2             |           | -0.49                                | -0.79                 | -1.50                 | -3.18                 |
| XF0452<br>XF0816 | integral membrane protease                                                                                      | hflK         | III.C.3             |           | -0.08                                | -0.21                 | -0.54                 | -0.97                 |
| XF1484           | zinc protease heat shock protein                                                                                | SC9B10.04    |                     |           | -0.23                                | -0.09                 | -1.08                 | -1.96                 |
| XF1485           | heat shock protein                                                                                              | hsIV<br>hsIU | III.C.3<br>III.C.3  |           | -0.36<br>-0.23                       | -0.65<br>-0.61        | -0.85<br>-0.64        | -1.23<br>-1.47        |
| XF2241           | periplasmic protease                                                                                            | mucD         | III.C.3             |           | -0.23                                | -0.01                 | -1.32                 | -1.70                 |
| XF1382           | Ferritin and Dps                                                                                                | maob         | IV.A                | Х         | 0.00                                 | -0.36                 | -0.83                 | -1.39                 |
| XF0340           | disulfide bond formation protein B                                                                              |              | IV.A.1              |           | -0.29                                | -0.51                 | -1.40                 | -1.18                 |
| XF2252           | predicted membrane protein                                                                                      |              | IV.A.1              | X*        | -0.84                                | -1.08                 | -2.72                 | -1.05                 |
| XF0847           | beta-hexosaminidase precursor                                                                                   | nahA         | IV.A.2              |           | -0.84                                | -0.86                 | -0.76                 | -1.61                 |
| XF0872           | outer membrane protein                                                                                          | ompW         | IV.A.2              |           | 0.18                                 | -0.04                 | -0.74                 | -1.17                 |
| XF0975           | polyphosphate-selective porin O                                                                                 | oprO         | IV.A.2              |           | -0.08                                | -0.31                 | -1.20                 | -1.19                 |
| XF1811           | outer membrane protein SIp precursor                                                                            | slp          | IV.A.2              |           | -0.23                                | -0.69                 | -1.41                 | -1.27                 |
| XF2345           | outer membrane protein                                                                                          | smpA         | IV.A.2              |           | -0.20                                | -0.47                 | -1.72                 | -1.54                 |
| XF1265<br>XF1470 | Autotransporter beta-domain  UDP-N-acetylglucosamineN-acetylmuramyl- (pentapeptide) pyrophosphoryl-undecaprenol |              | IV.A.2<br>IV.B      | X<br>X    | -0.93<br>-0.32                       | -1.17<br><b>-1.05</b> | <b>-1.58</b><br>-0.85 | <b>-2.03</b><br>-1.10 |
| XF2656           | N-acetylmuramoyl-L-alanine amidase, family 2                                                                    |              | IV.B                | X         | -0.61                                | -0.85                 | -1.28                 | -2.05                 |
| XF0611           | dTDP-glucose 4-6-dehydratase                                                                                    | rfbB         | IV.C                |           | -0.14                                | -0.51                 | -0.71                 | -1.35                 |
| XF0980           | lipopolysaccharide synthesis enzyme                                                                             | kdtB         | IV.C                |           | -0.10                                | -0.47                 | -0.58                 | -1.01                 |
| XF0083           | fimbrial subunit precursor                                                                                      | F17A-A       | IV.D                |           | -0.36                                | -0.43                 | -1.04                 | -0.80                 |
| XF0369           | fimbrial assembly membrane protein                                                                              |              | IV.D                |           | -0.06                                | -0.58                 | -1.10                 | -1.65                 |
| XF0370           | fimbrial assembly membrane protein                                                                              |              | IV.D                |           | 0.10                                 | -0.09                 | -1.32                 | -1.71                 |
| XF0371           | fimbrial assembly membrane protein                                                                              |              | IV.D                |           | 0.50                                 | -0.10                 | -1.26                 | -1.76                 |
| XF0372           | fimbrial assembly protein                                                                                       |              | IV.D                |           | 0.19                                 | -0.36                 | -1.00                 | -1.83                 |
| XF0373           | fimbrial assembly protein                                                                                       |              | IV.D                |           | 0.20                                 | -0.06                 | -0.67                 | -1.78                 |
| XF2544           | pilus biogenesis protein                                                                                        | pilB         | IV.D                |           | -0.42                                | -0.51                 | -1.18                 | -1.49                 |
| XF0961           | bacterioferritin comigratory protein                                                                            | bcp          | IX                  |           | -0.02                                | -0.01                 | -0.92                 | -0.85                 |
| XF1213           | GTP-binding elongation factor protein                                                                           | typQ         | IX                  |           | -0.38                                | -0.72                 | -0.86                 | -1.50                 |
| XF2243<br>XF1222 | GTP binding protein                                                                                             | <i>lepA</i>  | IX<br>V A           | V         | -0.30                                | -0.62                 | -0.99                 | -1.36                 |
| XF2141           | ABC transporter phenopheta binding protein                                                                      | nhoV         | V.A                 | Х         | -0.28                                | -0.71                 | -3.35<br>1.27         | -1.16<br>1.26         |
| XF2141           | ABC transporter phosphate binding protein ABC transporter phosphate permease                                    | phoX<br>pstA | V.A.2<br>V.A.2      |           | 0.24<br>-0.44                        | -0.29<br><b>-1.10</b> | -1.27<br>-1.10        | <b>-1.26</b><br>-1.14 |
| XF2144           | phosphate ABC transporter ATP-binding protein                                                                   | pstA<br>pstB | V.A.2<br>V.A.2      |           | -0.44                                | -0.97                 | -0.81                 | -1.03                 |
| XF0320           | Mg++/citrate complex transporter                                                                                | рыв          | V.A.2               |           | -0.40                                | -0.52                 | -0.59                 | -1.21                 |
| XF1067           | sugar ABC transporter ATP-binding protein                                                                       | dr2153       | V.A.3               |           | -0.20                                | -0.32                 | -0.59<br>-1.19        | -0.85                 |
| XF0185           | band 7 protein/ SPFH domain                                                                                     | G. 2 100     | V.A.4               | Х         | -0.23                                | -0.28                 | -0.89                 | -1.43                 |
| XF0224           | preprotein translocase YajC subunit                                                                             |              | V.A.6               |           | 0.02                                 | -0.26                 | -0.90                 | -1.36                 |
| XF1474           | ABC transporter membrane protein                                                                                | ynhC         | V.A.7               |           | -0.79                                | -0.87                 | -1.01                 | -1.47                 |
| XF1475           | ABC transporter ATP-binding protein                                                                             | ynhD         | V.A.7               |           | -0.73                                | -0.74                 | -1.29                 | -1.57                 |
| XF1476           | ABC transporter membrane protein                                                                                | srl4004      | V.A.7               |           | -0.69                                | -0.81                 | -1.91                 | -1.74                 |
| XF0801           | cell division protein                                                                                           | ftsA         | V.B                 |           | -0.49                                | -0.60                 | -0.63                 | -1.20                 |
| XF1124           | Maf-like protein                                                                                                |              | V.B                 | Χ         | -0.42                                | -0.52                 | -0.77                 | -1.01                 |
| XF1321           | septum site-determining protein                                                                                 | minD         | V.B                 |           | -0.28                                | -0.35                 | -0.59                 | -1.07                 |
| XF0010           | biopolymer transport ExbB protein                                                                               | exbB         | VII.C               |           | -0.08                                | -0.51                 | -0.90                 | -1.24                 |
| XF0012           | biopolymer transport ExbD2 protein                                                                              | exbD2        | VII.C               |           | -0.12                                | -0.74                 | -1.04                 | -1.37                 |
| XF1210           | glutathione S-transferase                                                                                       | gst<br>_     | VII.C               |           | -0.07                                | -0.41                 | -1.13                 | -1.18                 |
| XF2094           | multidrug-efflux transporter                                                                                    | acrF         | VII.C               |           | 0.06                                 | -0.92                 | -1.00                 | -1.80                 |

|         |                                         |                 |                     | •         | M = log₂(NaCl/controle) |        |        |        |
|---------|-----------------------------------------|-----------------|---------------------|-----------|-------------------------|--------|--------|--------|
| Gene.ID | Produto                                 | Nome do<br>gene | Categoria funcional | reanotada | 7 min                   | 15 min | 30 min | 60 min |
| XF2586  | outer membrane export factor            | toIC            | VII.C               |           | -0.07                   | -0.41  | -1.18  | -1.31  |
| XF2778  | thiophene and furan oxidation protein   | thdF            | VII.C               |           | -0.49                   | -1.83  | -0.98  | -1.25  |
| XF2234  | low molecular weight heat shock protein | hspA            | VII.G               |           | 0.02                    | -0.35  | -0.28  | -1.40  |
| XF0287  | regulator of pathogenicity factors      |                 | VII.H               |           | -0.30                   | -0.37  | -1.24  | -1.21  |
| XF0749  | virulence regulator                     | xrvA            | VII.H               |           | -0.15                   | -1.23  | -1.07  | -0.95  |
| XF1517  | general secretory pathway protein E     | xpsE            | VII.H               |           | -0.52                   | -1.08  | -0.79  | -0.79  |
| XF0180  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.29                   | -0.41  | -1.50  | -2.25  |
| XF0184  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.35                   | -0.55  | -1.22  | -1.68  |
| XF0362  | conserved hypothetical protein          |                 | VIII.A              | Χ         | 0.04                    | 0.12   | -1.00  | -1.12  |
| XF0584  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.38                   | -0.80  | -0.99  | -1.09  |
| XF0614  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.43                   | -1.10  | -1.45  | -1.73  |
| XF0625  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.48                   | -0.62  | -1.54  | -1.49  |
| XF0898  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.21                   | -0.26  | -0.61  | -1.00  |
| XF0903  | conserved hypothetical protein          | HI0004          | VIII.A              |           | -0.69                   | -0.85  | -0.37  | -0.78  |
| XF1007  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.49                   | -0.49  | -1.74  | -1.00  |
| XF1017  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.45                   | -0.36  | -0.84  | -0.56  |
| XF1102  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.57                   | -0.86  | -1.32  | -1.30  |
| XF1226  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.13                   | -0.22  | -1.32  | -0.71  |
| XF1480  | conserved hypothetical protein          |                 | VIII.A              | Х         | -0.40                   | -0.45  | -0.49  | -1.44  |
| XF1649  | conserved hypothetical protein          | b2360           | VIII.A              |           | -0.33                   | -0.31  | -1.00  | -0.71  |
| XF1650  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.40                   | -0.44  | -1.24  | -0.80  |
| XF1771  | conserved hypothetical protein          |                 | VIII.A              | X*        | -0.15                   | -0.55  | -1.53  | -1.54  |
| XF1779  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -1.16                   | -0.95  | 0.00   | 0.00   |
| XF1781  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -1.16                   | -0.95  | 0.00   | 0.00   |
| XF1874  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.34                   | 0.02   | -1.00  | -0.26  |
| XF1884  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.39                   | -0.54  | -2.22  | -2.22  |
| XF1887  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.23                   | -0.88  | -0.68  | -1.14  |
| XF2118  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.48                   | -0.57  | -1.89  | -2.20  |
| XF2245  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.15                   | -0.65  | -1.23  | -1.56  |
| XF2587  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.20                   | -0.48  | -1.14  | -1.01  |
| XF2655  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.44                   | -0.68  | -0.96  | -1.64  |
| XF2747  | conserved hypothetical protein          |                 | VIII.A              | Χ         | -0.36                   | -0.92  | -0.48  | -1.73  |
| XF0038  | hypothetical protein                    |                 | VIII.B              |           | 0.09                    | 0.04   | -1.86  | -1.09  |
| XF0364  | hypothetical protein                    |                 | VIII.B              |           | -0.14                   | -0.19  | -1.13  | -0.61  |
| XF0626  | hypothetical protein                    |                 | VIII.B              |           | -0.27                   | -0.87  | -0.85  | -1.25  |
| XF0974  | hypothetical protein                    |                 | VIII.B              |           | -0.30                   | -0.61  | -1.22  | -1.74  |
| XF0990  | hypothetical protein                    |                 | VIII.B              |           | -0.12                   | -0.74  | -1.20  | -1.85  |
| XF1339  | hypothetical protein                    |                 | VIII.B              |           | -0.41                   | -0.76  | -0.82  | -1.19  |
| XF1693  | hypothetical protein                    |                 | VIII.B              |           | -0.16                   | 0.25   | -1.47  | -0.92  |
| XF1694  | hypothetical protein                    |                 | VIII.B              |           | -0.15                   | 0.12   | -1.20  | -1.04  |
| XF1885  | hypothetical protein                    |                 | VIII.B              |           | -0.35                   | -0.57  | -1.46  | -0.74  |
| XF2569  | hypothetical protein                    |                 | VIII.B              |           | 80.0                    | -0.76  | -0.75  | -1.05  |
| XF2731  | hypothetical protein                    |                 | VIII.B              |           | -0.45                   | -0.82  | -0.72  | -1.00  |
| XF2777  | hypothetical protein                    |                 | VIII.B              |           | -0.35                   | -1.01  | -3.59  | -4.74  |

Tabela S8: Agrupamento dos genes diferencialmente expressos na presença de NaCl utilizando o algoritmo Kmeans com 5 grupos. M = log da razão da intensidade de fluorescência no choque salino em relação à condição controle.



| 0 7 15  | 30. 60.                               |                 |                        | M = log₂(NaCl/controle) |       |        |        |        |  |  |
|---------|---------------------------------------|-----------------|------------------------|-------------------------|-------|--------|--------|--------|--|--|
| Gene.ID | Produto                               | Nome do<br>gene | Categoria<br>funcional | 0 min                   | 7 min | 15 min | 30 min | 60 min |  |  |
| XF0323  | two-component system, sensor protein  |                 | I.D                    | 0.00                    | 2.86  | 3.87   | 4.24   | 4.48   |  |  |
| XF0391  | hypothetical protein                  |                 | VIII.B                 | 0.00                    | 1.91  | 3.53   | 3.63   | 3.70   |  |  |
| XF0493  | conserved hypothetical protein        |                 | VIII.A                 | 0.00                    | 0.70  | 2.12   | 5.08   | 5.72   |  |  |
| XF0529  | conserved hypothetical protein        |                 | VIII.A                 | 0.00                    | 1.37  | 3.47   | 3.57   | 4.34   |  |  |
| XF1594  | putative phage related protein        |                 | VI.A                   | 0.00                    | 1.61  | 2.35   | 3.73   | 4.56   |  |  |
| XF1915  | anthranilate synthase component II    | trpG            | II.A.4                 | 0.00                    | 3.49  | 4.71   | 2.29   | 6.52   |  |  |
| XF2257  | predicted membrane protein            | yebN            | IV.A.1                 | 0.00                    | 1.63  | 3.50   | 3.03   | 3.79   |  |  |
| XF2390  | putative oxidoreductase protein       |                 | I.C                    | 0.00                    | 2.26  | 4.66   | 4.21   | 4.91   |  |  |
| XFa0021 | hypothetical protein                  |                 | VIII.B                 | 0.00                    | 0.27  | 2.51   | 3.12   | 4.36   |  |  |
| XFa0054 | conserved hypothetical protein        |                 | VIII.A                 | 0.00                    | 1.58  | 2.90   | 2.71   | 3.71   |  |  |
| XFa0059 | plasmid replication/partition protein | spoOJ           | VI.B                   | 0.00                    | 0.08  | 1.61   | 3.75   | 4.54   |  |  |
| XFa0060 | plasmid replication protein           | incC            | VI.B                   | 0.00                    | 1.23  | 3.16   | 4.04   | 4.09   |  |  |
| XFa0064 | conserved hypothetical protein        |                 | VIII.A                 | 0.00                    | 2.53  | 3.96   | 4.48   | 4.89   |  |  |



| 0' 7' 15' | 30′ 60′                                              |              |                     |       | M = log <sub>2</sub> | (NaCl/con | trole) |        |
|-----------|------------------------------------------------------|--------------|---------------------|-------|----------------------|-----------|--------|--------|
| Gene.ID   | Produto                                              | Nome do gene | Categoria funcional | 0 min | 7 min                | 15 min    | 30 min | 60 min |
| XF0195    | hypothetical protein                                 |              | VIII.B              | 0.00  | 1.77                 | 2.13      | 2.01   | 3.02   |
| XF0336    | hypothetical protein                                 |              | VIII.B              | 0.00  | 2.58                 | 3.07      | 1.44   | 2.19   |
| XF0337    | hypothetical protein                                 |              | VIII.B              | 0.00  | 2.03                 | 3.02      | 2.30   | 3.56   |
| XF0501    | conserved hypothetical protein                       | ydaS         | VIII.A              | 0.00  | 1.06                 | 1.64      | 3.81   | 2.51   |
| XF0528    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 0.57                 | 2.20      | 2.54   | 2.96   |
| XF0534    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 1.70                 | 2.89      | 2.67   | 3.13   |
| XF0695    | hypothetical protein                                 |              | VIII.B              | 0.00  | 0.77                 | 2.03      | 1.67   | 2.79   |
| XF0768    | Beta-lactamase-like                                  |              | VII.C               | 0.00  | 0.52                 | 2.04      | 1.85   | 3.80   |
| XF1149    | ATP synthase, A chain                                | atpB         | I.C.8               | 0.00  | 1.20                 | 1.98      | 2.27   | 2.18   |
| XF1185    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 0.19                 | 1.86      | 1.67   | 3.09   |
| XF1245    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 4.46                 | 5.28      | 1.81   | 3.17   |
| XF1396    | hypothetical protein                                 |              | VIII.B              | 0.00  | 0.91                 | 2.26      | 2.71   | 3.51   |
| XF1587    | putative phage related protein                       |              | VI.A                | 0.00  | 1.36                 | 2.46      | 2.50   | 3.97   |
| XF1589    | plasmid stabilization protein                        | y4jK         | VI.B                | 0.00  | 1.17                 | 2.36      | 2.81   | 2.82   |
| XF1590    | plasmid stabilization protein                        | y4jJ         | VI.B                | 0.00  | 1.47                 | 2.23      | 2.88   | 3.15   |
| XF1655    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 1.34                 | 0.84      | 2.90   | 3.00   |
| XF1700    | phage related protein                                |              | VI.A                | 0.00  | 0.54                 | 1.63      | 2.48   | 3.01   |
| XF1711    | Endoribonuclease L-PSP                               |              | III.B               | 0.00  | 1.17                 | 2.71      | 2.39   | 2.34   |
| XF1755    | conserved hypothetical protein                       | tiorf29      | VIII.A              | 0.00  | 0.12                 | 1.88      | 2.66   | 3.32   |
| XF1756    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | -0.04                | 1.81      | 2.47   | 3.29   |
| XF1877    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 1.11                 | 1.96      | 2.02   | 2.53   |
| XF1916    | coenzyme F390 synthetase                             | af1671       | II.D.17             | 0.00  | 0.77                 | 2.40      | 2.61   | 3.83   |
| XF1918    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 0.80                 | 2.23      | 1.92   | 3.39   |
| XF1919    | iron-sulfur flavoprotein                             |              | IX                  | 0.00  | 0.50                 | 1.73      | 3.26   | 3.53   |
| XF1973    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 1.55                 | 1.46      | 2.54   | 2.87   |
| XF1974    | hypothetical protein                                 |              | VIII.B              | 0.00  | 1.83                 | 1.82      | 2.65   | 3.09   |
| XF2033    | hypothetical protein                                 |              | VIII.B              | 0.00  | 1.04                 | 2.19      | 2.13   | 2.69   |
| XF2066    | plasmid stabilization system protein                 | yacB         | VI.B                | 0.00  | 0.50                 | 2.28      | 3.03   | 3.60   |
| XF2067    | conserved hypothetical protein                       | •            | VIII.A              | 0.00  | 1.19                 | 2.25      | 2.84   | 2.97   |
| XF2068    | conserved hypothetical protein                       |              | VIII.A              | 0.00  | 0.92                 | 2.03      | 2.77   | 2.79   |
| XF2074    | putative protein of the plasmid stabilization system |              | VI.B                | 0.00  | 1.24                 | 2.12      | 1.68   | 2.78   |
| XF2078    | hypothetical protein                                 |              | VIII.B              | 0.00  | 1.47                 | 2.62      | 3.04   | 3.80   |
| XF2085    | transcriptional regulator (AcrR family)              | SCI30A.12    | I.D                 | 0.00  | 0.36                 | 1.78      | 1.86   | 2.92   |
| 000       |                                                      | 20.0072      |                     | 0.00  | 0.00                 | 0         |        |        |

| Grupo2  | Grupo2 (continuação)               |                 |                        | M = log₂(NaCl/controle) |       |        |        |        |  |  |
|---------|------------------------------------|-----------------|------------------------|-------------------------|-------|--------|--------|--------|--|--|
| Gene.ID | Produto                            | Nome do<br>gene | Categoria<br>funcional | 0 min                   | 7 min | 15 min | 30 min | 60 min |  |  |
| XF2114  | phage related protein              |                 | VI.A                   | 0.00                    | 0.74  | 1.69   | 1.68   | 3.54   |  |  |
| XF2161  | conserved plasmid protein          |                 | VI.B                   | 0.00                    | 0.36  | 2.35   | 2.94   | 2.83   |  |  |
| XF2197  | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 0.65  | 1.89   | 2.31   | 3.62   |  |  |
| XF2258  | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 2.29  | 3.06   | 1.96   | 3.22   |  |  |
| XF2382  | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 1.93  | 2.11   | 1.35   | 2.84   |  |  |
| XF2514  | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 1.41  | 2.36   | 2.66   | 3.42   |  |  |
| XF2762  | phage related protein              |                 | VI.A                   | 0.00                    | 1.07  | 2.08   | 2.43   | 4.28   |  |  |
| XFa0002 | conjugal transfer protein          | traL            | VI.B                   | 0.00                    | 1.04  | 2.69   | 2.99   | 3.52   |  |  |
| XFa0020 | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 0.51  | 2.48   | 2.54   | 4.30   |  |  |
| XFa0022 | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 0.12  | 2.06   | 2.64   | 2.59   |  |  |
| XFa0023 | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 0.84  | 2.17   | 3.09   | 3.64   |  |  |
| XFa0024 | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 0.39  | 2.04   | 3.80   | 2.42   |  |  |
| XFa0028 | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 0.91  | 1.69   | 2.50   | 2.83   |  |  |
| XFa0035 | conserved hypothetical protein     |                 | VIII.A                 | 0.00                    | 1.14  | 2.49   | 2.92   | 2.97   |  |  |
| XFa0036 | conjugal transfer protein          | trbN            | VI.B                   | 0.00                    | 1.39  | 1.96   | 3.82   | 2.31   |  |  |
| XFa0037 | conjugal transfer protein          | trbL            | VI.B                   | 0.00                    | 0.30  | 2.23   | 2.60   | 3.22   |  |  |
| XFa0049 | hypothetical protein               |                 | VIII.B                 | 0.00                    | 1.23  | 2.24   | 3.81   | 3.25   |  |  |
| XFa0050 | stability partitioning determinant | stbB            | VI.B                   | 0.00                    | 0.60  | 1.98   | 3.04   | 2.15   |  |  |
| XFa0051 | hypothetical protein               |                 | VIII.B                 | 0.00                    | 0.55  | 1.88   | 2.60   | 3.58   |  |  |
| XFb0002 | hypothetical protein               |                 | VIII.B                 | 0.00                    | 0.63  | 1.06   | 3.42   | 3.31   |  |  |



| 0' 7' 15' | 30° 60°                                 |                 |                        | M = log₂(NaCl/controle) |       |        |        |        |  |  |
|-----------|-----------------------------------------|-----------------|------------------------|-------------------------|-------|--------|--------|--------|--|--|
| Gene.ID   | Produto                                 | Nome do<br>gene | Categoria<br>funcional | 0 min                   | 7 min | 15 min | 30 min | 60 min |  |  |
| XF0001    | chromosomal replication initiator       | dnaA            | III.A.1                | 0.00                    | 0.79  | 0.93   | 1.16   | 1.28   |  |  |
| XF0074    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.86  | 1.13   | 0.95   | 1.07   |  |  |
| XF0111    | methionine aminopeptidase               | map             | III.C.1                | 0.00                    | 1.16  | 1.22   | 1.49   | 1.26   |  |  |
| XF0112    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 1.33  | 2.05   | 1.44   | 1.75   |  |  |
| XF0168    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 0.86  | 1.70   | 1.21   | 1.54   |  |  |
| XF0169    | tyrosyl-tRNA synthetase                 | tyrS            | III.B.4                | 0.00                    | 1.78  | 2.16   | 1.77   | 2.01   |  |  |
| XF0193    | 6-pyruvoyl tetrahydrobiopterin synthase | ygcM            | II.D.16                | 0.00                    | 1.03  | 2.02   | 1.34   | 1.74   |  |  |
| XF0197    | acyltransferase                         |                 | II.E                   | 0.00                    | 1.02  | 1.49   | 0.82   | 1.61   |  |  |
| XF0214    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.95  | 1.13   | 0.40   | 1.00   |  |  |
| XF0250    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 2.00  | 2.62   | 1.68   | 0.91   |  |  |
| XF0289    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 1.24  | 1.56   | 1.28   | 0.86   |  |  |
| XF0324    | periplasmic iron-binding protein        |                 | V.A.4                  | 0.00                    | 1.23  | 1.41   | 2.03   | 1.92   |  |  |
| XF0328    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.91  | 1.17   | 0.39   | 0.20   |  |  |
| XF0330    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 1.32  | 1.60   | 0.96   | 1.23   |  |  |
| XF0338    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.87  | 0.86   | 1.15   | 1.49   |  |  |
| XF0383    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.83  | 1.20   | 0.64   | 1.05   |  |  |
| XF0385    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 0.67  | 1.50   | 1.14   | 1.90   |  |  |
| XF0390    | two-component system, sensor protein    |                 | I.D                    | 0.00                    | 1.41  | 2.05   | 2.02   | 1.83   |  |  |
| XF0392    | methionine adenosyltransferase          |                 | I.B.10                 | 0.00                    | 1.01  | 1.28   | 1.82   | 1.75   |  |  |
| XF0437    | Mechanosensitive ion channel mscS       |                 | V.A                    | 0.00                    | 0.78  | 1.17   | 0.44   | 0.76   |  |  |
| XF0500    | phage-related repressor protein         | racR            | VI.A                   | 0.00                    | 0.58  | 1.58   | 0.33   | 1.18   |  |  |
| XF0531    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.95  | 1.67   | 1.50   | 1.89   |  |  |
| XF0533    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.74  | 1.53   | 1.30   | 1.68   |  |  |
| XF0537    | conserved hypothetical protein          | gepA            | VIII.A                 | 0.00                    | 0.51  | 1.21   | 0.75   | 1.56   |  |  |
| XF0538    | fimbrillin                              |                 | IV.D                   | 0.00                    | 0.80  | 1.32   | 0.91   | 1.24   |  |  |
| XF0663    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.65  | 1.30   | 0.84   | 1.92   |  |  |
| XF0704    | phage-related protein                   |                 | VI.A                   | 0.00                    | 1.04  | 1.67   | 1.79   | 1.35   |  |  |
| XF0705    | phage-related protein                   |                 | VI.A                   | 0.00                    | 0.79  | 1.36   | 0.99   | 1.16   |  |  |
| XF0746    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 0.85  | 1.14   | 0.96   | 0.93   |  |  |
| XF0747    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.63  | 1.30   | 1.07   | 1.19   |  |  |
| XF0787    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 1.14  | 1.70   | -0.30  | 2.59   |  |  |
| XF0811    | predicted methyltransferase             |                 | III.                   | 0.00                    | 1.25  | 1.50   | 2.20   | 2.28   |  |  |
| XF0874    | ABC transporter permease protein        | DR1357          | V.A.7                  | 0.00                    | 0.91  | 1.34   | 1.57   | 1.80   |  |  |
| XF0887    | mannosyltransferase                     | mtfA            | III.D.1                | 0.00                    | 0.93  | 1.86   | 0.53   | 0.35   |  |  |
| XF0915    | hypothetical protein                    |                 | VIII.B                 | 0.00                    | 1.15  | 1.41   | 1.10   | 0.98   |  |  |
| XF0916    | conserved hypothetical protein          |                 | VIII.A                 | 0.00                    | 0.74  | 1.33   | 1.37   | 2.45   |  |  |
|           | ·· // · · · // · · · · · · ·            |                 |                        |                         |       |        |        |        |  |  |

| Grupo3           | Grupo3 (continuação)                                          |              |                        |              |              | M = log₂(NaCl/controle) |              |              |  |  |  |
|------------------|---------------------------------------------------------------|--------------|------------------------|--------------|--------------|-------------------------|--------------|--------------|--|--|--|
| Gene.ID          | Produto                                                       | Nome do gene | Categoria<br>funcional | 0 min        | 7 min        | 15 min                  | 30 min       | 60 min       |  |  |  |
| XF1032           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 1.32         | 1.61                    | 0.34         | 1.39         |  |  |  |
| XF1053           | outer membrane protein                                        | ompP1        | IV.A.2                 | 0.00         | 0.89         | 1.34                    | 1.96         | 2.21         |  |  |  |
| XF1054           | rhomboid-like protein                                         |              | IV.A.1                 | 0.00         | 0.91         | 1.36                    | 1.69         | 2.25         |  |  |  |
| XF1057           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.99         | 1.18                    | 0.97         | 1.16         |  |  |  |
| XF1150           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 1.36         | 1.89                    | 1.49         | 1.70         |  |  |  |
| XF1246<br>XF1247 | conserved hypothetical protein conserved hypothetical protein |              | VIII.A                 | 0.00         | 0.90         | 1.06                    | 1.24<br>1.41 | 1.35         |  |  |  |
| XF1247<br>XF1248 | conserved hypothetical protein                                |              | VIII.A<br>VIII.A       | 0.00<br>0.00 | 1.98<br>1.66 | 2.61<br>1.55            | 1.72         | 1.41<br>2.08 |  |  |  |
| XF1361           | Beta-lactamase-like                                           |              | VIII.C                 | 0.00         | 0.61         | 1.32                    | 1.11         | 1.62         |  |  |  |
| XF1372           | fimV protein                                                  |              | IV.D                   | 0.00         | 0.55         | 2.63                    | 1.02         | 1.06         |  |  |  |
| XF1393           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 1.96         | 2.78                    | 0.65         | 1.68         |  |  |  |
| XF1397           | 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-ber              | nzoquinol    |                        |              |              |                         |              |              |  |  |  |
| V=4404           | methylase / ubiG                                              |              | II.D.11                | 0.00         | 0.89         | 1.53                    | 1.28         | 1.73         |  |  |  |
| XF1461           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.56         | 1.47                    | 1.92         | 1.62         |  |  |  |
| XF1491<br>XF1493 | hypothetical protein                                          | vn (A        | VIII.B<br>VII.H        | 0.00<br>0.00 | 1.01<br>0.21 | 1.31<br>1.36            | 1.44<br>0.69 | 2.31<br>1.55 |  |  |  |
| XF1493<br>XF1513 | virulence regulator conserved hypothetical protein            | xrvA         | VII.A                  | 0.00         | 0.58         | 1.23                    | 1.84         | 2.33         |  |  |  |
| XF1518           | general secretory pathway protein F                           | xpsF         | VIII.H                 | 0.00         | 0.85         | 1.40                    | 0.66         | 0.40         |  |  |  |
| XF1645           | phage-related protein                                         | дрог         | VII.A                  | 0.00         | 0.90         | 1.45                    | 1.67         | 1.67         |  |  |  |
| XF1661           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.72         | 1.13                    | 0.98         | 2.16         |  |  |  |
| XF1701           | putative phage related protein                                |              | VI.A                   | 0.00         | 0.46         | 1.17                    | 1.36         | 1.88         |  |  |  |
| XF1705           | phage related protein                                         |              | VI.A                   | 0.00         | 0.42         | 2.19                    | 1.73         | 2.61         |  |  |  |
| XF1709           | plasmid maintenance system killer                             |              | VI.B                   | 0.00         | 0.48         | 1.45                    | 1.90         | 2.47         |  |  |  |
| XF1780           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.63         | 1.11                    | 1.53         | 2.18         |  |  |  |
| XF1789           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 1.09         | 1.36                    | 0.44         | 0.57         |  |  |  |
| XF1790           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 1.33         | 1.42                    | 1.07         | 0.64         |  |  |  |
| XF1791           | fimbrillin                                                    |              | IV.D                   | 0.00         | 1.33         | 1.61                    | 1.19         | 1.12         |  |  |  |
| XF1792           | Fimbrial protein pilin                                        |              | IV.D                   | 0.00         | 0.78         | 1.92                    | 0.79         | 1.03         |  |  |  |
| XF1797           | porphyrin biosynthesis protein                                | hemY         | II.D.12                | 0.00         | 0.85         | 1.83                    | 1.96         | 1.99         |  |  |  |
| XF1798           | conserved hypothetical protein                                | 4            | VIII.A                 | 0.00         | 0.85         | 1.60                    | 2.14         | 2.18         |  |  |  |
| XF1802           | glycerol-3-phosphate dehydrogenase                            | gpsA         | I.C.1                  | 0.00         | 1.22         | 2.00                    | 1.07         | 2.25         |  |  |  |
| XF1804<br>XF1814 | site-specific DNA-methyltransferase                           | sphIM        | III.A.5<br>VIII.A      | 0.00<br>0.00 | 1.09<br>1.04 | 1.06<br>1.77            | 1.06<br>2.23 | 0.73<br>1.95 |  |  |  |
| XF1841           | conserved hypothetical protein undecaprenol kinase            | bacA         | VIII.C                 | 0.00         | 1.04         | 1.01                    | 1.19         | 1.51         |  |  |  |
| XF1868           | conserved hypothetical protein                                | Басл         | VIII.A                 | 0.00         | 0.73         | 1.59                    | 0.92         | 1.44         |  |  |  |
| XF1904           | holliday junction binding protein, DNA helicase               | ruvA         | III.A.4                | 0.00         | 0.87         | 1.82                    | 1.84         | 2.34         |  |  |  |
| XF1917           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 1.21         | 2.00                    | 1.70         | 2.31         |  |  |  |
| XF1938           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 0.80         | 1.19                    | 0.97         | 1.59         |  |  |  |
| XF1977           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 0.80         | 2.06                    | 1.75         | 2.11         |  |  |  |
| XF1991           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 1.02         | 1.29                    | 0.78         | 1.14         |  |  |  |
| XF2028           | site-specific recombinase                                     | rin          | III.A.3                | 0.00         | 1.04         | 1.53                    | 0.90         | 1.63         |  |  |  |
| XF2034           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 1.04         | 1.05                    | 0.99         | 1.04         |  |  |  |
| XF2037           | conserved hypothetical protein                                | bioF2        | VIII.A                 | 0.00         | 0.63         | 1.19                    | 1.59         | 1.41         |  |  |  |
| XF2063           | DNA-invertase                                                 | rin          | VI.C                   | 0.00         | 0.75         | 1.42                    | 1.18         | 2.27         |  |  |  |
| XF2065           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 0.47         | 1.48                    | 1.69         | 2.64         |  |  |  |
| XF2069           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.62         | 1.33                    | 1.71         | 2.01         |  |  |  |
| XF2077           | conserved hypothetical protein                                |              | VIII.A<br>VI.B         | 0.00         | 0.60         | 2.67                    | 0.34         | 2.57         |  |  |  |
| XF2079<br>XF2113 | conjugal transfer protein conserved hypothetical protein      |              | VIII.A                 | 0.00<br>0.00 | 1.03<br>0.33 | 1.95<br>1.40            | 1.63<br>1.32 | 2.48<br>3.26 |  |  |  |
| XF2113           | conserved hypothetical protein                                |              | VIII.A<br>VIII.A       | 0.00         | 1.00         | 0.86                    | 1.23         | 1.24         |  |  |  |
| XF2198           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.59         | 1.51                    | 1.91         | 3.21         |  |  |  |
| XF2291           | phage-related protein                                         |              | VI.A                   | 0.00         | 0.60         | 1.38                    | 2.16         | 1.65         |  |  |  |
| XF2297           | DNA methylase                                                 | sce134.11    | III.A.5                | 0.00         | 1.07         | 0.72                    | 1.29         | 1.03         |  |  |  |
| XF2307           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 2.43         | 2.54                    | 1.59         | 1.60         |  |  |  |
| XF2350           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 0.37         | 1.30                    | 0.12         | 1.22         |  |  |  |
| XF2362           | GumJ protein                                                  | gumJ         | VII.E                  | 0.00         | 0.67         | 1.51                    | 1.20         | 1.48         |  |  |  |
| XF2391           | hypothetical protein                                          |              | VIII.B                 | 0.00         | 0.67         | 2.55                    | 1.72         | 2.43         |  |  |  |
| XF2392           | autolytic lysozyme                                            | lyc          | IV.A.2                 | 0.00         | 0.54         | 1.15                    | 0.58         | 2.09         |  |  |  |
| XF2406           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 0.59         | 1.32                    | 0.86         | 2.14         |  |  |  |
| XF2439           | cytidylate kinase                                             | cmkA         | II.B.2                 | 0.00         | 1.14         | 1.43                    | 0.79         | 0.91         |  |  |  |
| XF2490           | conserved hypothetical protein                                | ygiU         | VIII.A                 | 0.00         | 0.78         | 1.12                    | 1.23         | 1.92         |  |  |  |
| XF2491           | transcriptional regulator                                     |              | I.D                    | 0.00         | 0.53         | 1.56                    | 1.72         | 2.13         |  |  |  |
| XF2515           | conserved hypothetical protein                                |              | VIII.A                 | 0.00         | 1.20         | 1.85                    | 1.75         | 1.89         |  |  |  |
| XF2526           | phage-related protein                                         | rim V        | VI.A                   | 0.00         | 0.71         | 1.31                    | 1.70         | 1.46         |  |  |  |
| XF2532           | ribosomal protein S6 modification protein                     | rimK         | III.B.3                | 0.00         | 0.92         | 1.29                    | 1.04         | 1.13         |  |  |  |

| Grupo3  | (continuação)                        |              | •                      | M = log₂(NaCl/controle) |       |        |        |        |  |
|---------|--------------------------------------|--------------|------------------------|-------------------------|-------|--------|--------|--------|--|
| Gene.ID | Produto                              | Nome do gene | Categoria<br>funcional | 0 min                   | 7 min | 15 min | 30 min | 60 min |  |
| XF2535  | two-component system, sensor protein | colS         | I.D                    | 0.00                    | 0.92  | 1.32   | 0.82   | 0.57   |  |
| XF2537  | pre-pilin leader peptidase           | xpsO         | IV.D                   | 0.00                    | 0.43  | 1.22   | 0.54   | 0.94   |  |
| XF2539  | fimbrial protein                     |              | IV.D                   | 0.00                    | 0.62  | 1.38   | 0.89   | 1.46   |  |
| XF2563  | asparaginyl-tRNA synthetase          | asnS         | III.B.4                | 0.00                    | 0.97  | 1.03   | 1.39   | 1.40   |  |
| XF2566  | conserved hypothetical protein       |              | VIII.A                 | 0.00                    | 1.07  | 1.42   | 1.25   | 1.47   |  |
| XF2690  | hypothetical protein                 |              | VIII.B                 | 0.00                    | 0.59  | 1.66   | 1.10   | 1.83   |  |
| XF2718  | conserved hypothetical protein       |              | VIII.A                 | 0.00                    | 1.09  | 1.02   | 0.54   | 1.05   |  |
| XF2745  | hypothetical protein                 |              | VIII.B                 | 0.00                    | 1.04  | 0.78   | 1.76   | 1.84   |  |
| XF2781  | ribonuclease P                       | rnpA         | III.B.4                | 0.00                    | 1.05  | 1.37   | 0.31   | 0.23   |  |
| XFa0001 | transcriptional regulator            |              | I.D                    | 0.00                    | 1.10  | 1.63   | 1.18   | 0.54   |  |
| XFa0019 | site-specific recombinase            | rin          | III.A.3                | 0.00                    | 0.83  | 1.33   | 1.38   | 2.81   |  |
| XFa0025 | histone acetyltransferase            |              | III.B                  | 0.00                    | 0.64  | 1.43   | 0.90   | 1.70   |  |
| XFa0026 | conserved hypothetical protein       |              | VIII.A                 | 0.00                    | 0.40  | 1.23   | 1.14   | 1.88   |  |
| XFa0027 | plasmid maintenance protein          | pemK         | VI.B                   | 0.00                    | 0.56  | 1.18   | 1.55   | 2.21   |  |
| XFa0030 | hypothetical protein                 |              | VIII.B                 | 0.00                    | 1.08  | 1.93   | 1.19   | 1.91   |  |
| XFa0031 | hypothetical protein                 |              | VIII.B                 | 0.00                    | 1.03  | 1.28   | 0.44   | 1.54   |  |
| XFa0033 | hypothetical protein                 |              | VIII.B                 | 0.00                    | 0.94  | 1.13   | 1.92   | 1.31   |  |
| XFa0045 | conserved hypothetical protein       |              | VIII.A                 | 0.00                    | 0.59  | 1.38   | 1.39   | 1.85   |  |
| XFa0046 | predicted transcriptional regulator  |              | I.D                    | 0.00                    | 0.32  | 1.23   | 0.60   | 2.20   |  |
| XFa0052 | virulence-associated protein D       | vapD         | VII.H                  | 0.00                    | 0.66  | 1.33   | 1.42   | 3.14   |  |
| XFa0053 | hypothetical protein                 |              | VIII.B                 | 0.00                    | 0.36  | 1.72   | 0.97   | 2.53   |  |



Grupo 4

| 0′ 7′ 15′ | 30' 60' Grupo 4                          |                 | •                   |       | M = log <sub>2</sub> | (NaCl/con | trole) |        |
|-----------|------------------------------------------|-----------------|---------------------|-------|----------------------|-----------|--------|--------|
| Gene.ID   | Produto                                  | Nome do<br>gene | Categoria funcional | 0 min | 7 min                | 15 min    | 30 min | 60 min |
| XF0052    | hypothetical protein                     |                 | VIII.B              | 0.00  | 0.91                 | 0.84      | 0.91   | 1.54   |
| XF0063    | competence protein F                     | comF            | IX                  | 0.00  | -0.07                | 0.94      | 1.18   | 1.98   |
| XF0157    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.00                 | 0.33      | 0.46   | 1.19   |
| XF0172    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.08                 | 0.95      | 1.97   | 2.44   |
| XF0199    | conserved hypothetical protein           | CT421           | VIII.A              | 0.00  | 0.26                 | 0.89      | 1.02   | 1.60   |
| XF0201    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.69                 | 0.30      | 0.70   | 1.38   |
| XF0217    | hypothetical protein                     |                 | VIII.B              | 0.00  | 0.50                 | 0.87      | 1.13   | 1.74   |
| XF0220    | proline dipeptidase                      |                 | III.C.3             | 0.00  | -0.12                | 0.14      | 0.27   | 1.03   |
| XF0221    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | -0.11                | 0.05      | 0.82   | 1.22   |
| XF0234    | N utilization substance protein A        |                 | III.B.5             | 0.00  | 0.28                 | 0.83      | 1.20   | 1.15   |
| XF0264    | colicin V precursor                      |                 | VII.C               | 0.00  | 0.41                 | 0.98      | 0.44   | 1.34   |
| XF0265    | hypothetical protein                     |                 | VIII.B              | 0.00  | 2.01                 | 0.89      | 2.19   | 3.66   |
| XF0401    | two-component system, regulatory protein |                 | I.D                 | 0.00  | 0.24                 | 0.73      | 1.37   | 1.77   |
| XF0406    | export protein                           | ygjT            | V.A.7               | 0.00  | 0.14                 | 0.63      | 0.69   | 1.60   |
| XF0490    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | -0.30                | 0.26      | 0.39   | 0.98   |
| XF0491    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.43                 | 0.75      | 2.71   | 2.70   |
| XF0492    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | -0.13                | 0.49      | 1.53   | 1.78   |
| XF0521    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.27                 | 0.29      | 1.19   | 0.74   |
| XF0536    | transposase OrfB                         |                 | VI.C                | 0.00  | 0.46                 | 1.05      | 1.32   | 1.92   |
| XF0551    | hypothetical protein                     |                 | VIII.B              | 0.00  | 0.15                 | 0.65      | 1.19   | 1.28   |
| XF0552    | tetrapyrrole methylase family protein    |                 | IX                  | 0.00  | 0.01                 | 0.33      | 1.14   | 1.33   |
| XF0567    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.61                 | 0.76      | 1.11   | 1.10   |
| XF0638    | hypothetical protein                     |                 | VIII.B              | 0.00  | 0.26                 | 0.65      | 2.03   | 1.81   |
| XF0646    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.32                 | 0.74      | 0.87   | 1.18   |
| XF0665    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.16                 | 0.84      | 1.10   | 1.53   |
| XF0666    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | -0.29                | 0.64      | 0.30   | 1.30   |
| XF0692    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.61                 | 0.91      | 0.22   | 1.73   |
| XF0717    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | -0.04                | 0.18      | 0.99   | 1.81   |
| XF0718    | conserved hypothetical protein           |                 | VIII.A              | 0.00  | 0.12                 | 0.75      | 1.37   | 2.49   |
| XF0719    | phage-related baseplate assembly protein | gpV             | VI.A                | 0.00  | -0.02                | 0.77      | 1.58   | 2.26   |
| XF0742    | phenylalanyl-tRNA sinthetase beta chain  | pheT            | III.B.4             | 0.00  | 0.29                 | 0.49      | 0.70   | 0.91   |
| XF0765    | YeeE/YedE integral membrane protein      |                 | IX                  | 0.00  | -0.12                | -0.17     | 0.21   | 1.89   |
| XF0766    | YeeE/YedE integral membrane protein      |                 | IX                  | 0.00  | -0.29                | 0.04      | 1.52   | 2.64   |
| XF0833    | transcriptional regulator (LysR family)  | cysB            | I.D                 | 0.00  | 0.42                 | 0.79      | 1.19   | 0.93   |
|           |                                          |                 |                     |       |                      |           |        |        |

| New York   Product   Product   Series   Cartegoria   Product       | Grupo4  | (continuação)                          |                |         | M = log <sub>2</sub> (NaCl/controle) |       |        |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|----------------|---------|--------------------------------------|-------|--------|--------|--------|
| Usbi-IUDF/NSCCOOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gene.ID | Produto                                |                |         | 0 min                                | 7 min | 15 min | 30 min | 60 min |
| Section   Sec    | XF0834  |                                        | visC           | II.D.11 | 0.00                                 | -0.15 | 0.02   | 0.89   | 0.76   |
| Memory       | XF0835  |                                        |                |         |                                      |       |        |        |        |
| NEBBOR   Pack Camponer ATP-binding protein   VILL   VA.      | XF0839  |                                        | pdxA           | II.D.6  | 0.00                                 | 0.72  | 0.94   | 1.04   | 0.52   |
| ABC transporter ATP-binding protein   yusC   V.A.7   0.00   0.48   0.23   1.01   1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XF0844  | conserved hypothetical protein         |                | VIII.A  | 0.00                                 | 0.07  | 0.18   | 1.25   | 0.57   |
| XF08170   Section   VIII.A   0.00   0.43   0.17   1.40   0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XF0862  | peptidase                              |                | III.C.3 | 0.00                                 | -0.01 | -0.44  | 0.64   | 1.07   |
| YKF0866   Ypo 4 fimbrial blogenesis protein   May   May   No.   0.00   0.88   0.39   0.98   1.15   1.13   2.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XF0875  | ABC transporter ATP-binding protein    | yusC           |         | 0.00                                 | 0.48  | 0.23   | 1.01   | 1.07   |
| XFID21   Application   Properties   Proper   |         | conserved hypothetical protein         |                |         |                                      | 0.43  | 1.17   |        |        |
| XFID75   Conserved hypothetical protein   WILA   0.00   0.26   0.64   1.36   0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                        |                |         |                                      |       |        |        |        |
| XF1121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | •                                      | tesB           |         |                                      |       |        |        |        |
| XF1140   UDP-N-acetylglucasamine pyrophosphorylase   gmt/   UNA.1   0.00   0.27   0.98   0.65   1.05   0.97   0.98   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.87   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.99   0.   |         |                                        |                |         |                                      |       |        |        |        |
| XF1146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                        |                |         |                                      |       |        |        |        |
| XE1194   hypothetical protein   CVB   VIII.B   CVB   C |         |                                        | •              |         |                                      |       |        |        |        |
| XF1220   Colicin V secretion ABC transporter ATP-binding protein   val   VIII.A   0.00   -0.14   0.18   0.81   2.24   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34   2.34       |         | -                                      | ацип           |         |                                      |       |        |        |        |
| XF1243   Conserved hypothetical protein   Ymall   VIII.A   0.00   0.01   1.53   0.39   1.19     XF1365   Phosphatidylserine decarboxylase   p.sd   III.E   0.00   0.01   0.83   0.41   1.22     XF1367   Phosphatidylserine decarboxylase   p.sd   III.E   0.00   0.09   0.41   0.82   1.10     XF1367   Nypothetical protein   VIII.A   0.00   0.05   0.83   0.58   1.06     XF1371   asaratae-B-semialdehyde dehydrogenase   asd   III.A   0.00   0.04   0.04   0.05   0.05     XF1439   acelytransferase   IpxC   VIII.A   0.00   0.06   0.05   0.05   0.05   0.05     XF1439   conserved hypothetical protein   yclC   VIII.A   0.00   0.07   0.08   0.05   0.05   0.05     XF1439   conserved hypothetical protein   yclC   VIII.A   0.00   0.07   0.08   0.05   0.05   0.05     XF1439   conserved hypothetical protein   yclC   VIII.A   0.00   0.07   0.09   0.05   0.05   0.05     XF1450   cell division protein   fiskK   V.B   0.00   0.07   0.09   0.02   0.79   1.35     XF1561   Surface-exposed outer membrane protein   uspA1   VII.F   0.00   0.01   0.09   0.26   1.01     XF1552   conserved hypothetical protein   VIII.A   0.00   0.06   0.33   0.45   0.91     XF1553   putative phage related protein   VII.A   0.00   0.02   0.07   0.08   0.07     XF1559   putative phage related protein   VII.A   0.00   0.02   0.05   0.09   0.05     XF1559   putative phage related protein   VII.A   0.00   0.04   0.04   0.05   0.08   0.05     XF1569   putative phage related protein   VII.A   0.00   0.04   0.00   0.04   0.05   0.05     XF1569   putative phage related protein   VII.A   0.00   0.04   0.00   0.05   0.05   0.05   0.05     XF1569   putative phage related protein   VII.A   0.00   0.02   0.05   0.05   0.05   0.05     XF1569   putative phage related protein   VII.A   0.00   0.00   0.05   0.05   0.05   0.05   0.05     XF1660   putative phage related protein   VII.A   0.00   0.00   0.05   0.05   0.05   0.05   0.05     XF1661   phage related protein   VII.A   0.00   0.00   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.0    |         |                                        | cvaP           |         |                                      |       |        |        |        |
| XF1365   hypothetical protein   VIII.B   0.00   0.71   0.83   0.41   1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                        |                |         |                                      |       |        |        |        |
| XF1365   phosphatidyserine decarboxylase   psd   II.E   0.00   0.19   0.41   0.82   1.10     XF1371   aspartate-B-semiadehyda dehydrogenase   asd   II.A.2   0.00   0.65   0.68   0.83   0.68   1.06     XF1471   xaspartate-B-semiadehyda dehydrogenase   asd   II.A.2   0.00   0.61   0.61   0.73   1.00     XF1472   xectyltransferase   pxd   IV.C   0.00   0.61   0.61   0.73   1.00     XF14730   xaspartate-B-semiadehyda dehydrogenase   asd   II.A.2   0.00   0.61   0.61   0.73   1.00     XF14731   xaspartate-B-semiadehyda dehydrogenase   asd   II.A.2   0.00   0.61   0.61   0.73   1.00     XF14731   xaspartate-B-semiadehyda dehydrogenase   asd   II.A.2   0.00   0.61   0.61   0.73   1.00     XF14731   xaspartate-B-semiadehyda dehydrogenase   asd   II.A.2   0.00   0.62   0.67   0.05   0.05   0.05   0.05   0.05     XF1432   xaspartate-B-semiadehyda dehydrogenase   xaf   XII.A   0.00   0.05   0.05   0.05   0.05   0.05   0.05   0.05     XF1433   xaspartate-B-semiadehyda dehydrogenase   xaf   XII.A   0.00   0.05   0.05   0.05   0.05   0.05   0.05   0.05     XF1548   xaspartate-B-semiadehyda dehydrogenase   xaf   XII.A   0.00   0.05   0.05   0.05   0.05   0.05   0.05     XF1548   xaspartate-B-semiadehyda dehydrogenase   xaf   XII.A   0.00   0.06   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07   0.07       |         |                                        | yraivi         |         |                                      |       |        |        |        |
| XF1967   Prypothetical protein   XF1971   aspartate-B-semialdehyde dehydrogenase   asd   II.A.2   0.00   0.45   0.74   1.03   1.23   1.20     XF1419   aspartate-B-semialdehyde dehydrogenase   lpxD   IV.C   0.00   0.61   0.61   0.73   1.00     XF1420   conserved hypothetical protein   VIII.A   0.00   0.08   0.35   0.95   1.60     XF1430   conserved hypothetical protein   VIII.A   0.00   0.05   0.80   0.61   1.07     XF1450   cell division protein   tfsK   V.B   0.00   0.57   0.80   1.06   1.35     XF1450   cell division protein   tfsK   V.B   0.00   0.57   0.80   1.06   1.35     XF1450   conserved hypothetical protein   vIII.A   0.00   0.59   0.92   0.79   1.37     XF1451   transcriptional protein   vIII.A   0.00   0.61   0.09   0.26   1.01     XF1516   transcriptional protein   vIII.A   0.00   0.62   0.67   1.28   1.26     XF1516   transcriptional protein   vIII.A   0.00   0.06   0.33   0.45   0.81     XF1519   phage related protein   vIII.A   0.00   0.06   0.33   0.45   0.81     XF1519   phage related protein   vIII.A   0.00   0.02   0.51   0.89   1.77     XF1519   protein   vIII.A   0.00   0.02   0.51   0.89   1.77     XF1519   protein   vIII.A   0.00   0.04   0.05   0.05   0.80   1.75     XF1519   protein   vIII.A   0.00   0.42   0.75   0.80   1.77     XF1519   protein   vIII.A   0.00   0.42   0.75   0.80   1.75     XF1519   protein   vIII.A   0.00   0.42   0.75   0.80   1.75     XF1519   protein   vIII.A   0.00   0.04   0.05   0.68   1.15     XF1519   protein   vIII.A   0.00   0.04   0.05   0.68   1.15     XF1519   protein   vIII.A   0.00   0.05   0.67   1.37   1.89     XF1519   protein   vIII.A   0.00   0.00   0.67   0.80   1.35     XF1519   protein   vIII.A   0.00   0.00   0.67   0.80   0.80   1.35     XF1519   protein   vIII.A   0.00   0.00   0.67   0.75   0.80   1.35     XF1510   protein   vIII.A   0.00   0.00   0.67   0.80   0.80   1.45     XF1510   vIII.A   vIII.A   0.00   0.00   0.67   0.80   0.80   0.80   0.80   0.80   0.80   0.80     XF1510   vIII.A   vIII.A   0.00   0.00   0.67   0.80   0.80       |         | 7.                                     | nsd            |         |                                      |       |        |        |        |
| XF1371   sapartate-B-semialdehyde dehydrogenase   asd   II.A.2   0.00   0.45   0.74   1.03   1.23     XF1419   acetyltransferase   lpxD   IV.C   0.00   0.61   0.61   0.73   1.00     XF1439   conserved hypothetical protein   VII.A   0.00   0.04   0.47   0.73   1.00     XF1439   conserved hypothetical protein   VII.A   0.00   0.04   0.47   0.47   1.77   1.29     XF1450   coll division protein   VII.A   0.00   0.59   0.92   0.79   0.73   1.00     XF1439   conserved hypothetical protein   VIII.A   0.00   0.59   0.92   0.79   0.79   1.37     XF1561   Surface-exposed outer membrane protein   VIII.A   0.00   0.60   0.67   1.28   1.25     XF1542   bytothetical protein   VIII.A   0.00   0.62   0.67   1.28   1.25     XF1552   conserved hypothetical protein   VII.A   0.00   0.60   0.67   1.28   1.25     XF1562   conserved hypothetical protein   VII.A   0.00   0.06   0.33   0.45   0.91     XF1593   putative phage related protein   VII.A   0.00   0.02   0.67   1.28   1.25     XF1595   putative phage related protein   VII.A   0.00   0.02   0.51   0.98   1.77     XF1595   putative phage related protein   VII.A   0.00   0.02   0.51   0.98   1.77     XF1595   putative phage related protein   VII.A   0.00   0.04   1.16   0.94   2.28     XF1596   proteicid transcriptional regulator   VII.A   0.00   0.04   1.11   1.91   1.99     XF1597   conserved hypothetical protein   VII.A   0.00   0.00   0.43   1.11   1.91   1.99     XF1598   phage related protein   VII.A   0.00   0.00   0.67   0.72   0.89   1.35     XF1661   phage related protein   VII.A   0.00   0.00   0.67   0.72   0.89   1.35     XF1697   page related protein   VII.A   0.00   0.00   0.67   0.68   1.15     XF1698   phage related protein   VII.A   0.00   0.00   0.67   0.68   1.15     XF1707   conserved hypothetical protein   VII.A   0.00   0.00   0.67   1.37   1.89     XF1710   conserved hypothetical protein   VII.A   0.00   0.00   0.67   1.37   1.89     XF1710   conserved hypothetical protein   VIII.A   0.00   0.00   0.00   0.07   0.68   1.15     XF1772   conserved hypoth   |         |                                        | pou            |         |                                      |       |        |        |        |
| XF1419   Sept    Sep   |         |                                        | asd            |         |                                      |       |        |        |        |
| XF1420   Conserved hypothetical protein   Yelf   VIII.A   0.00   -0.08   0.35   0.95   1.60   NF1439   Conserved hypothetical protein   Yelf   VIII.A   0.00   0.07   0.80   0.106   1.35   NF1489   Conserved hypothetical protein   ts/K   V.B   0.00   0.07   0.80   0.106   1.35   NF1489   Conserved hypothetical protein   wspA1   VIII.A   0.00   0.59   0.92   0.79   1.37   NF1516   Surface-exposed outer membrane protein   wspA1   VIII.B   0.00   0.61   0.60   0.62   0.67   1.28   1.26   0.67   0.80   0.62   0.67   1.28   1.26   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.80   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.67   0.60   0.62   0.62   0.67   0.60   0.62   0.62   0.67   0.60   0.62   0.62   0.67   0.60   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0   |         |                                        |                |         |                                      |       |        |        |        |
| XF1450   Cell division protein   ftsK   V.B   0.00   0.57   0.80   1.06   1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XF1420  | conserved hypothetical protein         | •              | VIII.A  | 0.00                                 | -0.08 | 0.35   | 0.95   | 1.60   |
| XF1489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XF1439  |                                        | ycfC           | VIII.A  |                                      | -0.42 | 0.47   |        | 1.29   |
| XF1516         surface-exposed outer membrane protein         uspA1         VII.F         0.00         -0.11         0.09         0.26         1.01           XF1542         hypothetical protein         VIII.B         0.00         0.62         0.67         1.28         1.26           XF1591         phage related protein         VII.A         0.00         0.38         0.97         0.31         0.61           XF1593         putative phage related protein         VI.A         0.00         0.02         0.51         0.98         1.77           XF1595         putative phage related protein         VI.A         0.00         0.43         1.11         1.91         1.99           XF1596         predicted transcriptional regulator         I.D         0.00         0.43         1.11         1.91         1.99           XF1597         conserved hypothetical protein         VII.A         0.00         0.04         0.62         0.82         1.31           XF1697         page related protein         Ph.D4         IV.B         0.00         0.63         1.03         0.68         1.15           XF1697         page related protein         VI.A         0.00         0.63         1.03         0.68         1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XF1450  | cell division protein                  | ftsK           | V.B     | 0.00                                 | 0.57  | 0.80   | 1.06   | 1.35   |
| XF1542         hypothetical protein         VIII.B         0.00         0.62         0.67         1.28         1.26           XF1562         conserved hypothetical protein         VIII.A         0.00         0.63         3.3         0.45         0.91           XF1593         plage related protein         VI.A         0.00         0.02         0.51         0.98         1.77           XF1593         putative phage related protein         VI.A         0.00         0.42         1.26         2.04         2.28           XF1596         predicted transcriptional regulator         I.D         0.00         0.43         1.11         1.91         1.19         1.99           XF1597         conserved hypothetical protein         VIII.A         0.00         0.02         0.04         1.13         1.19         1.19         1.99           XF1597         page related protein         VII.A         0.00         0.02         0.09         0.05         1.31         1.31         1.79           XF1667         phage gelated protein         pb.4         IV.B         0.00         0.01         0.03         1.45         1.42           XF1667         phage gelated protein         VI.A         0.00         0.01         0.01 </td <td>XF1489</td> <td>conserved hypothetical protein</td> <td></td> <td>VIII.A</td> <td>0.00</td> <td>0.59</td> <td>0.92</td> <td>0.79</td> <td>1.37</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XF1489  | conserved hypothetical protein         |                | VIII.A  | 0.00                                 | 0.59  | 0.92   | 0.79   | 1.37   |
| XF1562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XF1516  | surface-exposed outer membrane protein | uspA1          | VII.F   | 0.00                                 | -0.11 | 0.09   | 0.26   | 1.01   |
| XF1591         phage related protein         VI.A         0.00         0.38         0.97         0.31         0.61           XF1593         putative phage related protein         VI.A         0.00         0.02         0.51         0.98         1.77           XF1595         putative phage related protein         VI.A         0.00         0.42         1.26         2.04         2.24           XF1597         conserved hypothetical protein         VII.A         0.00         0.03         0.11         1.91         1.99           XF1598         page related protein         VII.A         0.00         0.02         0.72         0.89         1.30           XF1697         ponserved hypothetical protein         VII.A         0.00         0.03         1.03         0.68         1.15           XF1667         phage related protein         VII.A         0.00         0.01         0.80         1.15         1.42           XF1708         page related protein         VII.A         0.00         0.01         1.04         1.00         0.80         1.15         1.42           XF1709         page related protein         VII.A         0.00         0.01         0.08         0.11         0.03         1.43         1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XF1542  | hypothetical protein                   |                | VIII.B  | 0.00                                 | 0.62  | 0.67   | 1.28   | 1.26   |
| XF1593   putative phage related protein   VI.A   0.00   0.02   0.51   0.98   1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XF1562  | conserved hypothetical protein         |                | VIII.A  | 0.00                                 | 0.06  | 0.33   | 0.45   | 0.91   |
| XF1595         putative phage related protein         VI.A         0.00         0.42         1.26         2.04         2.28           XF1596         predicted transcriptional regulator         I.D         0.00         0.43         1.11         1.91         1.99         1.99           XF1597         conserved hypothetical protein         VIII.A         0.00         0.27         0.72         0.89         1.30           XF1614         penicillin binding protein         pbp4         IV.B         0.00         0.63         1.03         0.68         1.15           XF1667         phage related protein         VI.A         0.00         0.60         0.14         1.04         1.70         2.82           XF1707         conserved hypothetical protein         VI.A         0.00         0.01         1.04         1.70         2.82           XF1708         conserved hypothetical protein         VIII.A         0.00         0.00         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF17172         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XF1591  | phage related protein                  |                | VI.A    | 0.00                                 | 0.38  | 0.97   | 0.31   | 0.61   |
| XF1596         predicted transcriptional regulator         I.D         0.00         0.43         1.11         1.91         1.99           XF1597         conserved hypothetical protein         VIII.A         0.00         0.00         0.45         0.82         1.31           XF1598         phage related protein         VI.A         0.00         0.63         1.03         0.68         1.15           XF1667         phage related protein         VI.A         0.00         0.20         0.80         1.45         1.42           XF1667         phage related protein         VII.A         0.00         0.14         1.04         1.70         2.82           XF16707         conserved hypothetical protein         VIII.A         0.00         0.08         0.11         0.83         1.43           XF17170         conserved hypothetical protein         VIII.A         0.00         0.00         0.67         1.37         1.89           XF17120         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF17171         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF17171 <th< td=""><td>XF1593</td><td>putative phage related protein</td><td></td><td></td><td>0.00</td><td>0.02</td><td>0.51</td><td>0.98</td><td>1.77</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XF1593  | putative phage related protein         |                |         | 0.00                                 | 0.02  | 0.51   | 0.98   | 1.77   |
| XF1597         conserved hypothetical protein         VIII.A         0.00         0.00         0.45         0.82         1.31           XF1598         phage related protein         VI.A         0.00         0.27         0.72         0.89         1.30           XF1614         penicillin binding protein         pbp4         IV.B         0.00         0.63         1.03         0.68         1.15           XF1667         phage related protein         VI.A         0.00         0.20         0.80         1.45         1.42           XF1692         putative phage related protein         VI.A         0.00         0.01         1.04         1.70         2.82           XF17707         conserved hypothetical protein         VIII.A         0.00         0.08         0.11         0.33         1.43           XF1710         conserved hypothetical protein         VIII.A         0.00         0.02         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF17171         conserved hypothetical protein         VIII.A         0.00         0.28         0.91         1.93         1.82           XF17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | putative phage related protein         |                |         | 0.00                                 | 0.42  | 1.26   |        |        |
| XF1598         phage related protein         VI.A         0.00         0.27         0.72         0.89         1.30           XF1614         pepicillin binding protein         pbp4         IV.B         0.00         0.63         1.03         0.68         1.15           XF1667         phage related protein         VI.A         0.00         0.14         1.04         1.70         2.82           XF1707         conserved hypothetical protein         VIII.A         0.00         0.08         0.11         0.83         1.43           XF1710         conserved hypothetical protein         VIII.A         0.00         0.00         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.02         1.52         1.84         2.49           XF1712         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF17172         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1752         transcriptional regulator (LysR family)         I.D         0.00         0.07         0.68         2.15         3.17           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | · · · · · · · · · · · · · · · · · · ·  |                |         |                                      |       |        |        |        |
| XF1614         penicillin binding protein         pbp4         IV.B         0.00         0.63         1.03         0.68         1.15           XF1667         phage related protein         VI.A         0.00         0.20         0.80         1.45         1.42           XF1692         putative phage related protein         VII.A         0.00         0.04         1.04         1.70         2.82           XF1707         conserved hypothetical protein         VIII.A         0.00         0.08         0.11         0.83         1.43           XF1708         family         VIII.A         0.00         0.00         0.67         1.37         1.89           XF1712         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF1712         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1713         heat shock protein HSP33         III.C         0.00         0.89         0.91         1.90         1.88           XF1752         transcriptional regulator (LysR family)         V.A         0.00         0.34         0.44         1.10         0.61           XF17557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                        |                |         |                                      |       |        |        |        |
| XF1667         phage related protein         VI.A         0.00         0.20         0.80         1.45         1.42           XF1662         putative phage related protein         VI.A         0.00         0.14         1.04         1.70         2.82           XF1707         conserved hypothetical protein         VIII.A         0.00         0.08         0.11         0.83         1.43           XF1708         family         VIII.A         0.00         0.00         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.02         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1713         heat shock protein HSP33         III.C         0.00         0.89         0.91         1.90         1.88           XF1749         major facilitator superfamily         V.A         0.00         0.34         0.44         1.10         0.61           XF1752         transcriptional regulator (LysR family)         I.D         0.00         0.02         0.94         1.58         2.99           XF1770         conserved hypoth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                        |                |         |                                      |       |        |        |        |
| XF1692         putative phage related protein         VI.A         0.00         0.14         1.04         1.70         2.82           XF1707         conserved hypothetical protein         VIII.A         0.00         0.08         0.11         0.83         1.43           XF1710         conserved hypothetical protein         VIII.A         0.00         0.00         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF1712         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1713         heat shock protein HSP33         III.C         0.00         0.89         0.91         1.90         1.88           XF1743         major facilitator superfamily         V.A         0.00         0.34         0.44         1.10         0.61           XF1752         transcriptional regulator (LysR family)         I.D         0.00         -0.07         0.68         2.15         3.17           XF1757         conserved hypothetical protein         VIII.A         0.00         0.02         0.94         1.58         2.99           XF17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                        | pbp4           |         |                                      |       |        |        |        |
| XF1707         conserved hypothetical protein putative plasmid maintenance system antidote protein, XRE family         VIII.A         0.00         0.08         0.11         0.83         1.43           XF1708         family         VII.B         0.00         0.00         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF1712         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1713         heat shock protein HSP33         III.C         0.00         0.89         0.91         1.90         1.88           XF1749         major facilitator superfamily         V.A         0.00         0.34         0.44         1.10         0.61           XF1752         transcriptional regulator (LysR family)         I.D         0.00         0.07         0.68         2.15         3.17           XF1785         transcriptional regulator (LysR family)         I.D         0.00         0.02         0.94         1.58         2.99           XF1797         conserved hypothetical protein         VIII.A         0.00         0.02         0.94         1.58 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                        |                |         |                                      |       |        |        |        |
| Putative plasmid maintenance system antidote protein, XRE family   YIB   0.00   0.00   0.67   1.37   1.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                        |                |         |                                      |       |        |        |        |
| XF1708         family         VI.B         0.00         0.00         0.67         1.37         1.89           XF1710         conserved hypothetical protein         VIII.A         0.00         0.22         1.52         1.84         2.49           XF1712         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1713         heat shock protein HSP33         III.C         0.00         0.89         0.91         1.90         1.88           XF1749         major facilitator superfamily         V.A         0.00         0.34         0.44         1.10         0.61           XF1752         transcriptional regulator (LysR family)         I.D         0.00         -0.07         0.68         2.15         3.17           XF1757         conserved hypothetical protein         VIII.A         0.00         0.02         0.94         1.58         2.99           XF1770         conserved hypothetical protein         VIII.A         0.00         0.05         0.18         1.12         1.49           XF1880         ATPase         IX         0.00         0.15         0.30         0.85         0.98           XF1890         conserved hypothetical protein </td <td>XF1/0/</td> <td>, ,</td> <td>XRF</td> <td>VIII.A</td> <td>0.00</td> <td>0.08</td> <td>0.11</td> <td>0.63</td> <td>1.43</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XF1/0/  | , ,                                    | XRF            | VIII.A  | 0.00                                 | 0.08  | 0.11   | 0.63   | 1.43   |
| XF1712         conserved hypothetical protein         VIII.A         0.00         0.26         0.77         1.34         1.52           XF1713         heat shock protein HSP33         III.C         0.00         0.89         0.91         1.90         1.88           XF1749         major facilitator superfamily         V.A         0.00         0.34         0.44         1.10         0.61           XF1755         conserved hypothetical protein         VIII.A         0.00         -0.07         0.68         2.15         3.17           XF1757         conserved hypothetical protein         VIII.A         0.00         -0.55         0.18         1.12         1.49           XF1757         conserved hypothetical protein         VIII.A         0.00         -0.55         0.18         1.12         1.49           XF1828         ATPase         IX         0.00         0.15         0.30         0.85         0.98           XF1880         conserved hypothetical protein         VIII.A         0.00         0.32         0.79         1.44         2.36           XF19414         radical activating enzyme         IX         0.00         0.35         0.10         0.47         0.84           XF1940         reptentide methion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XF1708  |                                        |                | VI.B    | 0.00                                 | 0.00  | 0.67   | 1.37   | 1.89   |
| XF1713       heat shock protein HSP33       III.C       0.00       0.89       0.91       1.90       1.88         XF1749       major facilitator superfamily       V.A       0.00       0.34       0.44       1.10       0.61         XF1752       transcriptional regulator (LysR family)       I.D       0.00       -0.07       0.68       2.15       3.17         XF1757       conserved hypothetical protein       VIII.A       0.00       0.02       0.94       1.58       2.99         XF1770       conserved hypothetical protein       VIII.A       0.00       -0.55       0.18       1.12       1.49         XF1828       ATPase       IX       0.00       0.15       0.30       0.85       0.98         XF1860       conserved hypothetical protein       VIII.A       0.00       0.32       0.79       1.44       2.36         XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1914       anthranilate synthase component I       trpE       II.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XF1710  | conserved hypothetical protein         |                | VIII.A  | 0.00                                 | 0.22  | 1.52   | 1.84   | 2.49   |
| XF1749       major facilitator superfamily       V.A       0.00       0.34       0.44       1.10       0.61         XF1752       transcriptional regulator (LysR family)       I.D       0.00       -0.07       0.68       2.15       3.17         XF1757       conserved hypothetical protein       VIII.A       0.00       0.02       0.94       1.58       2.99         XF1770       conserved hypothetical protein       VIII.A       0.00       -0.55       0.18       1.12       1.49         XF1828       ATPase       IX       0.00       0.15       0.30       0.85       0.98         XF1860       conserved hypothetical protein       VIII.A       0.00       0.32       0.79       1.44       2.36         XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1944       anthranilate synthase component I       trpE       II.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XF1712  | conserved hypothetical protein         |                | VIII.A  | 0.00                                 | 0.26  | 0.77   | 1.34   | 1.52   |
| XF1752         transcriptional regulator (LysR family)         I.D         0.00         -0.07         0.68         2.15         3.17           XF1757         conserved hypothetical protein         VIII.A         0.00         0.02         0.94         1.58         2.99           XF1770         conserved hypothetical protein         VIII.A         0.00         -0.55         0.18         1.12         1.49           XF1828         ATPase         IX         0.00         0.15         0.30         0.85         0.98           XF1860         conserved hypothetical protein         VIII.A         0.00         0.32         0.79         1.44         2.36           XF1894         radical activating enzyme         IX         0.00         0.35         0.10         0.47         0.84           XF1914         anthranilate synthase component I         trpE         II.A.4         0.00         0.32         1.26         -0.23         1.77           XF1920         Trp operon transcriptional repressor         trpR         I.D         0.00         0.27         0.79         0.49         1.25           XF1940         peptide methionine sulfoxide reductase         msrA         III.C.1         0.00         0.13         0.68         0.70 <td>XF1713</td> <td>heat shock protein HSP33</td> <td></td> <td>III.C</td> <td>0.00</td> <td>0.89</td> <td>0.91</td> <td>1.90</td> <td>1.88</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XF1713  | heat shock protein HSP33               |                | III.C   | 0.00                                 | 0.89  | 0.91   | 1.90   | 1.88   |
| XF1757       conserved hypothetical protein       VIII.A       0.00       0.02       0.94       1.58       2.99         XF1770       conserved hypothetical protein       VIII.A       0.00       -0.55       0.18       1.12       1.49         XF1828       ATPase       IX       0.00       0.15       0.30       0.85       0.98         XF1860       conserved hypothetical protein       VIII.A       0.00       0.32       0.79       1.44       2.36         XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1914       anthranilate synthase component I       trpE       II.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       V.C       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | , ,                                    |                |         | 0.00                                 | 0.34  | 0.44   | 1.10   | 0.61   |
| XF1770       conserved hypothetical protein       VIII.A       0.00       -0.55       0.18       1.12       1.49         XF1828       ATPase       IX       0.00       0.15       0.30       0.85       0.98         XF1860       conserved hypothetical protein       VIII.A       0.00       0.32       0.79       1.44       2.36         XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1914       anthranilate synthase component I       trpE       III.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       V.C       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2003       conserved hypothetical protein       VIII.A       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                        |                |         |                                      |       |        |        |        |
| XF1828       ATPase       IX       0.00       0.15       0.30       0.85       0.98         XF1860       conserved hypothetical protein       VIII.A       0.00       0.32       0.79       1.44       2.36         XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1914       anthranilate synthase component I       trpE       III.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       V.C       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                        |                |         |                                      |       |        |        |        |
| XF1860       conserved hypothetical protein       VIII.A       0.00       0.32       0.79       1.44       2.36         XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1914       anthranilate synthase component I       trpE       II.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       W.C.       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2007       conserved hypothetical protein       VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                        |                |         |                                      |       |        |        |        |
| XF1894       radical activating enzyme       IX       0.00       0.35       0.10       0.47       0.84         XF1914       anthranilate synthase component I       trpE       II.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       V.C       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2009       aminopeptidase P       pepP       III.C.3       0.00       0.23       0.52       0.68       0.76         XF2043       conserved hypothetical protein <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                        |                |         |                                      |       |        |        |        |
| XF1914       anthranilate synthase component I       trpE       II.A.4       0.00       0.32       1.26       -0.23       1.77         XF1920       Trp operon transcriptional repressor       trpR       I.D       0.00       0.27       0.79       0.49       1.29         XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       V.C       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2009       aminopeptidase P       pepP       III.C.3       0.00       0.23       0.52       0.68       0.76         XF2027       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2043       conserved hypothetical protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                        |                |         |                                      |       |        |        |        |
| XF1920         Trp operon transcriptional repressor         trpR         I.D         0.00         0.27         0.79         0.49         1.29           XF1940         peptide methionine sulfoxide reductase         msrA         III.C.1         0.00         0.40         0.59         1.25         1.35           XF1950         CheW like protein         V.C         0.00         0.13         0.68         0.70         1.23           XF1972         tRNA/rRNA methylase         yibK         III.B.3         0.00         0.27         0.84         1.11         1.81           XF2001         conserved hypothetical protein         VIII.A         0.00         0.15         0.34         0.92         0.87           XF2003         conserved hypothetical protein         VIII.A         0.00         0.43         0.75         1.05         1.01           XF2009         aminopeptidase P         pepP         III.C.3         0.00         0.23         0.52         0.68         0.76           XF2027         conserved hypothetical protein         VIII.A         0.00         0.34         0.84         1.24         1.54           XF2043         conserved hypothetical protein         VIII.A         0.00         0.16         0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                        | –              |         |                                      |       |        |        |        |
| XF1940       peptide methionine sulfoxide reductase       msrA       III.C.1       0.00       0.40       0.59       1.25       1.35         XF1950       CheW like protein       V.C       0.00       0.13       0.68       0.70       1.23         XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2009       aminopeptidase P       pepP       III.C.3       0.00       0.23       0.52       0.68       0.76         XF2027       conserved hypothetical protein       VIII.A       0.00       0.34       0.84       1.24       1.54         XF2043       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2053       conjugal transfer protein       trbE       VI.B       0.00       0.31       1.20       1.53       2.38         XF2062       transcriptional repressor       korC       I.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | , i                                    |                |         |                                      |       |        |        |        |
| XF1950         CheW like protein         V.C         0.00         0.13         0.68         0.70         1.23           XF1972         tRNA/rRNA methylase         yibK         III.B.3         0.00         0.27         0.84         1.11         1.81           XF2001         conserved hypothetical protein         VIII.A         0.00         0.15         0.34         0.92         0.87           XF2003         conserved hypothetical protein         VIII.A         0.00         0.43         0.75         1.05         1.01           XF2009         aminopeptidase P         pepP         III.C.3         0.00         0.23         0.52         0.68         0.76           XF2027         conserved hypothetical protein         VIII.A         0.00         0.34         0.84         1.24         1.54           XF2043         conserved hypothetical protein         VIII.A         0.00         0.16         0.52         0.60         1.38           XF2053         conjugal transfer protein         trbE         VI.B         0.00         0.10         0.50         0.43         1.31           XF2062         transcriptional repressor         korC         I.D         0.00         0.31         1.20         1.53         2.38<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | ·                                      | -              |         |                                      |       |        |        |        |
| XF1972       tRNA/rRNA methylase       yibK       III.B.3       0.00       0.27       0.84       1.11       1.81         XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2009       aminopeptidase P       pepP       III.C.3       0.00       0.23       0.52       0.68       0.76         XF2027       conserved hypothetical protein       VIII.A       0.00       0.34       0.84       1.24       1.54         XF2043       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2053       conjugal transfer protein       trbE       VI.B       0.00       0.10       0.50       0.43       1.31         XF2062       transcriptional repressor       korC       I.D       0.00       0.31       1.20       1.53       2.38         XF2064       hypothetical protein       VIII.B       0.00       0.30       1.06       1.15       2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | • •                                    | IIISIA         |         |                                      |       |        |        |        |
| XF2001       conserved hypothetical protein       VIII.A       0.00       0.15       0.34       0.92       0.87         XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2009       aminopeptidase P       pepP       III.C.3       0.00       0.23       0.52       0.68       0.76         XF2027       conserved hypothetical protein       VIII.A       0.00       0.34       0.84       1.24       1.54         XF2043       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2053       conjugal transfer protein       trbE       VI.B       0.00       0.10       0.50       0.43       1.31         XF2062       transcriptional repressor       korC       I.D       0.00       0.31       1.20       1.53       2.38         XF2064       hypothetical protein       VIII.B       0.00       0.30       1.06       1.15       2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                        | vihV           |         |                                      |       |        |        |        |
| XF2003       conserved hypothetical protein       VIII.A       0.00       0.43       0.75       1.05       1.01         XF2009       aminopeptidase P       pepP       III.C.3       0.00       0.23       0.52       0.68       0.76         XF2027       conserved hypothetical protein       VIII.A       0.00       0.34       0.84       1.24       1.54         XF2043       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2053       conjugal transfer protein       trbE       VI.B       0.00       0.10       0.50       0.43       1.31         XF2062       transcriptional repressor       korC       I.D       0.00       0.31       1.20       1.53       2.38         XF2064       hypothetical protein       VIII.B       0.00       0.30       1.06       1.15       2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | •                                      | yID <b>I</b> N |         |                                      |       |        |        |        |
| XF2009         aminopeptidase P         pepP         III.C.3         0.00         0.23         0.52         0.68         0.76           XF2027         conserved hypothetical protein         VIII.A         0.00         0.34         0.84         1.24         1.54           XF2043         conserved hypothetical protein         VIII.A         0.00         0.16         0.52         0.60         1.38           XF2053         conjugal transfer protein         trbE         VI.B         0.00         0.10         0.50         0.43         1.31           XF2062         transcriptional repressor         korC         I.D         0.00         0.31         1.20         1.53         2.38           XF2064         hypothetical protein         VIII.B         0.00         0.30         1.06         1.15         2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                        |                |         |                                      |       |        |        |        |
| XF2027       conserved hypothetical protein       VIII.A       0.00       0.34       0.84       1.24       1.54         XF2043       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2053       conjugal transfer protein       trbE       VI.B       0.00       0.10       0.50       0.43       1.31         XF2062       transcriptional repressor       korC       I.D       0.00       0.31       1.20       1.53       2.38         XF2064       hypothetical protein       VIII.B       0.00       0.30       1.06       1.15       2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                        | nenP           |         |                                      |       |        |        |        |
| XF2043       conserved hypothetical protein       VIII.A       0.00       0.16       0.52       0.60       1.38         XF2053       conjugal transfer protein       trbE       VI.B       0.00       0.10       0.50       0.43       1.31         XF2062       transcriptional repressor       korC       I.D       0.00       0.31       1.20       1.53       2.38         XF2064       hypothetical protein       VIII.B       0.00       0.30       1.06       1.15       2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | • •                                    | بهجم           |         |                                      |       |        |        |        |
| XF2053         conjugal transfer protein         trbE         VI.B         0.00         0.10         0.50         0.43         1.31           XF2062         transcriptional repressor         korC         I.D         0.00         0.31         1.20         1.53         2.38           XF2064         hypothetical protein         VIII.B         0.00         0.30         1.06         1.15         2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                        |                |         |                                      |       |        |        |        |
| XF2062         transcriptional repressor         korC         I.D         0.00         0.31         1.20         1.53         2.38           XF2064         hypothetical protein         VIII.B         0.00         0.30         1.06         1.15         2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                        | trbE           |         |                                      |       |        |        |        |
| XF2064 hypothetical protein VIII.B 0.00 0.30 1.06 1.15 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                        |                |         |                                      |       |        |        |        |
| ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | •                                      | -              |         |                                      |       |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                        |                |         |                                      |       |        |        |        |

| Grupo4  | (continuação)                                                             |                 |                     | M = log₂(NaCl/controle) |       |        |        |        |  |
|---------|---------------------------------------------------------------------------|-----------------|---------------------|-------------------------|-------|--------|--------|--------|--|
| Gene.ID | Produto                                                                   | Nome do<br>gene | Categoria funcional | 0 min                   | 7 min | 15 min | 30 min | 60 min |  |
| XF2086  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.45  | 1.06   | 0.59   | 2.07   |  |
| XF2110  | hypothetical protein                                                      |                 | VIII.B              | 0.00                    | 0.05  | 0.74   | 0.93   | 1.93   |  |
| XF2111  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.24  | 1.39   | 1.74   | 3.08   |  |
| XF2112  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.35  | 0.83   | 1.71   | 2.73   |  |
| XF2122  | Zn-finger, CHC2 type                                                      |                 | III.A               | 0.00                    | -0.58 | 0.15   | 2.63   | 2.87   |  |
| XF2136  | hypothetical protein                                                      |                 | VIII.B              | 0.00                    | 0.45  | 0.66   | 1.12   | 1.24   |  |
| XF2199  | conserved hypothetical protein CDP-diacylglycerol-glycerol-3-phosphate 3- | 4               | VIII.A              | 0.00                    | 0.23  | 1.13   | 1.34   | 2.28   |  |
| XF2310  | phosphatidyltransferase                                                   | pgsA            | III.D.2             | 0.00                    | 0.47  | 0.75   | 1.20   | 1.48   |  |
| XF2387  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.63  | 1.04   | 0.61   | 1.11   |  |
| XF2451  | conserved hypothetical protein                                            | ypuG            | VIII.A              | 0.00                    | 0.12  | 0.76   | 0.98   | 1.08   |  |
| XF2467  | hypothetical protein                                                      |                 | VIII.B              | 0.00                    | 0.66  | 0.92   | 1.27   | 1.47   |  |
| XF2468  | hypothetical protein                                                      |                 | VIII.B              | 0.00                    | 0.47  | 0.80   | 1.08   | 1.74   |  |
| XF2479  | phage-related protein                                                     |                 | VI.A                | 0.00                    | 0.26  | 0.50   | 1.95   | 1.82   |  |
| XF2480  | phage-related tail protein                                                | gpX<br>         | VI.A                | 0.00                    | 0.16  | -0.05  | 1.21   | 0.90   |  |
| XF2481  | phage-related tail protein                                                | gpU             | VI.A                | 0.00                    | 0.18  | 0.43   | 1.59   | 1.74   |  |
| XF2489  | phage-related baseplate assembly protein                                  | gpW             | VI.A                | 0.00                    | 0.33  | 0.42   | 1.07   | 1.08   |  |
| XF2492  | phage-related baseplate assembly protein                                  | gpV             | VI.A                | 0.00                    | 0.29  | 0.67   | 1.27   | 2.20   |  |
| XF2493  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | -0.03 | 0.38   | 1.16   | 2.31   |  |
| XF2494  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.05  | 0.32   | 1.74   | 2.46   |  |
| XF2507  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.50  | 1.01   | 0.64   | 1.31   |  |
| XF2508  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.38  | 0.90   | 0.56   | 1.54   |  |
| XF2512  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.49  | 1.07   | 0.27   | 1.04   |  |
| XF2518  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | -0.15 | 0.30   | 0.17   | 1.72   |  |
| XF2519  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | -0.22 | 0.39   | 0.92   | 2.26   |  |
| XF2565  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.31  | 0.19   | 1.34   | 1.71   |  |
| XF2667  | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.05  | 0.43   | 3.56   | 1.04   |  |
| XF2677  | L-ascorbate oxidase                                                       | aao             | I.A.2               | 0.00                    | -0.08 | 0.75   | 1.27   | 1.85   |  |
| XF2698  | thioredoxin                                                               | trxA            | II.D.10             | 0.00                    | 0.39  | 0.52   | 0.23   | 1.07   |  |
| XF2728  | type I restriction-modification system DNA methylase                      | hp0850          | III.A.5             | 0.00                    | 0.26  | 0.25   | 0.86   | 0.67   |  |
| XF2776  | hypothetical protein                                                      |                 | VIII.B              | 0.00                    | 0.28  | 1.40   | 1.56   | 2.17   |  |
| XFa0003 | topoisomerase I                                                           | topA            | III.A.1             | 0.00                    | -0.01 | 1.19   | 1.23   | 2.32   |  |
| XFa0004 | hypothetical protein                                                      | trbC or         | VIII.B              | 0.00                    | 0.40  | 1.12   | 1.04   | 2.21   |  |
| XFa0005 | conjugal transfer protein                                                 | virB2           | VI.B                | 0.00                    | 0.15  | 0.82   | -0.15  | 1.36   |  |
| XFa0034 | conserved hypothetical protein                                            | stmD1.84        | VIII.A              | 0.00                    | 0.48  | 1.15   | 2.57   | 1.71   |  |
| XFa0047 | nickase                                                                   | taxC            | VI.B                | 0.00                    | 0.01  | 0.57   | 1.54   | 2.43   |  |
| XFa0048 | putative mobillisation protein                                            | mobC            | VI.B                | 0.00                    | 0.01  | 1.23   | 2.53   | 3.63   |  |
| XFa0055 | conserved hypothetical protein                                            | ydiA            | VIII.A              | 0.00                    | -0.05 | 0.98   | 1.57   | 1.71   |  |
| XFa0057 | transcriptional regulator                                                 | korA            | I.D                 | 0.00                    | 0.06  | 1.08   | 1.26   | 2.47   |  |
| XFa0058 | hypothetical protein                                                      |                 | VIII.B              | 0.00                    | 0.40  | 1.11   | 1.48   | 2.81   |  |
| XFa0062 | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | -0.05 | 0.63   | 1.20   | 2.52   |  |
| XFa0063 | conserved hypothetical protein                                            |                 | VIII.A              | 0.00                    | 0.13  | 1.03   | 1.00   | 1.67   |  |



| 0′ 7′ 15′        | 30 60                                                                           |                 | •                      |       | M = log | <sub>l2</sub> (NaCl/coı | ntrole) |        |
|------------------|---------------------------------------------------------------------------------|-----------------|------------------------|-------|---------|-------------------------|---------|--------|
| Gene.ID          | Produto                                                                         | Nome do<br>gene | Categoria<br>funcional | 0 min | 7 min   | 15 min                  | 30 min  | 60 min |
| XF0010           | biopolymer transport ExbB protein                                               | exbB            | VII.C                  | 0.00  | -0.08   | -0.51                   | -0.90   | -1.24  |
| XF0012           | biopolymer transport ExbD2 protein                                              | exbD2           | VII.C                  | 0.00  | -0.12   | -0.74                   | -1.04   | -1.37  |
| XF0038           | hypothetical protein                                                            |                 | VIII.B                 | 0.00  | 0.09    | 0.04                    | -1.86   | -1.09  |
| XF0060           | pyridoxal phosphate biosynthetic protein                                        | pdxJ            | II.D.6                 | 0.00  | -0.55   | -0.87                   | -1.25   | -0.21  |
| XF0083           | fimbrial subunit precursor                                                      | F17A-A          | IV.D                   | 0.00  | -0.36   | -0.43                   | -1.04   | -0.80  |
| XF0125           | carbon storage regulator                                                        | csrA            | I.D                    | 0.00  | 0.02    | -0.53                   | -1.62   | -1.58  |
| XF0180           | conserved hypothetical protein                                                  |                 | VIII.A                 | 0.00  | -0.29   | -0.41                   | -1.50   | -2.25  |
| XF0184           | conserved hypothetical protein                                                  |                 | VIII.A                 | 0.00  | -0.35   | -0.55                   | -1.22   | -1.68  |
| XF0185           | band 7 protein/ SPFH domain                                                     |                 | V.A.4                  | 0.00  | -0.23   | -0.28                   | -0.89   | -1.43  |
| XF0204<br>XF0205 | DNA polymerase III, alpha chain phosphoribosylaminoimidazole-succinocarboxamide | dnaE            | III.A.1                | 0.00  | -0.60   | -1.03                   | -1.45   | -1.78  |
|                  | synthase                                                                        | purC            | II.B.1                 | 0.00  | -0.32   | -0.44                   | -0.66   | -1.22  |
| XF0224           | preprotein translocase YajC subunit                                             |                 | V.A.6                  | 0.00  | 0.02    | -0.26                   | -0.90   | -1.36  |
| XF0274           | 6-phosphofructokinase                                                           |                 | I.C.4                  | 0.00  | -0.27   | -0.92                   | -1.64   | -2.39  |

| Grupo5           | Grupo5 (continuação)                                |                       |                     | M = log₂(NaCl/controle) |                |               |                |                |
|------------------|-----------------------------------------------------|-----------------------|---------------------|-------------------------|----------------|---------------|----------------|----------------|
| Gene.ID          | Produto                                             | Nome do<br>gene       | Categoria funcional | 0 min                   | 7 min          | 15 min        | 30 min         | 60 min         |
| XF0275           | adenylate kinase                                    |                       | II.B.1              | 0.00                    | -0.53          | -0.67         | -1.40          | -1.89          |
| XF0287           | regulator of pathogenicity factors                  |                       | VII.H               | 0.00                    | -0.30          | -0.37         | -1.24          | -1.21          |
| XF0320           | Mg++/citrate complex transporter                    |                       | V.A.3               | 0.00                    | -0.20          | -0.52         | -0.59          | -1.21          |
| XF0340           | disulfide bond formation protein B                  |                       | IV.A.1              | 0.00                    | -0.29          | -0.51         | -1.40          | -1.18          |
| XF0353           | translation initiation inhibitor                    |                       | III.C.1             | 0.00                    | -0.10          | -0.62         | -1.66          | -1.84          |
| XF0362<br>XF0364 | conserved hypothetical protein hypothetical protein |                       | VIII.A<br>VIII.B    | 0.00<br>0.00            | 0.04<br>-0.14  | 0.12<br>-0.19 | -1.00<br>-1.13 | -1.12<br>-0.61 |
| XF0369           | fimbrial assembly membrane protein                  |                       | IV.D                | 0.00                    | -0.14          | -0.19         | -1.13<br>-1.10 | -1.65          |
| XF0370           | fimbrial assembly membrane protein                  |                       | IV.D                | 0.00                    | 0.10           | -0.09         | -1.32          | -1.71          |
| XF0371           | fimbrial assembly membrane protein                  |                       | IV.D                | 0.00                    | 0.50           | -0.10         | -1.26          | -1.76          |
| XF0372           | fimbrial assembly protein                           |                       | IV.D                | 0.00                    | 0.19           | -0.36         | -1.00          | -1.83          |
| XF0373           | fimbrial assembly protein                           |                       | IV.D                | 0.00                    | 0.20           | -0.06         | -0.67          | -1.78          |
| XF0381           | chaperone                                           | clpB                  | III.C.2             | 0.00                    | -0.61          | -0.52         | -1.36          | -2.43          |
| XF0445           | prolyl-tRNA synthetase                              | proS                  | III.B.4             | 0.00                    | -0.36          | -0.52         | -1.32          | -1.19          |
| XF0446           | DNA-binding protein                                 | bbh3                  | III.A.2             | 0.00                    | 0.22           | -0.07         | -1.31          | -1.43          |
| XF0452           | integral membrane protease                          | hflK                  | III.C.3             | 0.00                    | -0.08          | -0.21         | -0.54          | -0.97          |
| XF0572           | beta-hydroxydecanoyl-ACP dehydratase                | fabA                  | II.E                | 0.00                    | -0.46          | -0.89         | -2.07          | -2.10          |
| XF0584           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.38          | -0.80         | -0.99          | -1.09          |
| XF0603           | cystathionine beta-synthase                         | cysB                  | II.A.3              | 0.00                    | -0.26          | -0.69         | -0.83          | -1.12          |
| XF0609           | GDP-mannose 4,6 dehydratase                         | gmd                   | I.B.11              | 0.00                    | -0.21          | -0.68         | -0.81          | -1.54          |
| XF0610           | UDP-glucose 4-epimerase                             | galE                  | I.A.2               | 0.00                    | 0.00           | -0.36         | -0.85          | -0.92          |
| XF0611           | dTDP-glucose 4-6-dehydratase                        | rfbB                  | IV.C                | 0.00                    | -0.14          | -0.51         | -0.71          | -1.35          |
| XF0614           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.43          | -1.10         | -1.45          | -1.73          |
| XF0615           | 60kDa chaperonin                                    | groEL                 | III.C.2             | 0.00                    | -0.16          | -0.47         | -1.29          | -1.77          |
| XF0616           | 10kDa chaperonin                                    | groES                 | III.C.2             | 0.00                    | -0.15          | -0.46         | -0.94          | -2.11          |
| XF0625           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.48          | -0.62         | -1.54          | -1.49          |
| XF0626           | hypothetical protein                                |                       | VIII.B              | 0.00                    | -0.27          | -0.87         | -0.85          | -1.25          |
| XF0657           | alkaline phosphatase                                | phoA                  | I.B.9               | 0.00                    | -0.36          | -0.60         | -0.82          | -1.26          |
| XF0749           | virulence regulator                                 | xrvA                  | VII.H               | 0.00                    | -0.15          | -1.23         | -1.07          | -0.95          |
| XF0751           | ribonuclease D                                      | rnd                   | III.B.4             | 0.00                    | -0.01          | -0.45         | -0.55          | -1.06          |
| XF0801           | cell division protein                               | ftsA                  | V.B                 | 0.00                    | -0.49          | -0.60         | -0.63          | -1.20          |
| XF0816           | zinc protease                                       | SC9B10.04             | III.C.3             | 0.00                    | -0.23          | -0.09         | -1.08          | -1.96          |
| XF0831<br>XF0832 | cysteine synthase                                   | cysK<br>cysG          | II.A.3<br>II.D.12   | 0.00                    | -0.33<br>-0.26 | -0.28<br>1.16 | -0.90<br>-0.32 | -1.07<br>-0.49 |
| XF0846           | siroheme synthase<br>beta-mannosidase precursor     | TM1624                | I.A.2               | 0.00                    | -0.20          | -1.60         | -1.10          | -0.49<br>-1.97 |
| XF0847           | beta-hexosaminidase precursor                       | nahA                  | IV.A.2              | 0.00                    | -0.84          | -0.86         | -0.76          | -1.61          |
| XF0872           | outer membrane protein                              | ompW                  | IV.A.2              | 0.00                    | 0.18           | -0.04         | -0.74          | -1.17          |
| XF0898           | conserved hypothetical protein                      | <i>5</i> , <i>611</i> | VIII.A              | 0.00                    | -0.21          | -0.26         | -0.61          | -1.00          |
| XF0903           | conserved hypothetical protein                      | HI0004                | VIII.A              | 0.00                    | -0.69          | -0.85         | -0.37          | -0.78          |
| XF0961           | bacterioferritin comigratory protein                | bcp                   | IX                  | 0.00                    | -0.02          | -0.01         | -0.92          | -0.85          |
| XF0974           | hypothetical protein                                |                       | VIII.B              | 0.00                    | -0.30          | -0.61         | -1.22          | -1.74          |
| XF0975           | polyphosphate-selective porin O                     | oprO                  | IV.A.2              | 0.00                    | -0.08          | -0.31         | -1.20          | -1.19          |
| XF0980           | lipopolysaccharide synthesis enzyme                 | kdtB                  | IV.C                | 0.00                    | -0.10          | -0.47         | -0.58          | -1.01          |
| XF0990           | hypothetical protein                                |                       | VIII.B              | 0.00                    | -0.12          | -0.74         | -1.20          | -1.85          |
| XF0998           | ornithine carbamoyltransferase                      | argF                  | II.A.1              | 0.00                    | 0.16           | -0.10         | 0.17           | -0.95          |
| XF0999           | argininosuccinate synthase                          | argG                  | II.A.1              | 0.00                    | -0.22          | -0.41         | -0.29          | -1.18          |
| XF1001           | acetylglutamate kinase                              | argB                  | II.A.1              | 0.00                    | -0.62          | -0.96         | -0.76          | -1.17          |
| XF1002           | N-acetyl-gamma-glutamyl-phosphate reductase         | af2071                | II.A.1              | 0.00                    | -0.59          | -0.87         | -0.52          | -1.01          |
| XF1004           | glutamate 5-kinase                                  | dr1827                | II.A.1              | 0.00                    | -0.52          | -0.76         | -0.61          | -1.04          |
| XF1007           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.49          | -0.49         | -1.74          | -1.00          |
| XF1017           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.45          | -0.36         | -0.84          | -0.56          |
| XF1037           | adenosylhomocysteinase                              | ahcY                  | I.B.10              | 0.00                    | -0.58          | -0.80         | -1.64          | -2.04          |
| XF1067           | sugar ABC transporter ATP-binding protein           | dr2153                | V.A.3               | 0.00                    | -0.13          | -0.44         | -1.19          | -0.85          |
| XF1102           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.57          | -0.86         | -1.32          | -1.30          |
| XF1124           | Maf-like protein                                    |                       | V.B                 | 0.00                    | -0.42          | -0.52         | -0.77          | -1.01          |
| XF1155           | 50S ribosomal protein L2                            | rpIB                  | III.B.2             | 0.00                    | 0.02           | 0.11          | -1.42          | -0.79          |
| XF1157           | 50S ribosomal protein L22                           | rpIV                  | III.B.2             | 0.00                    | -0.14          | -0.38         | -1.33          | -1.33          |
| XF1158           | 30S ribosomal protein S3                            | rpsC                  | III.B.2             | 0.00                    | 0.06           | -0.26         | -0.88          | -1.33          |
| XF1164           | 50S ribosomal protein L5                            | rpIE                  | III.B.2             | 0.00                    | -0.24          | -0.61         | -0.97          | -1.02          |
| XF1206           | 50S ribosomal protein L28                           | rpmB                  | III.B.2             | 0.00                    | -0.08          | -0.31         | -0.74          | -1.29          |
| XF1207           | 50S ribosomal protein L33                           | rpmG                  | III.B.2             | 0.00                    | -0.04          | -0.37         | -0.89          | -1.83          |
| XF1210           | glutathione S-transferase                           | gst                   | VII.C               | 0.00                    | -0.07          | -0.41         | -1.13          | -1.18          |
| XF1213           | GTP-binding elongation factor protein               | typQ                  | IX                  | 0.00                    | -0.38          | -0.72         | -0.86          | -1.50          |
| XF1222           | ABC transporter permease protein                    |                       | V.A                 | 0.00                    | -0.28          | -0.71         | -3.35          | -1.16          |
| XF1226           | conserved hypothetical protein                      |                       | VIII.A              | 0.00                    | -0.13          | -0.22         | -1.32          | -0.71          |

| Grupo5           | Grupo5 (continuação) M = log₂(NaCl/controle)                               |                 |                     |              |                |                |                |                |
|------------------|----------------------------------------------------------------------------|-----------------|---------------------|--------------|----------------|----------------|----------------|----------------|
| Gene.ID          | Produto                                                                    | Nome do<br>gene | Categoria funcional | 0 min        | 7 min          | 15 min         | 30 min         | 60 min         |
| XF1262           | 7,8-dihydro-8-oxoguanine-triphosphatase                                    | mutX            | III.A.4             | 0.00         | -0.59          | -0.90          | -1.32          | -1.69          |
| XF1265           | Autotransporter beta-domain                                                |                 | IV.A.2              | 0.00         | -0.93          | -1.17          | -1.58          | -2.03          |
| XF1297           | gluconolactonase precursor                                                 | scf11.04        | II.C                | 0.00         | -0.69          | -1.09          | -1.42          | -1.92          |
| XF1321<br>XF1339 | septum site-determining protein                                            | minD            | V.B<br>VIII.B       | 0.00         | -0.28          | -0.35          | -0.59          | -1.07          |
| XF1339<br>XF1382 | hypothetical protein Ferritin and Dps                                      |                 | IV.A                | 0.00<br>0.00 | -0.41<br>0.00  | -0.76<br>-0.36 | -0.82<br>-0.83 | -1.19<br>-1.39 |
| XF1423           | phosphoribosylformylglycinamidine synthetase                               | purL or purl    | II.B.1              | 0.00         | -0.16          | -0.56          | -0.83          | -0.88          |
| XF1456           | 2-amino-4-hydroxy-6-<br>hydroxymethyldihydropteridine pyrophosphokinase    | folK            | II.D.2              | 0.00         | 0.02           | -0.25          | -1.11          | -0.90          |
| XF1467           | acetyl-coenzyme A carboxylase carboxyl transferase subunit beta            | accD            | II.E                | 0.00         | -0.51          | -0.68          | -0.66          | -1.29          |
| XF1470           | UDP-N-acetylglucosamineN-acetylmuramyl- (penta pyrophosphoryl-undecaprenol | peptide)        | IV.B                | 0.00         | -0.32          | -1.05          | -0.85          | -1.10          |
| XF1472           | benzene 1,2-dioxygenase, ferredoxin protein                                | bedB            | I.A.2               | 0.00         | -0.80          | -0.80          | -0.85          | -1.24          |
| XF1474           | ABC transporter membrane protein                                           | ynhC            | V.A.7               | 0.00         | -0.79          | -0.87          | -1.01          | -1.47          |
| XF1475           | ABC transporter ATP-binding protein                                        | ynhD            | V.A.7               | 0.00         | -0.73          | -0.74          | -1.29          | -1.57          |
| XF1476           | ABC transporter membrane protein                                           | srl4004         | V.A.7               | 0.00         | -0.69          | -0.81          | -1.91          | -1.74          |
| XF1477           | putative transcriptional regulator, Rrf2 family                            |                 | I.D                 | 0.00         | -0.45          | -0.58          | -1.64          | -1.83          |
| XF1480           | conserved hypothetical protein                                             |                 | VIII.A              | 0.00         | -0.40          | -0.45          | -0.49          | -1.44          |
| XF1484           | heat shock protein                                                         | hsIV            | III.C.3             | 0.00         | -0.36          | -0.65          | -0.85          | -1.23          |
| XF1485           | heat shock protein                                                         | hsIU            | III.C.3             | 0.00         | -0.23          | -0.61          | -0.64          | -1.47          |
| XF1497           | 3'-phosphoadenosine 5'-phosphosulfate reductase                            | cysH            | I.B.12              | 0.00         | -0.73          | -1.31          | 0.30           | -0.27          |
| XF1500           | ATP sulfurylase, small subunit                                             | cysD            | I.B.12              | 0.00         | -0.78          | -1.29          | -1.43          | -1.69          |
| XF1502           | RNA polymerase omega subunit                                               | rpoZ            | III.B.5             | 0.00         | -0.09          | -0.65          | -1.54          | -2.40          |
| XF1511           | hypothetical protein                                                       | _               | VIII.B              | 0.00         | 0.17           | 0.33           | -2.01          | 1.22           |
| XF1517           | general secretory pathway protein E                                        | xpsE            | VII.H               | 0.00         | -0.52          | -1.08          | -0.79          | -0.79          |
| XF1534           | 50S ribosomal protein L31                                                  | rpmE            | III.B.2             | 0.00         | -0.10          | -0.43          | -1.01          | -1.69          |
| XF1535<br>XF1539 | citrate synthase                                                           | gltA            | I.C.7<br>II.F       | 0.00         | -0.01          | -0.25          | -0.33          | -1.15<br>1.19  |
| XF1559<br>XF1552 | S-adenosyl methionine decarboxylase proenzyme                              | speD            | II.F<br>I.D         | 0.00<br>0.00 | -0.23<br>-0.10 | -0.95<br>-0.47 | -1.20<br>-0.33 | -1.18<br>-0.89 |
| XF1610           | transcription factor jumonji, jmjC fructokinase                            |                 | 1.D<br>1.A.2        | 0.00         | -0.10          | -0.47          | -0.55<br>-0.57 | -1.02          |
| XF1649           | conserved hypothetical protein                                             | b2360           | VIII.A              | 0.00         | -0.27          | -0.70          | -1.00          | -0.71          |
| XF1650           | conserved hypothetical protein                                             | <i>b</i> 2300   | VIII.A              | 0.00         | -0.40          | -0.44          | -1.24          | -0.80          |
| XF1693           | hypothetical protein                                                       |                 | VIII.B              | 0.00         | -0.16          | 0.25           | -1.47          | -0.92          |
| XF1694           | hypothetical protein                                                       |                 | VIII.B              | 0.00         | -0.15          | 0.12           | -1.20          | -1.04          |
| XF1771           | conserved hypothetical protein                                             |                 | VIII.A              | 0.00         | -0.15          | -0.55          | -1.53          | -1.54          |
| XF1800           | putative rhodanese-like protein                                            |                 | I.B.12              | 0.00         | -0.02          | -0.36          | -0.78          | -0.89          |
| XF1811           | outer membrane protein SIp precursor                                       | slp             | IV.A.2              | 0.00         | -0.23          | -0.69          | -1.41          | -1.27          |
| XF1855           | fumarate hydratase                                                         | fumB            | I.C.7               | 0.00         | -0.47          | -0.53          | -1.12          | -1.25          |
| XF1874           | conserved hypothetical protein                                             |                 | VIII.A              | 0.00         | -0.34          | 0.02           | -1.00          | -0.26          |
| XF1884           | conserved hypothetical protein                                             |                 | VIII.A              | 0.00         | -0.39          | -0.54          | -2.22          | -2.22          |
| XF1885           | hypothetical protein                                                       |                 | VIII.B              | 0.00         | -0.35          | -0.57          | -1.46          | -0.74          |
| XF1887           | conserved hypothetical protein                                             |                 | VIII.A              | 0.00         | -0.23          | -0.88          | -0.68          | -1.14          |
| XF1909           | A/G-specific adenine glycosylase                                           | mutB            | III.A.4             | 0.00         | 0.02           | -0.90          | -0.83          | -1.28          |
| XF1956           | glutathione synthetase                                                     | gshB            | II.D.10             | 0.00         | -0.24          | -0.76          | -0.96          | -1.28          |
| XF1996           | transcriptional regulator (PbsX family)                                    | c2              | I.D                 | 0.00         | -0.13          | -0.66          | -1.11          | -1.55          |
| XF2025           | DNA primase                                                                | traC            | III.A.1             | 0.00         | -0.10          | -0.32          | -1.26          | -0.69          |
| XF2082           | oxidoreductase                                                             | spaC<br>-       | I.C.3               | 0.00         | -0.17          | -0.54          | -0.85          | -1.33          |
| XF2094           | multidrug-efflux transporter                                               | acrF            | VII.C               | 0.00         | 0.06           | -0.92          | -1.00          | -1.80          |
| XF2118           | conserved hypothetical protein                                             | t V             | VIII.A              | 0.00         | -0.48          | -0.57          | -1.89          | -2.20          |
| XF2141           | ABC transporter phosphate binding protein                                  | phoX            | V.A.2               | 0.00         | 0.24           | -0.29          | -1.27          | -1.26          |
| XF2143           | ABC transporter phosphate permease                                         | pstA            | V.A.2               | 0.00         | -0.44          | -1.10          | -1.10          | -1.14          |
| XF2144           | phosphate ABC transporter ATP-binding protein                              | pstB<br>tox     | V.A.2               | 0.00         | -0.48          | -0.97          | -0.81          | -1.03          |
| XF2165<br>XF2174 | transcription-related protein thioredoxin                                  | tex             | I.D<br>II.D.10      | 0.00         | -0.97<br>-0.30 | -1.35          | -1.59<br>-0.47 | -2.56<br>1.22  |
| XF2174<br>XF2176 | leucyl-tRNA synthetase                                                     | ybbN<br>leuS    | III.B.4             | 0.00         | -0.46          | -0.63<br>-0.65 | -0.47          | -1.22<br>-1.19 |
| XF2214           | cyclase                                                                    | hisF            | II.A.5              | 0.00         | -0.40          | -0.47          | -2.80          | -0.99          |
| XF2222           | histidyl-tRNA synthetase                                                   | hisS            | III.B.4             | 0.00         | -0.47          | -1.25          | -1.23          | -1.91          |
| XF2233           | DnaJ protein                                                               | dnaJ            | III.C.2             | 0.00         | -0.47          | -0.59          | -0.43          | -1.16          |
| XF2234           | low molecular weight heat shock protein                                    | hspA            | VII.G               | 0.00         | 0.02           | -0.35          | -0.43          | -1.40          |
| XF2241           | periplasmic protease                                                       | mucD            | III.C.3             | 0.00         | -0.09          | -0.08          | -1.32          | -1.70          |
| XF2243           | GTP binding protein                                                        | lepA            | IX                  | 0.00         | -0.30          | -0.62          | -0.99          | -1.36          |
| XF2244           | signal peptidase I                                                         | lepB            | III.C.1             | 0.00         | -0.30          | -0.55          | -1.33          | -1.68          |
| XF2245           | conserved hypothetical protein                                             | ,               | VIII.A              | 0.00         | -0.15          | -0.65          | -1.23          | -1.56          |
| XF2246           | ribonuclease III                                                           | rnc             | III.B.6             | 0.00         | -0.06          | -0.46          | -0.53          | -1.30          |
| XF2252           | predicted membrane protein                                                 |                 | IV.A.1              | 0.00         | -0.84          | -1.08          | -2.72          | -1.05          |
|                  | •                                                                          |                 |                     |              |                |                |                |                |

| Grupo5  | (continuação)                                       |              | •                   | M = log₂(NaCl/controle) |       |        |        |        |  |  |
|---------|-----------------------------------------------------|--------------|---------------------|-------------------------|-------|--------|--------|--------|--|--|
| Gene.ID | Produto                                             | Nome do gene | Categoria funcional | 0 min                   | 7 min | 15 min | 30 min | 60 min |  |  |
| XF2255  | acetyl coenzyme A synthetase                        | acs          | I.B.10              | 0.00                    | -0.86 | -0.77  | -0.29  | 0.25   |  |  |
| XF2266  | glycerol-3-phosphate dehydrogenase                  | glpD         | I.C.1<br>I.B (4 ou  | 0.00                    | -0.31 | -0.87  | -0.99  | -1.45  |  |  |
| XF2305  | Glyoxalase/bleomycin resistance protein/dioxygenase |              | 1Ò?)                | 0.00                    | 0.41  | 0.20   | -1.09  | -0.53  |  |  |
| XF2339  | DnaJ protein                                        | dnaJ         | III.C.2             | 0.00                    | -0.25 | -0.56  | -1.18  | -2.01  |  |  |
| XF2340  | DnaK protein                                        | dnaK         | III.C.2             | 0.00                    | -0.34 | -0.58  | -1.08  | -2.68  |  |  |
| XF2341  | heat shock protein GrpE                             | grpE         | III.C.2             | 0.00                    | -0.49 | -0.79  | -1.50  | -3.18  |  |  |
| XF2345  | outer membrane protein                              | smpA         | IV.A.2              | 0.00                    | -0.20 | -0.47  | -1.72  | -1.54  |  |  |
| XF2409  | DNA helicase                                        |              | III.A               | 0.00                    | 0.08  | 0.01   | -1.63  | -2.08  |  |  |
| XF2421  | 30S ribosomal protein S20                           | rpsT         | III.B.2             | 0.00                    | 0.64  | 0.17   | -0.91  | -1.50  |  |  |
| XF2423  | 50S ribosomal protein L27                           | rpmA         | III.B.2             | 0.00                    | -0.14 | -0.42  | -1.15  | -1.66  |  |  |
| XF2424  | 50S ribosomal protein L21                           | rpIU         | III.B.2             | 0.00                    | -0.10 | -0.83  | -1.84  | -2.32  |  |  |
| XF2544  | pilus biogenesis protein                            | pilB         | IV.D                | 0.00                    | -0.42 | -0.51  | -1.18  | -1.49  |  |  |
| XF2560  | 30S ribosomal protein S18                           | rpsR         | III.B.2             | 0.00                    | 0.07  | -0.46  | -1.01  | -1.44  |  |  |
| XF2561  | 30S ribosomal protein S6                            | rpsF         | III.B.2             | 0.00                    | -0.14 | -0.71  | -1.24  | -1.93  |  |  |
| XF2569  | hypothetical protein                                |              | VIII.B              | 0.00                    | 0.08  | -0.76  | -0.75  | -1.05  |  |  |
| XF2585  | protein-L-isoaspartate O-methyltransferase          | pcm          | III.C.1             | 0.00                    | -0.22 | -0.62  | -1.18  | -1.32  |  |  |
| XF2586  | outer membrane export factor                        | toIC         | VII.C               | 0.00                    | -0.07 | -0.41  | -1.18  | -1.31  |  |  |
| XF2587  | conserved hypothetical protein                      |              | VIII.A              | 0.00                    | -0.20 | -0.48  | -1.14  | -1.01  |  |  |
| XF2638  | transcription antitermination factor                | nusG         | III.B.5             | 0.00                    | 0.03  | -0.13  | -0.97  | -1.06  |  |  |
| XF2655  | conserved hypothetical protein                      |              | VIII.A              | 0.00                    | -0.44 | -0.68  | -0.96  | -1.64  |  |  |
| XF2656  | N-acetylmuramoyl-L-alanine amidase, family 2        |              | IV.B                | 0.00                    | -0.61 | -0.85  | -1.28  | -2.05  |  |  |
| XF2731  | hypothetical protein                                |              | VIII.B              | 0.00                    | -0.45 | -0.82  | -0.72  | -1.00  |  |  |
| XF2747  | conserved hypothetical protein                      |              | VIII.A              | 0.00                    | -0.36 | -0.92  | -0.48  | -1.73  |  |  |
| XF2777  | hypothetical protein                                |              | VIII.B              | 0.00                    | -0.35 | -1.01  | -3.59  | -4.74  |  |  |
| XF2778  | thiophene and furan oxidation protein               | thdF         | VII.C               | 0.00                    | -0.49 | -1.83  | -0.98  | -1.25  |  |  |

Tabela S9: Genes induzidos na presença de sacarose. Os genes estão organizados de acordo com a categoria funcional definida por Simpson et al, 2000. M = log da razão da intensidade de fluorescência no choque osmótico em relação à condição controle. Os valores em negrito correspondem aos valores de M considerados induzidos.

|                  | M = log <sub>2</sub> (sacarose/co                                                   |                 |                        |           |       |                       | M = log <sub>2</sub> (sacarose/controle |        |  |  |
|------------------|-------------------------------------------------------------------------------------|-----------------|------------------------|-----------|-------|-----------------------|-----------------------------------------|--------|--|--|
| Gene.ID          | Produto                                                                             | Nome<br>do gene | Categoria<br>funcional | reanotada | 7 min | _ 10g₂(saca<br>15 min | 30 min                                  | 60 min |  |  |
| XF0846           | beta-mannosidase precursor                                                          | TM1624          | I.A.2                  |           | -0.27 | -0.11                 | -0.86                                   | 1.05   |  |  |
| XF2390           | putative oxidoreductase protein                                                     |                 | I.C                    | X         | 1.22  | 2.12                  | 1.80                                    | 0.09   |  |  |
| XF0323           | two-component system, sensor protein                                                |                 | I.D                    |           | 1.97  | 3.08                  | 1.23                                    | 2.63   |  |  |
| XF0390           | two-component system, sensor protein                                                |                 | I.D                    |           | 0.51  | 1.37                  | 1.71                                    | 1.40   |  |  |
| XF2062           | transcriptional repressor                                                           | korC            | I.D                    |           | 0.03  | 0.67                  | 1.04                                    | 0.99   |  |  |
| XF2071           | predicted transcriptional regulator                                                 |                 | I.D                    | X         | 0.53  | 1.09                  | 0.30                                    | -0.06  |  |  |
| XF2085           | transcriptional regulator (AcrR family)                                             | SCI30A          | I.D                    |           | -0.01 | 0.42                  | 1.35                                    | 2.28   |  |  |
| XF2715           | transcriptional regulator (TetR family)                                             |                 | I.D                    | X         | -0.02 | -0.18                 | 1.33                                    | 1.53   |  |  |
| XFa0046          | predicted transcriptional regulator                                                 |                 | I.D                    | X         | -0.11 | -0.44                 | 0.99                                    | 0.96   |  |  |
| XF1141           | chorismate mutase                                                                   | nc30            | II.A.4                 |           | -0.05 | -0.26                 | 0.87                                    | 1.43   |  |  |
| XF1914           | anthranilate synthase component I                                                   | trpE            | II.A.4                 |           | 0.63  | 1.69                  | 1.24                                    | 2.23   |  |  |
| XF1915           | anthranilate synthase component II                                                  | trpG            | II.A.4                 |           | 2.83  | 3.66                  | 0.15                                    | -0.16  |  |  |
| XF2439           | cytidylate kinase                                                                   | cmkA            | II.B.2                 |           | 0.79  | 1.62                  | 0.49                                    | 0.03   |  |  |
| XF1397           | 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-<br>benzoquinol methylase / ubiG       | 0.7             | II.D.11                | X         | 0.57  | 1.08                  | 0.91                                    | 1.15   |  |  |
| XF1916           | coenzyme F390 synthetase                                                            | af1671          | II.D.17                |           | 0.70  | 1.88                  | 1.81                                    | 2.32   |  |  |
| XF0953           | GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-<br>phosphate synthase             | ribA            | II.D.9                 |           | 1.94  | 2.40                  | -0.01                                   | -0.16  |  |  |
| XF0670           | malonyl CoA-ACP transacylase                                                        | fabD            | II.E                   |           | 0.49  | 1.20                  | -0.15                                   | 0.43   |  |  |
| XF0811           | predicted methyltransferase                                                         |                 | III.                   | X         | 0.99  | 1.32                  | 1.33                                    | 1.14   |  |  |
| XF2122           | Zn-finger, CHC2 type                                                                |                 | III.A                  | X         | -0.31 | -1.38                 | 1.51                                    | 2.50   |  |  |
| XFa0003          | topoisomerase I                                                                     | topA            | III.A.1                |           | 0.10  | 0.53                  | 1.04                                    | 1.78   |  |  |
| XFa0019          | site-specific recombinase                                                           | rin             | III.A.3                |           | 0.13  | 0.63                  | 1.38                                    | 1.19   |  |  |
| XF1904           | holliday junction binding protein, DNA helicase                                     | ruvA            | III.A.4                |           | 0.07  | 0.76                  | 1.10                                    | 0.51   |  |  |
| XF1804           | site-specific DNA-methyltransferase                                                 | sphIM           | III.A.5                |           | 1.01  | 1.29                  | 0.92                                    | 0.85   |  |  |
| XF0169           | tyrosyl-tRNA synthetase                                                             | tyrS            | III.B.4                |           | 0.34  | 1.26                  | 0.64                                    | 0.40   |  |  |
| XF2781           | ribonuclease P                                                                      | rnpA            | III.B.4                |           | 0.75  | 1.27                  | 0.28                                    | -0.25  |  |  |
| XF0234           | N utilization substance protein A                                                   | Пра             | III.B.5                |           | -0.02 | 0.24                  | 1.27                                    | 0.61   |  |  |
| XF2257           | predicted membrane protein                                                          | yebN            | IV.A.1                 | Х         | 0.30  | 2.45                  | 1.83                                    | 2.21   |  |  |
| XF2392           | ·                                                                                   | -               | IV.A.1                 | ^         | 0.01  | 0.30                  | 1.07                                    | 1.16   |  |  |
| XF0654           | autolytic lysozyme                                                                  | lyc             |                        | ~         |       |                       |                                         |        |  |  |
|                  | putative NPL/P60                                                                    | 6 A             | IV.A.2                 | Χ         | 0.09  | 0.27                  | 1.07                                    | 0.28   |  |  |
| XF0778           | O-antigen acetylase                                                                 | oafA            | IV.C                   | V         | 0.47  | 0.83                  | 1.36                                    | 0.89   |  |  |
| XF0966           | type 4 fimbrial biogenesis protein                                                  |                 | IV.D                   | X         | 0.35  | 0.93                  | 0.88                                    | 0.24   |  |  |
| XF0765           | YeeE/YedE integral membrane protein                                                 |                 | IX                     | X         | -0.04 | -0.02                 | 0.51                                    | 1.67   |  |  |
| XF0766           | YeeE/YedE integral membrane protein                                                 |                 | IX                     | X         | 0.04  | 0.17                  | 1.31                                    | 1.73   |  |  |
| XF1021           | acyl-CoA thioesterase II                                                            | tesB            | IX                     | X         | -0.14 | 0.20                  | 1.01                                    | 1.46   |  |  |
| XF1919           | iron-sulfur flavoprotein                                                            |                 | IX                     | X         | -1.16 | 0.68                  | 2.05                                    | 1.06   |  |  |
| XF0324           | periplasmic iron-binding protein                                                    | _               | V.A.4                  |           | 0.62  | 1.11                  | 0.82                                    | 0.15   |  |  |
| XF0500           | phage-related repressor protein                                                     | racR            | VI.A                   |           | -0.19 | -0.26                 | 1.14                                    | 1.27   |  |  |
| XF0680           | phage-related protein                                                               |                 | VI.A                   |           | 0.41  | -0.28                 | 0.59                                    | 2.31   |  |  |
| XF0705           | phage-related protein                                                               |                 | VI.A                   |           | 0.72  | 1.39                  | -0.26                                   | -0.07  |  |  |
| XF1587           | putative phage related protein                                                      |                 | VI.A                   | X         | 0.82  | 1.65                  | 1.15                                    | 0.13   |  |  |
| XF1591           | phage related protein                                                               |                 | VI.A                   | X         | -0.09 | -0.09                 | 0.75                                    | 1.16   |  |  |
| XF1594           | putative phage related protein                                                      |                 | VI.A                   | X         | 0.86  | 1.60                  | 2.14                                    | 2.83   |  |  |
| XF1700           | phage related protein                                                               |                 | VI.A                   | X         | 0.43  | 1.24                  | 1.08                                    | 1.58   |  |  |
| XF1705           | phage related protein                                                               |                 | VI.A                   | X         | 1.36  | 2.54                  | 1.11                                    | 2.08   |  |  |
| XF1718           | phage-related integrase                                                             | int             | VI.A                   |           | 0.73  | 0.95                  | -0.62                                   | 0.15   |  |  |
| XF2114           | phage related protein                                                               |                 | VI.A                   | X         | 0.25  | 1.97                  | 0.55                                    | 0.34   |  |  |
| XF2501           | phage-related protein                                                               | nohA            | VI.A                   |           | -0.27 | -0.53                 | 0.54                                    | 1.04   |  |  |
| XF2762           | phage related protein                                                               |                 | VI.A                   | X         | 1.05  | 1.32                  | 1.79                                    | 0.01   |  |  |
| XF2765           | phage related protein                                                               |                 | VI.A                   | X         | 0.06  | 0.39                  | 1.18                                    | 1.70   |  |  |
| XF1589           | plasmid stabilization protein                                                       | y4jK            | VI.B                   |           | 0.23  | 0.75                  | 1.09                                    | 1.47   |  |  |
| XF1590<br>XF1708 | plasmid stabilization protein putative plasmid maintenance system antidote protein, | y4jJ            | VI.B                   |           | 0.33  | 0.61                  | 1.06                                    | 1.27   |  |  |
|                  | XRE family                                                                          |                 | VI.B                   | X         | 0.10  | 0.27                  | 1.38                                    | 1.63   |  |  |
| XF1709           | plasmid maintenance system killer                                                   |                 | VI.B                   | X         | 0.03  | 0.01                  | 1.42                                    | 1.63   |  |  |
| XF2053           | conjugal transfer protein                                                           | trbE            | VI.B                   |           | 0.27  | 0.82                  | 0.88                                    | 1.31   |  |  |
| XF2066           | plasmid stabilization system protein                                                | yacB            | VI.B                   | X         | 0.10  | 1.14                  | 1.76                                    | 1.86   |  |  |
| XF2079           | conjugal transfer protein                                                           |                 | VI.B                   | X         | 0.75  | 1.24                  | 1.15                                    | 1.42   |  |  |
| XFa0002          | conjugal transfer protein                                                           | virB1           | VI.B                   |           | 0.58  | 1.55                  | 2.10                                    | 2.16   |  |  |
| XFa0005          | conjugal transfer protein                                                           | virB2           | VI.B                   |           | -0.06 | -0.06                 | 0.28                                    | 1.45   |  |  |
| XFa0027          | plasmid maintenance protein                                                         | pemK            | VI.B                   |           | 0.15  | 0.49                  | 0.87                                    | 1.04   |  |  |
| XFa0036          | conjugal transfer protein                                                           | trbN            | VI.B                   |           | 0.88  | 1.96                  | 2.88                                    | 2.26   |  |  |

**Tabela S10**: Genes reprimidos na presença de sacarose. Os genes estão organizados de acordo com a categoria funcional definida por Simpson *et al*, 2000. M = log da razão da intensidade de fluorescência no choque osmótico em relação à condição controle. Os valores em negrito correspondem aos valores de M considerados reprimidos.

|         |                                                  |                 |                        | M = log <sub>2</sub> (sacarose/contro |       |        | ole)   |                |
|---------|--------------------------------------------------|-----------------|------------------------|---------------------------------------|-------|--------|--------|----------------|
| Gene.ID | Produto                                          | Nome<br>do gene | Categoria<br>funcional | reanotada                             | 7 min | 15 min | 30 min | 60 min         |
| XF1037  | adenosylhomocysteinase                           | ahcY            | I.B.10                 |                                       | -0.90 | -1.07  | -0.64  | -1.05          |
| XF1385  | glycine decarboxylase                            | gcvP            | I.B.10                 |                                       | -0.31 | -0.48  | -0.71  | -0.77          |
| XF2591  | polyphosphate kinase                             | ppk             | I.B.9                  |                                       | -0.03 | 0.26   | -0.68  | -1.12          |
| XF0309  | NADH-ubiquinone oxidoreductase, NQO2 subunit     |                 | I.C.1                  |                                       | -1.22 | -0.40  | 1.00   | -0.23          |
| XF0274  | 6-phosphofructokinase                            |                 | I.C.4                  |                                       | -0.13 | -0.16  | -1.28  | -1.52          |
| XF0826  | fructose-bisphosphate aldolase                   |                 | I.C.4                  |                                       | -0.06 | -0.40  | -1.93  | -2.42          |
| XF0061  | transcriptional repressor                        | korB            | I.D                    |                                       | -1.78 | -0.38  | 1.22   | 0.72           |
| XF0125  | carbon storage regulator                         | csrA            | I.D                    |                                       | -0.14 | -0.40  | -0.61  | -1.12          |
| XF0911  | stringent starvation protein A                   | sspA            | I.D                    |                                       | -0.09 | 0.20   | -0.51  | -0.97          |
| XF1241  | aconitate hydratase 1                            | acnA            | I.D                    |                                       | -0.60 | -0.47  | -1.11  | -1.32          |
| XF1721  | putative transcriptional regulator (LysR family) |                 | I.D                    | X                                     | -0.60 | -1.00  | -0.80  | 0.30           |
| XF0603  | cystathionine beta-synthase                      | cysB            | II.A.3                 |                                       | -0.06 | -0.26  | -0.38  | -0.99          |
| XF0275  | adenylate kinase                                 |                 | II.B.1                 |                                       | -0.28 | -0.01  | -1.13  | -1.52          |
| XF0356  | cytochrome P-450 hydroxylase                     |                 | II.D.1                 |                                       | -1.17 | -1.55  | 0.39   | -0.48          |
| XF1487  | ubiquinone/menaquinone transferase               | ubiE            | II.D.11                |                                       | -0.01 | -0.12  | -0.56  | -0.89          |
| XF0017  | coproporphyrinogen III oxidase, aerobic          | hemF            | II.D.12                |                                       | -0.28 | -0.42  | -1.02  | -1.21          |
| XF0832  | siroheme synthase                                | cysG            | II.D.12                |                                       | -0.74 | -0.18  | -1.28  | 0.32           |
| XF2409  | DNA helicase                                     | .,              | III.A                  | X                                     | -1.33 | -1.75  | -0.50  | -0.68          |
| XF1776  | DNA topoisomerase III                            | topB            | III.A.1                |                                       | -2.25 | -0.99  | -1.62  | -1.35          |
| XF1262  | 7,8-dihydro-8-oxoguanine-triphosphatase          | mutX            | III.A.4                |                                       | -0.16 | -0.40  | -1.15  | -1.53          |
| XF1368  | adenine-specific methylase                       | hl1201          | III.A.5                |                                       | -0.14 | -0.16  | -1.19  | -1.40          |
| XF2742  | type I restriction-modification system DNA       | 1111201         | 111.7 1.0              |                                       | 0.11  | 0.10   | 0      | 1.40           |
|         | methylase                                        | hsdM            | III.A.5                |                                       | -0.15 | -0.12  | -1.53  | -1.90          |
| XF2651  | putative RNA methylase                           |                 | III.B                  | X                                     | -0.11 | -0.24  | -1.05  | -0.63          |
| XF0107  | 30S ribosomal protein S16                        | rpsP            | III.B.2                |                                       | 0.09  | 0.01   | -1.12  | -1.44          |
| XF1164  | 50S ribosomal protein L5                         | rpIE            | III.B.2                |                                       | -0.31 | -0.54  | -1.03  | -0.77          |
| XF1206  | 50S ribosomal protein L28                        | rpmB            | III.B.2                |                                       | -0.17 | -0.29  | -0.45  | -1.28          |
| XF1207  | 50S ribosomal protein L33                        | rpmG            | III.B.2                |                                       | -0.19 | -0.45  | -0.64  | -1.76          |
| XF2423  | 50S ribosomal protein L27                        | rpmA            | III.B.2                |                                       | -0.12 | -0.11  | -1.19  | -1.47          |
| XF2424  | 50S ribosomal protein L21                        | rpIU            | III.B.2                |                                       | -0.17 | -0.56  | -1.53  | -1.44          |
| XF2580  | 30S ribosomal protein S2                         | rpsB            | III.B.2                |                                       | 0.02  | 0.26   | -0.48  | -1.33          |
| XF2222  | histidyl-tRNA synthetase                         | hisS            | III.B.4                |                                       | -0.27 | -0.18  | -1.27  | -1.66          |
| XF1502  | RNA polymerase omega subunit                     | rpoZ            | III.B.5                |                                       | 0.07  | -0.06  | -0.99  | -1.03          |
| XF0353  | translation initiation inhibitor                 | .,              | III.C.1                |                                       | -0.13 | -0.04  | -1.48  | -1.69          |
| XF0381  | chaperone                                        | clpB            | III.C.2                | X                                     | -0.06 | -0.26  | -1.94  | -1.97          |
| XF0615  | 60kDa chaperonin                                 | groEL           | III.C.2                | ^                                     | 0.44  | 0.07   | -1.64  | -2.17          |
| XF0616  | 10kDa chaperonin                                 | groES           | III.C.2                |                                       | 0.19  | -0.22  | -2.50  | -3.16          |
| XF0991  | DnaK supressor                                   | RP816           | III.C.2                |                                       | 0.13  | -0.02  | -1.23  | -1.80          |
| XF2233  | DnaJ protein                                     | dnaJ            | III.C.2                |                                       | -0.11 | 0.02   | -1.25  | -1.69          |
| XF2339  | DnaJ protein                                     | dnaJ            | III.C.2                |                                       | 0.00  | -0.11  | -1.74  | -2.53          |
| XF2340  | •                                                | dnaK            | III.C.2                |                                       | 0.00  | -0.11  | -1.74  | -2.53<br>-2.53 |
|         | DnaK protein                                     |                 |                        |                                       |       |        |        |                |
| XF2341  | heat shock protein GrpE                          | grpE            | III.C.2                |                                       | 0.02  | -0.29  | -2.65  | -2.95          |
| XF0452  | integral membrane protease                       | hflK            | III.C.3                |                                       | -0.03 | 0.19   | -0.67  | -1.17          |
| XF1485  | heat shock protein                               | hslU            | III.C.3                |                                       | 0.05  | -0.33  | -0.97  | -1.50          |
| XF2241  | periplasmic protease                             | mucD            | III.C.3                | .,                                    | -0.11 | 0.22   | -1.40  | -0.55          |
| XF2252  | predicted membrane protein                       |                 | IV.A.1                 | X                                     | -0.50 | -0.94  | 0.12   | 0.21           |
| XF0975  | polyphosphate-selective porin O                  | oprO            | IV.A.2                 |                                       | -0.07 | 0.01   | -1.75  | -1.61          |
| XF0276  | UDP-N-acetylmuramate-L-alanine ligase            |                 | IV.B                   |                                       | -0.24 | -0.19  | -0.89  | -0.89          |
| XF2542  | fimbrial protein                                 |                 | IV.D                   |                                       | 0.15  | 0.52   | -2.94  | -3.89          |
| XF2141  | ABC transporter phosphate binding protein        | phoX            | V.A.2                  |                                       | 0.08  | 0.06   | -2.05  | -1.86          |
| XF0527  | phage related protein                            |                 | VI.A                   | X                                     | -0.68 | 0.04   | -0.27  | -1.00          |
| XF1679  | plasmid-related protein                          | traN            | VI.B                   |                                       | 0.04  | -0.43  | -1.02  | -1.29          |
| XF1775  | reverse transcriptase                            | IS629           | VI.C                   |                                       | -1.59 | -3.09  | 0.53   | -1.06          |
| XF0010  | biopolymer transport ExbB protein                | exbB            | VII.C                  |                                       | 0.14  | -0.11  | -0.94  | -1.24          |
| XF0011  | biopolymer transport ExbD1 protein               | exbD1           | VII.C                  |                                       | 0.02  | -0.08  | -0.75  | -1.16          |
|         |                                                  |                 |                        |                                       | 0.00  | 0.00   | 0.00   | 4.54           |
| XF0012  | biopolymer transport ExbD2 protein               | exbD2           | VII.C                  |                                       | 0.08  | -0.26  | -0.88  | -1.54          |

|         |                                         |                 |                        |           | M =   | : log₂(saca | rose/contr | ole)   |
|---------|-----------------------------------------|-----------------|------------------------|-----------|-------|-------------|------------|--------|
| Gene.ID | Produto                                 | Nome<br>do gene | Categoria<br>funcional | reanotada | 7 min | 15 min      | 30 min     | 60 min |
| XF1210  | glutathione S-transferase               | gst             | VII.C                  |           | -0.06 | -0.12       | -0.98      | -1.28  |
| XF2234  | low molecular weight heat shock protein | hspA            | VII.G                  |           | -0.12 | -0.28       | -0.95      | -2.05  |
| XF0362  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.14 | -0.34       | -0.75      | -0.85  |
| XF0463  | conserved hypothetical protein          |                 | VIII.A                 | X         | -1.37 | -0.30       | -2.39      | -1.15  |
| XF0515  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.39 | -1.21       | -0.10      | 1.07   |
| XF0614  | conserved hypothetical protein          |                 | VIII.A                 | X         | 0.02  | -0.27       | -1.06      | -1.76  |
| XF1024  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.04 | -0.31       | -1.58      | -2.51  |
| XF1069  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.16 | -0.05       | -0.62      | -0.81  |
| XF1074  | conserved hypothetical protein          | ygfY            | VIII.A                 |           | 0.19  | 0.46        | -0.61      | -1.88  |
| XF1117  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.09 | -0.21       | -0.24      | -0.85  |
| XF1205  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.18 | -0.33       | -0.61      | -1.15  |
| XF1287  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.02 | -0.06       | 0.41       | -1.10  |
| XF1764  | conserved hypothetical protein          |                 | VIII.A                 | X         | -2.20 | -0.83       | 0.24       | 2.53   |
| XF1779  | conserved hypothetical protein          |                 | VIII.A                 | X         | -1.92 | 0.00        | 1.43       | -0.12  |
| XF1783  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.36 | -0.93       | -1.77      | -1.24  |
| XF2118  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.50 | -0.55       | -1.40      | -0.05  |
| XF2400  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.28 | 0.39        | -0.96      | -1.42  |
| XF2587  | conserved hypothetical protein          |                 | VIII.A                 | X         | -0.06 | -0.23       | -1.38      | -1.32  |
| XF0266  | hypothetical protein                    |                 | VIII.B                 |           | -0.19 | 0.00        | -1.10      | -0.24  |
| XF0426  | hypothetical protein                    |                 | VIII.B                 |           | -0.16 | -0.24       | -1.22      | -1.36  |
| XF0990  | hypothetical protein                    |                 | VIII.B                 |           | 0.18  | -0.33       | -1.54      | -1.99  |
| XF1256  | hypothetical protein                    |                 | VIII.B                 |           | -0.17 | -0.67       | -0.69      | -0.95  |
| XF2543  | hypothetical protein                    |                 | VIII.B                 |           | -0.15 | -0.34       | -1.00      | -0.89  |

**Tabela S11**: Agrupamento dos genes diferencialmente expressos na presença de sacarose utilizando o algoritmo K-means com 5 grupos. M = log da razão da intensidade de fluorescência no choque osmótico em relação à condição controle.



| 0 ID               | Produto                                                            | NI.             |                        |       |       |        |              |        |
|--------------------|--------------------------------------------------------------------|-----------------|------------------------|-------|-------|--------|--------------|--------|
| Gene.ID            | Floudo                                                             | Nome<br>do gene | Categoria<br>funcional | 0 min | 7 min | 15 min | 30 min       | 60 min |
| XF0195             | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.71  | 0.99   | 1.65         | 2.44   |
| XF0390             | two-component system, sensor protein                               |                 | I.D                    | 0     | 0.51  | 1.37   | 1.71         | 1.40   |
| XF0391             | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.99  | 2.20   | 1.92         | 1.40   |
| XF0534             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.67  | 1.46   | 1.49         | 1.17   |
| XF0778             | O-antigen acetylase                                                | oafA            | IV.C                   | 0     | 0.47  | 0.83   | 1.36         | 0.89   |
| XF0811             | predicted methyltransferase                                        |                 | III.                   | 0     | 0.99  | 1.32   | 1.33         | 1.14   |
| XF1032             | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.82  | 1.08   | 1.60         | 1.46   |
| XF1396             | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.65  | 1.83   | 2.16         | 3.00   |
| XF1397             | 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-b<br>methylase / ubiG | enzoquinol      | II.D.11                | 0     | 0.57  | 1.08   | 0.91         | 1.15   |
| XF1513             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.34  | 1.50   | 1.74         | 1.47   |
| XF1594             | putative phage related protein                                     |                 | VI.A                   | 0     | 0.86  | 1.60   | 2.14         | 2.83   |
| XF1700             | phage related protein                                              |                 | VI.A                   | 0     | 0.43  | 1.24   | 1.08         | 1.58   |
| XF1798             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.55  | 1.18   | 0.75         | 0.81   |
| XF1804             | site-specific DNA-methyltransferase                                | sphIM           | III.A.5                | 0     | 1.01  | 1.29   | 0.92         | 0.85   |
| XF1877             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.45  | 2.20   | 1.94         | 2.01   |
| XF1914             | anthranilate synthase component I                                  | trpE            | II.A.4                 | 0     | 0.63  | 1.69   | 1.24         | 2.23   |
| XF1916             | coenzyme F390 synthetase                                           | af1671          | II.D.17                | 0     | 0.70  | 1.88   | 1.81         | 2.32   |
| XF1918             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.76  | 1.97   | 1.71         | 1.70   |
| XF1938             | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.83  | 0.79   | 0.87         | 1.27   |
| XF1977             | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.61  | 1.71   | 0.67         | 1.29   |
| XF2066             | plasmid stabilization system protein                               | yacB            | VI.B                   | 0     | 0.10  | 1.14   | 1.76         | 1.86   |
| XF2078             | hypothetical protein                                               | ,               | VIII.B                 | 0     | 1.32  | 2.02   | 2.44         | 1.89   |
| XF2079             | conjugal transfer protein                                          |                 | VI.B                   | 0     | 0.75  | 1.24   | 1.15         | 1.42   |
| XF2111             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.61  | 1.49   | 1.65         | 1.54   |
| XF2112             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.43  | 1.32   | 1.26         | 1.27   |
| XF2197             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.20  | 1.58   | 1.97         | 2.32   |
| XF2198             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.29  | 1.06   | 1.82         | 2.29   |
| XF2258             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.36  | 2.41   | 2.07         | 1.52   |
| XF2321             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.37  | 1.26   | 2.39         | 0.49   |
| XF2382             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 1.19  | 1.06   | 2.93         | 2.10   |
| XF2402             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.34  | 1.08   | 1.45         | 1.78   |
| XF2404             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.68  | 1.03   | 1.56         | 2.42   |
| XF2405             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.61  | 1.92   | 1.17         | 1.86   |
| XF2406             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.34  | 0.99   | 1.81         | 2.55   |
| XF2514             | conserved hypothetical protein                                     |                 | VIII.A                 | 0     | 0.21  | 1.32   | 1.50         | 2.23   |
| XFa0002            | conjugal transfer protein                                          | virB1           | VII.B                  | 0     | 0.58  | 1.55   | 2.10         | 2.16   |
| XFa0030            | hypothetical protein                                               | VIIDI           | VIII.B                 | 0     | 0.67  | 1.39   | 1.23         | 1.51   |
| XFa0031            | hypothetical protein                                               |                 | VIII.B                 | 0     | 0.99  | 1.44   | 1.10         | 1.49   |
| XFa0036            | conjugal transfer protein                                          | trbN            | VII.B                  | 0     | 0.88  | 1.96   | 2.88         | 2.26   |
| XFa0037            | conjugal transfer protein                                          | trbL            | VI.B<br>VI.B           | 0     | 0.37  | 1.28   | -0.01        | 2.12   |
| XFa0049            | hypothetical protein                                               | UDL             | VIII.B                 | 0     | 0.43  | 1.47   | 2.88         | 1.91   |
| XFa0049<br>XFa0050 | stability partitioning determinant                                 | stbB            | VIII.B<br>VI.B         | 0     | 0.43  | 1.47   | 2.31         | 1.91   |
| XFa0050<br>XFa0051 | hypothetical protein                                               | SWD             | VI.B<br>VIII.B         | 0     | 0.19  | 1.09   | 2.02         | 2.13   |
| XFa0051<br>XFa0054 | •                                                                  |                 | VIII.B<br>VIII.A       | 0     | 0.27  | 1.15   | 2.02         | 2.13   |
| XFa0054<br>XFb0002 | conserved hypothetical protein hypothetical protein                |                 | VIII.A<br>VIII.B       | 0     | 0.46  | 1.43   | 2.50<br>2.52 | 2.52   |



Grupo 2

| 0' 7' 15' 30' 6 | 50"                                                                                 |               | 1                      |       | M = log <sub>2</sub> | 2(sacarose/controle)  15 min |       |        |
|-----------------|-------------------------------------------------------------------------------------|---------------|------------------------|-------|----------------------|------------------------------|-------|--------|
| Gene.ID         | Produto                                                                             | Nome do gene  | Categoria<br>funcional | 0 min | 7 min                |                              | ·     | 60 min |
| XF0234          | N utilization substance protein A                                                   |               | III.B.5                | 0.00  | -0.02                | 0.24                         | 1.27  | 0.61   |
| XF0263          | colicin V precursor                                                                 |               |                        | 0.00  | -0.05                | 0.03                         | 0.90  | 0.67   |
| XF0490          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | -0.58                | -0.19                        | 0.49  | 1.11   |
| XF0493          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.12                 | 0.89                         | 1.99  | 1.86   |
| XF0500          | phage-related repressor protein                                                     | racR          | VI.A                   | 0.00  | -0.19                | -0.26                        | 1.14  | 1.27   |
| XF0507          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | -0.32                | -0.21                        | 0.82  | 1.34   |
| XF0533          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.04                 | 0.10                         | 1.07  | 0.88   |
| XF0654          | putative NPL/P60                                                                    |               | IV.A.2                 | 0.00  | 0.09                 | 0.27                         | 1.07  | 0.28   |
| XF0765          | YeeE/YedE integral membrane protein                                                 |               | IX                     | 0.00  | -0.04                | -0.02                        | 0.51  | 1.67   |
| XF0766          | YeeE/YedE integral membrane protein                                                 |               | IX                     | 0.00  | 0.04                 | 0.17                         | 1.31  | 1.73   |
| XF0768          | Beta-lactamase-like                                                                 |               | VII.C                  | 0.00  | 0.10                 | 0.35                         | 1.42  | 2.18   |
| XF0846          | beta-mannosidase precursor                                                          | TM1624        | I.A.2                  | 0.00  | -0.27                | -0.11                        | -0.86 | 1.05   |
| XF0870          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.25                 | 0.53                         | 0.77  | 1.09   |
| XF0989          | conserved hypothetical protein                                                      | yidD          | VIII.A                 | 0.00  | -0.20                | -0.27                        | 0.79  | 1.13   |
| XF1021          | acyl-CoA thioesterase II                                                            | tesB          | IX                     | 0.00  | -0.14                | 0.20                         | 1.01  | 1.46   |
| XF1141          | chorismate mutase                                                                   | nc30          | II.A.4                 | 0.00  | -0.05                | -0.26                        | 0.87  | 1.43   |
| XF1185          | conserved hypothetical protein colicin V secretion ABC transporter ATP-binding      |               | VIII.A                 | 0.00  | -0.04                | 1.34                         | 1.94  | 1.56   |
| XF1220          | protein                                                                             | cvaB          | VII.C                  | 0.00  | -0.04                | 1.17                         | 1.35  | 0.89   |
| XF1361          | Beta-lactamase-like                                                                 |               | VII.C                  | 0.00  | 0.09                 | 0.67                         | 1.16  | 0.92   |
| XF1493          | virulence regulator                                                                 | xrvA          | VII.H                  | 0.00  | -0.28                | 0.34                         | 1.53  | 0.82   |
| XF1531          | subunit F of alkyl hydroperoxide reductase                                          | ahpF          | VII.C                  | 0.00  | -0.04                | 0.18                         | 1.18  | 0.62   |
| XF1546          | hypothetical protein                                                                |               | VIII.B                 | 0.00  | -0.07                | -0.93                        | 0.90  | 0.71   |
| XF1589          | plasmid stabilization protein                                                       | y4jK          | VI.B                   | 0.00  | 0.23                 | 0.75                         | 1.09  | 1.47   |
| XF1590          | plasmid stabilization protein                                                       | y4jJ          | VI.B                   | 0.00  | 0.33                 | 0.61                         | 1.06  | 1.27   |
| XF1591          | phage related protein                                                               |               | VI.A                   | 0.00  | -0.09                | -0.09                        | 0.75  | 1.16   |
| XF1661          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.24                 | 0.32                         | 0.93  | 1.05   |
| XF1707          | conserved hypothetical protein putative plasmid maintenance system antidote protein |               | VIII.A                 | 0.00  | 0.03                 | -0.13                        | 1.02  | 1.08   |
| XF1708          | XRE family                                                                          | ,             | VI.B                   | 0.00  | 0.10                 | 0.27                         | 1.38  | 1.63   |
| XF1709          | plasmid maintenance system killer                                                   |               | VI.B                   | 0.00  | 0.03                 | 0.01                         | 1.42  | 1.63   |
| XF1756          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.12                 | 1.46                         | 1.30  | 1.22   |
| XF1767          | hypothetical protein                                                                |               | VIII.B                 | 0.00  | -0.03                | 0.09                         | 0.39  | 0.84   |
| XF1780          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.05                 | 0.23                         | 0.89  | 1.45   |
| XF1814          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.30                 | 0.92                         | 0.92  | 1.14   |
| XF1860          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.08                 | 0.27                         | 1.42  | 1.25   |
| XF1904          | holliday junction binding protein, DNA helicase                                     | ruvA          | III.A.4                | 0.00  | 0.07                 | 0.76                         | 1.10  | 0.51   |
| XF1919          | iron-sulfur flavoprotein                                                            |               | IX                     | 0.00  | -1.16                | 0.68                         | 2.05  | 1.06   |
| XF1931          | transposase                                                                         | tnpA          | VI.C                   | 0.00  | 0.23                 | -0.35                        | 0.51  | 0.97   |
| XF1991          | hypothetical protein                                                                | шри           | VIII.B                 | 0.00  | 0.14                 | 0.33                         | 0.45  | 1.75   |
| XF2053          | conjugal transfer protein                                                           | trbE          | VI.B                   | 0.00  | 0.27                 | 0.82                         | 0.88  | 1.31   |
| XF2062          | transcriptional repressor                                                           | korC          | I.D                    | 0.00  | 0.03                 | 0.67                         | 1.04  | 0.99   |
| XF2063          | DNA-invertase                                                                       | rin           | VI.C                   | 0.00  | 0.28                 | 0.99                         | 1.12  | 1.05   |
| XF2064          | hypothetical protein                                                                |               | VIII.B                 | 0.00  | 0.08                 | 0.38                         | 0.85  | 1.05   |
| XF2065          | hypothetical protein                                                                |               | VIII.B                 | 0.00  | 0.20                 | 0.75                         | 1.03  | 1.05   |
| XF2067          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.16                 | 0.67                         | 1.43  | 0.99   |
| XF2068          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.05                 | 0.65                         | 1.39  | 1.04   |
| XF2085          | transcriptional regulator (AcrR family)                                             | SCI30A.12c    | I.D                    | 0.00  | -0.01                | 0.42                         | 1.35  | 2.28   |
| XF2110          | hypothetical protein                                                                | 30/30A. 120   | VIII.B                 | 0.00  | -0.19                | 0.48                         | 1.12  | 1.51   |
| XF2113          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | -0.06                | 0.92                         | 0.89  | 0.73   |
| XF2113          | Zn-finger, CHC2 type                                                                |               | III.A                  | 0.00  | -0.31                | -1.38                        | 1.51  | 2.50   |
| XF2187          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.59                 | 0.80                         | 0.79  | 1.09   |
| XF2392          | autolytic lysozyme                                                                  | lyc           | IV.A.2                 | 0.00  | 0.01                 | 0.30                         | 1.07  | 1.16   |
| XF2407          | bacteriocin                                                                         | iyc           | VII.C                  |       | 0.01                 |                              |       | 2.11   |
|                 | conserved hypothetical protein                                                      | VDUC          |                        | 0.00  |                      | 0.68                         | 1.31  | 2.11   |
| XF2451          |                                                                                     | ypuG<br>nah A | VIII.A                 | 0.00  | 0.09                 | 0.31                         | 1.38  |        |
| XF2501          | phage-related protein                                                               | nohA          | VI.A                   | 0.00  | -0.27                | -0.53                        | 0.54  | 1.04   |
| XF2518          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | -0.57                | 0.43                         | 1.57  | 2.01   |
| XF2715          | transcriptional regulator (TetR family)                                             |               | I.D                    | 0.00  | -0.02                | -0.18                        | 1.33  | 1.53   |
| XF2717          | hypothetical protein                                                                |               | \/III                  | 0.00  | 0.32                 | -0.12                        | 0.43  | 1.41   |
| XF2718          | conserved hypothetical protein                                                      |               | VIII.A                 | 0.00  | 0.86                 | 0.18                         | 1.27  | 1.76   |
| XF2765          | phage related protein                                                               |               | VI.A                   | 0.00  | 0.06                 | 0.39                         | 1.18  | 1.70   |
| XFa0003         | topoisomerase I                                                                     | topA          | III.A.1                | 0.00  | 0.10                 | 0.53                         | 1.04  | 1.78   |
| XFa0004         | hypothetical protein                                                                | trbC or       | VIII.B                 | 0.00  | 0.20                 | 0.37                         | 0.94  | 1.44   |
| XFa0005         | conjugal transfer protein                                                           | virB2         | VI.B                   | 0.00  | -0.06                | -0.06                        | 0.28  | 1.45   |
| XFa0019         | site-specific recombinase                                                           | rin           | III.A.3                | 0.00  | 0.13                 | 0.63                         | 1.38  | 1.19   |
|                 | 1                                                                                   |               |                        |       |                      |                              |       |        |

| Grupo2 ( | continuação)                          |                 |                        |       | $M = log_2$ | (sacarose/ | controle) |        |
|----------|---------------------------------------|-----------------|------------------------|-------|-------------|------------|-----------|--------|
| Gene.ID  | Produto                               | Nome do<br>gene | Categoria<br>funcional | 0 min | 7 min       | 15 min     | 30 min    | 60 min |
| XFa0020  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | -0.03       | 0.44       | 2.13      | 2.25   |
| XFa0021  | hypothetical protein                  |                 | VIII.B                 | 0.00  | -0.05       | 0.70       | 2.54      | 3.18   |
| XFa0023  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | 0.21        | 0.78       | 2.35      | 2.31   |
| XFa0024  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | 0.08        | 1.27       | 2.20      | 1.28   |
| XFa0027  | plasmid maintenance protein           | pemK            | VI.B                   | 0.00  | 0.15        | 0.49       | 0.87      | 1.04   |
| XFa0028  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | 0.16        | 0.78       | 1.71      | 1.34   |
| XFa0035  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | 0.24        | 0.67       | 1.39      | 1.50   |
| XFa0041  | conjugal transfer protein             | trbH            | VI.B                   | 0.00  | 0.11        | -0.30      | 0.35      | 0.98   |
| XFa0044  | conjugal transfer protein             | trbE            | VI.B                   | 0.00  | 0.04        | 0.37       | 0.68      | 1.28   |
| XFa0045  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | -0.06       | -0.08      | 1.50      | 1.23   |
| XFa0046  | predicted transcriptional regulator   |                 | I.D                    | 0.00  | -0.11       | -0.44      | 0.99      | 0.96   |
| XFa0047  | nickase                               | taxC            | VI.B                   | 0.00  | 0.09        | 0.53       | 1.21      | 0.84   |
| XFa0048  | putative mobillisation protein        | mobC            | VI.B                   | 0.00  | 0.08        | 0.17       | 2.35      | 1.28   |
| XFa0052  | virulence-associated protein D        | vapD            | VII.H                  | 0.00  | 0.19        | 0.80       | 1.97      | 1.62   |
| XFa0053  | hypothetical protein                  |                 | VIII.B                 | 0.00  | -0.02       | 0.64       | 2.32      | 1.83   |
| XFa0055  | conserved hypothetical protein        | ydiA            | VIII.A                 | 0.00  | -0.13       | 0.10       | 1.12      | 1.32   |
| XFa0059  | plasmid replication/partition protein | spoOJ           | VI.B                   | 0.00  | -0.38       | -0.23      | 2.20      | 1.80   |
| XFa0060  | plasmid replication protein           | incC            | VI.B                   | 0.00  | -0.14       | 0.39       | 2.52      | 1.19   |
| XFa0062  | conserved hypothetical protein        |                 | VIII.A                 | 0.00  | -0.17       | 0.41       | 0.93      | 1.05   |



| 0 7 15 30        | 7 15 30 60                                                                |                 |                        |       |       | M = log <sub>2</sub> (sacarose/controle) |        |        |  |  |  |
|------------------|---------------------------------------------------------------------------|-----------------|------------------------|-------|-------|------------------------------------------|--------|--------|--|--|--|
| Gene.ID          | Produto                                                                   | Nome do<br>gene | Categoria<br>funcional | 0 min | 7 min | 15 min                                   | 30 min | 60 min |  |  |  |
| XF0112           | hypothetical protein                                                      |                 | VIII.B                 | 0.00  | 1.23  | 1.11                                     | 0.44   | 1.01   |  |  |  |
| XF0154           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.01  | 2.52                                     | 0.76   | 0.83   |  |  |  |
| XF0250           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.68  | 1.93                                     | 0.24   | 0.15   |  |  |  |
| XF0323           | two-component system, sensor protein                                      |                 | I.D                    | 0.00  | 1.97  | 3.08                                     | 1.23   | 2.63   |  |  |  |
| XF0529           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 0.63  | 2.34                                     | 0.98   | 1.32   |  |  |  |
| XF0531           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.07  | 1.82                                     | 0.95   | 0.94   |  |  |  |
| XF0663           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.25  | 2.12                                     | 0.50   | 0.89   |  |  |  |
| XF0667           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.13  | 2.32                                     | -0.56  | -0.25  |  |  |  |
| XF0787           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.27  | 2.49                                     | 0.74   | 1.32   |  |  |  |
| XF0808<br>XF0953 | hypothetical protein<br>GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4- |                 | VIII.B                 | 0.00  | 1.78  | 1.72                                     | 0.88   | 0.40   |  |  |  |
| =                | phosphate synthase                                                        | ribA            | II.D.9                 | 0.00  | 1.94  | 2.40                                     | -0.01  | -0.16  |  |  |  |
| XF1249           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.55  | 1.70                                     | 0.99   | 1.27   |  |  |  |
| XF1528           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.85  | 2.96                                     | 1.23   | -0.68  |  |  |  |
| XF1705           | phage related protein                                                     |                 | VI.A                   | 0.00  | 1.36  | 2.54                                     | 1.11   | 2.08   |  |  |  |
| XF1915           | anthranilate synthase component II                                        | trpG            | II.A.4                 | 0.00  | 2.83  | 3.66                                     | 0.15   | -0.16  |  |  |  |
| XF1917           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 0.89  | 2.41                                     | 1.12   | 1.55   |  |  |  |
| XF1973           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.64  | 3.72                                     | 1.14   | 0.43   |  |  |  |
| XF1974           | hypothetical protein                                                      |                 | VIII.B                 | 0.00  | 1.66  | 2.11                                     | 2.03   | 2.14   |  |  |  |
| XF2307           | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 0.98  | 2.03                                     | 1.14   | 1.16   |  |  |  |
| XFa0064          | conserved hypothetical protein                                            |                 | VIII.A                 | 0.00  | 1.77  | 2.72                                     | 2.05   | 2.87   |  |  |  |



| 0' 7' 15' 30' | 7' 15' 30' 60'                      |                 |                        | M = log <sub>2</sub> (sacarose/controle) |                    |        |        |       |  |  |
|---------------|-------------------------------------|-----------------|------------------------|------------------------------------------|--------------------|--------|--------|-------|--|--|
| Gene.ID       | Produto                             | Nome do<br>gene | Categoria<br>funcional | 0 min                                    | 0 min 7 min 15 min | 30 min | 60 min |       |  |  |
| XF0155        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.64               | 1.77   | 0.39   | 0.18  |  |  |
| XF0169        | tyrosyl-tRNA synthetase             | tyrS            | III.B.4                | 0.00                                     | 0.34               | 1.26   | 0.64   | 0.40  |  |  |
| XF0300        | acriflavin resistance protein       |                 | VII.C                  | 0.00                                     | 1.30               | 0.92   | -0.34  | -0.21 |  |  |
| XF0324        | periplasmic iron-binding protein    |                 | V.A.4                  | 0.00                                     | 0.62               | 1.11   | 0.82   | 0.15  |  |  |
| XF0338        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.76               | 1.16   | 0.73   | 0.22  |  |  |
| XF0666        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.14               | 1.21   | 0.33   | 0.36  |  |  |
| XF0670        | malonyl CoA-ACP transacylase        | fabD            | II.E                   | 0.00                                     | 0.49               | 1.20   | -0.15  | 0.43  |  |  |
| XF0705        | phage-related protein               |                 | VI.A                   | 0.00                                     | 0.72               | 1.39   | -0.26  | -0.07 |  |  |
| XF0746        | hypothetical protein                |                 | VIII.B                 | 0.00                                     | 0.88               | 0.93   | 0.13   | 0.24  |  |  |
| XF0966        | type 4 fimbrial biogenesis protein  |                 | IV.D                   | 0.00                                     | 0.35               | 0.93   | 0.88   | 0.24  |  |  |
| XF1557        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.53               | 0.81   | -0.05  | 0.02  |  |  |
| XF1587        | putative phage related protein      |                 | VI.A                   | 0.00                                     | 0.82               | 1.65   | 1.15   | 0.13  |  |  |
| XF1718        | phage-related integrase             | int             | VI.A                   | 0.00                                     | 0.73               | 0.95   | -0.62  | 0.15  |  |  |
| XF1868        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.31               | 1.03   | 0.09   | 0.35  |  |  |
| XF2034        | hypothetical protein                |                 | VIII.B                 | 0.00                                     | 0.57               | 0.90   | 0.14   | 0.38  |  |  |
| XF2037        | conserved hypothetical protein      | bioF2           | VIII.A                 | 0.00                                     | 0.65               | 1.70   | 0.54   | 0.62  |  |  |
| XF2071        | predicted transcriptional regulator |                 | I.D                    | 0.00                                     | 0.53               | 1.09   | 0.30   | -0.06 |  |  |
| XF2114        | phage related protein               |                 | VI.A                   | 0.00                                     | 0.25               | 1.97   | 0.55   | 0.34  |  |  |
| XF2195        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.80               | 2.01   | -0.11  | -0.28 |  |  |
| XF2439        | cytidylate kinase                   | cmkA            | II.B.2                 | 0.00                                     | 0.79               | 1.62   | 0.49   | 0.03  |  |  |
| XF2515        | conserved hypothetical protein      |                 | VIII.A                 | 0.00                                     | 0.64               | 0.91   | 0.86   | 0.77  |  |  |
| XF2762        | phage related protein               |                 | VI.A                   | 0.00                                     | 1.05               | 1.32   | 1.79   | 0.01  |  |  |
| XF2775        | hemagglutinin-like secreted protein | pspA            | VII.F                  | 0.00                                     | 0.86               | 1.25   | -0.45  | -1.09 |  |  |
| XF2781        | ribonuclease P                      | rnpA            | III.B.4                | 0.00                                     | 0.75               | 1.27   | 0.28   | -0.25 |  |  |



| 0′ 7′ 15′ 30′ | 60.                                          |                 |                        | M = log₂(sacarose/controle) |       |        |        |        |  |  |
|---------------|----------------------------------------------|-----------------|------------------------|-----------------------------|-------|--------|--------|--------|--|--|
| Gene.ID       | Produto                                      | Nome do<br>gene | Categoria<br>funcional | 0 min                       | 7 min | 15 min | 30 min | 60 min |  |  |
| XF0010        | biopolymer transport ExbB protein            | exbB            | VII.C                  | 0.00                        | 0.14  | -0.11  | -0.94  | -1.24  |  |  |
| XF0011        | biopolymer transport ExbD1 protein           | exbD1           | VII.C                  | 0.00                        | 0.02  | -0.08  | -0.75  | -1.16  |  |  |
| XF0012        | biopolymer transport ExbD2 protein           | exbD2           | VII.C                  | 0.00                        | 0.08  | -0.26  | -0.88  | -1.54  |  |  |
| XF0017        | coproporphyrinogen III oxidase, aerobic      | hemF            | II.D.12                | 0.00                        | -0.28 | -0.42  | -1.02  | -1.21  |  |  |
| XF0061        | transcriptional repressor                    | korB            | I.D                    | 0.00                        | -1.78 | -0.38  | 1.22   | 0.72   |  |  |
| XF0107        | 30S ribosomal protein S16                    | rpsP            | III.B.2                | 0.00                        | 0.09  | 0.01   | -1.12  | -1.44  |  |  |
| XF0125        | carbon storage regulator                     | csrA            | I.D                    | 0.00                        | -0.14 | -0.40  | -0.61  | -1.12  |  |  |
| XF0266        | hypothetical protein                         |                 | VIII.B                 | 0.00                        | -0.19 | 0.00   | -1.10  | -0.24  |  |  |
| XF0274        | 6-phosphofructokinase                        |                 | I.C.4                  | 0.00                        | -0.13 | -0.16  | -1.28  | -1.52  |  |  |
| XF0275        | adenylate kinase                             |                 | II.B.1                 | 0.00                        | -0.28 | -0.01  | -1.13  | -1.52  |  |  |
| XF0276        | UDP-N-acetylmuramate-L-alanine ligase        |                 | IV.B                   | 0.00                        | -0.24 | -0.19  | -0.89  | -0.89  |  |  |
| XF0309        | NADH-ubiquinone oxidoreductase, NQO2 subunit |                 | I.C.1                  | 0.00                        | -1.22 | -0.40  | 1.00   | -0.23  |  |  |
| XF0353        | translation initiation inhibitor             |                 | III.C.1                | 0.00                        | -0.13 | -0.04  | -1.48  | -1.69  |  |  |
| XF0356        | cytochrome P-450 hydroxylase                 |                 | II.D.1                 | 0.00                        | -1.17 | -1.55  | 0.39   | -0.48  |  |  |
| XF0362        | conserved hypothetical protein               |                 | VIII.A                 | 0.00                        | -0.14 | -0.34  | -0.75  | -0.85  |  |  |
| XF0381        | chaperone                                    | clpB            | III.C.2                | 0.00                        | -0.06 | -0.26  | -1.94  | -1.97  |  |  |
| XF0426        | hypothetical protein                         |                 | VIII.B                 | 0.00                        | -0.16 | -0.24  | -1.22  | -1.36  |  |  |
| XF0452        | integral membrane protease                   | hflK            | III.C.3                | 0.00                        | -0.03 | 0.19   | -0.67  | -1.17  |  |  |
| XF0463        | conserved hypothetical protein               |                 | VIII.A                 | 0.00                        | -1.37 | -0.30  | -2.39  | -1.15  |  |  |
| XF0515        | conserved hypothetical protein               |                 | VIII.A                 | 0.00                        | -0.39 | -1.21  | -0.10  | 1.07   |  |  |
| XF0527        | phage related protein                        |                 | VI.A                   | 0.00                        | -0.68 | 0.04   | -0.27  | -1.00  |  |  |
| XF0603        | cystathionine beta-synthase                  | cysB            | II.A.3                 | 0.00                        | -0.06 | -0.26  | -0.38  | -0.99  |  |  |
| XF0614        | conserved hypothetical protein               |                 | VIII.A                 | 0.00                        | 0.02  | -0.27  | -1.06  | -1.76  |  |  |
| XF0615        | 60kDa chaperonin                             | groEL           | III.C.2                | 0.00                        | 0.44  | 0.07   | -1.64  | -2.17  |  |  |
| XF0616        | 10kDa chaperonin                             | groES           | III.C.2                | 0.00                        | 0.19  | -0.22  | -2.50  | -3.16  |  |  |
| XF0826        | fructose-bisphosphate aldolase               |                 | I.C.4                  | 0.00                        | -0.06 | -0.40  | -1.93  | -2.42  |  |  |
| XF0832        | siroheme synthase                            | cysG            | II.D.12                | 0.00                        | -0.74 | -0.18  | -1.28  | 0.32   |  |  |
| XF0911        | stringent starvation protein A               | sspA            | I.D                    | 0.00                        | -0.09 | 0.20   | -0.51  | -0.97  |  |  |
| XF0975        | polyphosphate-selective porin O              | oprO            | IV.A.2                 | 0.00                        | -0.07 | 0.01   | -1.75  | -1.61  |  |  |
| XF0990        | hypothetical protein                         |                 | VIII.B                 | 0.00                        | 0.18  | -0.33  | -1.54  | -1.99  |  |  |

| Grupo5 ( | continuação)                                         |                 |                        |       | M = log | <sub>2</sub> (sacarose/ | controle) |        |
|----------|------------------------------------------------------|-----------------|------------------------|-------|---------|-------------------------|-----------|--------|
| Gene.ID  | Produto                                              | Nome do<br>gene | Categoria<br>funcional | 0 min | 7 min   | 15 min                  | 30 min    | 60 min |
| XF0991   | DnaK supressor                                       | RP816           | III.C.2                | 0.00  | 0.12    | -0.02                   | -1.23     | -1.80  |
| XF1024   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.04   | -0.31                   | -1.58     | -2.51  |
| XF1037   | adenosylhomocysteinase                               | ahcY            | I.B.10                 | 0.00  | -0.90   | -1.07                   | -0.64     | -1.05  |
| XF1069   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.16   | -0.05                   | -0.62     | -0.81  |
| XF1074   | conserved hypothetical protein                       | ygfY            | VIII.A                 | 0.00  | 0.19    | 0.46                    | -0.61     | -1.88  |
| XF1117   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.09   | -0.21                   | -0.24     | -0.85  |
| XF1164   | 50S ribosomal protein L5                             | rplE            | III.B.2                | 0.00  | -0.31   | -0.54                   | -1.03     | -0.77  |
| XF1205   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.18   | -0.33                   | -0.61     | -1.15  |
| XF1206   | 50S ribosomal protein L28                            | rpmB            | III.B.2                | 0.00  | -0.17   | -0.29                   | -0.45     | -1.28  |
| XF1207   | 50S ribosomal protein L33                            | rpmG            | III.B.2                | 0.00  | -0.19   | -0.45                   | -0.64     | -1.76  |
| XF1210   | glutathione S-transferase                            | gst             | VII.C                  | 0.00  | -0.06   | -0.12                   | -0.98     | -1.28  |
| XF1241   | aconitate hydratase 1                                | acnA            | I.D                    | 0.00  | -0.60   | -0.47                   | -1.11     | -1.32  |
| XF1256   | hypothetical protein                                 |                 | VIII.B                 | 0.00  | -0.17   | -0.67                   | -0.69     | -0.95  |
| XF1262   | 7,8-dihydro-8-oxoguanine-triphosphatase              | mutX            | III.A.4                | 0.00  | -0.16   | -0.40                   | -1.15     | -1.53  |
| XF1287   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.02   | -0.06                   | 0.41      | -1.10  |
| XF1368   | adenine-specific methylase                           | hl1201          | III.A.5                | 0.00  | -0.14   | -0.16                   | -1.19     | -1.40  |
| XF1385   | glycine decarboxylase                                | gcvP            | I.B.10                 | 0.00  | -0.31   | -0.48                   | -0.71     | -0.77  |
| XF1485   | heat shock protein                                   | hsIU            | III.C.3                | 0.00  | 0.05    | -0.33                   | -0.97     | -1.50  |
| XF1487   | ubiquinone/menaquinone transferase                   | ubiE            | II.D.11                | 0.00  | -0.01   | -0.12                   | -0.56     | -0.89  |
| XF1502   | RNA polymerase omega subunit                         | rpoZ            | III.B.5                | 0.00  | 0.07    | -0.06                   | -0.99     | -1.03  |
| XF1679   | plasmid-related protein                              | traN            | VI.B                   | 0.00  | 0.04    | -0.43                   | -1.02     | -1.29  |
| XF1721   | putative transcriptional regulator (LysR family)     |                 | I.D                    | 0.00  | -0.60   | -1.00                   | -0.80     | 0.30   |
| XF1775   | reverse transcriptase                                | IS629           | VI.C                   | 0.00  | -1.59   | -3.09                   | 0.53      | -1.06  |
| XF1783   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.36   | -0.93                   | -1.77     | -1.24  |
| XF2118   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.50   | -0.55                   | -1.40     | -0.05  |
| XF2141   | ABC transporter phosphate binding protein            | phoX            | V.A.2                  | 0.00  | 0.08    | 0.06                    | -2.05     | -1.86  |
| XF2222   | histidyl-tRNA synthetase                             | hisS            | III.B.4                | 0.00  | -0.27   | -0.18                   | -1.27     | -1.66  |
| XF2233   | DnaJ protein                                         | dnaJ            | III.C.2                | 0.00  | -0.11   | 0.00                    | -1.05     | -1.69  |
| XF2234   | low molecular weight heat shock protein              | hspA            | VII.G                  | 0.00  | -0.12   | -0.28                   | -0.95     | -2.05  |
| XF2241   | periplasmic protease                                 | mucD            | III.C.3                | 0.00  | -0.11   | 0.22                    | -1.40     | -0.55  |
| XF2252   | predicted membrane protein                           |                 | IV.A.1                 | 0.00  | -0.50   | -0.94                   | 0.12      | 0.21   |
| XF2339   | DnaJ protein                                         | dnaJ            | III.C.2                | 0.00  | 0.00    | -0.11                   | -1.74     | -2.53  |
| XF2340   | DnaK protein                                         | dnaK            | III.C.2                | 0.00  | 0.04    | -0.06                   | -2.07     | -2.53  |
| XF2341   | heat shock protein GrpE                              | grpE            | III.C.2                | 0.00  | 0.02    | -0.29                   | -2.65     | -2.95  |
| XF2409   | DNA helicase                                         | 37              | III.A                  | 0.00  | -1.33   | -1.75                   | -0.50     | -0.68  |
| XF2423   | 50S ribosomal protein L27                            | rpmA            | III.B.2                | 0.00  | -0.12   | -0.11                   | -1.19     | -1.47  |
| XF2424   | 50S ribosomal protein L21                            | rpIU            | III.B.2                | 0.00  | -0.17   | -0.56                   | -1.53     | -1.44  |
| XF2542   | fimbrial protein                                     | r               | IV.D                   | 0.00  | 0.15    | 0.52                    | -2.94     | -3.89  |
| XF2543   | hypothetical protein                                 |                 | VIII.B                 | 0.00  | -0.15   | -0.34                   | -1.00     | -0.89  |
| XF2580   | 30S ribosomal protein S2                             | rpsB            | III.B.2                | 0.00  | 0.02    | 0.26                    | -0.48     | -1.33  |
| XF2587   | conserved hypothetical protein                       |                 | VIII.A                 | 0.00  | -0.06   | -0.23                   | -1.38     | -1.32  |
| XF2591   | polyphosphate kinase                                 | ppk             | I.B.9                  | 0.00  | -0.03   | 0.26                    | -0.68     | -1.12  |
| XF2651   | putative RNA methylase                               | ρμ              | III.B                  | 0.00  | -0.11   | -0.24                   | -1.05     | -0.63  |
| XF2742   | type I restriction-modification system DNA methylase | hsdM            | III.A.5                | 0.00  | -0.15   | -0.12                   | -1.53     | -1.90  |

**Tabela S12**: Prováveis promotores dependentes de  $\sigma^{70}$ , encontrados pela análise *in silico* nos genes induzidos pelo choque salino e osmótico. A posição +1 corresponde ao códon de início da tradução.

| Gene.ID          | Produto                                                               | Nome do gene | Categoria<br>funcional | -35              | Espaça<br>mento | -10              | Pontuação    | nício -35   | Início -10  |
|------------------|-----------------------------------------------------------------------|--------------|------------------------|------------------|-----------------|------------------|--------------|-------------|-------------|
| XF0112           | hypothetical protein                                                  |              | VIII.B                 | TGGACC           | 17              | CAAACT           | 1.45         | -166        | -143        |
| XF0169           | tyrosyl-tRNA synthetase                                               | tyrS         | III.B.4                | CTGCAA           | 18              | TAACAT           | 2.32         | -176        | -152        |
| XF0195           | hypothetical protein                                                  |              | VIII.B                 | TTGTTA           | 18              | TATTCT           | 2.63         | -183        | -159        |
| XF0234           | N utilization substance protein A                                     |              | III.B.5                | TTGAGC           | 16              | CAACAT           | 1.26         | -175        | -153        |
| XF0250           | conserved hypothetical protein                                        |              | VIII.A                 | TTCGGA           | 18              | TAGGGT           | 1.12         | -83         | -59         |
| XF0300           | acriflavin resistance protein                                         |              | VII.C                  | CTCACT           | 18<br>17        | TTGAAT           | 1.92         | -174        | -150        |
| XF0323<br>XF0324 | two-component system, sensor protein periplasmic iron-binding protein | afuA         | I.D<br>V.A.4           | GTCACT<br>TTGTTA | 17<br>17        | TCTCAT<br>CATCGT | 1.06<br>1.49 | -55<br>-103 | -32<br>-80  |
| XF0337           | hypothetical protein                                                  | aiuA         | V.A.4<br>VIII.B        | CTCACA           | 16              | TATACT           | 3.24         | -44         | -22         |
| XF0338           | conserved hypothetical protein                                        |              | VIII.A                 | TAGTAT           | 16              | TAAGAT           | 1.87         | -55         | -33         |
| XF0390           | two-component system, sensor protein                                  |              | I.D                    | TTGAGA           | 17              | TATCGT           | 2.99         | -71         | -48         |
| XF0391           | hypothetical protein                                                  |              | VIII.B                 | TTTAAT           | 16              | TTTAAT           | 2.06         | -114        | -92         |
| XF0490           | conserved hypothetical protein                                        |              | VIII.A                 | CTGTCC           | 17              | GACATT           | 0.64         | -55         | -32         |
| XF0493           | conserved hypothetical protein                                        |              | VIII.A                 | TTGACA           | 18              | TAAATT           | 4.29         | -84         | -60         |
| XF0501           | conserved hypothetical protein                                        | ydaS         | VIII.A                 | TTGCCT           | 16              | AAGAAT           | 2.03         | -59         | -37         |
| XF0529           | conserved hypothetical protein                                        |              | VIII.A                 | TTGGAT           | 17              | GAAGTT           | 1.29         | -108        | -85         |
| XF0531           | conserved hypothetical protein                                        |              | VIII.A                 | TTTAAA           | 17              | TTTAAT           | 2.46         | -55         | -32         |
| XF0533           | conserved hypothetical protein                                        |              | VIII.A                 | TTGACA           | 18              | CTTAAT           | 2.90         | -62         | -38         |
| XF0534           | conserved hypothetical protein                                        |              | VIII.A                 | TTGATT           | 16              | CATCGT           | 1.61         | -51         | -29         |
| XF0663           | conserved hypothetical protein                                        |              | VIII.A                 | TTGAGG           | 18              | TATGTC           | 1.58         | -99         | -75         |
| XF0666           | conserved hypothetical protein                                        |              | VIII.A                 | GTGCCT           | 17              | TCTATT           | 1.42         | -79         | -56         |
| XF0705           | phage-related protein                                                 |              | VI.A                   | CTGTCT           | 16              | TTAATT           | 1.25         | -124        | -102        |
| XF0765           | YeeE/YedE integral membrane protein                                   |              | IX                     | GTGACG           | 17              | GACGAT           | 1.81         | -194        | -171        |
| XF0766<br>XF0768 | YeeE/YedE integral membrane protein Beta-lactamase-like               |              | IX<br>VII.C            | CTGGCA<br>TTGACT | 16<br>18        | CAATAT<br>TATATT | 1.56<br>4.24 | -118<br>-60 | -96<br>-36  |
| XF0786           | conserved hypothetical protein                                        |              | VII.C<br>VIII.A        | TTGACT           | 18              | CAGTAT           | 1.90         | -60<br>-157 | -30<br>-133 |
| XF0787           | conserved hypothetical protein                                        |              | VIII.A                 | TTTCCT           | 16              | TATGAT           | 2.74         | -132        | -110        |
| XF0811           | predicted methyltransferase                                           |              | III.                   | GTGTCG           | 18              | TATACC           | 1.95         | -185        | -161        |
| XF0966           | type 4 fimbrial biogenesis protein                                    |              | IV.D                   | ATGAAA           | 18              | CAAAAT           | 1.79         | -106        | -82         |
| XF1021           | acyl-CoA thioesterase II                                              | tesB         | IX                     | TTCAGA           | 18              | TATGAT           | 2.85         | -57         | -33         |
| XF1032           | hypothetical protein                                                  |              | VIII.B                 | GTGATA           | 18              | GATAAT           | 2.26         | -43         | -19         |
| XF1185           | conserved hypothetical protein                                        |              | VIII.A                 | TTGTCA           | 17              | TATGGT           | 3.56         | -185        | -162        |
|                  | colicin V secretion ABC transporter ATP-binding                       |              | =                      |                  |                 |                  |              |             |             |
| XF1220           | protein                                                               | cvaB         | VII.C                  | TACTCA           | 16              | TAAAAT           | 2.41         | -46         | -24         |
| XF1361           | Beta-lactamase-like                                                   |              | VII.C                  | TTGATG           | 18              | TACAGT           | 2.57         | -109        | -85         |
| XF1396<br>XF1397 | hypothetical protein 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-    |              | VIII.B<br>II.D.11      | TTGAAC           | 18              | CACATT           | 1.96         | -92<br>-74  | -68         |
| XF1491           | benzoquinol methylase / ubiG<br>hypothetical protein                  |              | ۱۱.۵.۱۱<br>VIII.B      | TTGGAAC          | 16<br>18        | TATTTT           | 2.46<br>2.81 | -74<br>-138 | -52<br>-114 |
| XF1493           | virulence regulator                                                   | xrvA         | VIII.B<br>VII.H        | TATCCA           | 16              | TATACT           | 2.36         | -136<br>-71 | -49         |
| XF1513           | conserved hypothetical protein                                        | AIVA         | VIII.A                 | TTCCCA           | 16              | GAAAAT           | 2.42         | -83         | -61         |
| XF1589           | plasmid stabilization protein                                         | y4jK         | VII.B                  | TTCGCA           | 16              | TACCCT           | 2.23         | -119        | -97         |
| XF1590           | plasmid stabilization protein                                         | y4jJ         | VI.B                   | ATGGCA           | 18              | TAAAAT           | 2.51         | -56         | -32         |
| XF1591           | phage related protein                                                 | , ,-         | VI.A                   | TTGAAT           | 16              | TAGGCT           | 3.04         | -67         | -45         |
| XF1594           | putative phage related protein                                        |              | VI.A                   | GTGATG           | 17              | TACGGT           | 1.27         | -71         | -48         |
| XF1661           | conserved hypothetical protein                                        |              | VIII.A                 | TTTTAA           | 18              | GATCTT           | 1.11         | -138        | -114        |
| XF1707           | conserved hypothetical protein                                        |              | VIII.A                 | TTGCAG           | 18              | GATTTT           | 1.55         | -147        | -123        |
| XF1708           | putative plasmid maintenance system antidote protein, XRE family      |              | VI.B                   | CTGACG           | 18              | TGAAAT           | 1.57         | -194        | -170        |
| XF1709           | plasmid maintenance system killer                                     |              | VI.B                   | TTGAAA           | 17              | TACCCT           | 3.24         | -65         | -42         |
| XF1756           | conserved hypothetical protein                                        |              | VIII.A                 | TGGACC           | 16              | TTTCGT           | 0.58         | -179        | -157        |
| XF1780           | conserved hypothetical protein                                        |              | VIII.A                 | CTGACT           | 17              | GAAGCT           | 1.78         | -60         | -37         |
| XF1798           | conserved hypothetical protein                                        |              | VIII.A                 | GTGATT           | 18              | GAAGAT           | 1.04         | -134        | -110        |
| XF1804           | site-specific DNA-methyltransferase                                   | sphIM        | III.A.5                | TCGTCT           | 17              | CATATT           | 1.34         | -75         | -52         |
| XF1814           | conserved hypothetical protein                                        |              | VIII.A                 | TTCCCC           | 17<br>16        | TTGATT           | 0.56         | -104        | -81<br>40   |
| XF1860<br>XF1868 | conserved hypothetical protein conserved hypothetical protein         |              | VIII.A<br>VIII.A       | CTCACG<br>CTGTTA | 16<br>17        | TATTTT<br>TATCAT | 1.90<br>2.11 | -71<br>-142 | -49<br>-119 |
| XF1877           | conserved hypothetical protein                                        |              | VIII.A                 | GTGCCA           | 17              | TTTAGT           | 1.96         | -85         | -62         |
| XF1914           | anthranilate synthase component I                                     | trpE         | II.A.4                 | TTGAAT           | 18              | TACCAT           | 3.06         | -66         | -42         |
| XF1915           | anthranilate synthase component II                                    | trpG         | II.A.4                 | TTCACA           | 16              | TAAAGC           | 2.22         | -49         | -27         |
| XF1916           | coenzyme F390 synthetase                                              | af1671       | II.D.17                | TTGATA           | 18              | TATACT           | 3.87         | -52         | -28         |
| XF1917           | conserved hypothetical protein                                        |              | VIII.A                 | TTGTCA           | 17              | TAGAAG           | 2.41         | -168        | -145        |
| XF1918           | conserved hypothetical protein                                        |              | VIII.A                 | TTCAGT           | 16              | CATATT           | 1.51         | -94         | -72         |
| XF1919           | iron-sulfur flavoprotein                                              |              | IX                     | GTGCTA           | 16              | CATAAT           | 1.78         | -97         | -75         |
| XF1938           | hypothetical protein                                                  |              | VIII.B                 | ATGAAA           | 17              | CATTAT           | 1.42         | -181        | -158        |
| XF1973           | conserved hypothetical protein                                        |              | VIII.A                 | CTTAAA           | 16              | TAATAT           | 1.79         | -80         | -58         |
| XF1974           | hypothetical protein                                                  |              | VIII.B                 | GTCACG           | 16              | TTAAGT           | 1.00         | -52         | -30         |
| XF1977           | hypothetical protein                                                  |              | VIII.B                 | CTGGCG           | 16              | CACACT           | 1.42         | -70         | -48         |
| XF1991           | hypothetical protein                                                  |              | VIII.B                 | CGGACT           | 16              | TATGAT           | 2.18         | -157        | -135        |
|                  |                                                                       |              |                        |                  |                 |                  |              |             |             |

| Gene.ID | Produto                                             | Nome do<br>gene | Categoria funcional |        | Espaça<br>mento |        | Pontuação | nício -35    | Início -10   |
|---------|-----------------------------------------------------|-----------------|---------------------|--------|-----------------|--------|-----------|--------------|--------------|
| XF2034  | hypothetical protein                                |                 | VIII.B              | GTGGCA | 16              | TATGAA | 1.49      | -143         | -121         |
| XF2037  | conserved hypothetical protein                      | bioF2           | VIII.A              | GAGCCA | 16              | GATCGT | 0.57      | -104         | -82          |
| XF2064  | hypothetical protein                                |                 | VIII.B              | GTGAAA | 17              | TAGGCT | 2.62      | -84          | -61          |
| XF2065  | hypothetical protein                                |                 | VIII.B              | GTGACA | 17              | CAAGCT | 2.30      | -112         | -89          |
| XF2068  | conserved hypothetical protein                      |                 | VIII.A              | TTGCAT | 17              | CACAAT | 2.16      | -60          | -37          |
| XF2078  | hypothetical protein                                |                 | VIII.B              | CTGTAA | 18              | GATAAT | 2.25      | -65          | -41          |
| XF2079  | conjugal transfer protein                           |                 | VI.B                | TTGCCA | 18              | TATTTT | 3.38      | -135         | -111         |
| XF2085  | transcriptional regulator (AcrR family)             |                 | I.D                 | TTTGCG | 17              | TAAAAT | 2.77      | -81          | -58          |
| XF2110  | hypothetical protein                                |                 | VIII.B              | TTGGCG | 18              | TACAAA | 1.80      | -46          | -22          |
| XF2111  | conserved hypothetical protein                      |                 | VIII.A              | TTGGTG | 17              | TAAAAT | 2.71      | -48          | -25          |
| XF2112  | conserved hypothetical protein                      |                 | VIII.A              | TTTACT | 16              | TTTGAT | 2.02      | -132         | -110         |
| XF2113  | conserved hypothetical protein                      |                 | VIII.A              | TTCGCT | 18              | TTTGGT | 0.98      | -154         | -130         |
| XF2114  | phage related protein                               |                 | VI.A                | CTCACT | 18              | GACGCT | 0.72      | -188         | -164         |
| XF2122  | Zn-finger, CHC2 type                                |                 | III.A               | CAGCCA | 18              | TACATC | 0.36      | -154         | -130         |
| XF2198  | conserved hypothetical protein                      |                 | VIII.A              | TTTCCA | 18              | TAATAT | 2.56      | -42          | -18          |
| XF2257  | predicted membrane protein                          | yebN            | IV.A.1              | TTGATT | 16              | TACACT | 2.86      | -101         | -79          |
| XF2258  | conserved hypothetical protein                      |                 | VIII.A              | TTGAAG | 18              | CAGAAT | 2.81      | -118         | -94          |
| XF2307  | conserved hypothetical protein                      |                 | VIII.A              | CTGATG | 17              | TAAAAT | 2.51      | -117         | -94          |
| XF2382  | conserved hypothetical protein                      |                 | VIII.A              | TTCTCT | 17              | GATAGT | 1.84      | -183         | -160         |
| XF2390  | putative oxidoreductase protein                     |                 | I.C                 | GTGGCA | 17              | TATCCT | 2.81      | -98          | -75          |
| XF2392  | autolytic lysozyme                                  | lyc             | IV.A.2              | TTCAAA | 17              | TAAGTT | 2.59      | -128         | -105         |
| XF2439  | cytidylate kinase                                   | cmkA            | II.B.2              | TTGAAG | 16              | TATAGC | 2.53      | -89          | -67          |
| XF2451  | conserved hypothetical protein                      | ypuG            | VIII.A              | TTGACC | 16              | TTTGAT | 2.40      | -153         | -131         |
| XF2514  | conserved hypothetical protein                      |                 | VIII.A              | TTGACA | 17              | TAATTT | 3.58      | -82          | -59          |
| XF2518  | conserved hypothetical protein                      |                 | VIII.A              | TACACG | 18              | AAAACT | 0.74      | -173         | -149         |
| XF2519  | conserved hypothetical protein                      |                 | VIII.A              | TTTCAT | 17              | TAACCC | 0.40      | -57          | -34          |
| XF2718  | conserved hypothetical protein                      |                 | VIII.A              | TTTTGA | 16              | CAGAAT | 1.16      | -61          | -39          |
| XF2762  | phage related protein                               |                 | VI.A                | GTGCCG | 17              | TCTCCT | 1.11      | -111         | -88          |
| XF2781  | ribonuclease P                                      | rnpA            | III.B.4             | TAGTAA | 16              | GATCAT | 1.49      | -152         | -130         |
| XFa0002 | conjugal transfer protein                           | virB1           | VI.B                | TTGCTA | 18              | TATATT | 3.08      | -77          | -53          |
|         | topoisomerase I                                     | topA            | III.A.1             | TTCTCC | 18              | TACGTT | 1.26      | -184         | -160         |
|         | hypothetical protein                                |                 | VIII.B              | ATGACG | 18              | TATAAC | 1.93      | -74          | -50          |
|         | conjugal transfer protein                           | virB2           | VI.B                | CTGTCT | 18              | TATGGC | 1.07      | -189         | -165         |
|         | site-specific recombinase                           | rin             | III.A.3             | TTGCGC | 16              | TAGCCT | 1.27      | -82          | -60          |
|         | conserved hypothetical protein                      |                 | VIII.A              | CTGGCA | 17              | CAGGTT | 1.15      | -79          | -56          |
|         | hypothetical protein                                |                 | VIII.B              | ATGGCA | 18              | TATCTC | 0.58      | -146         | -122         |
|         | conserved hypothetical protein                      |                 | VIII.A              | TTGCAG | 17              | TATAAA | 2.10      | -70          | -47          |
|         | conserved hypothetical protein                      |                 | VIII.A              | TTTACA | 18              | TACAAT | 3.54      | -41          | -17          |
|         | plasmid maintenance protein                         | pemK            | VI.B                | TAGGCA | 17              | TTCATT | 1.06      | -156         | -133         |
|         | conserved hypothetical protein                      | pomit           | VIII.A              | TTGAAA | 16              | TACATT | 3.58      | -195         | -173         |
|         | hypothetical protein                                |                 | VIII.B              | TTGAAC | 17              | GAGGCT | 1.46      | -159         | -136         |
|         | hypothetical protein                                |                 | VIII.B              | CTGAGA | 16              | TAAAAT | 2.91      | -152         | -130         |
|         | conserved hypothetical protein                      |                 | VIII.A              | TCGCCA | 16              | GAACAT | 1.20      | -78          | -56          |
|         | conjugal transfer protein                           | trbN            | VII.A               | TGGCAG | 18              | TTGCAT | 0.21      | -181         | -157         |
|         | conjugal transfer protein                           | trbL            | VI.B<br>VI.B        | TAGTCA | 17              | AATACT | 1.71      | -181         | -157         |
|         | conserved hypothetical protein                      | UDL             | VIII.A              | TTGAAC | 18              | GAAAAT | 2.34      | -161<br>-95  | -71          |
|         | predicted transcriptional regulator                 |                 | I.D                 | TTAAAG | 16              | AAGACT | 0.22      | -93<br>-174  | -7 i<br>-152 |
|         | putative mobillisation protein                      | mobC            | VI.B                | TTTACA | 18              | TACGTT | 2.59      | -174         | -132<br>-76  |
|         | hypothetical protein                                | HODE            | VII.B               | TTGACA | 17              | CATAAT | 4.15      | -61          | -76          |
|         | stability partitioning determinant                  | stbB            | VIII.B<br>VI.B      | TCGACA | 16              | CATAAT | 1.92      | -180         | -36<br>-158  |
|         |                                                     | งเมอ            | VII.B<br>VIII.B     |        |                 |        | 1.65      |              | -156<br>-36  |
|         | hypothetical protein                                | uanD.           |                     | GTCACG | 18<br>17        | GATATT |           | -60          |              |
|         | virulence-associated protein D hypothetical protein | vapD            | VII.H               | TTGTCT | 17<br>17        | GAAAAT | 1.98      | -128<br>-114 | -105<br>-01  |
|         |                                                     |                 | VIII.B              | TTGGCC | 17<br>17        | GAAAAT | 2.11      | -114<br>169  | -91          |
|         | conserved hypothetical protein                      | !! A            | VIII.A              | TTTAAG | 17              | CATAAT | 1.57      | -168         | -145         |
|         | conserved hypothetical protein                      | ydiA            | VIII.A              | TTGACA | 17              | CATCAT | 4.15      | -88<br>476   | -65          |
|         | plasmid replication/partition protein               | spoOJ           | VI.B                | TTGCGA | 17              | CATCAT | 2.04      | -176         | -153         |
|         | plasmid replication protein                         | incC            | VI.B                | TTGACA | 17              | TAGAAT | 4.58      | -60          | -37          |
|         | conserved hypothetical protein                      |                 | VIII.A              | CTGTAA | 17              | AAGAAT | 1.14      | -82          | -59          |
| AF00002 | hypothetical protein                                |                 | VIII.B              | ATGACC | 18              | TCTATT | 0.62      | -55          | -31          |

## **CURRICULUM VITAE**

**NOME**: Tie Koide

LOCAL E DATA DE NASCIMENTO: São Paulo, SP, 15 de outubro de 1979

# **EDUCAÇÃO**

Colégio Liceu Pasteur - São Paulo - SP - 1997

Universidade de São Paulo - São Paulo - SP - 2001 Bacharelado em Ciências Moleculares

## **OCUPAÇÃO**

Bolsista de doutorado FAPESP – 2002 a 2006

## **PUBLICAÇÕES**

DA SILVA NETO, J.F.; KOIDE, T.; GOMES, S.L.; MARQUES, M.V. The single ECF sigma factor of *Xylella fastidiosa* is involved in the heat shock response and presents an unusual regulatory mechanism. Submetido.

KOIDE, T.; VENCIO, R.Z.; GOMES, S.L. Global gene expression analysis of the heat shock response in the phytopathogen *Xylella fastidiosa*. **J Bacteriol**, no prelo.

KOIDE, T.; SALEM-IZACC, S.M.; GOMES, S.L.; VENCIO, R.Z. SpotWhatR: a user-friendly microarray data analysis system. **Genet Mol Res**, v. 5, p. 93-107, 2006.

VENCIO, R.Z.; KOIDE, T.; GOMES, S.L.; PEREIRA, C.A. BayGO: Bayesian analysis of ontology term enrichment in microarray data. **BMC Bioinformatics**, v. 7, n. 1, p. 86, 2006.

- VENCIO, R.Z.; KOIDE, T. HTself: Self-Self Based Statistical Test for Low Replication Microarray Studies. **DNA Res**, v. 12, n. 3, p. 211-214, 2005.
- KOIDE, T.; ZAINI, P.A.; MOREIRA, L.M.; VENCIO, R.Z.; MATSUKUMA, A.Y.; DURHAM, A.M.; TEIXEIRA, D.C.; EL-DORRY, H.; MONTEIRO, P.B.; DA SILVA, A.C.; VERJOVSKI-ALMEIDA, S.; DA SILVA, A.M.; GOMES, S.L. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of *Xylella fastidiosa* delineates genes important for bacterial virulence. **J Bacteriol**, v. 186, n. 16, p. 5442-5449, 2004.
- KOIDE, T.; DA SILVA NETO, J.F.; GOMES, S.L.; MARQUES, M.V. Insertional transposon mutagenesis in the *Xylella fastidiosa* Citrus Variegated Chlorosis strain with transposome. **Curr Microbiol**, v. 48, n. 4, p. 247-250, 2004.
- DA SILVA NETO, J.F.; KOIDE, T.; GOMES, S.L.; MARQUES, M.V. Site-directed gene disruption in *Xylella fastidiosa*. **FEMS Microbiol Lett**, v. 210, n. 1, p. 105-110, 2002.