Dissertação de Mestrado
Rômulo Augusto Ando
Orientador: Paulo Sérgio Santos

Espectroscopia Vibracional, Raman Ressonante e Eletrônica de Nitroderivados em Sistemas Conjugados

São Paulo
2005
Espectroscopia Vibracional, Raman Ressonante e Eletrônica de Nitroderivados em Sistemas Conjugados

Dissertação de Mestrado

Rômulo Augusto Ando

Orientador: Paulo Sérgio Santos

São Paulo
2005
Para meus pais, Maurício e Sueli,
pelo amor e pela confiança
em todos os momentos de minha vida
Agradecimentos

Ao Prof. Dr. Paulo Sérgio Santos pela orientação, ensinamentos, dedicação e principalmente pela amizade.

Ao Prof. Dr. Oswaldo Sala, a quem tenho muito carinho por ter me passado além dos conceitos de espectroscopia, vontade e curiosidade necessárias para fazer ciência.

Aos professores do Laboratório de Espectroscopia Molecular (LEM), Yoshio Kawano, Dalva L. A. Faria, Mauro C.C. Ribeiro, Paola Corio e especialmente à Prof. Dra. Márcia L.A. Temperini pela preocupação constante em manter no LEM as melhores condições para a realização de nosso trabalho.

À Daniela Colevati Ferreira por toda ajuda e compreensão.

Ao Paulinho, Nivaldo e D. Elzita pela grande amizade e pelos serviços prestados.

Ao Prof. Dr. Manfredo Horner da Universidade Federal de Santa Maria (UFSM) por nos fornecer os nitrofeniltriazenos.

Ao CNPq pelo apoio financeiro.
ÍNDICE

Resumo ...1
Summary ...2
Objetivos ...3
Preliminares ..4

1. INTRODUÇÃO ...6
1.1. Espectroscopia Vibracional – Aspectos Gerais ..6
 1.1.1. Espectroscopia de absorção no infravermelho (IR)6
 1.1.2. O efeito Raman ..10
 1.1.3. Polarizabilidade eletrônica molecular ...11
 1.1.4. Aproximação de Placzek ...13
 1.1.5. Formalismo de Albrecht para o efeito Raman ressonante15
1.2. Espectroscopia Raman – Aplicações ..18

2. PARTE EXPERIMENTAL ..30
2.1. Materiais e reagentes ...30
2.2. Instrumentação, preparação de amostras e obtenção de espectros32
 2.2.1. Amostras em solução ..32
 2.2.1.a. Observações gerais relativas a protonação e desprotonação das espécies investigadas .. 34
 2.2.2. Amostras sólidas ...35
2.3. Análise dos espectros e tratamento dos dados ..36

3. RESULTADOS E DISCUSSÃO ..37
3.1. Nitrobenzeno ...40
3.2. NITROANILINAS ..43
 3.2.1. Orto, Meta e Para-Nitroanilina ..43
 3.2.2. Orto-nitroanilina (2-nitroanilina) ...48
 3.2.2.1. Espectroscopia vibracional Raman e Infravermelho da orto-nitroanilina no estado sólido ... 48
3.2.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante da orto-nitroanilina em solução de acetonitrila... 52

3.2.3. Para-nitroanilina (4-nitroanilina)

3.2.3.1. Espectroscopia vibracional Raman e Infravermelho da para-nitroanilina no estado sólido.. 56
3.2.3.2. Espectroscopia eletrônica, vibracional e Raman ressonante da para-nitroanilina em solução de acetonitrila... 59

3.2.4. 2,4-dinitroanilina

3.2.4.1. Espectroscopia vibracional Raman e Infravermelho da 2,4-dinitroanilina no estado sólido.. 66
3.2.4.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2,4-dinitroanilina em meio metanólico neutro e básico.......................... 68

3.2.5. Conclusões parciais.. 72

3.3. NITROFENOIS

3.3.1. Orto-nitrofenol (2-nitrofenol)

3.3.1.1. Espectroscopia vibracional Raman e Infravermelho do orto-nitrofenol e do orto-nitrofenolato de potássio no estado sólido......................... 73
3.3.1.2. Espectroscopia eletrônica, vibracional e Raman ressonante do orto-nitrofenol em meio aquoso ácido e básico... 76

3.3.2. Para-nitrofenol (4-nitrofenol)

3.3.2.1. Espectroscopia vibracional Raman e Infravermelho do para-nitrofenol e do orto-nitrofenolato de potássio no estado sólido........ 80
3.3.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante do para-nitrofenol em meio aquoso ácido e básico...................................... 83

3.3.3. 2,4-dinitrofenol

3.3.3.1. Espectroscopia vibracional Raman e Infravermelho do 2,4-dinitrofenol e do 2,4-dinitrofenolato de potássio no estado sólido... 88
3.3.3.2. Espectroscopia eletrônica, vibracional e Raman ressonante do 2,4-dinitrofenol em meio aquoso ácido e básico.. 91

3.3.4. Conclusões parciais.. 94

3.4. NITROPIRIDINAS

3.4.1. 2-amino-3-nitropiridina

3.4.1.1. Espectroscopia vibracional Raman e Infravermelho da 2-amino-3-nitropiridina no estado sólido... 95
3.4.1.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-amino-3-nitropiridina em meio aquoso neutro e em metóxido de sódio.. 97

3.4.2. 2-amino-5-nitropiridina.. 100
3.4.2.1. Espectroscopia vibracional Raman e Infra-vermelho da 2-amino-5-nitropiridina no estado sólido...100
3.4.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-amino-5-nitropiridina em meio aquoso e em metóxido de sódio..102

3.4.3. 2-hidróxi-3-nitropiridina ...105
3.3.1.1. Espectroscopia vibracional Raman e Infra-vermelho da 2-hidróxi-3-nitropiridina e de seu sal de potássio no estado sólido......................... 105
3.3.1.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-hidróxi-3-nitropiridina em meio aquoso ácido e básico...................... 108

3.4.4. 2-hidróxi-5-nitropiridina ...109
3.4.2.1. Espectroscopia vibracional Raman e Infra-vermelho da 2-hidróxi-5-nitropiridina e de seu sal de potássio no estado sólido................. 110
3.4.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-hidróxi-5-nitropiridina em meio aquoso ácido e básico.................. 113

3.4.5. Conclusões parciais...115

3.5. NITROFENILTRIAZENOS..116
3.5.1. 1,3-bis-(2-nitrofenil)triazeno ..117
3.5.1.1. Espectroscopia vibracional Raman e Infra-vermelho do 1,3-bis-(2-nitrofenil)triazeno e de seu sal de potássio no estado sólido........... 117
3.5.1.2. Espectroscopia eletrônica, vibracional e Raman ressonante do 1,3-bis(2-nitrofenil)triazeno em meio metanólico neutro e básico........ 120
3.5.2. 1,3-bis-(4-nitrofenil)triazeno ..124
3.5.1.1. Espectroscopia vibracional Raman e Infra-vermelho do 1,3-bis-(4-nitrofenil)triazeno e de seu sal de potássio no estado sólido........... 124
3.5.1.2. Espectroscopia eletrônica, vibracional e Raman ressonante do 1,3-bis(4-nitrofenil)triazeno em meio metanólico neutro e básico........ 127

3.5.3. Conclusões parciais...131

4. CONCLUSÕES...132

5. REFERÊNCIAS BIBLIOGRÁFICAS...133

APÊNDICE I - Modos normais de vibração do benzeno de acordo com Varsanyi ...137
Título: ESPECTROSCOPIA VIBRACIONAL, RAMAN RESSONANTE E ELETRÔNICA DE NITRODERIVADOS EM SISTEMAS CONJUGADOS.

RESUMO

No presente trabalho foram investigados vários sistemas moleculares contemplando um ou mais grupos NO$_2$ com características fortemente elétron atraentes, e por outro lado um grupo fortemente elétron doador (NH$_2$, OH ou N$_3$H) conectados através de um anel benzénico ou piridínico. A caracterização das propriedades de transferência de carga intramolecular (CT) nesses sistemas constitui um dos principais objetivos do trabalho, tendo sido para tanto utilizadas as técnicas de espectroscopia eletrônica, espectroscopia vibracional (Raman e infravermelho) e com grande destaque, a espectroscopia Raman ressonante. Essa investigação permitiu a caracterização dos grupos cromofóricos envolvidos na CT entre os vários substituintes e suas posições relativas. Em vários casos foi possível estender a investigação para as espécies aniónicas obtidas pela desprotonação dos grupos NH$_2$, OH e N$_3$H, quando então se nota mudança abrupta das características da transição de transferência de carga (energia e intensidade), o que por sua vez conduz a uma muito maior deslocalização eletrônica do cromóforo, como revelado pela análise dos espectros de absorção (UV-Vis) e Raman ressonante (RR). No caso de sistemas mais estendidos, como é o caso típico do ânion do 1,3-bis(4-nitrofenil)triazeno os dados de espectroscopia eletrônica e espectroscopia Raman ressonante mostram de maneira clara a presença de duas transições de transferência de carga na região do visível, o que caracteriza um sistema bicromofórico.
SUMMARY

In the present work were investigated molecular systems bearing one or more NO$_2$ groups, with strong electron withdrawing characteristics, in addition to a strong electron donating group (NH$_2$, OH, N$_3$H), connected to a benzene or pyridine ring. The characterization of the intramolecular charge transfer (CT) process in such systems is one of the main objects of this work and for such, electronic spectroscopy, vibrational spectroscopy (Raman and IR) and in special, resonance Raman spectroscopy were used. The study revealed the chromophoric moieties involved in the CT transitions in the several molecules investigated, included the ones where the relative positions of the substituents were changed. In several cases it was possible to extend the study to the anionic species that results from the deprotonation of the NH$_2$, OH and N$_3$H groups, where an abrupt change of the CT transition (energy and intensity) is observed, and what in its turn leads to a much more delocalized chromophore, as revealed by the UV-Vis and resonance Raman spectra. In the case of the more extended systems, as in the typical case of 1,3-bis(4-nitropheyl)triazene anion, the data show clearly the presence of two CT transitions in the visible region, what amounts to the formation of a bichromophoric system.
OBJETIVOS

Os principais objetivos deste trabalho estão resumidos abaixo:

- Caracterizar as transições de transferência de carga intramoleculares presentes numa família de moléculas com características “push-pull”, da qual a molécula de para-nitroanilina é um representante típico;

- Detalhar a atribuição vibracional, com especial atenção para os modos vibracionais pertencentes aos grupos cromofóricos dessas moléculas;

- Investigar as mudanças características das transições de transferência de carga que diferem entre si pelas posições relativas dos substituintes elétron sacadores (NO$_2$) e elétron doadores (NH$_2$, OH ou N$_3$H) no anel benzênico ou piridínico;

- Investigar as mudanças de extensão dos grupos cromofóricos que ocorrem após a desprotonação do grupo elétron doador.
PRELIMINARES

O presente trabalho tem como foco principal a caracterização das transições de transferência de carga intramoleculares numa família de moléculas caracterizadas pela presença de um ou mais grupos NO\(_2\) (como grupo elétron sacador), conectados eletronicamente a grupos elétron doadores (NH\(_2\) ou OH ou N\(_3\)H) através de um núcleo benzênico ou piridínico, contemplando várias posições relativas desses grupos. Isso faz com que essas moléculas tenham características, em maior ou menor extensão de sistemas conhecidos na literatura como “push-pull” e cuja molécula modelo é a para-nitroanilina.

A literatura tratando desses sistemas é bastante extensa em grande parte devido às propriedades ópticas não lineares mostradas por várias moléculas dessa família. Tais propriedades estão diretamente relacionadas aos valores apreciáveis da hiperpolarizabilidade eletrônica (\(\beta\)), que por sua vez está diretamente relacionada com a presença de transições intensas de transferência de carga intramolecular e, como conseqüência, com a formação de estados eletrônicos excitados com grande separação de cargas. Uma outra conseqüência mais fundamental da presença da transição CT nesses sistemas é a existência de bandas de absorção muito fortes e em geral bastante largas na região do visível ou ultravioleta próximo. Essa é essencialmente a razão que explica as cores intensas dos cristais ou soluções de nitroaromáticos contendo substituintes elétron doadores, como é o caso da para-nitroanilina (amarela), orto-nitroanilina (laranjada), 2-amino-5-nitropiridina (amarela), etc.

No espectro vibracional (Raman e infravermelho) dessas espécies destacam-se os modos vibracionais do grupo NO\(_2\), e de alguns modos do anel, que aparecem em números de onda ligeiramente deslocados com relação às moléculas de referência. Assim sendo, se compararmos o estiramento simétrico \(\nu_s(\text{NO}_2)\) no espectro vibracional do nitrobenzeno líquido e no espectro vibracional da para-nitroanilina em solução de acetonitrila, temos 1346 e 1316 cm\(^{-1}\), respectivamente. Esse deslocamento pode ser racionalizado em termos da transferência de carga envolvendo os grupos NH\(_2\) e NO\(_2\) na molécula de para-nitroanilina, desde que se tome a precaução de utilizar solventes nos quais interações como ligações de hidrogênio possam ser descartadas. Por
outro lado nesses sistemas espera-se grande separação de carga nos estados eletrônicos excitados de transferência de carga, o que leva a uma grande polarização das moléculas quando comparamos com a situação que prevalece no estado eletrônico fundamental. Conseqüentemente devemos esperar grandes variações nos parâmetros geométricos (distâncias e ângulos de ligação) dos grupamentos moleculares mais diretamente envolvidos na transição CT. Em última análise devemos esperar nesses sistemas “push-pull” uma grande variação (comparativamente às moléculas de referência) de propriedades moleculares que dependem diretamente das características de distribuição de carga no estado eletrônico excitado, como é o caso por excelência da polarizabilidade de transição e por conseqüência da intensidade Raman associada aos grupos cromofóricos. Na espectroscopia Raman, à medida que a energia de excitação se aproxima da energia da transição CT (efeito Raman ressonante), a intensidade das bandas dos modos vibracionais é ainda mais informativa da natureza dessa transição do que os deslocamentos vibracionais via espectros infravermelho e Raman não ressonante, pois tais deslocamentos refletem características estruturais apenas do estado eletrônico fundamental.

Embora existam vários textos que discutam em detalhe os princípios e aplicações da espectroscopia vibracional (Raman e infravermelho), a maioria desses não enfatiza a conexão da polarizabilidade eletrônica, α, (e por conseqüência da intensidade Raman) com a estrutura eletrônica dos estados fundamental e excitado. Visto que tal conexão representa um dos aspectos centrais do trabalho, acreditamos ser útil a inclusão nesta dissertação, de uma exposição dos aspectos teóricos mais gerais relacionados à polarizabilidade eletrônica molecular e sua conexão com as transições eletrônicas de transferência de carga. Isso é feito, por um lado, para facilitar a leitura por eventuais leitores que não estejam familiarizados com as teorias da espectroscopia Raman, e por outro lado, para tornar a seção de resultados e discussão mais fluente, sem a necessidade de uma repetição dos argumentos teóricos mais relevantes.

Com o objetivo de colocar esses aspectos teóricos dentro de um contexto mais geral, decidimos incluí-los no item 1.1. da introdução (aspectos gerais), onde é feita uma exposição mais abrangente do efeito Raman com
especial destaque para a intensidade Raman, e logo a seguir passando para o caso específico do grupo NO₂, de importância central no presente trabalho. Obviamente muitos dos dados não são originais mas se encontram espalhados num grande número de fontes bibliográficas, tendo sido nossa preocupação reuni-los de uma forma mais sistemática que permite uma visão de conjunto da espectroscopia vibracional e em especial Raman, da família de compostos investigados.

1. INTRODUÇÃO

1.1. Espectroscopia Vibracional – Aspectos Gerais

A espectroscopia vibracional¹ investiga transições vibracionais (ou vibracionais/rotacionais em fase gasosa) com o objetivo de obter informações a respeito da geometria molecular (através do número de modos vibracionais ativos nos espectros Raman e infravermelho), bem como da natureza das ligações químicas presentes na molécula (valores das freqüências vibracionais ou mais propriamente das constantes de força).

As principais técnicas utilizadas são a espectroscopia de absorção no infravermelho (IR), a espectroscopia Raman (espalhamento Raman), e numa extensão muito menor, a espectroscopia de espalhamento de nêutrons. A seguir consideraremos os fundamentos teóricos mais relevantes envolvidos na espectroscopia vibracional tanto através do infravermelho como do efeito Raman.

1.1.1. Espectroscopia de absorção no infravermelho (IR)

Envolve essencialmente a interação ressonante entre fótons na região do infravermelho (IR) e os auto-estados vibracionais da molécula, sendo que a energia do fóton absorvido deve ser igual à diferença de energia entre dois particulares auto-estados: \(h\nu = E_2 - E_1 \).

É uma aproximação quase universal da espectroscopia vibracional o modelo do oscilador harmônico, situação na qual o tratamento quântico impõe
que as transições permitidas em princípio, envolvem níveis de energia vibracionais separados por $\Delta v = \pm 1$. No entanto, numa molécula poliatômica genérica contendo N átomos (e portanto $3N-6$ graus de liberdade vibracionais), nem todos os modos normais de vibração darão origem a transições vibracionais no espectro IR. Isto se deve à existência de uma regra de seleção específica que impõe como condição para a atividade de qualquer modo vibracional no IR, que o mesmo cause a variação do momento de dipolo elétrico da molécula, assim possibilitando o seu acoplamento com o campo elétrico da radiação eletromagnética, ou seja, devemos ter:

$$\left(\frac{\partial \mu}{\partial Q_i} \right)_0 \neq 0$$

onde Q_i é a coordenada normal associada ao i-ésimo modo normal da molécula.

Fica então claro a razão pela qual grupamentos moleculares tais como OH, C=O, C≡N entre outros, dão origem em geral a bandas intensas de absorção no espectro IR. De fato esses grupos apresentam ligações covalentes bastante polarizadas que durante a transição vibracional (envolvendo estiramento ou deformação de ligações) darão origem a valores apreciáveis de $\partial \mu/\partial Q_i$, cujo quadrado é diretamente proporcional à intensidade da correspondente banda de absorção IR.

O parâmetro responsável pela intensidade das transições espectroscópicas, tanto eletrônicas como vibracionais (IR), é o momento de dipolo elétrico de transição. Comparando transições totalmente permitidas eletrônicas e vibracionais observa-se que o momento de transição é muito maior no caso das primeiras. Isto se reflete em valores de absorbividade molar para as transições eletrônicas que ocorrem na região do UV-Vis relativamente às transições vibracionais na região do IR. A título de exemplo consideremos a transição $\pi-\pi^*$ do benzeno na região de 200 nm cuja absorbividade molar é ca. 10^5 mol.L$^{-1}$.cm$^{-1}$, enquanto que a banda mais intensa no espectroIR do benzeno tem uma absorbividade molar da ordem de 10^2 mol.L$^{-1}$.cm$^{-1}$. Experimentalmente isto se reflete, na maioria dos casos, no uso de
concentrações bem maiores no caso do IR para celas de mesmo caminho óptico.

O momento de transição, μ_{nm}, pode ser expresso por:

$$\mu_{nm} = \int_{-\infty}^{+\infty} \psi_n^* \mu \psi_m \, d\tau$$

onde ψ_n e ψ_m representam as funções de onda (vibracionais no caso do IR ou vibrônicas no caso do UV-Vis) que correspondem aos estados inicial e final das respectivas transições, e μ representa o operador de momento de dipolo elétrico. O quadrado do momento de transição, $|\mu_{nm}|^2$, está diretamente relacionado com a chamada absorbividade molar, grandeza que pode ser obtida experimentalmente.

No caso do exemplo considerado, a transição em questão corresponde no caso do espectro UV-Vis do benzeno (Figura 1) à transição $\pi-\pi^*$ totalmente permitida que dá origem a uma banda de absorção muito intensa em torno de 200 nm e cuja absorbividade molar é da ordem de 10^5 mol L$^{-1}$ cm$^{-1}$.

![Figura 1](image)

Figura 1. Espectro de absorção UV-Vis do benzeno líquido puro obtido em cela de quartzo de 0.01 mm de caminho óptico.

Esta transição eletrônica ($\pi-\pi^*$), consequentemente, vai envolver um momento de transição bastante elevado, o que por sua vez pode ser explicado pela substancial mudança na distribuição de carga da molécula ao se ir do estado fundamental para o estado excitado.

No caso de uma transição vibracional no IR, o momento de transição deve ser significativamente menor, pois mesmo a banda mais intensa do espectro IR do benzeno corresponde a uma absorbividade molar
aproximadamente 10^3 vezes menor do que à transição eletrônica analisada anteriormente. Isso pode ser entendido se levarmos em conta que no caso da transição vibracional a diferença de distribuição de carga entre os dois estados vibracionais envolvidos é muito menor que no caso da transição vibrônica, uma vez que no caso do IR as variações de distribuição de carga são causadas pela perturbação introduzida pelos movimentos nucleares. De fato é uma aproximação válida considerar as transições no infravermelho como puramente vibracionais enquanto que no espectro eletrônico (UV-Vis) as transições envolvidas são de natureza vibrônica, ou seja, envolve simultaneamente transições eletrônicas e vibracionais, sendo que os estados vibracionais envolvidos pertencem a dois estados eletrônicos diferentes, como representado esquematicamente abaixo nas Figuras 2 e 3:

![Figura 2. Transição vibracional (IR).](image)

![Figura 3. Transição vibrônica (UV-Vis).](image)

Esta é, portanto a razão que nos permite considerar a espectroscopia no infravermelho como sendo essencialmente vibracional. Não esqueçamos entretanto que a intensidade de uma transição no IR depende do parâmetro $\partial \mu / \partial Q_i$, que por sua vez depende da distribuição de carga no estado eletrônico fundamental da molécula. Caberia então a pergunta: o efeito Raman por sua vez é um efeito puramente vibracional tal como o infravermelho, eletrônico ou vibrônico?

O fato das espectroscopias Raman e IR serem em geral utilizadas conjuntamente na determinação da geometria molecular através do uso da teoria de grupos levam muitas vezes à concepção errônea de que a
espectroscopia Raman seja essencialmente vibracional, tal como no IR. Como veremos no item subsequente esse não é exatamente o caso, embora em situações especiais possa ser considerada uma boa aproximação.

1.1.2. O efeito Raman

Um espectro Raman nos mostra, da mesma maneira que um espectro IR, um conjunto de transições vibracionais da molécula, e o fato dos dois espectros, em geral, não serem idênticos, reflete a existência de diferentes regras de seleção, o que fica mais óbvio no caso de moléculas com maior simetria.

No caso da espectroscopia Raman, além da regra de seleção geral $\Delta v = \pm 1$ válida dentro da aproximação harmônica, devemos considerar a regra de seleção específica:

$$\left(\frac{\partial \alpha}{\partial Q_i}\right)_0 \neq 0$$

onde α representa a polarizabilidade eletrônica molecular.

Uma diferença essencial entre as espectroscopias IR, eletrônica e Raman é que enquanto as duas primeiras envolvem a absorção ressonante de fótons ($h\nu = E_2 - E_1$), na última está envolvido o fenômeno de espalhamento inelástico de fótons. Neste caso devemos considerar a participação de dois fótons sendo que a conservação de energia vai implicar que a diferença de energia entre ambos (fóton incidente e fóton espalhado) deva ser igual à diferença de energia entre dois auto-estados moleculares. Portanto a energia do fóton incidente e do fóton espalhado, individualmente, não corresponde à diferença de energia entre quaisquer auto-estados da molécula. O caso que nos interessa aqui é aquele em que as transições em questão são transições vibracionais, mas tais transições podem ser também entre estados rotacionais, eletrônicos, de spin, etc. Podemos então representar uma transição vibracional Raman de acordo com o esquema apresentado na Figura 4.
É importante notar que o fóton incidente ($h\nu_0$) e o fóton espalhado ($h\nu'$) não devem ser considerados separadamente, pois o espalhamento não pode ser considerado como um processo seqüencial de absorção e emissão, que é o caso da fluorescência. A escala de tempo envolvida no espalhamento Raman é da ordem de femtosegundos (10^{-15} s), e isso implica que pela relação de incerteza $\Delta E \cdot \Delta t \geq \hbar$, a energia do chamado estado virtual (ou intermediário) não precisa satisfazer o princípio de conservação de energia. Esse estado recebe este nome exatamente por essa razão, ou seja, não corresponde a nenhum dos estados estacionários da molécula, na verdade o estado virtual é um auto-estado do sistema molécula + radiação. Neste ponto é importante chamar a atenção para a importância central da polarizabilidade eletrônica do efeito Raman.

1.1.3. Polarizabilidade eletrônica molecular

O efeito Raman envolve a interação do campo elétrico da radiação eletromagnética com a distribuição da nuvem eletrônica molecular, pois usualmente a radiação monocromática utilizada está na região do visível ou ultravioleta, o que corresponde a freqüências relativamente altas, condição na qual apenas os elétrons respondem à excitação. A resposta dos elétrons se
manifesta através da polarizabilidade eletrônica, \(\alpha \). De fato, o campo elétrico oscilante **induz** na molécula um momento de dipolo, \(P \). Esse momento de dipolo induzido pode ser decomposto num componente que oscila com a mesma frequência do campo elétrico e em outros componentes cujas frequências são moduladas pelas frequências vibracionais da molécula.

Podemos considerar a polarizabilidade como uma medida da facilidade de deformação da nuvem eletrônica na presença de um campo elétrico, e assim sendo devemos esperar valores elevados de \(\alpha \) para moléculas contendo átomos pesados (grande número de elétrons e baixo potencial de ionização) envolvendo ligações químicas covalentes pouco polarizadas. Se levarmos em conta as vibrações moleculares, os movimentos nucleares irão induzir flutuações na polarizabilidade com frequências que correspondem aos vários modos normais de vibração. Em outras palavras, na presença de radiação eletromagnética, a polarizabilidade terá o seu valor modulado pela frequência da radiação, bem como pelas frequências das vibrações moleculares. Teremos então uma situação conhecida no âmbito da física ondulatória como um fenômeno de “batimento”. Considerando-se uma molécula diatômica teremos três componentes do momento de dipolo induzido, com dependência temporal que varia com \(\nu_0, \nu_0 + \nu_v \) e \(\nu_0 - \nu_v \) onde \(\nu_v \) corresponde a uma das \(3N-6 \) frequências vibracionais da molécula:

\[
P = \alpha_0 E_0 \cos(2\pi \nu_0 t) + \frac{1}{2} \left(\frac{\partial \alpha}{\partial q} \right)_0 q_0 E_0 \{ \cos[2\pi (\nu_0 + \nu_v) t] + \cos[2\pi (\nu_0 - \nu_v) t] \}
\]

O primeiro termo contém somente a frequência da radiação incidente e corresponde ao espalhamento Rayleigh (espalhamento elástico). No segundo termo aparecem radiações com frequência \(\nu_0 + \nu_v \) (espalhamento anti-Stokes) e \(\nu_0 - \nu_v \) (espalhamento Stokes). Para os dois últimos termos terem contribuição é necessário que \((\partial \alpha / \partial q)_0 \neq 0 \), ou seja, que haja variação da polarizabilidade com o pequeno deslocamento da coordenada \(q \) em torno da posição de equilíbrio. O espalhamento elástico (Rayleigh) e os espalhamentos inelásticos (anti-Stokes e Stokes) podem ser esquematicamente representados como mostra a Figura 5.
Como visto anteriormente a transição Raman envolve, além dos estados vibracionais inicial e final, um conjunto de estados virtuais cujas energias não tem qualquer valor limite. Isto em princípio representaria uma grande dificuldade para o cálculo da intensidade Raman, uma vez que para tal cálculo precisaríamos inicialmente expressar a contribuição de infinitos estados virtuais para a polarizabilidade eletrônica. No magistral tratamento do efeito Raman publicado em 1934, G.Placzek introduz uma aproximação que permite reduzir esse complicado problema a um muito mais simples que envolve apenas a polarizabilidade do estado eletrônico fundamental. Esta aproximação passou a ser conhecida como aproximação de Placzek ou teoria da polarizabilidade do efeito Raman. Dentre as diversas condições implícitas para a validade dessa aproximação devemos destacar aqui aquela que impõe que a energia do fóton de excitação seja muito menor do que a energia correspondente à energia da transição eletrônica mais baixa da molécula. Tal condição é normalmente satisfeita quando trabalhamos com excitação no visível, por exemplo \(\lambda_0 = 500 \) nm (20000 cm\(^{-1}\)), para obter o espectro Raman de uma molécula como o benzeno por exemplo em que a transição eletrônica de menor energia é da ordem de 200 nm (50000 cm\(^{-1}\)). Situações desse tipo correspondem ao assim chamado efeito Raman ordinário ou efeito Raman normal, denominação utilizada para diferenciá-lo do efeito Raman ressonante ou pré-ressonante.

Figura 5. Espalhamento elástico (Rayleigh) e inelástico (Stokes e anti-Stokes).

1.1.4. Aproximação de Placzek
Nesses últimos casos a energia do fóton de excitação é comparável ou mesmo coincidente com a energia de transição elétrônica, o que invalida a aproximação de Placzek.

No efeito Raman normal a polarizabilidade de transição, \(\alpha_{nm} \), pode ser expressa por:

\[
\alpha_{nm} = \frac{1}{\hbar} \sum_{r \neq g} \left[\frac{M_{nr} M_{rm}}{\nu_{rn} - \nu_0} + \frac{M_{nr} M_{rm}}{\nu_{rm} + \nu_0} \right]
\]

onde \(\hbar \) é a constante de Planck, \(r \) denota qualquer nível de um conjunto completo de estados pertencentes à molécula não perturbada, \(\nu_{rn} \) e \(\nu_{rm} \) são as freqüências correspondentes aos diferentes estados denotados pelos subscritos, e \(M_{nr} \) e \(M_{rm} \) são os correspondentes momentos de dipolo de transição. \(\alpha_{nm} \) envolve um conjunto de transições virtuais entre todos os estados com exceção do estado fundamental (note-se que na somatória da equação o mesmo é excluído). Sabemos por outro lado que essa soma pode ser entendida como a representação de um estado que se assemelha muito ao estado que dela foi excluído, ou dito de outro modo, o estado fundamental está sendo expresso como uma combinação linear de todos os outros estados moleculares.

Em resumo, o conjunto de transições virtuais que aparecem na expressão da polarizabilidade de transição pode ser substituído por uma única transição envolvendo o estado fundamental e um estado virtual (resultado da somatória) muito semelhante em termos de propriedades de simetria ao próprio estado fundamental. As transições eletrônicas virtuais envolvidas no efeito Raman ordinário têm todas as características de transições eletrônicas proibidas (momento de dipolo de transição aproximadamente zero), o que em primeira aproximação nos levaria a intensidade Raman nula. Esta é essencialmente a razão que leva a seções de choque Raman extremamente baixas para o efeito Raman (\(\sigma_R \) da ordem de \(10^{-28} \) a \(10^{-30} \) cm\(^2\) mol\(^{-1}\) sr\(^{-1}\)). Quando a energia do fóton de excitação é próxima da energia de uma transição permitida, torna-se necessária a utilização do formalismo vibrônico para o efeito Raman, introduzido por A. C. Albrecht\(^4\).
1.1.5. Formalismo de Albrecht para o efeito Raman ressonante

Em condições de ressonância ou pré-ressonância, os momentos de transição M_{mr} e M_{rn} são expressos utilizando a separação das respectivas funções de onda eletrônicas e vibracionais, o que por sua vez deixa transparente a dependência da polarizabilidade de transição (portanto da intensidade Raman) com as características das curvas potenciais dos estados eletrônicos fundamental e excitado. Neste ponto, na teoria de Albrecht, a contribuição de estados eletrônicos excitados para a polarizabilidade de transição pode ser representada pela soma de vários termos, conhecidos como termos A, B e C de Albrecht. O termo mais importante para o cálculo da intensidade Raman é o termo A, também conhecido como termo de Franck-Condon, que é o responsável pela intensidade Raman de modos totalmente simétricos. Tais modos se destacam nos espectros Raman (normal ou ressonante) por serem em geral os que conduzem às bandas mais intensas e que adicionalmente se distinguem das demais por apresentarem fator de depolarização menor que 0.75.

Devido à sua importância, analisaremos agora com algum detalhe o termo A:

$$A = \sum_{e \in g} \sum_{\sigma, \rho = x, y, z} \frac{\left(|g^0| R_{\sigma} |e^0\rangle \right) \left(|e^0| R_{\rho} |g^0\rangle \right)}{E_{ev} - E_{gi} - E_0} + \frac{\left(|g^0| R_{\rho} |e^0\rangle \right) \left(|e^0| R_{\sigma} |g^0\rangle \right)}{E_{ev} - E_{gi} + E_0} \langle i \| j \rangle \langle v \| j \rangle$$

onde as somatórias são sobre todos os estados eletrônicos e (exceto o fundamental) e todos os estados vibracionais v, respectivamente. g^0 representa o estado eletrônico fundamental, e^0 um estado eletrônico excitado, R_{σ} e R_{ρ} são os operadores de momento de dipolo, e os termos $(g^0 | R_{\sigma} | e^0\rangle)$ e $(g^0 | R_{\rho} | e^0\rangle)$ os momentos de transição. $E_{ev} - E_{gi}$ representa a diferença de energia entre os estados vibracionais e E_0 a energia da radiação incidente.

A polarizabilidade de transição, aqui representada pelo termo A, envolve uma somatória de termos que representa todos os estados eletrônicos (excluído o estado fundamental), bem como uma somatória de estados vibracionais v. Para cada estado e, temos que considerar termos envolvendo...
produtos de momentos de transição, como por exemplo, o termo \((g^0 | R_e | e^0)\). Fisicamente este termo representa a transição eletrônica virtual do estado fundamental \(g^0\) para o estado virtual \(e^0\) seguida da transição eletrônica virtual do estado \(e^0\) para o estado \(g^0\).

Na expressão \(\rho e \sigma = x, y, z\), pois momentos de transição são grandezas vetoriais. Note que se esses momentos de transição não forem diferentes de zero para pelo menos um dos estados \(e\), a intensidade Raman será nula.

Quando o estado \(e\) em questão for um estado eletrônico excitado da molécula e a transição \((g^0 \rightarrow e^0)\) for permitida (e portanto o produto dos momentos de transição não será nulo), o denominador na equação do termo \(A\) assumirá um valor muito próximo de zero (pois \(E_{ev} - E_{gi} = E_0\)) teremos que a contribuição desse particular estado eletrônico será muito maior do que aquelas devidas a todos os outros estados. Isso permite uma grande simplificação da equação uma vez que podemos desconsiderar todos os outros termos da somatória da equação. Além disso o outro termo de \(A\) que envolve \((E_{ev} - E_{gi} + E_0)\) pode ser desprezado uma vez que em condições de ressonância tal denominador não se aproxima de zero, ao contrário do que acontece com o primeiro termo.

Concluímos portanto que em condições de ressonância ou pré-ressonância com uma transição eletrônica permitida o termo \(A\) pode ser representado por um único termo na somatória, e adicionalmente devido ao valor substancial do momento de transição eletrônico (para transição permitida) e do valor quase nulo da diferença de energia do fóton incidente e da transição vibrônica (denominador) devemos esperar um alto valor da polarizabilidade de transição correspondente, e consequentemente da intensidade Raman.

Todas essas conclusões ficam no entanto prejudicadas se o termo \(\langle i | j \rangle \langle v | i \rangle\) for nulo. Este termo corresponde a um produto de integrais de Franck-Condon envolvendo as funções de onda vibracionais dos estados eletrônico fundamental e excitado. Esse termo terá valores apreciáveis quando os mínimos das curvas potenciais dos estados eletrônicos fundamental e excitado estiverem deslocados ao longo das respectivas coordenadas normais como ilustrado pela Figura 6.
Numa molécula poliatômica, para uma particular transição eletrônica o valor de ΔQ_i será apreciável em geral para um particular modo normal Q_i. Conseqüentemente pela expressão do termo A deveríamos esperar intensidades Raman apreciáveis em condições de ressonância para as bandas Raman associadas a esse modo Q_i. Essa é em essência a base para a utilização da espectroscopia Raman ressonante na identificação de grupamentos cromofóricos associados a transições eletrônicas em moléculas poliatômicas. Por outro lado é também possível a partir dos dados do efeito Raman ressonante estimar-se o valor de ΔQ_i e dessa maneira determinar a geometria da molécula no estado eletrônico excitado.

Em resumo, enquanto a aproximação de Placzek (válida em condições de não ressonância) considera a intensidade Raman dependente apenas da polarizabilidade eletrônica no estado fundamental, a teoria vibrônica de Albrecht expressa a polarizabilidade de transição como uma somatória de contribuições devido a transições vibrônicas da molécula. No caso específico do efeito Raman ressonante a polarizabilidade de transição passa a depender praticamente de uma única transição eletrônica, e portanto, de um único estado eletrônico excitado, o que faz com que as informações do efeito Raman
ressonante e da espectroscopia eletrônica de absorção estejam intimamente relacionadas.

1.2. Espectroscopia Raman – Aplicações

Uma das propriedades moleculares mais importantes pelo seu papel na definição de propriedades físicas e químicas de sistemas moleculares é a polarizabilidade eletrônica (α), uma propriedade tensorial que determina a atividade dos modos vibracionais na espectroscopia Raman.

No contexto do chamado efeito Raman normal o parâmetro diretamente relacionado à intensidade das linhas Raman consiste na derivada de α com relação à coordenada normal relevante, ou seja:

$$I_i \propto \left(\frac{\partial \alpha}{\partial Q_i} \right)^2$$

Como já discutido, o tratamento semiclássico de Placzek para o efeito Raman normal considera uma série de aproximações que permitem utilizar a polarizabilidade eletrônica molecular do estado eletrônico fundamental para o cálculo das intensidades Raman. Dentre essas aproximações se destaca aquela que assume a energia do primeiro estado eletrônico excitado muito maior do que a energia do fóton. Nessa situação a intensidade Raman passa a ser uma propriedade apenas do estado eletrônico fundamental, do mesmo modo que a intensidade IR; é a chamada teoria de Placzek da polarizabilidade para o efeito Raman. Como consequência pode-se prever a partir de argumentos de simetria e teoria de grupo que os modos vibracionais mais intensos no espectro Raman são os modos totalmente simétricos. Adicionalmente, se compararmos os espectros de moléculas diferentes, mas com mesma simetria, veremos que os modos mais intensos serão aqueles pertencentes a moléculas que possuem valores elevados da polarizabilidade eletrônica molecular.

É o caso típico dos tetrahaletos de carbono, quando comparmos as intensidades Raman do modo totalmente simétrico de estiramento (A_1 na simetria T_d). De fato, se excitarmos os espectros Raman com fótons de energia suficientemente baixa, de modo que efeitos de ressonância ou pré-ressonância
não estejam presentes, notamos que as intensidades Raman dos modos \(A_1 \) do estiramento \(C-X \) seguem a ordem:

\[
I_v(C-I) > I_v(C-Br) > I_v(C-Cl) > I_v(C-F)
\]

o que evidencia o papel de átomos pesados no aumento considerável de \(\alpha \).

O modo de estiramento \(\nu(C-Cl) \) do tetracloreto de carbono (CCl\(_4\), simetria Td), dá origem a uma banda intensa em ca. 459 cm\(^{-1}\) no espectro Raman, como mostra a Figura 7.

![Figura 7](image)

Este modo é utilizado como padrão para a medida de intensidades relativas e para estimar os valores das derivadas de polarizabilidades de diversas ligações\(^5\).

Considerando agora moléculas mais complexas, chama a atenção a grande intensidade Raman relativa de modos vibracionais associados a grupamentos moleculares insaturados como é o caso típico de C=C, C≡C, C≡N, etc. De fato, a presença de elétrons \(\pi \) numa ligação química tende a aumentar consideravelmente a polarizabilidade da ligação. Deve-se notar porém que a polarizabilidade eletrônica e a polaridade de ligação são conceitos distintos e geralmente o aumento da polaridade leva a uma diminuição da polarizabilidade, como se pode perceber ao analisar as intensidades Raman relativas associadas aos modos de estiramento \(\nu(C=C) \) e \(\nu(C=O) \). Neste último a polarização da ligação \(\delta^+C=O\delta^- \) diminui significativamente sua polarizabilidade fazendo com que em geral esse modo aparezca como uma
banda fraca no espectro Raman e como uma banda forte no espectro infravermelho.

A molécula de benzeno, arquétipo de sistema insaturado altamente deslocalizado e usado como referência para definir o conceito de aromaticidade nos fornece outro exemplo importante da relação entre a polarizabilidade eletrónica e a intensidade Raman. No seu espectro Raman excitado em condições afastadas da ressonância ou pré-ressonância destaca-se por sua intensidade o assim chamado modo de respiração do anel, φ(1), de simetria A_1g, um modo em que todos os átomos se afastam e se aproximam em fase e que dá origem a uma banda em ca. 992 cm^{-1} como mostrado no seu espectro FT-Raman na Figura 8.

Isso pode ser facilmente explicado no contexto da teoria de Placzek, pois se trata de um modo de estiramento totalmente simétrico (A_{1g}) num sistema de elevada polarizabilidade eletrónica devido a grande deslocalização dos elétrons π. Este modo totalmente simétrico é inativo no espectro infravermelho, pois não há variação do momento de dipolo com a coordenada normal de vibração.

Os espectros FT-Raman do benzeno (Figura 8) e do tetracloreto de carbono (Figura 7) foram obtidos nas mesmas condições (λ₀ = 1064 nm, potência = 200 mW, nº de scans = 128 e resolução = 2 cm^{-1}). A razão de intensidades determinada experimentalmente para os modos ν_{1}(A_{1}) do
benzeno em 992 cm\(^{-1}\) e do tetracloreto de carbono em 459 cm\(^{-1}\) foi de aproximadamente 3.3, o que mostra como a presença de elétrons \(\pi\) aumenta a polarizabilidade das ligações.

A introdução de um ou mais grupos substituintes no anel benzênico leva, em geral, a uma maior complexidade do espectro vibracional causada, sobretudo pelo abaixamento de simetria. Em anéis mono substituídos, por exemplo, a banda mais intensa não é mais o modo \(\phi(1)\) e sim o modo de respiração trigonal do anel, \(\phi(12)^6\) (os 30 modos normais do anel benzênico com a notação de Varsányi, estão apresentados no Apêndice I). No espectro FT-Raman do clorobenzeno (obtido nas mesmas condições dos espectros anteriores), o modo \(\phi(12)\) dá origem à banda mais intensa em 1002 cm\(^{-1}\) como mostra a Figura 9.

Em certos casos é também notável o aparecimento de linhas Raman ainda mais intensas que as linhas atribuídas aos modos do anel; este é o caso por excelência da introdução de um ou mais grupos nitro (NO\(_2\)), o que leva ao aparecimento de uma ou mais bandas intensas na região de 1300 a 1360 cm\(^{-1}\) do espectro Raman. Considerando o caso mais simples, ou seja, do nitrobenzeno, isso fica bem evidente quando comparamos seu espectro FT-Raman com o espectro do benzeno obtido nas mesmas condições (\(\lambda_0 = 1064\) nm, potência = 200 mW, \(n^o\) de scans = 128 e resolução = 2 cm\(^{-1}\)) como ilustrado nas Figuras 10 e 11.
A comparação dos espectros FT-Raman do benzeno e do nitrobenzeno, mostra que no último, a banda atribuída ao estiramento simétrico ν_s(NO$_2$) em ca. 1346 cm$^{-1}$ torna-se mais intensa que a banda atribuída ao modo ϕ(12) em ca. 1004 cm$^{-1}$, mesmo com excitação completamente fora de ressonância ($\lambda = 1064$ nm). O efeito sacador de elétrons do grupo nitro atua sobre os elétrons π do anel aromático deixando os átomos de oxigênio com maior densidade de carga, o que leva a um aumento significativo da polarizabilidade eletrônica do grupo NO$_2$ e uma consequente diminuição da polarizabilidade das ligações do anel. A princípio poderia se pensar que as ligações N-O do grupo NO$_2$, assim como as ligações C=C ou C≡N, possuem uma elevada polarizabilidade intrínseca, mas quando compármos os espectros Raman do nitrobenzeno com o de nitroalcanos, onde efeitos mesoméricos (de ressonância) envolvendo o grupo nitro e o esqueleto molecular estão ausentes, fica evidente o aumento da polarizabilidade eletrônica do grupo NO$_2$ em sistemas conjugados. No caso, por exemplo do espectro FT-Raman do 2-nitropropano7 (Figura 12) o modo ν_s(NO$_2$) em ca. 1360 cm$^{-1}$ é bem menos intenso que o modo ν(C-C) em ca. 851 cm$^{-1}$, que por sua vez é substancialmente menos intenso, em termos absolutos, que o estiramento ν(C=C) do modo de respiração do anel aromático.
Com relação à estrutura eletrônica do benzeno e do nitrobenzeno, no último é observada uma transição intensa em ca. 251 nm como mostram os espectros eletrônicos UV-Vis do benzeno e do nitrobenzeno nas Figuras 13 e 14, respectivamente.

A banda em ca. 251 nm pode ser atribuída à formação de um estado de transferência de carga envolvendo o sistema π do anel como elétron doador e o sistema π do grupo NO₂ como elétron aceitador. Entretanto alguns autores afirmam que essa banda é atribuída a um deslocamento da transição π-π* do benzeno.

Na obtenção dos espectros Raman, quando a energia de excitação laser se aproxima da energia de uma transição eletrônica permitida, como é o caso da transição π-π* do benzeno em ca 200 nm, ou ainda, da transição de transferência de carga (π→NO₂) em ca 251 nm, as intensidades Raman passam a depender criticamente da energia de excitação, efeitos conhecidos na literatura como efeito Raman ressonante e pré-ressonante.
Se obtivermos os espectros Raman de compostos nitroaromáticos excitados numa faixa de energia próxima a uma transição associada ao cromóforo, nota-se um grande aumento de intensidade Raman de alguns modos vibracionais e em especial do estiramento simétrico \(\nu_s(\text{NO}_2) \), ou seja, ao aproximarmos a energia de excitação Raman da energia de uma transição eletrônica permitida, como é o caso da \(\pi \rightarrow \text{NO}_2 \), a polarizabilidade eletrônica passa a ter uma dependência com a freqüência de excitação. Nenhum desses efeitos deveria ser esperado no caso de nitroalcanos, onde a transição eletrônica de menor energia é uma transição proibida (\(\pi-\pi^* \)).

Uma estratégia para aumentar as intensidades Raman em nitroaromáticos seria introduzir um ou mais grupos elétron doadores em posições adequadas do anel, ou seja, em posições que permitam maior conjugação do sistema \(\pi \), como é o caso dos substituintes em posição orto ou para com relação ao grupo NO\(_2\). Um exemplo típico é a molécula de para-nitroanilina (pNA) onde a presença dos grupos D e A em posição para, acoplados eletronicamente através do sistema \(\pi \) conjugado do anel benzênico, leva a formação de um estado de transferência de carga intramolecular, caracterizado no espectro eletrônico (UV-Vis) pela presença de uma banda muito intensa e larga com \(\lambda_{\text{max}} \) em ca. 365 nm (Figura 15). O espectro Raman da pNA em solução de acetonitrila (CH\(_3\)CN), obtido utilizando \(\lambda_0 = 457.9 \) nm, é apresentado na Figura 16.

![Figura 15. Espectro eletrônico da pNA em acetonitrila.](image1)

![Figura 16. Espectro Raman da pNA em acetonitrila (\(\lambda_0 = 457.9 \) nm).](image2)
A elevada intensidade da banda de transferência de carga em ca. 365 nm (Figura 15) indica uma grande separação de cargas no primeiro estado eletrônico excitado da para-nitroanilina, ou seja, um grande momento de dipolo elétrico de transição. No espectro Raman (Figura 16) podemos observar a grande intensidade dos modos atribuídos ao grupo NO$_2$, estiramento simétrico ν_5(NO$_2$) como um dubleto em ca. 1316 e 1332 cm$^{-1}$ e deformação angular simétrica no plano δ(NO$_2$) em ca. 863 cm$^{-1}$ em relação à banda em ca. 918 cm$^{-1}$ (estiramento ν(C-C) da acetonitrila), que por si já apresenta grande intensidade. Desta maneira podemos perceber a grande seção de choque Raman para a molécula de para-nitroanilina10 ($\sigma_{\text{RAM}} = 2.8 \times 10^{-27} \text{ cm}^2 \text{ mol}^{-1} \text{ sr}^{-1}$).

A molécula de pNA é o protótipo de uma família de espécies conhecidas na literatura como sistemas “push-pull” que são constituídos basicamente por um grupo elétron doador (D) e um grupo elétron aceitador (A) conectados através de um sistema π altamente deslocalizado. Esses sistemas têm despertado grande interesse por apresentarem propriedades ópticas não lineares11,12.

Um sistema molecular quando submetido à presença de um campo elétrico, E, desenvolve uma polarização, μ, que pode ser expressa como

$$\mu = \mu_0 + \alpha E + 1/2! \beta E^2 + 1/3! \gamma E^3 + ...$$

onde μ_0 é o momento de dipolo permanente da molécula, α é a polarizabilidade, E é o campo elétrico e β e γ as hiperpolarizabilidades, ou as polarizabilidades de 2$^\text{a}$ e 3$^\text{a}$ ordem, respectivamente. Pelo fato de β ser tipicamente 3 a 4 ordens de grandeza menor do que α, a aproximação linear $\mu = \mu_0 + \alpha E$

é plenamente satisfatória mesmo para valores elevados de E. No entanto moléculas que apresentam uma eficiente transferência de carga intramolecular em ambos os estados eletrônicos fundamental e excitado, como a pNA, apresentam valores elevados de β, que dão origem aos efeitos ópticos não lineares, e têm aplicação, por exemplo, na duplicação de frequência de lasers.

Alguns valores experimentais12 de β para as nitroanilinas (orto,meta e para), para o nitrobenzeno e para a anilina são mostrados na Tabela I.
Tabela I. Valores experimentais da hiperpolarizabilidade molecular (β_{exp}) para alguns benzenos substituídos.

<table>
<thead>
<tr>
<th>Molécula</th>
<th>$\beta_{exp} \times 10^{30} / \text{esu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
</tr>
</tbody>
</table>

O termo β está também diretamente ligado ao efeito hiper-Raman13,14 ilustrado na Figura 17.

![Diagrama de efeito hiper-Raman](image6)

Figura 17. Efeito hiper-Raman.
Ao longo da última década houve um grande interesse na síntese de sistemas moleculares *push-pull* visando atingir valores cada vez mais elevados de β e γ. Dentre esses sistemas destacam-se diversas moléculas insaturadas contendo grupos nitro e uma grande variedade de grupos elétron doadores. A presença do grupo NO$_2$ nesses sistemas é particularmente especial, pois se trata de um grupo elétron atraente que combina simultaneamente os efeitos induutivo e mesomérico (de ressonância), ao contrário de outros grupos elétron atraentes como por exemplo os substituintes ciano ou haletos.

Em particular a estratégia para a síntese de sistemas “push-pull” visa a obtenção de estados de transferência de carga de baixa energia, pois em última análise é a presença desses estados que determina valores apreciáveis das hiperpolarizabilidades moleculares (β e γ). É importante lembrar que uma condição necessária para que um material apresente um valor de β não nulo, é que nem a molécula e nem o cristal sejam centrossimétricos, o que acontece no caso do cristal de *para*-nitroanilina (pNA). Ou seja, embora na solução de pNA seja observada a resposta não linear, o mesmo não ocorre no sólido puro. Algumas estratégias podem ser utilizadas para evitar a cristalização centrossimétrica, como por exemplo, a substituição de hidrogênios do anel por grupos volumosos15 (CH$_3$-, t-butila, etc), a incorporação de moléculas em matrizes inorgânicas16 (zeólitas17,18, ciclodextrinas19, etc) ou em polímeros20. Nesse sentido vale a pena fazer uma observação de que o intuito inicial do presente trabalho consistia em estudar as interações existentes entre cromóforos orgânicos não lineares (nitroderivados) incluídos em matrizes inorgânicas, ou seja, compreender a transferência de carga intermolecular em sistemas híbridos orgânico-inorgânicos. Entretanto algumas dificuldades foram encontradas com relação a aspectos fundamentais dos cromóforos utilizados, como por exemplo, a natureza da transição de transferência de carga intramolecular, o que levou a uma mudança de direção do trabalho para o estudo dos diferentes substituintes, em diferentes posições relativas e que consequências essas mudanças têm sobre as estruturas eletrônica e vibracional de nitroderivados.

A natureza dos estados de transferência de carga D-π-A é que determina a origem do efeito Raman ressonante nessa classe de moléculas da
qual a pNA é o sistema modelo. Embora a literatura relativa às espectroscopias eletrônica e vibracional de nitroaromáticos e seus derivados, principalmente da pNA$^{21-36}$, seja bastante extensa, nota-se a escassez de estudos sistemáticos envolvendo diferentes grupos (D-A) no anel aromático em diferentes posições relativas; e/ou envolvendo a formação de espécies aniónicas derivadas da remoção de próton do grupo elétron doador. Esta escassez de estudos sistemáticos, experimentais e teóricos, diz respeito tanto à espectroscopia eletrônica como vibracional, Raman e infravermelho, e ainda mais criticamente com relação à espectroscopia Raman ressonante.

Adicionalmente verifica-se em grande parte dos trabalhos da literatura a ausência de uma interpretação unificada e coerente dos dados experimentais, o que tem levado, mesmo em trabalhos recentes, a conclusões contraditórias, mesmo no que diz respeito a aspectos centrais dos espectros eletrônicos e vibracionais de moléculas consideradas sistemas modelo como a para-nitroanilina. Foi portanto dentro desse contexto que o presente trabalho foi concebido, mais especificamente uma série de nitroaromáticos foi investigada incluindo tanto benzenos substituídos como piridinas substituídas. Como grupo elétron doador incluímos o grupo amino (NH$_2$), hidróxi (OH) e triazeno (N$_3$H), contemplando-se os vários isômeros de posição e quando possível, as respectivas espécies aniónicas. O estudo envolveu a utilização da espectroscopia eletrônica, da espectroscopia vibracional Raman e infravermelho e sobretudo a espectroscopia Raman ressonante.

No contexto do presente estudo o ponto central seria entender o conjunto de fatores responsáveis pela frequência e intensidade do modo de estiramento simétrico do grupo nitro, ν_s(NO$_2$), nos vários compostos nitroaromáticos. A intensidade do ν_s(NO$_2$) relativamente à intensidade do modo de respiração do anel aromático depende criticamente de vários fatores, como será discutido em detalhe na parte de Resultados e Discussão. O primeiro fator diz respeito a energias do fóton de excitação, pois a presença de um ou mais grupos NO$_2$ num anel aromático dá origem a bandas intensas de transferência de carga, além de deslocar para o vermelho a transição $\pi-\pi^*$ do anel benzênico no espectro eletrônico, e como conseqüência, efeitos de ressonância ou pré-ressonância passam a desempenhar um papel central nas intensidades
Raman. Por outro lado, se a excitação dos espectros é feita de modo a minimizar tais efeitos, ainda assim verificamos que a intensidade relativa do νs(NO2) depende de outros fatores como da natureza dos outros substituintes no anel aromático e suas posições relativas. Um exemplo típico é representado pela série das nitroanilinas, investigada no presente estudo.

Em resumo, se efeitos de ressonância ou pré-ressonância são excluídos, os valores substancialmente elevados da polarizabilidade eletrônica (α) associada ao grupo NO2 em nitroaromáticos está intimamente associada a efeitos eletrônicos envolvendo tal grupo e o sistema π do anel aromático. O presente trabalho tem como objetivo central investigar tais efeitos numa série de nitroaromáticos substituídos, bem como investigar a natureza do efeito Raman ressonante ou pré-ressonante nesses compostos. A compreensão detalhada do espectro eletrônico, ou seja, dos vários efeitos responsáveis pelos deslocamentos para menores energias da transição π-π* e da transição de transferência de carga intramolecular que por sua vez está intimamente relacionada à intensidade νs(NO2), pode nos levar ao planejamento racional de espécies nitroaromáticas substituídas em que além de valores substancialmente elevados da polarizabilidade eletrônica podermos também inferir sobre os valores da hiperpolarizabilidade molecular, que é de grande relevância para o desenvolvimento de materiais ópticos não lineares37-44.

Esperamos que desse conjunto de dados obtidos possamos lançar alguma luz no entendimento das complexas relações envolvendo a natureza dos estados de transferência de carga presentes em nitroaromáticos substituídos e as intensidades Raman dos modos associados ao grupo NO2 e ao anel aromático.

É importante aqui mencionar uma outra razão do interesse recente no estudo da espectroscopia Raman ressonante de nitroaromáticos, dentro do contexto de técnicas analíticas de alta sensibilidade para a detecção de resíduos de explosivos. Dentro dessa categoria de materiais, os mais utilizados são nitroaromáticos (TNT, picrato de amônio, etc.) e a enorme intensificação Raman ressonante permite a detecção de traços dessas substâncias45-47.
2. PARTE EXPERIMENTAL

2.1. Materiais e reagentes

Nitrobenzeno (C₆H₅NO₂, MM 123.1, PF 5-6°C, PE 208-211°C, BDH, 95%); 2-nitroanilina (C₆H₅N₂O₂, MM 138.1, PF 73-76°C, PE 284°C, Aldrich, 98%); 3-nitroanilina (C₆H₅N₂O₂, MM 138.1, PF 112-114°C, PE 306°C, Aldrich, 98%); 4-nitroanilina (C₆H₅N₂O₂, MM 138.1, PF 149-151°C, PE 332°C, Aldrich, 99%); 2,4-dinitroanilina (C₆H₅N₃O₃, MM 183.1, PF 176-178°C, Aldrich, 98%); 2-nitrofenol (C₆H₅NO₃, MM 139.1, PF 44-45°C, PE 214-216°C, Aldrich, 98%); 4-nitrofenol (C₆H₅NO₃, MM 139.1, PF 113-115°C, PE 278-280°C, Aldrich, 98%); 2,4-dinitrofenol (C₆H₄N₂O₅, MM 184.1, PF 106-108°C, Aldrich, 98%); 2-amino-3-nitropiridina (C₅H₅N₂O₂, MM 139.1, PF 165-167°C, Aldrich, 99%); 2-amino-5-nitropiridina (C₅H₅N₂O₂, MM 139.1, PF 186-188°C, Aldrich, 97%); 2-hidróxi-3-nitropiridina (C₅H₅N₂O₃, MM 140.1, PF 211-213°C, Aldrich, 98%); 2-hidróxi-5-nitropiridina (C₅H₅N₂O₃, MM 140.1, PF 188-191°C, Aldrich, 97%); 1,3-bis(2-nitrofenil)triazeno (C₁₂H₁₁N₅O₄, MM 272.2, sintetizado, 97%); 1,3-bis(4-nitrofenil)triazeno (C₁₂H₁₁N₅O₄, MM 272.2, sintetizado, 97%).

A molécula que pode ser considerada a nossa referência é a molécula de nitrobenzeno:

![Nitrobenzeno](image)

Nitrobenzeno (NB)

Na página seguinte estão representadas as estruturas das moléculas investigadas com suas respectivas siglas.

2.2. Instrumentação, preparação de amostras e obtenção de espectros

2.2.1. Amostras em solução

Os espectros eletrônicos (UV-Vis) na região de 200 a 800 nm das amostras em solução foram obtidos em um espectrofotômetro Shimadzu UVPC-3101 utilizando celas de quartzo de 1.0 mm. A transição relevante para o nosso estudo consiste na transição de transferência de carga intramolecular (CT) dos grupos elétron doadores para o grupo nitro. Geralmente essa transição CT situa-se na região do visível ou ultravioleta próximo e mais especificamente, as espécies neutras dos sistemas investigados apresentam bandas largas e intensas na região de 300 a 450 nm, ou seja, possuem uma coloração amarelada ou alaranjada dependendo da natureza e da posição dos substituintes.

No estudo das espécies neutras dos nitrofenóis e das hidróxi-nitropiridinas foi necessária a utilização de soluções ácidas (pH ≈ 2), através da adição de solução HCl 1 M, pois esses compostos apresentam valores de pKa próximos de 7. No estudo das respectivas espécies aniónicas que se formam pela retirada de próton dos grupos elétron doadores, no caso dos nitrofenóis, hidróxi-nitropiridinas e triazenos, foi utilizado meio aquoso ou metânolico com hidróxido de sódio ou potássio em excesso. Já no caso das amino-nitropiridinas, a espécie aniónica só se formou em meio de metóxido de sódio e no caso das nitroanilinas não foi possível manter o pH numa faixa confiável para a obtenção dos espectros das espécies aniónicas. Embora a espectroscopia Raman ressonante da para-nitroanilina em metóxido de sódio indique a presença da espécie aniónica, os resultados não serão considerados no presente trabalho. As espécies aniónicas foram obtidas utilizando excesso de hidróxido na própria solução da espécie neutra para garantir ao mesmo tempo a faixa de pH = pKa + 4 e a mesma concentração das espécies neutra e aniónica na obtenção dos espectros de absorção.

Os espectros Raman em solução foram obtidos em um espectrômetro Jobin-Yvon U1000, que possui um sistema que utiliza duplo monocromador e uma fotomultiplicadora (RCA C31034-A02) resfriada a −20ºC e acoplada a um contador de fótons (EG&G PARC). As fontes de excitação utilizadas consistem
de dois tubos de laser, um de íons Ar\(^+\) (Coherent INNOVA 90-6), que permite o estudo numa faixa que vai do verde (514.5 nm) ao ultravioleta próximo (363.8 nm), e outro de íons Kr\(^+\) (Coherent INNOVA 90-6) que vai do vermelho (647.1 nm) ao violeta (413.1 nm). A radiação espalhada foi coletada perpendicularmente à direção da radiação excitante e os espectros obtidos, na maioria dos casos, utilizando passo de 2.0 cm\(^{-1}\), tempo de integração de 2.0 s por passo, fenda mecânica correspondente a uma fenda espectral de 5.0 cm\(^{-1}\), na faixa de 200 a 1800 cm\(^{-1}\), e quando necessário, de 2800 a 3600 cm\(^{-1}\). A potência de laser utilizada foi na faixa de 50 a 200 mW dependendo de cada amostra. Ainda com relação à obtenção dos espectros Raman, deve-se tomar alguns cuidados, principalmente em condições de ressonância ou pré-resonância, como a utilização de soluções diluídas e de tubos de vidro adaptedos em cela rotatória para evitar aquecimento local e minimizar eventual fotodecomposição.

Na análise dos espectros Raman ressonante (RR) é essencial que haja a presença de uma banda de um padrão interno para a comparação das intensidades relativas. O composto padrão utilizado deve possuir uma banda intensa e bem característica na região investigada, porém não deve possuir bandas coincidentes àquelas da molécula em estudo e, além disso, como o efeito RR está diretamente ligado às transições eletrônicas, o composto padrão não deve apresentar transições eletrônicas na região do visível ou ultravioleta próximo, ou seja, não deve possuir efeito de intensificação RR (os padrões utilizados foram acetonitrila ou metanol, ou no caso de sólidos, sulfato de sódio). Para uma comparação de intensidades das bandas da amostra com relação à banda do padrão, a situação ideal seria que a intensidade da banda do padrão se mantivesse a mesma em todos os espectros apresentados. Entretanto isso não foi possível, pois na maioria dos casos o efeito de intensificação RR foi tão grande que se tornou inviável a utilização desta metodologia na apresentação dos resultados, e portanto na análise dos espectros RR na seção de Resultados e Discussão deve ficar claro que em nenhum dos casos a intensidade intrínseca da banda do padrão diminuiu ou aumentou, mas sim as bandas da molécula em estudo que variaram de intensidade.
Na preparação das soluções para a obtenção dos espectros Raman geralmente não foi possível conhecer com precisão a concentração das amostras e dos padrões internos devido a alterações realizadas durante a otimização das condições para a obtenção dos espectros. A razão deste fato é que se deve manter um compromisso entre a intensidade das bandas da amostra com relação à banda padrão em condições tanto de ressonância quanto fora de ressonância, além disso, em condições de ressonância geralmente ocorre a reabsorção do sinal Raman, já que a energia do laser é próxima à energia de transição eletrônica. Na maioria dos casos partimos de soluções \(1.10^{-3}\) M e posteriormente foi realizado o ajuste necessário concentrando ou diluindo as soluções.

Os espectros no infravermelho (FT-IR) das amostras em solução foram obtidos em placas de KRS-5 em um espectrômetro BOMEM MB-100 utilizando resolução de 4.0 cm\(^{-1}\) na faixa de 400 a 4000 cm\(^{-1}\).

2.2.1.a. **Observações gerais relativas a protonação e desprotonação das espécies investigadas.**

No caso das espécies facilmente desprotonáveis, ou seja, aquelas cujos valores de pK\(_a\) < 10, a utilização de soluções suficientemente alcalinas (pH \(\geq\) 13) garante a presença quase que total (\(\geq\) 99%) das espécies aniônicas em solução. Este é o caso dos nitroaromáticos com substituintes OH e N\(_3\)H, em qualquer posição em relação ao grupo NO\(_2\).

No caso de nitroaromáticos amino-substituídos, os valores de pK\(_a\) são significativamente maiores, por exemplo, pKa \(\approx\) 15 para a 2,4-dinitroanilina. Nesses casos foram utilizadas condições bem mais drásticas para a desprotonação. Para a obtenção das espécies aniônicas das amino-nitropiridinas utilizou-se solução metanólica de metóxido de sódio, e a desprotonação foi acompanhada via espectros UV-Vis.

Com relação aos equilíbrios de protonação dos nitroaromáticos, os casos mais relevantes dizem respeito aos derivados piridínicos, onde o nitrogênio heterocíclico é o sítio mais efetivo de protonação. Especificamente, no caso das hidróxi-nitropiridinas a obtenção dos espectros UV-Vis em
soluções aquosas com valores de pH = 6, 3 e 0, não mostrou nenhuma diferença espectral (ao contrário da piridina, onde os espectros em pH = 6 e pH = 1 são muito diferentes), o que significa que no caso das hidróxi-nitropiridinas não há a protonação efetiva do nitrogênio heterocíclico nas condições utilizadas na obtenção dos espectros Raman.

No caso das amino-nitropiridinas verificamos experimentalmente que os espectros UV-Vis obtidos em pH = 6 e pH = 1 são muito diferentes e efetivamente em pH = 1 as espécies estão totalmente protonadas. Em pH = 6 (condição utilizada na obtenção dos espectros Raman) não é possível afirmar que exista apenas a espécie não protonada em solução, embora essa deva ser, de longe, a espécie majoritária. É de se esperar essa protonação envolva o nitrogênio heterocíclico e não o grupo NH₂, devido à presença do grupo NO₂ (orto ou para), que leva à significativa diminuição da densidade de carga do grupo NH₂.

2.2.2. Amostras sólidas

Os espectros eletrônicos (UV-Vis) das amostras sólidas na faixa de 190 a 800 nm foram obtidos em um espectrofotômetro Shimadzu UVPC-3101 em modo de reflectância difusa utilizando dispersão em BaSO₄.

Os espectros Raman das amostras sólidas puras foram obtidos na forma de pó na faixa de 100 a 4000 cm⁻¹ em um espectrômetro FT-Raman Bruker RFS 100, utilizando como fonte um laser Nd:YAG, cuja radiação excitante é de 1064 nm (infravermelho próximo).

Os espectros no infravermelho (FT-IR) das amostras sólidas foram obtidos em pastilha de brometo de potássio (KBr, Merck) em um espectrômetro BOMEM MB-100 utilizando resolução de 4 cm⁻¹ na faixa de 400 a 4000 cm⁻¹.

Para o correspondente estudo das espécies aniônicas, foram precipitados os sais de potássio de acordo com o seguinte procedimento: as amostras foram dissolvidas em metanol a quente e sob agitação uma solução concentrada de hidróxido de potássio (KOH, Merck) em metanol foi lentamente gotejada até a solução alcançar valores de pH ≈ 13, a solução foi deixada para resfriar a temperatura ambiente e o precipitado formado foi filtrado e lavado com metanol a baixa temperatura.
2.3. Análise dos espectros e tratamento dos dados

Os espectros foram analisados através do programa Grams/32 Al (6.00), e sempre que necessário utilizamos uma ferramenta do software para o ajuste da linha base, já que os espectros Raman em condições de pré-resonância ou ressonância, geralmente vêm acompanhados de um fundo de fluorescência. Para a apresentação dos espectros nesta dissertação foi utilizado o programa Origin 6.0.

Como os sistemas estudados são moléculas relativamente pequenas, tivemos à disposição um elevado número de espectros de moléculas semelhantes o que permitiu uma razoável comparação entre os vários modos normais de vibração característicos. Além disso, alguns desses sistemas têm sido exaustivamente estudados para a determinação de suas propriedades físicas e químicas através de cálculos semi-empíricos e ab initio, o que também contribuiu para a interpretação dos dados e atribuição vibracional.
3. RESULTADOS E DISCUSSÃO

Antes de iniciar esta seção torna-se necessária uma breve discussão sobre o grupo nitro (NO₂), um substituinte que tem efeitos importantes sobre sistemas moleculares modificando drasticamente algumas de suas propriedades físicas e químicas. Sua principal característica consiste em sua capacidade de sacar elétrons, por exemplo, se um grupo NO₂ é inserido em um hidrocarboneto, ocorre uma mudança significativa da eletroafinidade molecular, a ponto de alcanos ou benzeno que não são reduzidos eletroquimicamente, tornarem-se passíveis de redução pela presença de um grupo NO₂ em suas estruturas⁴⁸.

O grupo NO₂ pode ser representado como um híbrido das duas formas de ressonância (I) e (II)

![Resonance Forms](image)

(I) (II)

e em particular a forma canônica (III)

![Canonical Form](image)

(III)

deve ser levada em consideração, principalmente em sistemas π conjugados, sendo esta a estrutura comumente citada em livros textos⁴⁹,⁵⁰ para explicar o efeito do grupo NO₂ nas propriedades químicas, como por exemplo, acidez de compostos orgânicos, velocidades de reação, mudanças espectrais, entre outras. A carga formal positiva no átomo de nitrogênio explica o forte efeito atraente de elétrons do grupo NO₂, que é manifestado pelo seu alto valor de eletronegatividade e pelos elevados valores do momento de dipolo observados em nitroderivados⁴⁸ (ex.: \(\mu\) (nitrometano) = 3.16D e \(\mu\) (nitrobenzeno) = 3.97D). Entretanto alguns estudos teóricos e experimentais⁵¹ do nitrobenzeno e de
seus derivados mostram a importância limitada da estrutura (IV), o que levanta discussões sobre qual efeito é preponderante, o efeito indutivo ou o mesomérico (de ressonância). Apesar de ser impossível a separação desses efeitos, Taft e Hammett52 estimaram valores para os efeitos indutivo e mesomérico do grupo NO\textsubscript{2}, que no caso de anéis aromáticos, dependem da posição relativa dos substituintes.

A geometria do grupo NO\textsubscript{2} não depende significativamente de onde ele está ligado. O parâmetro mais sensível é o comprimento da ligação C-N, que serve como uma medida aproximada do efeito de ressonância48 do grupo NO\textsubscript{2}. A Tabela II mostra os valores das distâncias de ligação C-N, N-O e o ângulo ONO para alguns nitroderivados.

Tabela II. Geometria do grupo NO\textsubscript{2} em nitroderivados.

<table>
<thead>
<tr>
<th>Molécula</th>
<th>Comprimento de ligação (Å)</th>
<th>Ângulo de ligação (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C-N</td>
<td>N-O</td>
</tr>
<tr>
<td>Nitrometano</td>
<td>1.489</td>
<td>1.224</td>
</tr>
<tr>
<td>Nitrobenzeno</td>
<td>1.486</td>
<td>1.223</td>
</tr>
<tr>
<td>p-Nitroanilina</td>
<td>1.434</td>
<td>1.227</td>
</tr>
<tr>
<td>N,N-dietil-p-Nitroanilina</td>
<td>1.429</td>
<td>1.221</td>
</tr>
<tr>
<td>p-Nitrofenolato</td>
<td>1.418</td>
<td>1.241</td>
</tr>
</tbody>
</table>

Se a ligação C-N tem caráter de uma dupla ligação parcial, significa que a estrutura canônica (IV) contribui significativamente na descrição da molécula. Alguns estudos53-55 mostram que a diferença nas distâncias de ligação C-N do nitrometano e do nitrobenzeno é estatisticamente insignificante, o que leva em primeira instância, à conclusão de que o efeito de ressonância do grupo NO\textsubscript{2} no nitrobenzeno é muito pequeno ou praticamente nulo. Lipkovitz56 mostra através de um estudo de RMN de 17O que a densidade eletrônica do oxigênio em derivados do nitrobenzeno é invariável com relação à substituição em posição *meta* ou *para* de grupos que não sejam elétron doadores efetivos.
Em outras palavras, a estrutura molecular é descrita suficientemente pelas estruturas canônicas (V) e (VI)

![Chemical structures](image)

com pequena contribuição das estruturas (VII), (VIII) e (IX)

![Chemical structures](image)

Entretanto quando no nitrobenzeno é inserido um grupo elétron doador efetivo, especialmente em posição *para*, deve-se levar em consideração a estrutura de ressonância (X)

![Chemical structure](image)

Um dos principais objetivos do presente trabalho foi compreender a transferência de carga de grupos elétron doadores para o grupo NO$_2$ em um sistema π conjugado. Portanto nos resultados que serão apresentados, em muitos dos casos a estrutura canônica (X) será de extrema utilidade na compreensão do acoplamento dos modos vibracionais com a transição
eletrônica de transferência de carga intramolecular, ou seja, do acoplamento vibronico em sistemas “push-pull”.

A grande maioria dos compostos investigados pode ser classificada como nitrobenzenos substituídos. Nesse sentido é interessante iniciar esta seção discutindo os aspectos centrais relativos à estrutura eletrônica e vibracional do nitrobenzeno, principalmente no que diz respeito ao efeito do grupo NO$_2$ sobre os elétrons π deslocalizados do anel benzenico.

3.1. NITROBENZENO

A Figura 18 mostra o espectro eletrônico do nitrobenzeno onde a banda em ca. 251 nm sugere a formação de um estado de transferência de carga que envolve os orbitais π do anel como elétron doadores e os orbitais π^* do grupo NO$_2$ como elétron aceitadores. Esta transição intensa e larga encobre a transição n-π^* do grupo NO$_2$ em ca. 269 nm, observada pela assimetria na forma de linha na região de menor energia. Os espectros vibracionais FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do nitrobenzeno líquido são mostrados na Figura 19 (A e B, respectivamente).

![Figura 18. Espectro UV-Vis do nitrobenzeno em solução de hexano.](image)

![Figura 19. Espectros (A) FT-Raman e (B) FT-IR do nitrobenzeno líquido](image)

A excitação do espectro Raman em 1064 nm está suficientemente afastada de qualquer transição eletrônica do nitrobenzeno, ou seja, o
respeito espectro FT-Raman pode ser considerado como um espectro Raman normal, cujas intensidades podem ser discutidas dentro do contexto da teoria de Placzek, ou seja, em termos da polarizabilidade eletrônica do estado fundamental.

Na Figura 19A observamos que a linha mais intensa do espectro do nitrobenzeno consiste no modo atribuído ao estiramento simétrico ν_s(NO_2) em ca. 1346 cm^{-1} com aproximadamente o dobro da intensidade do modo de respiração trigonal do anel ϕ(12) em ca. 1004 cm^{-1}. Isto se deve ao fato do efeito sacador de elétrons do grupo NO_2 aumentar a densidade de carga negativa nos átomos de oxigênio, o que aumenta a polarizabilidade do grupo NO_2 às custas da diminuição da densidade eletrônica e da polarizabilidade das ligações do anel.

A Tabela III mostra os valores das freqüências vibracionais Raman e infravermelho e a atribuição de acordo com Clarkson^57 e Varsanyi^6. Os modos do anel com a notação de Varsanyi são apresentados no Apêndice I.

Tabela III

<table>
<thead>
<tr>
<th>Raman (cm^{-1})</th>
<th>I (intensidade relativa)</th>
<th>Infra- vermelho (cm^{-1})</th>
<th>I (intensidade relativa)</th>
<th>Atribuição</th>
</tr>
</thead>
<tbody>
<tr>
<td>612</td>
<td>0.7</td>
<td></td>
<td></td>
<td>ϕ(6b)</td>
</tr>
<tr>
<td>681</td>
<td>0.4</td>
<td>680</td>
<td>m</td>
<td>ϕ(5)</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>704</td>
<td>s</td>
<td>γ(NO_2)</td>
</tr>
<tr>
<td>794</td>
<td>0.2</td>
<td>794</td>
<td>m</td>
<td>ϕ(11)</td>
</tr>
<tr>
<td>853</td>
<td>2.2</td>
<td>852</td>
<td>m</td>
<td>δ(NO_2)</td>
</tr>
<tr>
<td>1004</td>
<td>5.2</td>
<td>1003</td>
<td>v w</td>
<td>ϕ(12)</td>
</tr>
<tr>
<td>1022</td>
<td>1.0</td>
<td>1021</td>
<td>w</td>
<td>ϕ(10b)</td>
</tr>
<tr>
<td>1069</td>
<td>0.3</td>
<td>1070</td>
<td>w</td>
<td>ϕ(18b)</td>
</tr>
<tr>
<td>1108</td>
<td>1.4</td>
<td>1108</td>
<td>w</td>
<td>ν(C-NO_2) + ϕ(1)</td>
</tr>
<tr>
<td>1162</td>
<td>0.5</td>
<td>1163</td>
<td>v w</td>
<td>ϕ(9b)</td>
</tr>
<tr>
<td>1174</td>
<td>0.4</td>
<td>1170</td>
<td>v w</td>
<td>ϕ(9a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1346</td>
<td>10.0</td>
<td>1349</td>
<td>v s</td>
<td>ν_s(NO_2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1478</td>
<td>m</td>
<td>ϕ(19a)</td>
</tr>
<tr>
<td>1525</td>
<td>0.7</td>
<td>1525</td>
<td>v s</td>
<td>ν_{as}(NO_2)</td>
</tr>
<tr>
<td>1589</td>
<td>2.3</td>
<td>1588</td>
<td>v w</td>
<td>ϕ(8a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1606</td>
<td>m</td>
<td>ϕ(8b)</td>
</tr>
</tbody>
</table>
A introdução de um ou mais grupos elétron doadores no nitrobenzeno em posições adequadas ocasionam transições de transferência de carga intramoleculares bem características, que dão origem a bandas largas e intensas na região do visível ou ultravioleta próximo do espectro eletrônico, fato que permite o estudo Raman ressonante e pré-ressonante desses sistemas. A eficiência da transferência de carga modula as propriedades físicas e químicas do sistema e depende essencialmente da natureza e da posição relativa dos substituintes.

Com relação aos espectros vibracionais Raman e infravermelho (IR), a primeira observação intrigante é que em sistemas “push-pull” (D-π-A) algumas das bandas mais intensas do espectro Raman, são também as mais intensas do espectro IR, o que contraria a regra geral de que as bandas fortes no Raman são fracas no IR e vice-versa. Uma análise vibracional minuciosa mostra que os modos que dão origem a bandas intensas em ambos os espectros, Raman e IR, de sistemas policonjugados em geral e de moléculas push-pull em particular, podem ser explicados pela teoria da coordenada de conjugação efetiva (ECC)\(^{58,59}\). Esta teoria introduz uma coordenada coletiva de vibração, geralmente denominada de \(\gamma\), que descreve uma oscilação dos núcleos no espaço vibracional ao longo do máximo acoplamento elétron-fonon, ou seja, as freqüências e intensidades das bandas relacionadas aos modos normais que podem ser descritos pela coordenada vibracional \(\gamma\), devem refletir o rearranjo eletrônico induzido pela relaxação nuclear. O acoplamento elétron-fonon tem um importante papel na física de materiais ópticos não lineares, e através desse modelo é possível estimar propriedades eletrônicas tais como as hiperpolarizabilidades moleculares \((\beta, \gamma)\) em termos de observáveis vibracionais\(^{60-64}\).

Se compararmos os espectros Raman e IR do nitrobenzeno (Figura 19) podemos observar que a banda atribuída ao estiramento simétrico \(\nu_s(\text{NO}_2)\) é a mais intensa em ambos os espectros, o que indica que este modo normal de vibração corresponde a um modo \(\gamma\) e está diretamente acoplado à transferência de carga dos elétrons \(\pi\) do anel para o grupo \(\text{NO}_2\).
Iniciaremos o estudo dos sistemas “push-pull” por uma classe de moléculas consideradas modelo em diversas áreas da química, as nitroanilinas, em especial a para-nitroanilina (pNA), que é utilizada amplamente como protótipo para o desenvolvimento de materiais ópticos não lineares.

3.2. NITROANILINAS

3.2.1. Orto, Meta e Para-Nitroanilina

Os espectros eletrônicos (UV-Vis) da orto (oNA), meta (mNA) e para-nitroanilina (pNA) em solução de acetonitrila são mostrados na Figura 20.

Analisando os espectros são observadas duas bandas bem características, uma de maior energia na região do ultravioleta atribuída à transição π-π* do anel aromático, e a outra de menor energia na região do visível atribuída à transição de transferência de carga do grupo amino (NH₂) para o grupo nitro (NO₂). É notável a grande diferença que há tanto na energia quanto na intensidade relativa da banda de transferência de carga intramolecular (CT) da para-nitroanilina (pNA) em relação aos isômeros orto-nitroanilina (oNA) e meta-nitroanilina (mNA). A energia da CT está relacionada à diferença de energia (gap) entre os orbitais HOMO (orbital molecular ocupado de maior energia) e LUMO (orbital molecular desocupado de menor energia), enquanto que a intensidade está relacionada à probabilidade de transição,
mais especificamente, é proporcional ao quadrado do momento de dipolo de transição.

A diferença de estrutura eletrônica da pNA em relação aos seus isômeros pode ser compreendida utilizando um modelo de dois estados baseado nos conceitos de Mecânica Quântica. Este modelo considera no caso da pNA, duas estruturas de ressonância (estruturas canônicas), uma neutra representada por ψ_{VB}, e uma zwiterionica (anfotérica) representada por ψ_{CT} de acordo com o esquema

$$
\begin{align*}
\psi_{g} &= (1-f)^{1/2} \psi_{VB} + f^{1/2} \psi_{CT} \\
\psi_{e} &= f^{1/2} \psi_{VB} - (1-f)^{1/2} \psi_{CT}
\end{align*}
$$

A combinação linear dessas estruturas compõe os dois estados eletrônicos de menor energia, ou seja, o estado eletrônico fundamental, ψ_{g}, e o primeiro estado eletrônico excitado, ψ_{e}:

No estado eletrônico fundamental, ψ_{g}, há uma maior contribuição da estrutura neutra, ψ_{VB}, e no estado excitado prevalece a estrutura zwiterionica, ψ_{CT}. A efetiva transferência de carga intramolecular que ocorre na molécula de pNA está relacionada à contribuição significativa da estrutura de ressonância ψ_{CT} no estado excitado. Isso pode ser confirmado pela natureza solvatocromática da banda da transição CT, que varia de 320 nm em ciclohexano a 370 nm em metanol. Em solventes polares como é o caso do metanol, ocorre uma maior estabilização da estrutura zwiterionica, ψ_{CT}, o que diminui a energia da transição de transferência de carga. Os principais fatores que determinam a contribuição desse tipo de estrutura de ressonância são a natureza e posição dos substituintes e a planaridade do sistema π conjugado. Um aspecto
importante a ser levado em consideração com relação à pNA é a grande
variação do momento de dipolo durante a transição CT, que de \(\mu_g = 6.2D \) no
estado eletrônico fundamental, assume o valor de \(\mu_e = 13.5D \) no estado
excitado\(^{34} \).

Em resumo, na pNA há a contribuição substancial da estrutura de
ressonância zwiterionica, em ambos os estados eletrônicos, principalmente no
excitado, o que ocasiona um elevado valor do momento de transição, \(\mu_{ge} \), e
consequentemente uma maior intensidade, pois

\[
I^{1/2} \propto \mu_{ge} = \int_{-\infty}^{+\infty} \psi_g M \psi_e d\tau
\]

onde \(M \) é o vetor momento de dipolo e \(d\tau \) é o produto dos elementos de volume
das coordenadas de todos os núcleos e elétrons.

No isômero oNA também há a contribuição de uma estrutura de
ressonância de separação de cargas (zwiterionica), porém em menor grau, e
no isômero mNA, como esperado, a contribuição da estrutura de ressonância
similar é praticamente nula.

A intensidade dos espectros Raman está diretamente relacionada à
estrutura eletrônica, o que é claramente observado nos espectros FT-Raman
da oNA, mNA e pNA no estado sólido (Figura 21) obtidos nas mesmas
condições (\(\lambda_0 = 1064 \text{ nm} \), potência = 25 mW, nº de scans = 128, resolução = 2
\(\text{cm}^{-1} \)).

Figura 21. Espectros FT-Raman da oNA, mNA e pNA obtidos nas mesmas condições
(\(\lambda_0 = 1064 \text{ nm} \), potência = 25 mW, nº de scans = 128, resolução = 2
\(\text{cm}^{-1} \)).

Ao comparar as escalas de intensidade podemos observar que a
intensidade do espectro da pNA é da ordem de 4 a 5 vezes mais intenso que
os espectros da oNA e da mNA, mostrando como a intensidade da transição de transferência de carga (Figura 20) está diretamente relacionada com a intensidade do espectro Raman, mesmo com excitação fora da ressonância ($\lambda_0 = 1064$ nm).

Esse comportamento pode ser melhor ilustrado através dos espectros Raman fora da ressonância ($\lambda_0 = 647.1$ nm) e em condições de pré-ressonância ($\lambda_0 = 457.9$ nm) com a banda de transferência de carga da oNA, mNA e pNA em solução de acetonitrila, como mostra a Figura 22.

![Figura 22. Espectros Raman fora de ressonância ($\lambda_0 = 647.1$ nm) e em condições de pré-ressonância ($\lambda_0 = 457.9$ nm) da oNA, mNA e pNA em solução de acetonitrila. (à bandas do padrão interno: acetonitrila)](image)

Analisando os espectros dos três isômeros em solução excitados em $\lambda_0 = 647.1$ nm pode ser observado, assim como nos espectros das amostras sólidas, que a intensidade do espectro da pNA se sobressai com relação aos isômeros oNA e mNA quando comparamos as intensidades das bandas com a banda do padrão interno em ca. 918 cm$^{-1}$ da acetonitrila. A princípio poderia se pensar que existe uma diferença de concentração das soluções e que a concentração de pNA utilizada foi maior, entretanto a solução de mNA foi a mais concentrada da série, mostrando mais uma vez a grande diferença na seção de choque Raman dos três isômeros e como a intensidade dos espectros nessas moléculas está intimamente relacionada à posição dos substituintes.

Nos espectros Raman em condição de pré-ressonância ($\lambda_0 = 457.9$ nm) observamos uma substancial intensificação dos modos vibracionais da oNA e da pNA, principalmente daqueles associados ao grupo NO_2. A intensificação
dos modos da oNA foi mais significativa pois excitando o espectro em $\lambda_0 = 457.9$ nm a condição de pré-ressonância com a transição de transferência de carga da oNA é mais favorável, como pode ser observado na Figura 23.

![Figura 23. Espectros eletrônicos da oNA, mNA e pNA em solução de acetonitrila.](image)

Não estão discutidas as atribuições das bandas observadas nos espectros Raman, pois aqui estamos interessados na comparação de intensidades entre os espectros Raman e UV-Vis dos três isômeros. Posteriormente será mostrada a análise de cada uma das moléculas em que discutiremos as atribuições vibracionais, algumas das quais não foram ainda suficientemente esclarecidas.

No presente trabalho o objetivo principal não foi realizar a atribuição detalhada dos espectros Raman e infravermelho e sim analisar que efeitos são preponderantes na determinação dos valores de frequência e intensidade das bandas características, principalmente as relacionadas ao grupo NO$_2$. No entanto estarão disponíveis as tabelas com os valores das frequências vibracionais e atribuição tentativa dos principais modos normais de vibração. É importante lembrar que em moléculas poliatômicas não há modo normal “puro”, ou seja, todo modo de vibração é uma combinação de movimentos dos átomos em que cada átomo (ou grupo) tem diferentes contribuições (pesos) para cada frequência observada. Para uma atribuição precisa, necessitariamos de uma análise de coordenadas normais para a obtenção da distribuição de energia potencial (PED) em cada um dos movimentos. Além disso, alguns efeitos como ligações de hidrogênio tanto intra como intermoleculares, efeitos do estado
sólido, efeitos de solvente e temperatura também contribuem para a complexidade da atribuição dos espectros vibracionais.

Os valores das frequências dos modos vibracionais relacionados ao grupo NO$_2$ e aos grupos elétron doadores situam-se em faixas aproximadamente constantes nos espectros das moléculas investigadas, mas o mesmo não pode ser afirmado com relação a suas intensidades relativas. A complexidade de uma atribuição rigorosa dos espectros provém dessas diferenças observadas nas intensidades relativas e na interpretação do acoplamento dos modos vibracionais dos grupos substituintes com os modos do anel aromático. A utilização da espectroscopia Raman ressonante torna-se, portanto essencial para a compreensão do acoplamento vibrônico, ou seja, de como os modos vibracionais estão associados à transição de transferência de carga intramolecular em sistemas conjugados.

Devido à baixa intensidade da transição de transferência de carga na meta-nitroanilina (mNA), observada em seu espectro eletrônico (e conseqüente baixa intensidade do espectro Raman, mesmo em condições de ressonância), não realizamos o estudo dos isômeros meta e a comparação ficará restrita aos isômeros orto e para nas séries investigadas.

3.2.2. Orto-nitroanilina (2-nitroanilina)

![Orto-nitroanilina (2-nitroanilina)](image)

3.2.2.1. Espectroscopia vibracional Raman e Infravermelho da orto-nitroanilina no estado sólido

A Figura 24 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) da oNA no estado sólido na região de 400 a 1700 cm$^{-1}$.
No espectro FT-Raman da oNA sólida (Figura 24A), assim como no espectro FT-Raman do nitrobenzeno (Figura 19A), a banda mais intensa é atribuída ao modo de estiramento simétrico v_s(NO$_2$) em 1350 cm$^{-1}$. A atribuição da banda observada em 1284 cm$^{-1}$ não é bem definida e mesmo em trabalhos recentes são encontradas diferentes atribuições. Acredita-se que consiste de um modo que envolve o modo ϕ(13) do anel acoplado aos estiramentos v(C-NO$_2$) e v(C-NH$_2$) em analogia à atribuição feita por Varsanyi65 para a molécula de para-nitroanilina. O modo em 1244 cm$^{-1}$ corresponde ao estiramento v(C-NH$_2$) que no espectro FT-IR é a banda mais intensa. A banda em 1102 cm$^{-1}$ é atribuída ao estiramento v(C-NO$_2$) acoplado ao modo ϕ(1) do anel, a banda de baixa intensidade em 871 cm$^{-1}$ é atribuída à deformação simétrica no plano δ(NO$_2$) e a banda intensa em 814 cm$^{-1}$ ao modo ϕ(12) do anel.

Comparando os espectros Raman e IR na Figura 24 (A e B) observamos duas bandas intensas em ambos os espectros, a banda atribuída ao modo de estiramento simétrico v_s(NO$_2$) em 1350 cm$^{-1}$ e ao estiramento v(C-NH$_2$) em 1244 cm$^{-1}$ o que, de acordo com o modelo proposto por Zerbi, indica que estes modos vibracionais correspondem a modos я e portanto estão diretamente acoplados à transferência de carga intramolecular com a participação

Figura 24. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR da oNA no estado sólido na região de 400 a 1700 cm$^{-1}$.
majoritária dos orbitais dessas ligações na transferência de elétrons do grupo NH$_2$ para o grupo NO$_2$.

Os valores das freqüências, suas intensidades relativas e a atribuição tentativa estão apresentadas na Tabela IV.

Tabela IV. Valores das freqüências vibracionais em número de onda (cm$^{-1}$), intensidades relativas e atribuição tentativa dos espectros FT-Raman e FT-IR da orto-nitroanilina sólida.

<table>
<thead>
<tr>
<th>Raman (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>413</td>
<td>1.5</td>
<td>416</td>
<td>w</td>
<td>φ(16b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>524</td>
<td>s</td>
<td>ρ(NO$_2$)</td>
</tr>
<tr>
<td>559</td>
<td>5.6</td>
<td></td>
<td></td>
<td>φ(6a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>663</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>698</td>
<td>w</td>
<td>φ(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>742</td>
<td>s</td>
<td>γ(NO$_2$)</td>
</tr>
<tr>
<td>814</td>
<td>7.3</td>
<td></td>
<td></td>
<td>φ(12)</td>
</tr>
<tr>
<td>871</td>
<td>1.0</td>
<td>874</td>
<td>v w</td>
<td>δ(NO$_2$)</td>
</tr>
<tr>
<td>1024</td>
<td>0.2</td>
<td>1018</td>
<td>v w</td>
<td>φ(18a)</td>
</tr>
<tr>
<td>1065</td>
<td>1.1</td>
<td></td>
<td></td>
<td>φ(18b)</td>
</tr>
<tr>
<td>1110</td>
<td>1.3</td>
<td>1114</td>
<td>s</td>
<td>(\nu(C\text{-NO}_2) + \phi(1))</td>
</tr>
<tr>
<td>1179</td>
<td>0.8</td>
<td>1182</td>
<td>m</td>
<td>φ(9a)</td>
</tr>
<tr>
<td>1244</td>
<td>5.6</td>
<td>1243</td>
<td>v s</td>
<td>(\nu(C\text{-NH}_2))</td>
</tr>
<tr>
<td>1284</td>
<td>3.7</td>
<td>1284</td>
<td>m</td>
<td>(\phi(13) + \nu(C\text{-NO}_2) + \nu(C\text{-NH}_2))</td>
</tr>
<tr>
<td>1351</td>
<td>10.0</td>
<td>1346</td>
<td>v s</td>
<td>(\nu_s(NO_2))</td>
</tr>
<tr>
<td>1371</td>
<td>2.4</td>
<td></td>
<td></td>
<td>φ(3)</td>
</tr>
<tr>
<td>1427</td>
<td>0.5</td>
<td></td>
<td></td>
<td>φ(19b)</td>
</tr>
<tr>
<td>1505</td>
<td>0.2</td>
<td>1505</td>
<td>s</td>
<td>(\nu_{as}(NO_2))</td>
</tr>
<tr>
<td>1569</td>
<td>0.9</td>
<td>1569</td>
<td>s</td>
<td>φ(8a)</td>
</tr>
<tr>
<td>1628</td>
<td>0.1</td>
<td>1630</td>
<td>v s</td>
<td>(\delta(NH_2))</td>
</tr>
</tbody>
</table>

Na obtenção do espectro Raman se utilizarmos energia de excitação laser próxima da energia da transição de transferência de carga, a princípio, os modos vibracionais preferencialmente intensificados devem ser aqueles directamente acoplados à transição CT. Não realizamos o estudo RR das amostras sólidas, e os resultados que serão apresentados são referentes às amostras em solução. O estudo RR em solução é conveniente, pois além da possibilidade de se trabalhar com a natureza solvatocrômica da banda de transferência de carga, a espectroscopia no estado sólido apresenta uma maior
complexidade devido a efeitos como interações intermoleculares, número de moléculas por cela unitária, vibrações de rede, entre outros.

Na oNA existe a possibilidade da formação de ligações de hidrogênio tanto intra como intermoleculares. Uma das maneiras para verificar a formação dessas interações consiste em analisar os espectros FT-Raman e FT-IR na região dos estiramentos ν_s(NH$_2$) e ν_{as}(NH$_2$) como mostra a Figura 25 (A e B).

![Figura 25. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR da oNA no estado sólido na região de 2800 a 3600 cm$^{-1}$.

As bandas em 3347 e 3477 cm$^{-1}$ (Figura 25B) são atribuídas aos estiramentos ν_s(NH$_2$) e ν_{as}(NH$_2$), respectivamente. A comparação com os valores observados no espectro da oNA em solução de acetonitrila (3370 e 3491 cm$^{-1}$) indica que as ligações de hidrogênio intermoleculares na oNA no estado sólido são pouco significativas, já que o deslocamento de freqüência dos estiramentos N-H é pequeno (ca. 15 cm$^{-1}$). As bandas entre 3000 e 3100 cm$^{-1}$ são atribuídas aos estiramentos ν(C-H) do anel aromático.
3.2.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante da orto-nitroanilina em solução de acetonitrila

A Figura 26 mostra o espectro eletrônico (UV-Vis) da orto-nitroanilina em solução de acetonitrila.

![Espectro de Absorção da oNA](image)

Figura 26. Espectro de absorção da oNA em solução de acetonitrila na região de 200 a 600 nm.

A banda de nosso interesse é a de menor energia em ca. 415 nm que é atribuída à transição eletrônica de transferência de carga do grupo NH$_2$ para o grupo NO$_2$. Assim como na pNA, podemos utilizar o modelo de dois estados e representar a estrutura zwitterionica, Ψ_{CT}, para a oNA:

![Estrutura Zwitterionica](image)

A estrutura canônica representada por Ψ_{CT} provavelmente consiste na estrutura de ressonância de maior contribuição no primeiro estado eletrônico excitado da oNA. Entretanto essa contribuição não é tão substancial como no caso da pNA, como já discutido anteriormente, o que pode ser observado comparando a intensidade da transição CT em ca. 415 nm com a intensidade da transição $\pi-\pi^*$ do anel aromático em ca. 229 nm (Figura 26).
A Figura 27 (A e B) mostram os espectros Raman ($\lambda_0 = 514.5$ nm) e IR em solução de acetonitrila.

Figura 27. Espectros (A) Raman ($\lambda_0 = 514.5$ nm) e (B) FT-IR da oNA em solução de acetonitrila na região de 400 a 1700 cm$^{-1}$ (*acetonitrila).

Comparando os espectros Raman e FT-IR (Figura 27) da oNA em solução com os espectros da oNA no estado sólido (Figura 24) não são observadas mudanças significativas nos valores das frequências. O estiramento ν(C-NH$_2$) sofreu um deslocamento de 1244 cm$^{-1}$ para 1261 cm$^{-1}$ e houve diminuição de sua intensidade em relação à banda em 1287 cm$^{-1}$. A principal mudança ocorreu na região do estiramento simétrico ν_s(NO$_2$), modo que em solução aparece como um dubleto. A origem desse dubleto ainda não foi suficientemente esclarecida. Existem duas explicações plausíveis35: uma ressonância de Fermi entre o modo de estiramento simétrico ν_s(NO$_2$) e um modo de combinação, ou a existência de grupos NO$_2$ não equivalentes, como por exemplo, livre e associado por ligação de hidrogênio. Esse dubleto também aparece no espectro da para-nitroanilina em solução e um estudo sistemático variando a polaridade do solvente, a temperatura e a concentração de pNA foi realizado, resultados que serão apresentados na próxima seção. Neste momento serão apresentados os resultados referentes à espectroscopia Raman ressonante da orto-nitroanilina em solução de acetonitrila.
A Figura 28 mostra os espectros Raman da oNA em solução de acetonitrila obtidos com diferentes energias de excitação em que a cor de cada espectro representa aproximadamente a cor da radiação excitante.

Figura 28. Espectros Raman da oNA em solução de acetonitrila obtidos em diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\).

(* banda do padrão interno: 918 cm\(^{-1}\) da acetonitrila)

A Figura 29 mostra no espectro de absorção as energias das radiações de excitação utilizadas na região da banda de transferência de carga da oNA em acetonitrila.

Figura 29. Espectro de absorção da oNA em solução de acetonitrila na região de 300 a 600 nm e as correspondentes energias de excitação utilizadas na obtenção dos espectros Raman apresentados na Figura 28.
Na análise dos espectros Raman apresentados na Figura 28 deve ficar claro que não foi a banda do padrão interno (918 cm\(^{-1}\)) que variou sua intensidade intrínseca e sim as bandas da oNA que foram intensificadas. No espectro Raman fora de ressonância, ou seja, excitado em \(\lambda_0 = 647.1\) nm praticamente são observadas apenas as bandas do padrão interno (CH\(_3\)CN) em 380, 918 e 1374 cm\(^{-1}\). Através da Figura 29 podemos observar que os espectros excitados em \(\lambda_0 = 514.5\) nm e \(\lambda_0 = 488.0\) nm estão em condições de pré-ressonância com a banda de transferência de carga e nota-se a intensificação simultânea de todos os modos vibracionais da oNA. Em condições de ressonância (\(\lambda_0 = 457.9\) nm e \(\lambda_0 = 413.1\) nm) observamos a intensificação preferencial dos modos relacionados ao grupo NO\(_2\), principalmente de dois modos: da componente de maior freqüência do doublet atribuído ao modo \(\nu_s(NO_2)\) em ca. 1363 cm\(^{-1}\), e do moda no em ca. 1287 cm\(^{-1}\) atribuído ao modo que acopla os movimentos \(\phi\) (13), \(\nu(C-NO_2)\) e \(\nu(C-NH_2)\).

Este resultado nos mostra que esses modos normais de vibração estão diretamente acoplados a transição CT na oNA.

A intensificação dos modos associados ao grupo NO\(_2\) está relacionada à grande variação da distância de ligação N-O que ocorre durante a transição CT, pois elétrons de orbitais não-ligantes do grupo NH\(_2\) são transferidos para orbitais antiligantes do grupo NO\(_2\) fazendo com que a ordem da ligação N-O diminua e o comprimento de ligação aumente. De acordo com o princípio de Frank-Condon, essa grande variação na distância de ligação N-O ocasionará em um grande valor do numerador na expressão da polarizabilidade de transição e consequentemente as intensidades das linhas Raman associadas ao grupo NO\(_2\), principalmente do estiramento simétrico \(\nu_s(NO_2)\), de acordo com o formalismo de Albrecht (termo A).

3.2.3. Para-nitroanilina (4-nitroanilina)

![pNA](pNA.png)
A molécula de pNA, protótipo de cromóforo “push-pull” de elevada hiperpolarizabilidade (β), ainda é objeto de inúmeros estudos, experimentais e teóricos, especialmente na simulação de seus estados eletrônicos para a determinação de propriedades físicas como momento de dipolo, polarizabilidade e hiperpolarizabilidade. Apesar de ser encontrado na literatura um número considerável de estudos envolvendo espectroscopia vibracional, dois pontos ainda permanecem obscuros: o comportamento do modo em ca. 1284 cm\(^{-1}\), que no espectro Raman do sólido dá origem à banda mais intensa e no espectro da solução não é observado; e a origem do duplo atribuído ao modo \(v_s(\text{NO}_2)\).

3.2.3.1. Espectroscopia vibracional Raman e Infravermelho da para-nitroanilina no estado sólido

A Figura 30 (A e B) mostra os espectros FT-Raman (\(\lambda_0 = 1064\) nm) e infravermelho (FT-IR) da pNA no estado sólido na região de 400 a 1700 cm\(^{-1}\).

![Figura 30](image)

Figura 30. Espectros (A) FT-Raman (\(\lambda_0 = 1064\) nm) e (B) FT-IR da pNA no estado sólido na região de 400 a 1700 cm\(^{-1}\).

No espectro FT-Raman da pNA sólida (Figura 30A) observamos que a banda em ca. 1284 cm\(^{-1}\) domina o espectro e as bandas atribuídas ao
estiramento simétrico νₛ(NO₂) em ca. 1316 e 1339 cm⁻¹ aparecem com baixa intensidade relativa. Em comparação ao espectro FT-Raman da oNA (Figura 24A), outra diferença notável é com relação à banda do estiramento ν(C-NH₂) em ca. 1244 cm⁻¹, que no espectro da pNA não é observada. O modo em ca. 1284 cm⁻¹ é atribuído por Varsányi¹⁶⁵ como o modo φ(13) do anel acoplado ao movimento fora de fase dos estiramentos ν(C-NO₂) e ν(C-NH₂).

Uma explicação para o grande valor de intensidade da banda em ca. 1284 cm⁻¹ em relação às outras bandas, seria que no acoplamento vibrônico, esse modo seria o que mais diretamente estaria ligado à estrutura de ressonância zwiterionica ψᵣ:\n
![ψᵣ](https://via.placeholder.com/150)

Em outras palavras, este modo vibracional deve ser o responsável pela maior variação na distribuição de carga na molécula de pNA, o que faz com que haja uma grande variação da polarizabilidade eletrônica com a variação da coordenada normal. Dessa maneira o momento de transição assume um alto valor e a intensidade do modo em ca. 1284 cm⁻¹ se sobressai em relação aos outros. Além disso, esse modo aparece como uma banda larga e intensa no espectro IR (Figura 30B) o que indica que consiste de um modo ʋ acoplado à transferência de carga intramolecular da pNA no estado sólido.

Na Tabela V encontram-se os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros FT-Raman e FT-IR da pNA no estado sólido.
Tabela V. Valores das frequências vibracionais em número de onda (cm-1), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR da para-nitroanilina no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm-1)</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm-1)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>0.1</td>
<td>490</td>
<td>m</td>
<td>φ(16b)</td>
</tr>
<tr>
<td>533</td>
<td>0.1</td>
<td>535</td>
<td>m</td>
<td>ρ(NO\textsubscript{2})</td>
</tr>
<tr>
<td>635</td>
<td>0.4</td>
<td>632</td>
<td>M</td>
<td>ρ(NO\textsubscript{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>698</td>
<td>m</td>
<td>φ(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>754</td>
<td>s</td>
<td>γ(NO\textsubscript{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>841</td>
<td>s</td>
<td>φ(12)</td>
</tr>
<tr>
<td>864</td>
<td>1.6</td>
<td></td>
<td></td>
<td>δ(NO\textsubscript{2})</td>
</tr>
<tr>
<td>1110</td>
<td>1.3</td>
<td>1114</td>
<td>v s</td>
<td>v(C-NO\textsubscript{2})</td>
</tr>
<tr>
<td>1179</td>
<td>0.8</td>
<td>1182</td>
<td>m</td>
<td>φ(9a)</td>
</tr>
<tr>
<td>1284</td>
<td>10.0</td>
<td>1306</td>
<td>v s</td>
<td>φ(13)+v(C-NO\textsubscript{2})+v(C-NH\textsubscript{2})</td>
</tr>
<tr>
<td>1316</td>
<td>2.6</td>
<td>1328</td>
<td>v s</td>
<td>v\textsubscript{s}(NO\textsubscript{2})</td>
</tr>
<tr>
<td>1339</td>
<td>0.7</td>
<td>1338</td>
<td>v s</td>
<td>v\textsubscript{s}(NO\textsubscript{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1445</td>
<td>v s</td>
<td>φ(19b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1481</td>
<td>v s</td>
<td>φ(19a)</td>
</tr>
<tr>
<td>1507</td>
<td>0.5</td>
<td>1506</td>
<td>M</td>
<td>v\textsubscript{as}(NO\textsubscript{2})</td>
</tr>
<tr>
<td>1592</td>
<td>0.3</td>
<td>1595</td>
<td>v s</td>
<td>φ 8a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1630</td>
<td>v s</td>
<td>δ(NH\textsubscript{2})</td>
</tr>
</tbody>
</table>

A determinação da estrutura cristalina da pNA66 por difração de raios-X mostra que as moléculas estão arranjadas em camadas independentes aproximadamente planares. Existem ligações de hidrogênio entre as moléculas de cada camada, porém não entre camadas adjacentes, o que explica a perfeita clivagem paralela a essas camadas. A formação de ligações de hidrogênio intermoleculares pode ser evidenciada através da análise dos espectros FT-Raman e FT-IR na região de 2800 a 3600 cm-1 (Figura 31 A e B) em que a presença das bandas em ca. 3221 e 3240 cm-1 representam os estiramentos v\textsubscript{s}(NH\textsubscript{2}) e v\textsubscript{as}(NH\textsubscript{2}) dos grupos NH\textsubscript{2} associados.
3.2.3.2. Espectroscopia eletrônica, vibracional e Raman ressonante da para-nitroanilina em solução de acetonitrila.

A Figura 32 mostra o espetro eletrônico (UV-Vis) da para-nitroanilina, pNA, em solução de acetonitrila.

Figura 31. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR da pNA no estado sólido na região de 2800 a 3600 cm$^{-1}$.

Como já discutido anteriormente, a alta intensidade da banda de transferência de carga em ca. 365 nm na molécula de pNA, deve-se à grande variação do momento de dipolo durante a transição. A redistribuição de carga no estado eletrônico excitado é responsável pelo grande valor do momento de
dipolo de transição o que leva a uma forte absorção eletrônica na região do visível.

A Figura 33 mostra o espectro Raman ($\lambda_0 = 514.5$ nm) e o espectro FT-IR da pNA em solução de acetonitrila.

![Figura 33](image)

Figura 33. Espectros (A) Raman ($\lambda_0 = 514.5$ nm) e (B) FT-IR da pNA em solução de acetonitrila na região de 400 a 1700 cm$^{-1}$ (*bandas da acetonitrila)

Podemos observar que a banda mais intensa do espectro FT-Raman da pNA sólida (Figura 30A) em 1284 cm$^{-1}$, não é observada no espectro da pNA em solução (Figura 33A), e a banda atribuída ao estiramento simétrico do grupo, ν_s(NO$_2$), aparece como um dubleto em ca. 1316 e 1332 cm$^{-1}$. Para explicar essa diferença Harrand propõe que as estruturas de ressonância que prevalecem em cada estado físico (sólido e em solução) são as seguintes:

![sólido e solução]
Podemos então considerar que o modo em 1284 cm\(^{-1}\) está de fato associado à estrutura quinóide que equivale à estrutura zwiterionica, \(\Psi_{\text{CT}}\), apresentada anteriormente. É notável que praticamente todos os outros modos são coincidentes nos espectros da pNA sólida e em solução como mostra a Figura 34.

![Figura 34](image)

Figura 34. Espectros Raman (\(\lambda_0 = 488.0\) nm) da pNA sólida e em solução de acetonitrila na região de 400 a 1700 cm\(^{-1}\)

(sólido:* 1068 cm\(^{-1}\) do nitrato de sódio / solução:* 918 cm\(^{-1}\) da acetonitrila)

Comparando os espectros eletrônicos (UV-Vis) da pNA sólida e em solução (Figura 35) observamos um ombro na região de menor energia no espectro no estado sólido, que pode ser atribuído à transição de transferência de carga intermolecular no cristal.

![Figura 35](image)

Figura 35. Espectros eletrônicos da pNA sólida e em solução de acetonitrila na região de 200 a 500 nm.
Realizamos o estudo Raman ressonante da pNA sólida na região de 647.1 a 413.1 nm e não foi observada nenhuma alteração significativa das intensidades quando comparamos os espectros em diferentes condições de ressonância. Para obtermos informações referentes à condição de ressonância com a banda de transferência de carga intermolecular (ombro), necessitaríamos de um estudo mais sistemático para investigar a região de baixa freqüência (< 100 cm\(^{-1}\)) em que estão os modos de rede acoplados a essa transição.

Em solução, os modos vibracionais acoplados à transferência de carga são essencialmente os modos do grupo NO\(_2\), principalmente \(\nu_s(\text{NO}_2)\) e \(\delta(\text{NO}_2)\) que apresentam as maiores intensidades no espectro, o que pode ser confirmado através da espectroscopia Raman ressonante. A Figura 36 mostra os espectros Raman obtidos em diferentes \(\lambda_0\).

![Figura 36. Espectros Raman da pNA em solução de acetonitrila obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\) (* banda do padrão interno: 918 cm\(^{-1}\) da acetonitrila)](image)

À medida que a energia de excitação se aproxima da energia de transferência de carga, o modo \(\nu_s(\text{NO}_2)\) que aparece como um dubleto em ca. 1316 e 1332 cm\(^{-1}\) e o modo \(\delta(\text{NO}_2)\) em ca. 862 cm\(^{-1}\) são preferencialmente
intensificados, o que pode ser visto acompanhando a intensidade da banda em 918 cm\(^{-1}\) da acetonitrila que não é observada em condições de pré-ressonância (\(\lambda_0 = 413.1\) nm). Isso evidencia a participação majoritária dos orbitais das ligações N-O durante a transição de transferência de carga e o conseqüente aumento da polarizabilidade do grupo NO\(_2\). Apesar de disponível a radiação \(\lambda_0 = 363.8\) nm, não foi possível obter um espectro Raman confiável, pois em condições de ressonância alguns fatores como a forte absorção da radiação incidente, reabsorção da radiação espalhada e fotodecomposição da amostra não permitiram a obtenção de espectros confiáveis.

A origem do dubleto \(\nu_s(\text{NO}_2)\) em ca. 1316 e 1332 cm\(^{-1}\) ainda não foi suficientemente esclarecida. Nesse sentido realizamos alguns experimentos considerando inicialmente a hipótese da presença de grupos NO\(_2\) não equivalentes (livre e associado por ligação de hidrogênio). A dependência do dubleto com a polaridade do solvente é mostrada na Figura 37.

![Figura 37. Espectros Raman da pNA em solução de solventes de diferentes constantes dielétricas, \(\varepsilon\), na região de 1200 a 1400 cm\(^{-1}\).](image)

Se considerarmos que a origem do dubleto deve-se a existência de mais de uma espécie molecular, ou seja, o grupo NO\(_2\) livre e associado por ligação de hidrogênio, pode-se inferir que a componente de maior freqüência é atribuída ao grupo livre e a de menor freqüência, ao associado. Em solventes pouco polares (clorofórmio e diclorometano) prevalece a componente do grupo
NO2 livre, o que está coerente, já que nesses solventes as ligações de hidrogênio são fracas. Em acetona ocorre uma inversão das intensidades e prevalece a componente do grupo NO2 associado, porém não é observado nenhum comportamento linear quando aumentamos mais ainda a polaridade do solvente, como é o caso dos diferentes espectros em acetonitrila, DMSO e H2O. A formação de ligações de hidrogênio é complexa e não depende apenas da polaridade do solvente, depende também de fatores como temperatura e concentração da amostra.

A Figura 38 mostra os espectros Raman da pNA em solução de acetonitrila em diferentes concentrações. A variação de concentração foi da ordem de 100 vezes e não foi observada nenhuma alteração significativa da intensidade relativa do duploeto.

Figura 38. Espectros da pNA em acetonitrila em diferentes concentrações. (*1375 cm-1 da acetonitrila)

Este resultado mostra que o duploeto não é devido às interações intermoleculares de ligação de hidrogênio entre as moléculas de pNA. Foi variada também a temperatura e foi observada a inversão de intensidades mesmo em um intervalo pequeno de temperatura, como mostra a Figura 39.
Este resultado favorece a hipótese de diferentes grupos NO$_2$ em solução, já que em temperatura mais baixa deve prevalecer a componente atribuída ao grupo associado, como mostra o espectro em $t = 20$ °C, e em temperatura mais alta, as interações diminuem e prevalece então a componente atribuída ao grupo NO$_2$ livre como mostra o espectro em $t = 60$ °C.

Por outro lado, a forma de linha do dobleto em diferentes solventes (Figura 38) aparece bem definida, principalmente em acetonitrila. Seria esperado que em alguns solventes houvesse mais do que dois ambientes de solvatação, o que resultaria em uma banda larga e não em duas bandas resolvidas. A situação em que as linhas mantêm seu caráter discreto, mas variam suas intensidades relativas, é característica de uma ressonância de Fermi. O conjunto de resultados aqui relatados mostra a complexidade do problema, com argumentos pró e contra a presença de grupos NO$_2$ não equivalentes.

Considerando as atribuições de Varsanyi, prováveis candidatos para a ressonância de Fermi seriam os modos 16b (ca. 491 cm$^{-1}$) e 17b (ca. 842 cm$^{-1}$), ambos modos de simetria B$_2$ ativos no IR. A variação de solventes e de temperatura nos espectros IR eliminaria facilmente essa questão, mas não foi possível obter resultados confiáveis devido a dificuldades como a forte absorção dos solventes na região de 400 a 1000 cm$^{-1}$ e da limitação das janelas espectrais utilizadas. Bertrán30 realizou um estudo do dobleto v_s(NO$_2$) da pNA no espectro IR em 17 solventes e não obteve nenhum resultado.
conclusivo, a não ser quando através dos espectros IR da pNA deuterada \((O_2N-\phi-ND_2)\) mostrou que a componente de menor frequência desaparece, fato que pode apenas ser explicado por uma ressonância de Fermi que deve envolver pelo menos uma frequência fundamental do grupo NH\(_2\). Sendo assim, assumiremos que a origem do dubleto deve-se à ressonância de Fermi, pois é a hipótese mais concordante com os experimentos disponíveis até o momento.

Fica claro que mesmo em um sistema considerado simples como a molécula de pNA, existem efeitos complexos relacionados à estrutura eletrônica e vibracional que não podem ser elucidados utilizando apenas as técnicas espectroscópicas descritas neste trabalho.

3.2.4. 2,4-dinitroanilina

![dNA molecule](image)

3.2.4.1. Espectroscopia vibracional Raman e Infravermelho da 2,4-dinitroanilina no estado sólido

A Figura 40 (A e B) mostra os espectros FT-Raman \((\lambda_0 = 1064 \text{ nm})\) e infravermelho (FT-IR) da dNA no estado sólido na região de 400 a 1700 \(\text{cm}^{-1}\).

![Figure 40]
Nota-se que de uma forma geral, o espectro se assemelha mais ao espectro da oNA do que da pNA. O modo de estiramento simétrico ν_s(NO$_2$) aparece como a banda mais intensa em ambos os espectros Raman e IR, em ca. 1332 cm$^{-1}$. O modo ν(C-NH$_2$) em ca. 1250 cm$^{-1}$ e os modos do anel aparecem com baixa intensidade. Podemos observar que diferentemente da oNA e da pNA o modo em ca. 1284 cm$^{-1}$ não é observado no espectro da dNA sólida, já que o acoplamento entre os modos de estiramento ν(C-NH$_2$) e ν(C-NO$_2$) é diferente em um anel tri-substituído.

Na Tabela VI são apresentados os valores das freqüências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR da dNA no estado sólido.

Tabela VI. Valores das freqüências vibracionais em número de onda (cm$^{-1}$), suas intensidades relativas e atribuição tentativa dos espectros FT-Raman e FT-IR da 2,4-dinitroanilina no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>416</td>
<td>0.5</td>
<td>415</td>
<td>v w</td>
<td>ϕ(16b)</td>
</tr>
<tr>
<td>520</td>
<td>0.3</td>
<td>519</td>
<td>w</td>
<td>ρ(NO$_2$)</td>
</tr>
<tr>
<td>574</td>
<td>0.2</td>
<td>578</td>
<td>m</td>
<td>ϕ(6a)</td>
</tr>
<tr>
<td>641</td>
<td>0.6</td>
<td>640</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>715</td>
<td>0.3</td>
<td>715</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>746</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>822</td>
<td>0.9</td>
<td></td>
<td></td>
<td>γ(NO$_2$)</td>
</tr>
<tr>
<td>834</td>
<td>1.8</td>
<td>836</td>
<td>m</td>
<td>δ(NO$_2$)</td>
</tr>
<tr>
<td>1063</td>
<td>0.5</td>
<td>1066</td>
<td>m</td>
<td>ϕ(18b)</td>
</tr>
<tr>
<td>1126</td>
<td>0.5</td>
<td>1129</td>
<td>m</td>
<td>ν(C-NO$_2$)</td>
</tr>
<tr>
<td>1250</td>
<td>2.4</td>
<td>1260</td>
<td>s</td>
<td>ν(C-NH$_2$)</td>
</tr>
<tr>
<td>1268</td>
<td>0.9</td>
<td></td>
<td></td>
<td>ϕ(13)+ν(C-NO$_2$)+ν(C-NH$_2$)</td>
</tr>
<tr>
<td>1332</td>
<td>10.0</td>
<td>1341</td>
<td>v s</td>
<td>ν_s(NO$_2$)</td>
</tr>
<tr>
<td>1388</td>
<td>1.4</td>
<td>1389</td>
<td>m</td>
<td>ϕ(3)</td>
</tr>
<tr>
<td>1426</td>
<td>0.2</td>
<td>1428</td>
<td>m</td>
<td>ϕ(19b)</td>
</tr>
<tr>
<td>1497</td>
<td>0.2</td>
<td>1497</td>
<td>s</td>
<td>ϕ(19a)</td>
</tr>
<tr>
<td>1521</td>
<td>0.8</td>
<td>1522</td>
<td>m</td>
<td>ν_{as}(NO$_2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1586</td>
<td>v s</td>
<td>ϕ(8a)</td>
</tr>
<tr>
<td>1620</td>
<td>1.6</td>
<td>1636</td>
<td>v s</td>
<td>δ(NH$_2$)</td>
</tr>
</tbody>
</table>
3.2.4.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2,4-dinitroanilina em meio metanólico neutro e básico.

A Figura 41 mostra o espectro UV-Vis da dNA em solução de metanol.

Podemos observar a presença de duas bandas na região de menor energia, uma de menor intensidade em ca. 390 nm e uma intensa e bem definida em ca. 336 nm, que podem ser atribuídas às transições de transferência de carga do grupo NH$_2$ para os grupos NO$_2$ nas posições 2 e 4, respectivamente. A atribuição foi baseada na comparação com os espectros UV-Vis da oNA e pNA (Figuras 26 e 32, respectivamente).

A Figura 42 mostra o espectro Raman ($\lambda_0 = 514.5$ nm) e o espectro FT-IR da dNA em solução de acetonitrila.

Figura 41. Espectro UV-Vis da dNA em solução de metanol na região de 200 a 600 nm.

Figura 42. Espectros (A) Raman ($\lambda_0 = 514.5$ nm) e (B) FT-IR da dNA em solução de acetonitrila na região de 400 a 1700 cm$^{-1}$ (* padrão interno: acetonitrila)
Comparando os espectros da dNA sólida e em solução, não observamos alterações significativas, a não ser pelo aparecimento da banda em ca. 1281 cm\(^{-1}\) ao invés da banda em ca. 1250 cm\(^{-1}\) atribuída ao estiramento \(\nu(C-NH_2)\) no espectro da dNA no estado sólido (Figura 40), o que indica que em solução há um maior acoplamento entre o modo 13 do anel e os modos de estiramento \(\nu(C-NH_2)\) e \(\nu(C-NO_2)\).

A presença de dois grupos NO\(_2\) nas posições 2 e 4 em relação ao grupo NH\(_2\), aumenta consideravelmente a acidez do próton do grupo NH\(_2\) (pK\(_a\) \(\approx\) 15.0), em comparação à molécula de para-nitroanilina (pK\(_a\) \(\approx\) 18.4), o que permitiu a formação da espécie aniónica em meio metanólico. Em sistemas push-pull, a retirada de próton e o conseqüente aumento da deslocalização resultam em transições intensas na região do visível.

Os espectros de absorção UV-Vis da dNA e de seu respectivo ânion em solução de metanol são apresentados na Figura 43. A estrutura que representa o ânion da dNA é apenas uma dentre as várias estruturas de ressonância que contribuem para a estabilização da carga negativa.

![Especro de absorção de dNA em meio metanólico neutro e básico na região de 200 a 600 nm.](image)

Figura 43. Espectro de absorção da dNA em meio metanólico neutro e básico na região de 200 a 600 nm.

A retirada do próton causa um aumento substancial da intensidade das bandas de transferência de carga e além disso, é observada uma transição eletrônica de menor energia em ca. 516 nm. A deslocalização de carga por é caracterizada pelo aparecimento de transições de transferência de carga de carga de baixa energia, como observado no caso da [dNA]\(^-\).
Os espectros Raman foram obtidos em diferentes radiações de excitação, que correspondem às linhas indicadas na Figura 43. Nas Figuras 44 e 45 são mostrados os espectros Raman da espécie neutra e aniónica, respectivamente, em diferentes condições de ressonância.

Figura 44. Espectros Raman da dNA em solução neutra de metanol obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(

(* padrão interno: 1038 cm\(^{-1}\) do metanol)

Figura 45. Espectros Raman da dNA em solução básica de metanol obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(* padrão interno: 1038 cm\(^{-1}\) do metanol)
Nos espectros Raman da espécie neutra (Figura 44) em condições de ressonância ($\lambda_0 = 413$ nm) com a banda de transferência de carga de menor energia em ca. 390 nm, ocorre a intensificação preferencial dos modos de estiramento $v_s(\text{NO}_2)$ em 1387 cm$^{-1}$, do modo $\phi(13)$ do anel acoplado aos estiramentos $v(\text{C-NO}_2)$ e $v(\text{C-NH}_2)$ em 1281 cm$^{-1}$ e do modo de deformação $\delta(\text{NO}_2)$ em 837 cm$^{-1}$. A intensificação desses modos associados ao grupo NO$_2$ em condições de ressonância com a banda de transferência de carga de menor energia sugere que esses modos pertencem ao grupo NO$_2$ na posição 2 da molécula de dNA. Adicionalmente, o modo $v_s(\text{NO}_2)$ em 1337 cm$^{-1}$ que não foi intensificado da mesma maneira, pode ser atribuído ao estiramento grupo NO$_2$ na posição 4.

A retirada do próton do grupo NH$_2$ causa uma grande perturbação no acoplamento vibrônico, que se reflete na complexidade observada nos espectros Raman da espécie aniônica (Figura 45). Nota-se que no espectro obtido em $\lambda_0 = 647$ nm aparecem diversas bandas além das observadas no espectro da espécie neutra, dificultando a atribuição vibracional. O modo $v_s(\text{NO}_2)$ aparece com média intensidade em ca. 1320 cm$^{-1}$ e a atribuição do modo $\delta(\text{NO}_2)$ para a banda mais intensa do espectro em ca. 828 cm$^{-1}$ fica incerta, já que é incomum que um modo de deformação seja mais intenso que o modo de estiramento simétrico para um mesmo grupo.

Em condições de ressonância ($\lambda_0 = 514$ nm) com a banda de transferência de carga de menor energia em ca. 516 nm da espécie aniônica, os modos associados ao grupo NO$_2$ aparecem com baixa intensidade e são intensificados modos do anel $\phi(8a)$ em 1607 cm$^{-1}$ e o $\phi(19a)$ em 1483 cm$^{-1}$. A banda mais intensa do espectro em 1548 cm$^{-1}$ pode ser atribuída ao estiramento $v(\text{C=NH}^-)$ que teve sua frequência aumentada devido ao seu caráter de dupla ligação. Através do modelo de dois estados podemos inferir que a estrutura de ressonância que representa o estado eletrônico de menor energia na espécie aniônica da dNA, envolve a formação de uma dupla ligação C=NH$^-$, que coincidentemente pode ser representada pela estrutura de ressonância mostrada na Figura 43.

Em condições de ressonância ($\lambda_0 = 413$ nm) com a banda de transferência de carga em ca. 390 nm nota-se uma diminuição da intensidade
da banda $\nu(C=NH^+)$ em 1548 cm$^{-1}$, enquanto que os modos $\phi(8a)$ em 1607 cm$^{-1}$ e $\phi(19a)$ em 1483 cm$^{-1}$ são intensificados. Chama a atenção a intensificação da banda em 1138 cm$^{-1}$ atribuída ao estiramento $\nu(CNO_2)$, o que indica que na transição de transferência de carga do segundo estado eletrônico excitado da espécie aniônica da dNA há uma participação majoritária dos orbitais da ligação C-N ao invés das ligações N-O como ocorre na espécie neutra.

A diminuição da intensidade dos modos do grupo NO$_2$ na espécie aniônica pode ser explicada pela alteração da polarizabilidade das ligações N-O, causada pela deslocalização eletrônica π. A grande densidade eletrônica já presente nos orbitais das ligações N-O faz com que os elétrons durante a distribuição de carga ocupem orbitais distintos aos da ligação N-O, ou seja, orbitais do anel aromático e das ligações C-N, fazendo com que a variação da polarizabilidade destas ligações seja significativamente maior do que a das ligações N-O durante os modos normais de vibração.

3.2.5. Conclusões parciais

A análise das estruturas eletrônica e vibracional das nitroanilinas mostrou que a posição relativa dos substituintes determina a intensidade e a energia da transição de transferência de carga intramolecular (CT). A diferença observada nos espectros Raman dos isómeros oNA, mNA e pNA, mostrou como a intensidade dos espectros Raman está relacionada à intensidade da CT.

Nos espectros Raman ressonante os modos vibracionais intensificados foram aqueles acoplados à CT, ou seja, os modos vibracionais que mais contribuem para a separação de cargas (NH$_2^+/NO_2^−$). A retirada do próton do grupo NH$_2$ na molécula de 2,4-dinitroanilina causa o aparecimento de uma nova transição eletrônica, em que a deslocalização π altera significativamente o acoplamento vibrônico. Nesse sentido, a espectrosopia Raman ressonante foi capaz de mostrar a intensificação seletiva dos cromóforos associados a cada transição eletrônica, o que auxiliou na atribuição tanto dos espectros vibracionais, quanto dos espectros eletrônicos.
3.3. Nitrofenóis

Os nitrofenóis apresentam propriedades semelhantes às observadas nas nitroanilinas. Da mesma maneira são considerados modelos de cromóforos “push-pull”, em que apesar do grupo hidróxi (OH) ser um grupo elétron doador menos efetivo que o grupo NH$_2$, a presença de um próton ácido no grupo OH permite a formação das espécies aniônicas muito mais facilmente. A elevada acidez dos nitrofenóis fez com que o estudo das espécies neutras fosse realizado em meio aquoso ácido.

3.3.1. Orto-nitrofenol (2-nitrofenol)

![Orto-nitrofenol](image)

3.3.1.1. Espectroscopia vibracional Raman e Infravermelho do orto-nitrofenol e do orto-nitrofenolato de potássio no estado sólido

A Figura 46 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do oNF no estado sólido na região de 400 a 1700 cm$^{-1}$.

![Figura 46](image)
Apesar de ser uma molécula simples, os espectros FT-Raman e FT-IR do oNF são complexos como pode ser observado elevado número de bandas intensas em ambos os espectros. Um trabalho recente de análise vibracional do orto-nitrofenol aponta para as várias inconsistências encontradas na atribuição, devido principalmente à presença de ligações fortes de hidrogênio, tanto intra como intermoleculares no estado sólido.

As principais bandas são as dos modos de deformação angular no plano δ(COH) em 1369 cm⁻¹, estiramento simétrico ν_s(NO₂) em 1319 cm⁻¹, estiramentos ν(C-OH) em 1236 cm⁻¹ e ν(C-NO₂) em 1138 cm⁻¹, deformação no plano δ(NO₂) em 871 cm⁻¹ e modo φ(12) do anel em 820 cm⁻¹. A formação de ligações de hidrogênio fica evidenciada pela forma de linha das bandas observadas na região de 1100 a 1400 cm⁻¹, especialmente no espectro FT-IR.

Na Tabela VII são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros FT-Raman e FT-IR do oNF no estado sólido.

Tabela VII. Valores das frequências vibracionais em número de onda (cm⁻¹), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR do orto-nitrofenol no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm⁻¹)</th>
<th>I (intensidade relativa)</th>
<th>Infra-Vermelho (cm⁻¹)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>427</td>
<td>1.9</td>
<td>423</td>
<td>m</td>
<td>φ(16b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>526</td>
<td>s</td>
<td>ρ(NO₂)</td>
</tr>
<tr>
<td>550</td>
<td>0.9</td>
<td>547</td>
<td>m</td>
<td>δ_p(φ)</td>
</tr>
<tr>
<td>564</td>
<td>4.3</td>
<td>563</td>
<td>w</td>
<td>φ(6a)</td>
</tr>
<tr>
<td>669</td>
<td>1.4</td>
<td>666</td>
<td>s</td>
<td>φ(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>747</td>
<td>v s</td>
<td>γ(NO₂)</td>
</tr>
<tr>
<td>786</td>
<td>0.4</td>
<td>794</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>10.0</td>
<td>819</td>
<td>s</td>
<td>φ(12)</td>
</tr>
<tr>
<td>871</td>
<td>3.3</td>
<td>870</td>
<td>s</td>
<td>δ(NO₂)</td>
</tr>
<tr>
<td>1030</td>
<td>4.2</td>
<td>1029</td>
<td>s</td>
<td>φ(18a)</td>
</tr>
<tr>
<td>1082</td>
<td>0.8</td>
<td>1081</td>
<td>s</td>
<td>φ(18b)</td>
</tr>
<tr>
<td>1138</td>
<td>9.3</td>
<td>1136</td>
<td>s</td>
<td>ν(C-NO₂)</td>
</tr>
<tr>
<td>1163</td>
<td>1.6</td>
<td>1157</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>1181</td>
<td>1.7</td>
<td>1179</td>
<td>s</td>
<td>φ(9a)</td>
</tr>
<tr>
<td>1236</td>
<td>8.8</td>
<td>1238</td>
<td>s</td>
<td>ν(C-OH)</td>
</tr>
<tr>
<td>1250</td>
<td>4.7</td>
<td></td>
<td></td>
<td>φ(13)+ν(C-NO₂)+ν(C-NH₂)</td>
</tr>
<tr>
<td>1319</td>
<td>9.1</td>
<td>1316</td>
<td>s</td>
<td>ν_s(NO₂)</td>
</tr>
<tr>
<td>1336</td>
<td>0.7</td>
<td>1334</td>
<td>s</td>
<td>ν_s(NO$_2$)</td>
</tr>
<tr>
<td>1369</td>
<td>2.1</td>
<td>1373</td>
<td>m</td>
<td>δ(COH)</td>
</tr>
<tr>
<td>1455</td>
<td>2.0</td>
<td>1453</td>
<td>s</td>
<td>ϕ(19b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1478</td>
<td>v s</td>
<td>ϕ(19a)</td>
</tr>
<tr>
<td>1531</td>
<td>3.1</td>
<td>1533</td>
<td>v s</td>
<td>ν_{as}(NO$_2$)</td>
</tr>
<tr>
<td>1587</td>
<td>3.8</td>
<td>1590</td>
<td>s</td>
<td>ϕ(8a)</td>
</tr>
<tr>
<td>1616</td>
<td>1.0</td>
<td>1617</td>
<td>v s</td>
<td>δ(NH$_2$)</td>
</tr>
</tbody>
</table>

A Figura 47 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do orto-nitrofenolato de potássio (oNFL) no estado sólido na região de 400 a 1700 cm$^{-1}$.

![Figura 47](image)

Figura 47. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR do oNFL no estado sólido na região de 400 a 1700 cm$^{-1}$.

Analizando os espectros FT-Raman e FT-IR do sal orto-nitrofenolato de potássio (oNFL), observamos uma simplificação de ambos os espectros com relação aos do oNF. A retirada do próton elimina qualquer possibilidade de formação de ligações de hidrogênio, e assim fica evidente que a presença dessas interações é responsável pela complexidade observada nos espectros do oNF.

A banda atribuída à deformação δ(COH) obviamente não é observada no espectro FT-Raman do oNFL, o modo ν_s(NO$_2$) aparece como uma banda fina e intensa em 1327 cm$^{-1}$. O modo de estiramento ν(C-O$^-$) aparece em 1238 cm$^{-1}$, o modo δ(NO$_2$) em 880 cm$^{-1}$ e modo ϕ(12) em 814 cm$^{-1}$.
3.3.1.2. Espectroscopia eletrônica, vibracional e Raman ressonante do orto-nitrofenol em meio aquoso ácido e básico

A Figura 48 mostra o espectro eletrônico (UV-Vis) do oNF em meio aquoso ácido.

Figura 48. Espectro de absorção do oNF em meio aquoso ácido na região de 200 a 600 nm.

O espectro eletrônico do orto-nitrofenol (Figura 48) se assemelha muito ao espectro da orto-nitroanilina (Figura 26), caracterizado por apresentar baixa intensidade da banda de transferência de carga em relação à intensidade da transição $\pi - \pi^*$ do anel benzênico em ca. 215 nm. Entretanto no caso do oNF a energia da transição é significativamente maior ($\lambda_{\text{max}} = 351$ nm, enquanto que na oNA $\lambda_{\text{max}} = 415$ nm).

É bem conhecido que a elevada acidez de nitrofenóis, deve-se à estabilização da carga negativa devido à contribuição de estruturas de ressonância que possuem elevado grau de deslocalização eletrônica π. A retirada do próton do grupo OH do orto-nitrofenol (oNF) causa, além do aumento de intensidade, a diminuição da energia da transição eletrônica de transferência de carga para ca. 418 nm, como mostram os espectros de absorção UV-Vis na Figura 49. A diminuição de energia é uma conseqüência da aproximação dos orbitais HOMO e LUMO, e o aumento de intensidade, conseqüência da maior distribuição de carga durante a transição, ou seja, um maior momento de dipolo elétrico de transição. A estrutura que representa o
ânion no equilíbrio apresentado consiste apenas de uma dentre as várias estruturas de ressonância que contribuem para a estabilização da carga negativa.

Figura 49. Espectro de absorção do oNF em meio aquoso ácido e básico na região de 200 a 600 nm.

Os espectros Raman foram obtidos em diferentes radiações de excitação, que correspondem às linhas indicadas na Figura 49. Nas Figuras 50 e 51 são mostrados os espectros Raman da espécie neutra e aniônica, respectivamente, em diferentes condições de ressonância.

Figura 50. Espectros Raman do oNF em meio aquoso ácido obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(* banda do padrão interno: 984 cm\(^{-1}\) do sulfato)
Os espectros da espécie neutra (Figura 50) são caracterizados por apresentarem baixa intensidade Raman. Em condição fora de ressonância ($\lambda_0 = 514$ nm), praticamente é observada apenas a banda do padrão interno em ca. 984 cm\(^{-1}\). No espectro obtido em $\lambda_0 = 457$ nm podemos observar as principais bandas, modo $\phi(8a)$ em 1596 cm\(^{-1}\), ν_s(NO\(_2\)) em 1338 cm\(^{-1}\), ν(C-OH) em 1259 cm\(^{-1}\), ν(C-NO\(_2\)) em 1147 cm\(^{-1}\), δ(NO\(_2\)) em 878 cm\(^{-1}\) e modo $\phi(12)$ do anel em 827 cm\(^{-1}\). Em condições de pré-ressonância ($\lambda_0 = 413$ nm) observa-se a intensificação simultânea de todos os modos, principalmente dos modos associados ao grupo NO\(_2\). O modo ν_s(NO\(_2\)) aparece como uma banda larga devido às ligações de hidrogênio e da presença da deformação δ(COH) que possui valor próximo de frequência. A baixa relação sinal/ruído observada no espectro em $\lambda_0 = 413$ nm deve-se ao baixo sinal Raman intrínseco da amostra e da reabsorção da luz espalhada em condições de pré-ressonância.

Já no espectro da espécie aniônica em $\lambda_0 = 514$ nm (Figura 51) chama a atenção a grande intensidade das bandas do orto-nitrofenolato (oNFL) em relação à banda do padrão interno. Para uma devida comparação de intensidades em diferentes condições de ressonância, deveria ser adicionada...
na amostra maior quantidade do padrão interno, mas para observar a intensificação do espectro da espécie aniônica em relação ao espectro da espécie neutra, mantivemos a mesma quantidade relativa do padrão interno. Dessa maneira fica clara a relação da intensidade Raman com a energia e intensidade da banda de transferência de carga.

Nos espectros do oNFL (Figura 51) a banda do modo ν_s(NO$_2$) em 1337 cm$^{-1}$ aparece como uma banda muito intensa e fina pois não há mais a possibilidade de ligações de hidrogênio e nem a presença do modo de deformação δ(COH). Adicionalmente, a intensificação substancial dos modos de estiramento simétrico ν_s(NO$_2$) em 1337 cm$^{-1}$ e anti-simétrico ν_{as}(NO$_2$) em 1551 cm$^{-1}$ em condições de ressonância ($\lambda_0 = 413$ nm) mostra o grande acoplamento desses modos com a transição de transferência de carga em ca. 417 nm. O grande aumento da polarizabilidade eletrônica das ligações N-O sugere que no primeiro estado excitado do oNFL, a carga formada pela retirada do próton do grupo OH foi transferida aos orbitais do grupo NO$_2$.

Comparando os espectros das espécies neutra e aniônica não são observadas mudanças significativas com relação às frequências, o que indica que a perturbação do acoplamento vibrônico com a retirada do próton não é tão significativa como a que foi observada na formação da espécie aniônica da 2,4-dinitroanilina (Figura 45). Em outras palavras, as diversas estruturas de ressonância que contribuem para a estabilização de carga na espécie aniônica, devem possuir uma contribuição significativa na estabilização da espécie neutra.

Analisaremos agora o caso do para-nitrofenol (pNF) e como nas nitroanilinas, veremos a grande diferença causada na estruturas eletrônica e vibracional quando os substituintes encontram-se em posição para.
3.3.2. Para-nitrofenol

\[
\text{OH} \quad \text{pNF} \quad \text{NO}_2
\]

3.3.2.1. Espectroscopia vibracional Raman e Infravermelho do para-nitrofenol e do para-nitrofenolato de potássio no estado sólido

A Figura 52 (A e B) mostra os espectros FT-Raman \((\lambda_0 = 1064 \text{ nm})\) e infravermelho (FT-IR) do pNF no estado sólido na região de 400 a 1700 cm\(^{-1}\).

![Figura 52. Espectros (A) FT-Raman \((\lambda_0 = 1064 \text{ nm})\) e (B) FT-IR do pNF no estado sólido na região de 400 a 1700 cm\(^{-1}\).](image)

Podemos observar que, ao contrário do orto-nitrofenol, o para-nitrofenol apresenta um espectro FT-Raman relativamente simples, que apresenta bandas bem características: modo \(\phi(8a)\) do anel em 1586 cm\(^{-1}\), \(\nu_{as}(\text{NO}_2)\) em 1519 cm\(^{-1}\), \(\nu_s(\text{NO}_2)\) em 1338 cm\(^{-1}\) e 1326 cm\(^{-1}\), referentes à grupo \(\text{NO}_2\) livre e associado por ligação de hidrogênio, respectivamente, \(\nu(\text{C-OH})\) em 1218 cm\(^{-1}\), \(\nu(\text{C-NO}_2)\) em 1111 cm\(^{-1}\), \(\delta(\text{NO}_2)\) em 870 cm\(^{-1}\). Um fato interessante é a
presença do modo em 1283 cm⁻¹, que analogamente à molécula de para-nitroanilina, pode ser atribuído a um modo que acopla o modo φ(13) do anel aos estiramentos ν(C-OH) e ν(C-NO₂). Se a intensidade deste modo puder ser considerada como uma medida desse acoplamento, observamos que no para-nitrofenol esse acoplamento é menos efetivo que na para-nitroanilina, e o modo νₛ(NO₂) dá origem à banda mais intensa de ambos os espectros FT-Raman e FT-IR.

Na Tabela VIII são apresentados os valores das freqüências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do pNF no estado sólido.

Tabela VIII. Valores das freqüências vibracionais em número de onda (cm⁻¹), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR do para-nitrofenol no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm⁻¹)</th>
<th>I (intensidade relativa)</th>
<th>Infra-</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vermelho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>497</td>
<td>0.1</td>
<td>536</td>
<td>534</td>
<td>νₛ(NO₂)</td>
</tr>
<tr>
<td>630</td>
<td>0.5</td>
<td>636</td>
<td>636</td>
<td>δₚ(φ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>694</td>
<td>694</td>
<td>φ(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>755</td>
<td>755</td>
<td>γ(NO₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>851</td>
<td>851</td>
<td>φ(12)</td>
</tr>
<tr>
<td>866</td>
<td>1.2</td>
<td>870</td>
<td>870</td>
<td>ν(C-NO₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1077</td>
<td>1007</td>
<td>φ(18a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1113</td>
<td>1111</td>
<td>ν(C-NO₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1168</td>
<td>1171</td>
<td>φ(9a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1218</td>
<td>1218</td>
<td>ν(C-OH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1287</td>
<td>1283</td>
<td>ν(13)+ν(C-NO₂)+ν(C-NH₂)</td>
</tr>
<tr>
<td>1329</td>
<td>10.0*</td>
<td>1329</td>
<td>v s νₛ(NO₂)</td>
<td></td>
</tr>
<tr>
<td>1344</td>
<td>3.1</td>
<td>1338</td>
<td>v s νₛ(NO₂)</td>
<td></td>
</tr>
<tr>
<td>1394</td>
<td>0.2</td>
<td>1387</td>
<td>w φ(3)</td>
<td></td>
</tr>
<tr>
<td>1499</td>
<td>0.3</td>
<td>1500</td>
<td>v s φ(19b)</td>
<td></td>
</tr>
<tr>
<td>1515</td>
<td>0.5</td>
<td>1519</td>
<td>s ν₉(NO₂)</td>
<td></td>
</tr>
<tr>
<td>1590</td>
<td>1.7</td>
<td>1586</td>
<td>v s φ(8a)</td>
<td></td>
</tr>
<tr>
<td>1614</td>
<td>v s 1613</td>
<td></td>
<td></td>
<td>φ(8b)</td>
</tr>
</tbody>
</table>
A Figura 53 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do para-nitrofenolato de potássio, $K^+[pNFL]$ no estado sólido na região de 400 a 1700 cm$^{-1}$.

Podemos observar que os espectros FT-Raman e FT-IR do ânion para-nitrofenolato são consideravelmente diferentes dos respectivos espectros do para-nitrofenol. A principal diferença nos espectros Raman consiste no quase desaparecimento do modo ν_s(NO$_2$) em 1319 cm$^{-1}$ e a grande intensidade observada do modo de estiramento ν(C-O$^-$) em 1246 cm$^{-1}$, que teve seu valor de frequência deslocado em relação à espécie neutra (1218 cm$^{-1}$) devido ao caráter de dupla ligação induzida pela deslocalização de carga. Poderia-se pensar que o modo em 850 cm$^{-1}$ seria atribuído ao modo δ(NO$_2$), porém a ausência da banda do modo ν_s(NO$_2$) e o aumento da intensidade do modo do anel em 1167 cm$^{-1}$ indicam que esse modo seja atribuído ao modo $\phi(12)$ do anel acoplado ao modo ν(C-O$^-$).

Com o intuito de compreender a natureza do diferente acoplamento vibrônico nas espécies neutra e aniónica do pNF, realizamos o estudo Raman ressonante apresentado na seção subsequente.
3.3.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante do para-nitrofenol em meio aquoso ácido e básico.

A Figura 54 mostra o espectro eletrônico (UV-Vis) do pNF em meio aquoso ácido.

![Espectro eletrônico do para-nitrofenol](image)

Figura 54. Espectro de absorção do pNF em meio aquoso na região de 200 a 600 nm.

Como esperado, a banda da transição de transferência de carga em ca. 317 nm possui elevada intensidade relativa à banda $\pi-\pi^*$ do anel benzênico em ca. 226 nm. Similarmente ao caso da *para-*nitroanilina, é aplicável o modelo de dois estados que considera dois estados canônicos, ψ_{VB} e ψ_{CT}, representados da seguinte maneira:

$$
\begin{align*}
\psi_{\text{VB}} & \quad \leftrightarrow \quad \psi_{\text{CT}} \\
\end{align*}
$$

A grande contribuição da estrutura ψ_{CT} em ambos os estados eletrônicos, principalmente no excitado, é responsável pela grande intensidade da banda de transferência de carga observada na Figura 54.
Os espectros de absorção UV-Vis do pNF e de seu respectivo ânion são apresentados na Figura 55.

Figura 55. Espectro de absorção do pNF em meio aquoso ácido e básico na região de 200 a 600 nm.

Com a retirada do próton do grupo OH do para-nitrofenol nota-se um aumento da intensidade e a diminuição da energia e da transição de transferência de carga para ca. 402 nm, devido ao aumento do grau de deslocalização eletrônica π, assim como no caso do orto-nitrofenol.

Os espectros Raman das espécies neutra e aniônica obtidos nas diferentes radiações de excitação, correspondentes às linhas indicadas na Figura 55, são mostrados nas Figuras 56 e 57.

Figura 56. Espectros Raman do pNF em meio aquoso ácido obtidos com diferentes radiações de excitação na região de 200 a 1700 cm⁻¹

(*) banda do padrão interno: 984 cm⁻¹ do sulfato
Analisando os espectros da espécie neutra (Figura 56) observamos a tendência geral de intensificação dos modos vibracionais associados ao grupo NO₂, principalmente dos modos ν_s(NO₂) em 1344 cm$^{-1}$ e δ(NO₂) em 869 cm$^{-1}$ à medida que a energia de excitação se aproxima da energia da banda de transferência de carga em ca. 317 nm.

No espectro Raman ($\lambda_0 = 514$ nm) do para-nitrofenolato (pNFL) em solução (Figura 57), assim como no espectro FT-Raman do pNFL no estado sólido (Figura 53A), o modo ν_s(NO₂) quase não é observado (ca. 1337 cm$^{-1}$). Em condições de pré-ressonância ($\lambda_0 = 457$ nm) com a banda de transferência de carga em ca. 402 nm são preferencialmente intensificados os modos ϕ(9a) em 1172 cm$^{-1}$, ν(C-NO₂) em 1119 cm$^{-1}$ e o modo ϕ(12) acoplado ao ν(C-O$^-$) em 857 cm$^{-1}$. Já em condições de ressonância ($\lambda_0 = 413$ nm) nota-se uma intensificação preferencial do modo ϕ(13) acoplado aos estiramentos ν(C-O$^-$) e ν(C-NO₂) em 1291 cm$^{-1}$ e do modo ϕ(12) acoplado ao ν(C-O$^-$) em 857 cm$^{-1}$.

Na comparação entre os espectros das espécies neutra e aniônica é notável que o valor das frequências dos modos vibracionais não sofreram alteração significativa, porém suas intensidades relativas variaram bruscamente, mesmo em condições de não ressonância. O diferente
acoplamento vibrónico nas espécies neutra e aniônica, ou seja a diferente intensificação dos modos em condições de ressonância pode ser explicada através do modelo de dois estados.

Suponhamos que a estrutura zwiterionica ψ_{CT}:

![CT Structure](image)

seja a estrutura canônica de maior contribuição no primeiro estado eletrônico excitado da espécie neutra (pNF).

Com relação ao ânion (pNFL), podemos da mesma maneira, representar uma estrutura canônica similar, ψ_{VB}:

![VB Structure](image)

Podemos inferir que na espécie neutra (pNF), a contribuição da estrutura quinóide, ψ_{CT}, não é tão significativa como foi inicialmente suposto, pois observamos praticamente apenas a intensificação dos modos associados ao grupo NO$_2$ (Figura 56) e não de modos do anel ou da ligação C-OH. Se a contribuição de ψ_{CT} fosse realmente efetiva os modos do anel e do grupo C-OH seriam intensificados, pois a estrutura propõe uma mudança na geometria molecular envolvendo as ligações C-C e C-OH, o que levaria a uma elevada polarizabilidade de transição, ou seja, de uma elevada intensidade Raman em condições de ressonância ou pré-ressonância.

Já na espécie aniônica (pNFL) podemos dizer que a estrutura canônica ψ_{VB} é realmente a estrutura de maior contribuição no primeiro estado eletrônico excitado. A retirada do próton induz a formação de uma estrutura
“pseudoquinóide” que é evidenciada pela intensificação do modo $\phi(13)$ acoplado aos estiramentos $\nu(C-O)$ e $\nu(C-NO_2)$ em 1291 cm$^{-1}$ e do modo $\phi(12)$ acoplado ao $\nu(C-O)$ em 857 cm$^{-1}$. É interessante notar que a estrutura canônica Ψ_{CT} de maior contribuição no primeiro estado excitado se assemelha muito à provável estrutura de ressonância que mais contribui para a estabilização de carga do pNFL, mostrada no equilíbrio mostrado na Figura 56.

A baixa intensidade relativa dos modos do grupo NO$_2$ nos espectros Raman do pNFL (Figura 57) deve-se a grande densidade eletrônica já presente nos orbitais das ligações N-O, o que faz com que durante a distribuição de carga, os elétrons ocupem orbitais do anel aromático e das ligações C-O. Isto resulta em uma maior variação da polarizabilidade destas ligações em relação à variação da polarizabilidade das ligações N-O durante os modos normais de vibração. Essa nova configuração eletrônica, como já discutido, pode ser razoavelmente representada pela estrutura de ressonância Ψ_{CT}.

Nesse ponto torna-se interessante uma comparação entre os espectros Raman ressonante do orto-nitrofenol / orto-nitrofenolato (Figuras 50 / 51) e do para-nitrofenol / para-nitrofenolato (Figuras 56 / 57). No caso do par oNF / oNFL, observa-se que o modo $\nu_s(NO_2)$ está diretamente acoplado à transição de transferência de carga intramolecular (CT) em ambas as espécies, enquanto que no pNF / pNFL, este modo está acoplado apenas à transição CT da espécie neutra. Quando os substituintes estão ligados em posição para, a transferência de carga é mais efetiva do que quando ligados em posição orto, o que significa que no pNF o grupo NO$_2$ possui maior densidade de carga do que no oNF. Quando é formado o ânion pNFL, o grupo NO$_2$ já possui elevada densidade de carga e os elétrons devem ocupar orbitais moleculares distintos daqueles envolvidos nas ligações N-O, como discutido anteriormente. Já no caso dos substituintes em orto, quando é formado o ânion oNFL, os orbitais das ligações N-O ainda são capazes de receber elétrons, o que faz com que sua polarizabilidade aumente e o modo $\nu_s(NO_2)$ seja o mais intenso em ambas as espécies, neutra e aniônica.
3.3.3. 2,4-dinitrofenol

\[
\text{dNF} \quad \text{OH} \quad \text{NO}_2 \quad \text{NO}_2
\]

3.3.3.1. Espectroscopia vibracional Raman e Infravermelho do 2,4-dinitrofenol e do 2,4-dinitrofenolato de potássio no estado sólido

A Figura 58 (A e B) mostra os espectros FT-Raman \((\lambda_0 = 1064 \text{ nm})\) e FT-IR do dNF no estado sólido na região de 400 a 1700 cm\(^{-1}\).

Assim como no espectro FT-Raman 2,4-dinitroanilina sólida (Figura 40), o modo \(\nu_s(\text{NO}_2)\) em 1345 cm\(^{-1}\) no espectro FT-Raman do 2,4-dinitrofenol aparece como uma banda muito intensa em relação às outras bandas. O doublet \(\nu_s(\text{NO}_2)\) observado no espectro FT-IR deve-se provavelmente ao movimento fora de fase dos grupos NO\(_2\) nas posições 2 e 4. O modo de estiramento \(\nu(C-OH)\) aparece com baixa intensidade em 1254 cm\(^{-1}\) no espectro Raman e grande intensidade no espectro IR.

Figura 58. Espectros (A) FT-Raman \((\lambda_0 = 1064 \text{ nm})\) e (B) FT-IR do dNF no estado sólido na região de 400 a 1700 cm\(^{-1}\).
Na Tabela IX são apresentados os valores das frequências vibracionais, intensidades relativas e atribuição tentativa dos principais modos normais dos espectros Raman e IR do dNF no estado sólido.

Tabela IX. Valores das frequências vibracionais em número de onda (cm\(^{-1}\)), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR do 2,4-dinitrofenol no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>428</td>
<td>0.4</td>
<td>427</td>
<td>w</td>
<td>φ(16b)</td>
</tr>
<tr>
<td>518</td>
<td>0.3</td>
<td>520</td>
<td>m</td>
<td>ρ(NO(_2))</td>
</tr>
<tr>
<td>578</td>
<td>0.1</td>
<td>578</td>
<td>m</td>
<td>ϕ(6a)</td>
</tr>
<tr>
<td>641</td>
<td>0.6</td>
<td>641</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>694</td>
<td>0.1</td>
<td>683</td>
<td>s</td>
<td>ϕ(11)</td>
</tr>
<tr>
<td>715</td>
<td>0.3</td>
<td>715</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>744</td>
<td>0.3</td>
<td>744</td>
<td>s</td>
<td>γ(NO(_2))</td>
</tr>
<tr>
<td>769</td>
<td>0.2</td>
<td>768</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>0.4</td>
<td>820</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>838</td>
<td>3.1</td>
<td>838</td>
<td>s</td>
<td>δ(NO(_2))</td>
</tr>
<tr>
<td>854</td>
<td>0.2</td>
<td>851</td>
<td>s</td>
<td>ϕ(12)</td>
</tr>
<tr>
<td>1110</td>
<td>0.6</td>
<td>1108</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>1136</td>
<td>1.9</td>
<td>1137</td>
<td>s</td>
<td>ν(C-NO(_2))</td>
</tr>
<tr>
<td>1149</td>
<td>0.3</td>
<td>1147</td>
<td>s</td>
<td>ϕ(9a)</td>
</tr>
<tr>
<td>1254</td>
<td>1.1</td>
<td>1256</td>
<td>ν s</td>
<td>ν(C-OH)</td>
</tr>
<tr>
<td>1269</td>
<td>1.2</td>
<td></td>
<td>ϕ(13)+ν(C-NO(_2))+ ν(C-OH)</td>
<td></td>
</tr>
<tr>
<td>1337</td>
<td>3.8</td>
<td>1333</td>
<td>ν s</td>
<td>ν(_s)(NO(_2))</td>
</tr>
<tr>
<td>1344</td>
<td>10.0</td>
<td>1348</td>
<td>ν s</td>
<td>ν(_s)(NO(_2))</td>
</tr>
<tr>
<td>1433</td>
<td>0.4</td>
<td>1433</td>
<td>ν s</td>
<td>ϕ(19a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1479</td>
<td>s</td>
<td>ϕ(19b)</td>
</tr>
<tr>
<td>1513</td>
<td>0.7</td>
<td>1518</td>
<td>s</td>
<td>ν(_as)(NO(_2))</td>
</tr>
<tr>
<td>1534</td>
<td>0.8</td>
<td>1541</td>
<td>ν s</td>
<td></td>
</tr>
<tr>
<td>1597</td>
<td>0.9</td>
<td>1598</td>
<td>ν s</td>
<td>ϕ(8a)</td>
</tr>
<tr>
<td>1627</td>
<td>1.6</td>
<td>1627</td>
<td>ν s</td>
<td>ϕ(8b)</td>
</tr>
</tbody>
</table>

A Figura 59 (A e B) mostra os espectros FT-Raman (\(λ_0 = 1064\) nm) e infravermelho (FT-IR) do 2,4-dinitrofenolato de potássio, K\(^+[dNFL]\), no estado sólido na região de 400 a 1700 cm\(^{-1}\).
As duas bandas mais intensas do espectro FT-Raman, em 1326 e 1249 cm\(^{-1}\) correspondem às duas bandas mais características observadas nos espectros do orto-nitrofenolato (Figura 47) e do para-nitrofenolato (Figura 53), respectivamente. A banda em 1326 cm\(^{-1}\) pode ser atribuída ao \(\nu_s(\text{NO}_2)\) e a banda em 1249 cm\(^{-1}\) ao modo \(\nu(\text{C-O})\).

A diminuição de frequência do modo \(\nu_s(\text{NO}_2)\) de 1345 cm\(^{-1}\) na espécie neutra (dNF) para 1326 cm\(^{-1}\) na espécie aniónica (dNFL) pode ser entendida considerando que com a formação do ânion, a densidade de carga nos orbitais antiligantes da ligação N-O aumenta, fazendo com que a ordem da ligação diminua. Esta diminuição de frequência do modo \(\nu_s(\text{NO}_2)\) nem sempre é observada, pois a distribuição de carga nas espécies aniónica pode envolver orbitais distintos aos das ligações N-O como mostrado para o caso do ânion \textit{para}-nitrofenolato (pNFL) apresentado na seção anterior.

Figura 59. Espectros (A) FT-Raman (\(\lambda_0 = 1064\) nm) e (B) FT-IR do sal 2,4-dinitrofenolato de potássio no estado sólido na região de 400 a 1700 cm\(^{-1}\).
3.3.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante do 2,4-dinitrofenol em meio metanólico ácido e básico.

A presença de dois grupos NO₂ nas posições 2 e 4 em relação ao grupo OH, atribui um valor de pKa \(\approx 3.96 \) para a molécula de 2,4-dinitrofenol. Os espectros eletrônicos (UV-Vis) e Raman foram obtidos em solução de metanol para facilitar a comparação com os espectros da 2,4-dinitroanilina também obtidos em solução metanólica.

A Figura 60 mostra o espectro de absorção (UV-Vis) do dNF em meio metanólico ácido.

![Figura 60. Espectro de absorção do dNF em meio metanólico ácido na região de 200 a 600 nm.](image)

São observadas duas bandas na região de menor energia, uma de menor intensidade em ca. 295 nm e uma intensa e bem definida em ca. 262 nm, que podem ser atribuídas às transições de transferência de carga do grupo OH para os grupos NO₂ nas posições 2 e 4, respectivamente. A banda em ca. 211 nm é atribuída à transição \(\pi-\pi^* \) do anel benzênico.

Os espectros de absorção UV-Vis do dNF e de seu respectivo ânion em meio metanólico ácido e básico, respectivamente, são apresentados na Figura 61.
A retirada do próton do grupo OH no 2,4-dinitrofenol, causa um significativo deslocamento das bandas de transferência de carga para menores energias e um aumento de intensidade. O deslocamento de aproximadamente 100 nm mostra como a deslocalização eletrônica é favorecida sobre todo o sistema π na estabilização de carga do ânion dNFL.

Quando o próton do grupo NH$_2$ foi retirado na 2,4-dinitroanilina, dNA, (Figura 43), os valores de energia das duas bandas de transferência de carga permaneceram praticamente inalterados e uma nova transição eletrônica foi observada na região de menor energia. No ânion da dNA a carga negativa concentra-se nos orbitais da ligação C=N nesse estado eletrônico de menor energia como mostrado nos resultados relativos à espectroscopia Raman ressonante apresentados anteriormente (Figura 45). No caso do 2,4-dinitrofenolato, dNFL, a deslocalização eletrônica é muito mais favorecida o que explica a grande diferença de acidez observada nas duas moléculas (pK$_a$ dNF \approx 3.96 e pK$_a$ dNA \approx 15.0).

Nas Figuras 62 e 63 são apresentados os espectros Raman da espécie neutra e aniónica, respectivamente, em diferentes radiações de excitação, que correspondem às linhas indicadas nos espectros UV-Vis (Figura 61).
Na espécie neutra (Figura 62) apesar de não ser mostrado nenhum espectro em condições de ressonância, como esperado, é observada a intensificação dos modos $\nu_s(NO_2)$ em 1351 cm$^{-1}$ e $\delta(NO_2)$ em 840 cm$^{-1}$.

Figura 62. Espectros Raman do dNF em solução ácida de metanol obtidos com diferentes radiações de excitação na região de 200 a 1700 cm$^{-1}$
(∗ banda do padrão interno: 1036 cm$^{-1}$ do metanol)

Figura 63. Espectros Raman do dNFL em solução básica de metanol obtidos com diferentes radiações de excitação na região de 200 a 1700 cm$^{-1}$
(∗ banda do padrão interno: 984 cm$^{-1}$ do sulfato)
Na espécie aniônica (Figura 63) observamos que em condições de ressonância ($\lambda_0 = 413$ nm) com a banda de transferência de carga de menor energia em ca. 396 nm, os modos são simultaneamente intensificados, entretanto em condições de ressonância ($\lambda_0 = 363$ nm) com a banda de transferência de carga de maior energia em ca. 360 nm, nota-se a intensificação preferencial do modo em 1274 cm$^{-1}$ que, assim como no para-nitrofenolato, pode ser atribuído ao o modo $\phi(13)$ do anel acoplado aos estiramentos $\nu(C-O^-)$ e $\nu(C-NO_2)$. Isto mostra que a banda de transferência de carga de maior energia pode seguramente ser atribuída à transição de transferência de carga do grupo CO$^-$ para o grupo NO$_2$ em posição para.

3.2.4. Conclusões parciais.

A comparação das estruturas eletrônica e vibracional dos isômeros orto-nitrofenol e para-nitrofenol e de seus respectivos ânions, mostrou que a densidade de carga presente no grupo NO$_2$ das espécies neutrals, determina o acoplamento vibrônico, ou seja, a intensidade dos modos observados nos espectros Raman.

A comparação entre os espectros eletrônicos UV-Vis das espécies neutra e aniônica da 2,4-dinitroanilina (dNA) e do 2,4-dinitrofenol (dNF), mostrou que o grau de deslocalização eletrônica π é muito maior no caso do ânion dNFL, o que se reflete, por exemplo na grande diferença de acidez entre os grupos: pK_a dNA = 15.0 e pK_a dNF = 3.96.

Através da espectroscopia Raman ressonante e do modelo de dois estados foi possível relacionar as diversas estruturas de ressonância ao estados eletrônicos de transferência de carga e inferir sobre o acoplamento vibrônico em cada uma das espécies.
3.4. NITROPIRIDINAS

Com o intuito de verificar a influência do sistema π conjugado na transição de transferência de carga intramolecular, foi realizado o estudo dos mesmos substituintes conectados através de um anel piridínico com os grupos elétron doadores, NH$_2$ ou OH em posição orto ou para em relação ao grupo NO$_2$.

3.4.1. 2-amino-3-nitropiridina

![2A3NP](image)

3.4.1.1. Espectroscopia vibracional Raman e Infravermelho da 2-amino-3-nitropiridina no estado sólido.

A Figura 64 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e FT-IR da 2A3NP no estado sólido na região de 400 a 1700 cm$^{-1}$.

![Figura 64](image)
Os espectros são semelhantes ao da orto-nitroanilina, oNA (Figura 24), o modo \(\nu_s(\text{NO}_2) \) em 1333 cm\(^{-1}\) aparece como a banda mais intensa do espectro Raman, o modo \(\nu(\text{C-NH}_2) \) em 1242 cm\(^{-1}\) como o mais intenso do espectro IR. Uma diferença notável é com relação ao espectro IR em que os modos do grupo NO\(_2\) aparecem com baixa intensidade (Figura 64B), inclusive o modo \(\nu_{as}(\text{NO}_2) \) em ca. 1500 cm\(^{-1}\), que em geral aparece como uma das bandas mais intensas do espectro IR. De acordo com o modelo da coordenada de conjugação efetiva (ECC), no caso da 2A3NP o único modo \(\mathfrak{r} \) é o modo \(\nu(\text{C-NH}_2) \) intenso em ambos os espectros, Raman e IR.

Na Tabela X são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do 2A3NP no estado sólido.

Tabela X. Valores das frequências vibracionais em número de onda (cm\(^{-1}\)), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR do 2A3NP no estado sólido.

<table>
<thead>
<tr>
<th></th>
<th>Raman (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Infra- vermelho (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>416</td>
<td>1.5</td>
<td>420</td>
<td>w</td>
<td>(\phi(16b))</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>0.9</td>
<td>557</td>
<td>w</td>
<td>(\rho(\text{NO}_2))</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>2.9</td>
<td></td>
<td></td>
<td>(\phi(6a))</td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>0.4</td>
<td>670</td>
<td>v w</td>
<td>(\phi(11))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>761</td>
<td>m</td>
<td>(\gamma(\text{NO}_2))</td>
<td></td>
</tr>
<tr>
<td>827</td>
<td>6.3</td>
<td>822</td>
<td>w</td>
<td>(\phi(12))</td>
<td></td>
</tr>
<tr>
<td>896</td>
<td>0.6</td>
<td>900</td>
<td>w</td>
<td>(\delta(\text{NO}_2))</td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>0.6</td>
<td></td>
<td></td>
<td>(\phi(18a))</td>
<td></td>
</tr>
<tr>
<td>1056</td>
<td>1.3</td>
<td>1055</td>
<td>w</td>
<td>(\phi(18b))</td>
<td></td>
</tr>
<tr>
<td>1088</td>
<td>2.5</td>
<td>1080</td>
<td>w</td>
<td>(\nu(\text{C-NO}_2))</td>
<td></td>
</tr>
<tr>
<td>1242</td>
<td>6.9</td>
<td>1245</td>
<td>v s</td>
<td>(\nu(\text{C-NH}_2))</td>
<td></td>
</tr>
<tr>
<td>1333</td>
<td>10.0</td>
<td>1339</td>
<td>m</td>
<td>(\nu_s(\text{NO}_2))</td>
<td></td>
</tr>
<tr>
<td>1354</td>
<td>2.0</td>
<td>1355</td>
<td>w</td>
<td>(\nu_s(\text{NO}_2))</td>
<td></td>
</tr>
<tr>
<td>1439</td>
<td>0.7</td>
<td>1438</td>
<td>s</td>
<td>(\phi(19b))</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.6</td>
<td>1516</td>
<td>M</td>
<td>(\nu_{as}(\text{NO}_2))</td>
<td></td>
</tr>
<tr>
<td>1569</td>
<td>1.7</td>
<td>1568</td>
<td>s</td>
<td>(\phi(8a))</td>
<td></td>
</tr>
<tr>
<td>1623</td>
<td>0.4</td>
<td></td>
<td></td>
<td>(\delta(\text{NH}_2))</td>
<td></td>
</tr>
</tbody>
</table>

| | | 1641 | v s | \(\phi(8b) \) |
3.3.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-amino-3-nitropiridina em meio aquoso e em metóxido de sódio.

A Figura 65 mostra o espectro eletrônico (UV-Vis) da 2A3NP em meio aquoso.

![Figura 65. Espectro de absorção do 2A3NP em meio aquoso na região de 200 a 600 nm.](image)

O espectro UV-Vis da 2A3NP é muito semelhante ao espectro UV-Vis da oNA, mas nota-se que na 2A3NP a energia da transição de transferência de carga intramolecular (CT) é significativamente maior ($\lambda_{\text{max}} = 389$ nm, enquanto que na oNA $\lambda_{\text{max}} = 415$ nm). Essa diferença de energia não pode ser explicada apenas através dos dados experimentais, necessitariam de um estudo teórico de simulação dos estados excitados, como por exemplo, o método utilizado por Sinha e Yates33,34 que consiste na modificação do método de Orbitais Moleculares de Hückel (HMO) para a determinação da energia e da simetria dos orbitais HOMO e LUMO de sistemas “push-pull”.

No caso das amino-nitropiridinas foi possível estender o estudo para as espécies aniônicas, formadas pela retirada do próton do grupo NH\textsubscript{2} em meio de metóxido de sódio. Os espectros de absorção UV-Vis da 2A3NP em meio aquoso e de seu respectivo ânion em solução de metóxido de sódio são apresentados na Figura 66.
Assim como no caso da 2,4-dinitroanilina (Figura 43), na formação do ânion da 2A3NP, a banda da transição de transferência de carga não é deslocada e uma nova transição eletrônica aparece na região de menor energia em ca. 497 nm.

Nas Figuras 67 e 68 são apresentados os espectros Raman da espécie neutra e aniônica, respectivamente, nas diferentes radiações de excitação indicadas na Figura 66.

Figura 67. Espectros Raman do 2A3NP em meio aquoso neutro obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(* banda do padrão interno: 984 cm\(^{-1}\) do sulfato)
Nos espectros da espécie neutra (Figura 67), os modos intensificados foram os associados ao grupo NO\textsubscript{2}, especialmente o modo \(v_s(\text{NO}_2)\), que aparece como um duplet em \(1359\) e \(1336\) cm\(^{-1}\).

Nos espectros da espécie aniônica (Figura 68) em condições de ressonância (\(\lambda_0 = 496\) nm) com a banda de transferência de carga de menor energia em \(497\) nm os modos do grupo NO\textsubscript{2} aparecem com baixa intensidade e o modo \(v(C=\text{NH}^-)\) aparece como a banda mais intensa em \(1557\) cm\(^{-1}\). Já em condição de ressonância (\(\lambda_0 = 413\) nm) com a banda de transferência de carga em \(389\) nm, observamos praticamente apenas modos do grupo NO\textsubscript{2}. A intensificação dos diferentes modos vibracionais nas duas condições de ressonância caracteriza o chamado efeito bicromofórico.

Dessa maneira podemos atribuir à banda da transição eletrônica de menor energia em ca. \(497\) nm a um estado eletrônico que envolve a formação de uma dupla ligação C=NH+, o qual pode ser representado por uma estrutura canônica similar à estrutura de ressonância mostrada na Figura 67 para a espécie [2A3NP+]. Adicionalmente podemos atribuir a banda de maior energia em ca. \(389\) nm à transição de transferência de carga NH2+/NO\textsubscript{2}-, já que em condições de ressonância com essa banda, os modos do grupo NO\textsubscript{2} são intensificados.
3.4.2. 2-amino-5-nitropiridina

A Figura 69 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e FT-IR do 2A5NP no estado sólido na região de 400 a 1700 cm$^{-1}$.

Assim como no espectro FT-Raman da para-nitroanilina sólida (Figura 30), nota-se que a banda mais intensa não é a do ν_s(NO$_2$) e sim do modo ϕ(13) do anel acoplado ao movimento dos estiramentos ν(C-NO$_2$) e ν(C-NH$_2$) em 1274 cm$^{-1}$.

Similaresmente ao caso da pNA, o modo vibracional em 1274 cm$^{-1}$ deve estar diretamente acoplado à estrutura de ressonância zwiterionica Ψ_{CT}:
que tem contribuição em ambos os estados eletrônicos, principalmente no estado excitado da molécula de 2A5NP.

Na Tabela XI são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do 2A5NP no estado sólido.

Tabela XI. Valores das frequências vibracionais em número de onda (cm⁻¹), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR do 2A5NP no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm⁻¹)</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm⁻¹)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>422</td>
<td>0.2</td>
<td>420</td>
<td>w</td>
<td>φ(16b)</td>
</tr>
<tr>
<td>537</td>
<td>0.3</td>
<td>536</td>
<td>w</td>
<td>ρ(NO₂)</td>
</tr>
<tr>
<td>640</td>
<td>0.3</td>
<td>638</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>655</td>
<td>0.1</td>
<td>652</td>
<td>w</td>
<td>φ(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>765</td>
<td>w</td>
<td>γ(NO₂)</td>
</tr>
<tr>
<td>831</td>
<td>0.3</td>
<td>843</td>
<td>m</td>
<td>φ(12)</td>
</tr>
<tr>
<td>869</td>
<td>1.3</td>
<td>866</td>
<td>w</td>
<td>δ(NO₂)</td>
</tr>
<tr>
<td>1002</td>
<td>0.2</td>
<td>998</td>
<td>w</td>
<td>φ(18a)</td>
</tr>
<tr>
<td>1128</td>
<td>0.8</td>
<td>1129</td>
<td>m</td>
<td>ν(C-NO₂)</td>
</tr>
<tr>
<td>1164</td>
<td>0.2</td>
<td></td>
<td></td>
<td>φ(9a)</td>
</tr>
<tr>
<td>1274</td>
<td>10.0</td>
<td>1287</td>
<td>v s</td>
<td>φ(13)+ν(C-NO₂)+ν(C-NH₂)</td>
</tr>
<tr>
<td>1315</td>
<td>2.0</td>
<td>1315</td>
<td>w</td>
<td>νₕ(NO₂)</td>
</tr>
<tr>
<td>1339</td>
<td>1.2</td>
<td>1333</td>
<td>v s</td>
<td>ν₅(NO₂)</td>
</tr>
<tr>
<td>1366</td>
<td>1.5</td>
<td></td>
<td></td>
<td>φ(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1474</td>
<td>s</td>
<td>φ(19a)</td>
</tr>
<tr>
<td>1500</td>
<td>0.7</td>
<td>1495</td>
<td>m</td>
<td>ν₃(NO₂)</td>
</tr>
<tr>
<td>1573</td>
<td>0.1</td>
<td>1571</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>1596</td>
<td>0.3</td>
<td>1593</td>
<td>v s</td>
<td>φ(8a)</td>
</tr>
<tr>
<td>1625</td>
<td>0.2</td>
<td>1636</td>
<td>v s</td>
<td>δ(NH₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1650</td>
<td>s</td>
<td>φ(8a)</td>
</tr>
</tbody>
</table>
3.3.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-amino-5-nitropiridina em meio aquoso e em metóxido de sódio.

A Figura 70 mostra o espectro eletrônico (UV-Vis) da 2A5NP em meio aquoso.

![Figura 70. Espectro de absorção do 2A5NP em meio aquoso na região de 200 a 600 nm.](image)

Em comparação ao espectro UV-Vis da pNA nota-se que na 2A5NP a energia da transição de transferência de carga intramolecular (CT) também é maior (λ\text{max} = 350 nm, enquanto que na pNA λ\text{max} = 365 nm).

Os espectros de absorção UV-Vis da 2A5NP em meio aquoso e de seu respectivo ânion em solução de metóxido de sódio são apresentados na Figura 71.

![Figura 71. Espectro de absorção do 2A5NP em meio aquoso neutro e em metóxido de sódio na região de 200 a 600 nm.](image)
A energia da banda de transferência de carga permanece inalterada e é observada uma transição na região de menor energia em ca. 433 nm.

Nas Figuras 72 e 73 são apresentados os espectros Raman da espécie neutra e aniônica, respectivamente, em diferentes radiações de excitação.

Figura 72. Espectros Raman do 2A5NP em meio aquoso neutro obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(*) banda do padrão interno: 984 cm\(^{-1}\) do sulfato

Figura 73. Espectros Raman do 2A5NP em metóxido de sódio obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(*) banda do padrão interno: 1056 cm\(^{-1}\) do metóxido
Nos espectros da 2A5NP em meio aquoso (Figura 72), à medida que a energia de excitação se aproxima da energia de transferência de carga é observada a intensificação dos modos do grupo NO$_2$: ν$_s$(NO$_2$) como um dubleto em ca. 1347 e 1323 cm$^{-1}$ e δ(NO$_2$) em ca. 872 cm$^{-1}$. A banda mais intensa em 1301 cm$^{-1}$ é de difícil atribuição, pois apresenta um valor baixo de freqüência para ser atribuído ao modo ν$_s$(NO$_2$) e alto para ser atribuído ao modo φ(13) do anel acoplado aos estiramentos ν(C-NO$_2$) e ν(C-NH$_2$). Poderia se pensar que assim como foi proposta uma estrutura pseudoquinóide para explicar a presença do modo em 1284 cm$^{-1}$ no espectro da pNA sólida e sua ausência em solução, no caso da 2A5NP alguma estrutura de ressonância similar mantém o acoplamento entre o anel e os estiramentos ν(C-NO$_2$) e ν(C-NH$_2$) que dá origem à banda intensa em 1301 cm$^{-1}$. Por outro lado, apesar de não mostrarmos os resultados, a intensidade desse modo apresentou-se variável em solventes de diferentes polaridades, o que pode ser entendido como uma dependência da estabilização de tal estrutura de ressonância ou até mesmo como um modo que provém simplesmente de uma ressonância de Fermi.

Nos espectros da espécie aniônica observamos que, ao contrário das espécies aniônicas da 2,4-dinitroanilina ou da 2-amino-3-nitropiridina em que o modo ν(C=NH$^-$) aparece como a banda mais intensa em ca. 1557 cm$^{-1}$, a banda em 1605 cm$^{-1}$ aparece como a banda mais intensa (Figura 73) em condições de ressonância com a banda de transferência de carga de menor energia em ca. 433 nm, e que é atribuído ao modo φ(8a) do anel piridínico. Isto sugere que a estrutura eletrônica do primeiro estado excitado do ânion da 2A5NP está acoplada ao modo φ(8a) do anel ao invés dos modos vibrationais associados aos substituintes.
3.4.3. 2-hidróxi-3-nitropiridina

![Structure of 2H3NP](image)

3.4.3.1. Espectroscopia vibracional Raman e Infravermelho da 2-hidróxi-3-nitropiridina e de seu sal de potássio no estado sólido.

A Figura 74 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e FT-IR do 2H3NP no estado sólido na região de 400 a 1700 cm$^{-1}$.

Figura 74. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR do 2H3NP no estado sólido na região de 400 a 1700 cm$^{-1}$.

Assim como no orto-nitrofenol, os espectros FT-Raman e FT-IR do 2H3NP apresentam algumas características sutis devido às interações fortes de ligação de hidrogênio, tanto intra como intermoleculares. Os modos associados ao grupo NO$_2$ característicos são: ν_{as}(NO$_2$) em 1503 cm$^{-1}$, ν_s(NO$_2$) em 1348 cm$^{-1}$, ν(C-NO$_2$) em 1137 cm$^{-1}$, δ(NO$_2$) em 832 cm$^{-1}$. A banda em 1229 cm$^{-1}$ é atribuída ao modo de estiramento ν(C-OH). Similarmente ao caso da pNA, a banda intensa em 1295 cm$^{-1}$ deve estar relacionada a uma estrutura de ressonância induzida no sólido que permite o acoplamento entre o modo ϕ(13).
do anel aos estiramentos ν(C-NO$_2$) e ν(C-OH), já que em solução este modo não aparece, como será visto na próxima seção.

Na Tabela XII são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do 2H3NP no estado sólido.

Tabela XII. Valores das frequências vibracionais em número de onda (cm$^{-1}$), suas intensidades relativas e atribuição tentativa dos espectros Raman e IR do 2H3NP no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>424</td>
<td>0.5</td>
<td>423</td>
<td>w</td>
<td>φ(16b)</td>
</tr>
<tr>
<td>527</td>
<td>0.1</td>
<td>525</td>
<td>m</td>
<td>ρ(NO$_2$)</td>
</tr>
<tr>
<td>560</td>
<td>0.3</td>
<td>558</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>2.4</td>
<td>587</td>
<td>w</td>
<td>φ(6a)</td>
</tr>
<tr>
<td>657</td>
<td>0.7</td>
<td>657</td>
<td>m</td>
<td>φ(11)</td>
</tr>
<tr>
<td>764</td>
<td>0.2</td>
<td>763</td>
<td>v s</td>
<td>γ(NO$_2$)</td>
</tr>
<tr>
<td>797</td>
<td>0.4</td>
<td>796</td>
<td>m</td>
<td>φ 1</td>
</tr>
<tr>
<td>832</td>
<td>3.5</td>
<td>828</td>
<td>w</td>
<td>φ(12)</td>
</tr>
<tr>
<td>883</td>
<td>0.5</td>
<td>879</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>899</td>
<td>2.0</td>
<td>897</td>
<td>m</td>
<td>δρ(NO$_2$)</td>
</tr>
<tr>
<td>1067</td>
<td>5.3</td>
<td>1064</td>
<td>m</td>
<td>φ(18b)</td>
</tr>
<tr>
<td>1137</td>
<td>1.0</td>
<td>1138</td>
<td>m</td>
<td>ν(C-NO$_2$)</td>
</tr>
<tr>
<td>1170</td>
<td>1.1</td>
<td>1166</td>
<td>m</td>
<td>φ(9a)</td>
</tr>
<tr>
<td>1229</td>
<td>3.1</td>
<td>1218</td>
<td>v s</td>
<td>ν(C-OH)</td>
</tr>
<tr>
<td>1295</td>
<td>8.6</td>
<td>1295</td>
<td>s</td>
<td>φ(13)+ν(C-NO$_2$)+ν(C-NH$_2$)</td>
</tr>
<tr>
<td>1306</td>
<td>4.8</td>
<td>1308</td>
<td>s</td>
<td>ν$_s$(NO$_2$)</td>
</tr>
<tr>
<td>1348</td>
<td>10.0</td>
<td>1349</td>
<td>v s</td>
<td>ν$_s$(NO$_2$)</td>
</tr>
<tr>
<td>1503</td>
<td>1.5</td>
<td>1505</td>
<td>v s</td>
<td>ν$_as$(NO$_2$)</td>
</tr>
<tr>
<td>1553</td>
<td>4.3</td>
<td>1551</td>
<td>v s</td>
<td></td>
</tr>
<tr>
<td>1587</td>
<td>1.1</td>
<td>1591</td>
<td>v s</td>
<td>φ(8a)</td>
</tr>
<tr>
<td>1656</td>
<td>0.3</td>
<td>1657</td>
<td>v s</td>
<td>φ(8b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1698</td>
<td>v s</td>
<td></td>
</tr>
</tbody>
</table>

A Figura 75 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do sal de K$^+[2H3NP]$ no estado sólido na região de 400 a 1700 cm$^{-1}$.
Notá-se uma significativa simplificação em ambos os espectros, Raman e IR, com a retirada do próton do grupo OH, responsável pelas ligações de hidrogênio na espécie neutra. A frequência do modo de estiramento ν_s(NO$_2$) teve seu valor diminuído para 1320 cm$^{-1}$ devido ao aumento da densidade de carga nos orbitais antiligantes das ligações N-O, enquanto que a do modo ν(C-O$^-$) teve seu valor aumentado para 1245 cm$^{-1}$ devido ao aumento da ordem de ligação C-O$^-$ causado pela deslocalização da carga negativa. A banda intensa em 1295 cm$^{-1}$ do espectro da 2H3NP sólida não é observada no espectro do [2H3NP]K$^+$, o que é mais uma evidência de como as ligações de hidrogênio modificam a estrutura vibracional, e consequentemente o acoplamento vibrônico responsável pelas intensidades Raman.

Figura 75. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR do K$^+$[2H3NP]$^-$ no estado sólido na região de 400 a 1700 cm$^{-1}$.
3.4.3.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-hidróxi-3-nitropiridina em meio aquoso ácido e básico.

A Figura 76 mostra o espectro eletrônico (UV-Vis) da 2H3NP em meio aquoso ácido.

Comparando com o espectro eletrônico do orto-nitrofenol em meio aquoso (Figura 48), observamos que a energia da transição de transferência de carga na 2H3NP é levemente menor ($\lambda_{\text{max}} = 361$ nm, enquanto que no oNF $\lambda_{\text{max}} = 351$ nm). O comportamento foi contrário ao observado quando comparamos os substituintes NH$_2$/NO$_2$ na orto-nitropiridina e na 2-amino-3-nitropiridina.

Os espectros de absorção UV-Vis da 2H3NP em meio aquoso neutro e básico são apresentados na Figura 77.

Figura 76. Espectro de absorção do 2H3NP em meio aquoso na região de 200 a 600 nm.

Figura 77. Espectro de absorção do 2H3NP em meio aquoso ácido e básico na região de 200 a 600 nm.
Com a retirada do próton do grupo OH na 2H3NP observamos uma pequena diminuição da energia da banda de transferência de carga para 394 nm ($\Delta \lambda \approx 33$ nm), e ao contrário dos outros casos, não houve aumento da intensidade.

Nas Figuras 78 e 79 são apresentados os espectros Raman da espécie neutra e aniônica, respectivamente, em diferentes radiações de excitação.

Figura 78. Espectros Raman do 2H3NP em meio aquoso ácido obtidos com diferentes radiações de excitação na região de 200 a 1700 cm$^{-1}$

(*) banda do padrão interno: 984 cm$^{-1}$ do sulfato

Figura 79. Espectros Raman do [2H3NP]$^-$ em meio aquoso básico obtidos com diferentes radiações de excitação na região de 200 a 1700 cm$^{-1}$

(*) banda do padrão interno: 984 cm$^{-1}$ do sulfato
Nos espectros Raman da espécie neutra (Figura 78) os modos são intensificados simultaneamente, principalmente o modo ν_3(NO$_2$) em 1355 cm$^{-1}$.
Nos espectros da espécie aniônica (Figura 79), praticamente apenas três bandas são observadas, o modo ν_3(NO$_2$) em 1330 cm$^{-1}$ que aparece como uma banda única, ao contrário do dubleto observado na espécie neutra, o modo δ(NO$_2$) em 834 cm$^{-1}$, e o modo ν(C-O') que teve seu valor aumentado para 1251 cm$^{-1}$ devido ao aumento da ordem de ligação C-O' causado pela deslocalização da carga negativa.

3.4.4. 2-hidróxi-5-nitropiridina

A Figura 80 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e FT-IR do 2H5NP no estado sólido na região de 400 a 1700 cm$^{-1}$.

3.4.4.1. Espectroscopia vibracional Raman e Infravermelho da 2-hidróxi-5-nitropiridina e do sal de potássio no estado sólido.

A Figura 80 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e FT-IR do 2H5NP no estado sólido na região de 400 a 1700 cm$^{-1}$.

*Figura 80. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR do 2H5NP no estado sólido na região de 400 a 1700 cm$^{-1}$.
Uma característica interessante do espectro FT-Raman do 2H5NP foi que a banda que geralmente aparece na região \(\approx 1280 \text{ cm}^{-1} \) quando os substituintes estão em posição \emph{para}, atribuída ao modo \(\phi(13) \) do anel acoplado aos estiramentos \(\nu(C\text{-NO}_2) \) e \(\nu(C\text{-OH}) \), não é observada. O modo \(\nu_s(\text{NO}_2) \) aparece em 1362 cm\(^{-1}\), o \(\delta(\text{NO}_2) \) em 859 cm\(^{-1}\) e estiramento \(\nu(C\text{-OH}) \) como um douleto em 1236 e 1258 cm\(^{-1}\).

Na Tabela XIII são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do 2H5NP no estado sólido.

\textbf{Tabela XIII.} Valores das frequências vibracionais em número de onda (cm\(^{-1}\)) dos espectros Raman e IR do 2H5NP no estado sólido, suas intensidades relativas e atribuição tentativa.

<table>
<thead>
<tr>
<th>Raman (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Infravermelho (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>406</td>
<td>0.2</td>
<td>405</td>
<td>w</td>
<td>(\phi(16b))</td>
</tr>
<tr>
<td>459</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>499</td>
<td>0.1</td>
<td>484</td>
<td>v s</td>
<td>(\phi(11))</td>
</tr>
<tr>
<td>542</td>
<td>0.3</td>
<td>545</td>
<td>m</td>
<td>(\rho(\text{NO}_2))</td>
</tr>
<tr>
<td>632</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>647</td>
<td>0.5</td>
<td>653</td>
<td>v s</td>
<td>(\gamma(\text{NO}_2))</td>
</tr>
<tr>
<td>720</td>
<td>0.1</td>
<td>717</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>0.1</td>
<td>760</td>
<td>s</td>
<td>(\phi(9a))</td>
</tr>
<tr>
<td>830</td>
<td>0.3</td>
<td>834</td>
<td>s</td>
<td>(\phi(12))</td>
</tr>
<tr>
<td>859</td>
<td>3.4</td>
<td></td>
<td></td>
<td>(\delta(\text{NO}_2))</td>
</tr>
<tr>
<td>1122</td>
<td>0.3</td>
<td>1119</td>
<td>s</td>
<td>(\nu(C\text{-NO}_2))</td>
</tr>
<tr>
<td>1179</td>
<td>0.8</td>
<td>1182</td>
<td>m</td>
<td>(\phi(9a))</td>
</tr>
<tr>
<td>1236</td>
<td>2.0</td>
<td>1236</td>
<td>s</td>
<td>(\nu(C\text{-OH}))</td>
</tr>
<tr>
<td>1258</td>
<td>3.7</td>
<td>1248</td>
<td>s</td>
<td>(\phi(13)+\nu(C\text{-NO}_2)+\nu(C\text{-NH}_2))</td>
</tr>
<tr>
<td>1362*</td>
<td>10.0*</td>
<td>1358</td>
<td>v s</td>
<td>(\nu_s(\text{NO}_2))</td>
</tr>
<tr>
<td>1425</td>
<td>0.3</td>
<td>1430</td>
<td>s</td>
<td>(\phi(19b))</td>
</tr>
<tr>
<td>1468</td>
<td>2.1</td>
<td></td>
<td></td>
<td>(\phi(19a))</td>
</tr>
<tr>
<td>1513</td>
<td>1.2</td>
<td>1506</td>
<td>v s</td>
<td>(\nu_{as}(\text{NO}_2))</td>
</tr>
<tr>
<td>1566</td>
<td>1.5</td>
<td>1564</td>
<td>s</td>
<td>(\phi(8a))</td>
</tr>
<tr>
<td>1633</td>
<td>2.3</td>
<td>1631</td>
<td>v s</td>
<td>(\phi(8b))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1676</td>
<td>v s</td>
<td></td>
</tr>
</tbody>
</table>
A Figura 81 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do sal $\text{K}^+[\text{2H5NP}]^{-}$ no estado sólido na região de 400 a 1700 cm$^{-1}$.

![Espectro FT-Raman e FT-IR do sal K+2H5NP- no estado sólido na região de 400 a 1700 cm^-1.]

Figura 81. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR do $\text{K}^+[\text{2H5NP}]^{-}$ no estado sólido na região de 400 a 1700 cm$^{-1}$.

O modo ν_s(NO$_2$) e o modo ν(C-O$^-$) aparecem com média intensidade em 1326 cm$^{-1}$ em 1232 cm$^{-1}$, respectivamente, e o modo ϕ(13) do anel acoplado aos estiramentos ν(C-NO$_2$) e ν(C-NH$_2$) no espectro FT-Raman do sal $\text{K}^+[\text{2H5NP}]^{-}$ aparece como a banda mais intensa em 1274 cm$^{-1}$. Isso sugere que a estrutura de ressonância “pseudoquinóide” tem efetiva contribuição no ânion [2H5NP$^-$], o que confirma o acoplamento vibrônico desse modo à transição eletrônica de transferência de carga.

Comparando o espectro FT-Raman do [2H5NP]$^-$ (Figura 81A) com o espectro FT-Raman do para-nitrofenolato, [pNFL]$^-$, (Figura 57A) nota-se que o modo ν_s(NO$_2$) ainda aparece com intensidade significativa, o que mostra que o acoplamento vibrônico é alterado pela substituição de um átomo de carbono por um átomo de nitrogênio no anel.
3.4.4.2. Espectroscopia eletrônica, vibracional e Raman ressonante da 2-hidróxi-5-nitropiridina em meio aquoso neutro e básico.

A Figura 82 mostra o espectro eletrônico (UV-Vis) da 2H5NP em meio aquoso.

![Espectro eletrônico da 2H5NP em meio aquoso](image)

Figura 82. Espectro de absorção do 2H5NP em meio aquoso na região de 200 a 600 nm.

A transição de transferência de carga na 2H5NP apresenta elevada energia ($\lambda_{\text{max}} = 306$ nm) e intensidade. Quando o próton do grupo OH é retirado essa energia diminui para 367 nm e a sua intensidade é aumentada, como mostra a Figura 83.

![Diagrama de transição de carga](image)

Figura 83. Espectro de absorção do 2H5NP em meio aquoso ácido e básico na região de 200 a 600 nm.
Nas Figuras 84 e 85 são apresentados os espectros Raman da espécie neutra e aniônica, respectivamente, em diferentes radiações de excitação.

Figura 84. Espectros Raman do 2H5NP em meio aquoso neutro obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(*) banda do padrão interno: 984 cm\(^{-1}\) do sulfato

Figura 85. Espectros Raman do [2H5NP]\(^-\) em meio aquoso básico obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\)

(*) banda do padrão interno: 984 cm\(^{-1}\) do sulfato
Nos espectros da espécie neutra (Figura 84) observamos a intensificação dos modos do grupo NO$_2$, especialmente do ν_s(NO$_2$) em 1360 cm$^{-1}$. Na espécie aniônica observamos comportamento similar ao do ânion para-nitrofenolato (Figura 57) em que observamos a intensificação dos modos associados à ligação C-O$, do modo ϕ(13) do anel acoplado aos estiramentos ν(C-NO$_2$) e ν(C- O$^-$) em 1295 cm$^{-1}$ e do modo modo ϕ(12) do anel acoplado ao modo ν(C-O$^-$) em 845 cm$^{-1}$.

3.4.5. Conclusões parciais

Os substituintes ligados através do anel piridínico mostraram várias semelhanças com relação à estrutura eletrônica e vibracional dos mesmos substituintes ligados através do anel benzênico, o que mostra que as transições de transferência de carga dependem muito mais da natureza e da posição relativa dos substituintes, do que propriamente do sistema π conjugado.

Apesar de não mostrarmos neste trabalho os resultados referentes à espectroscopia da para-nitroanilina em metóxido de sódio, notamos que a formação das espécies aniônicas foi mais favorável no caso das amino-nitropiridinas, o que mostra a maior eficiência na dispersão de carga negativa no anel piridínico do que no anel benzênico.

A grande diferença do acoplamento vibrônico entre as espécies neutra e aniônica, principalmente quando os grupos encontram-se em posição para, mostra, mais uma vez, a importância que a estrutura dipolar “pseudoquinóide” tem sobre os sistemas “push-pull” investigados.
3.5. **NITROFENILTRIAZENOS**

Assim como o grupo amino (NH₂) e o grupo hidróxi (OH), o grupo triazeno (N₃H) é considerado um grupo elétron doador efetivo. No caso dos nitrofeniltriazenos, o esqueleto molecular utilizado com sistema π conjugado foi o 1,3-difeniltriazeno:

![1,3-difeniltriazeno](image)

O espectro FT-Raman do 1,3-difeniltriazeno⁷ é mostrado na Figura 86.

![Figura 86. Espectro FT-Raman do 1,3-difeniltriazeno na região de 200 a 1700 cm⁻¹.](image)

Os modos característicos são: modo φ(8a) do anel em 1602 cm⁻¹, estiramento anti-simétrico υ_s(N₃H) em 1475 cm⁻¹, estiramento simétrico υ_a(N₃H) em 1420 cm⁻¹ e modo φ(12) do anel em 1000 cm⁻¹.

A substituição de grupos NO₂ em posições adequadas dos anéis confere propriedades especiais à molécula de 1,3-difeniltriazeno, como por exemplo, a elevada deslocalização eletrônica do sistema π conjugado, especialmente com a retirada do próton do grupo N₃H.
3.5.1. 1,3-bis-(2-nitrofenil)triazeno

![MOLECULE DIAGRAM]

A molécula de ONFT consiste de dois nitrobenzenos conectados através de uma ligação triazo nas posições orto.

3.5.1.1. Espectroscopia vibracional Raman e Infravermelho do 1,3-bis-(2-nitrofenil)triazeno e de seu sal de potássio no estado sólido

A Figura 87 (A e B) mostra os espectros FT-Raman (\(\lambda_0 = 1064\) nm) e infravermelho (FT-IR) do ONFT no estado sólido na região de 400 a 1700 cm\(^{-1}\).

![GRAPH]

Figura 87. Espectros (A) FT-Raman (\(\lambda_0 = 1064\) nm) e (B) FT-IR do ONFT no estado sólido na região de 400 a 1700 cm\(^{-1}\).

Os modos característicos dos grupos NO\(_2\) são: \(v_{as}(\text{NO}_2)\) em 1533 cm\(^{-1}\), \(v_s(\text{NO}_2)\) em 1340 cm\(^{-1}\), \(v(\text{C-NO}_2)\) em 1146 cm\(^{-1}\) e \(\delta(\text{NO}_2)\) em 855 cm\(^{-1}\). Os
modos característicos dos anéis e do grupo triazeno \(^{68,69} \) são: modo \(\phi(8a) \) em 1603 cm\(^{-1}\), \(\nu_{as}(N_3H) \) em 1473 cm\(^{-1}\), \(\nu_s(N_3H) \) em 1441 cm\(^{-1}\), estiramento \(\nu(C-N_3H) \) em 1220 cm\(^{-1}\) e modo \(\phi(12) \) em 1046 cm\(^{-1}\). A banda em 1299 cm\(^{-1}\), de forma semelhante aos casos anteriores, pode ser atribuída ao modo \(\phi(13) \) acoplado aos estiramentos \(\nu(C-NO_2) \) e \(\nu(C-N_3H) \).

Na Tabela XIV são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do ONFT no estado sólido.

Tabela XIV. Valores das frequências vibracionais em número de onda (cm\(^{-1}\)) e intensidades relativas e atribuição tentativa dos espectros Raman e IR do ONFT no estado sólido.

<table>
<thead>
<tr>
<th>Raman (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Infraavermelho (cm(^{-1}))</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>0.7</td>
<td>456</td>
<td>w</td>
<td>(\phi(16b))</td>
</tr>
<tr>
<td>493</td>
<td>0.1</td>
<td>492</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>0.3</td>
<td>524</td>
<td>w</td>
<td>(\rho(NO_2))</td>
</tr>
<tr>
<td>557</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>631</td>
<td>0.5</td>
<td>632</td>
<td>w</td>
<td>(\phi(11))</td>
</tr>
<tr>
<td>682</td>
<td>0.3</td>
<td>682</td>
<td>w</td>
<td>(\phi(11))</td>
</tr>
<tr>
<td>700</td>
<td>0.3</td>
<td>697</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>745</td>
<td>0.3</td>
<td>746</td>
<td>m</td>
<td>(\gamma(NO_2))</td>
</tr>
<tr>
<td>815</td>
<td>0.8</td>
<td></td>
<td></td>
<td>(\phi(12))</td>
</tr>
<tr>
<td>855</td>
<td>2.2</td>
<td>854</td>
<td>m</td>
<td>(\delta(NO_2))</td>
</tr>
<tr>
<td>1046</td>
<td>1.9</td>
<td></td>
<td></td>
<td>(\phi(18a))</td>
</tr>
<tr>
<td>1077</td>
<td>0.6</td>
<td>1076</td>
<td>m</td>
<td>(\phi(18b))</td>
</tr>
<tr>
<td>1146</td>
<td>5.2</td>
<td></td>
<td></td>
<td>(\nu(C-NO_2))</td>
</tr>
<tr>
<td>1158</td>
<td>3.0</td>
<td>1154</td>
<td>s</td>
<td>(\phi(9a))</td>
</tr>
<tr>
<td>1220</td>
<td>2.4</td>
<td>1215</td>
<td>m</td>
<td>(\nu(C-N_3H))</td>
</tr>
<tr>
<td>1272</td>
<td>2.4</td>
<td>1268</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>1299</td>
<td>5.4</td>
<td></td>
<td></td>
<td>(\phi(13)+\nu(C-NO_2)) + (\nu(C-NH_2))</td>
</tr>
<tr>
<td>1320</td>
<td>2.8</td>
<td>1319</td>
<td>m</td>
<td>(\nu_s(NO_2))</td>
</tr>
<tr>
<td>1340</td>
<td>5.6</td>
<td>1338</td>
<td>v s</td>
<td>(\nu_s(NO_2))</td>
</tr>
<tr>
<td>1375</td>
<td>1.4</td>
<td>1376</td>
<td>m</td>
<td>(\phi(3))</td>
</tr>
<tr>
<td>1415</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1441</td>
<td>7.6</td>
<td>1441</td>
<td>s</td>
<td>(\nu_s(N_3H))</td>
</tr>
<tr>
<td>1473</td>
<td>10.0</td>
<td>1473</td>
<td>v s</td>
<td>(\nu_{as}(N_3H))</td>
</tr>
<tr>
<td>1495</td>
<td>2.0</td>
<td>1498</td>
<td>v s</td>
<td>(\nu_{as}(NO_2))</td>
</tr>
<tr>
<td>1533</td>
<td>1.1</td>
<td>1524</td>
<td>v s</td>
<td>(\phi(8a))</td>
</tr>
<tr>
<td>1583</td>
<td>1.7</td>
<td>1581</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>1603</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1612</td>
<td>4.2</td>
<td>1610</td>
<td>v s</td>
<td>(\phi(8b))</td>
</tr>
</tbody>
</table>
A Figura 88 (A e B) mostra os espectros FT-Raman (λ₀ = 1064 nm) e infravermelho (FT-IR) do sal de K⁺[ONFT]⁻ no estado sólido na região de 400 a 1700 cm⁻¹.

Figura 88. Espectros (A) FT-Raman (λ₀ = 1064 nm) e (B) FT-IR do sal K⁺[ONFT]⁻ no estado sólido na região de 400 a 1700 cm⁻¹.

Pode-se observar no espectro FT-Raman que no sal K⁺[ONFT]⁻, os modos de estiramentos νₘₐₜ(N₃⁻) em 1466 cm⁻¹ e νₛ(N₃⁻) em 1436 cm⁻¹ aparecem com baixa intensidade, e analogamente aos sistemas investigados anteriormente, o modo φ(13) do anel acoplado aos estiramentos ν(C-NO₂) e ν(C-N₃H) em ca. 1282 cm⁻¹ torna-se a banda mais intensa do espectro. Fica claro que mesmo em sistemas mais complexos como no ânion [ONFT]⁻ a estrutura de ressonância “pseudoquinóide” tem efetiva participação no acoplamento vibrônico do [ONFT]⁻ no estado sólido.
3.5.5.2. Espectroscopia eletrônica, vibracional e Raman ressonante do 1,3-bis(2-nitrofenil)triazeno em meio metanólico neutro e básico

A Figura 89 mostra o espectro eletrônico (UV-Vis) da ONFT em solução de metanol.

Observamos que o espectro eletrônico do ONFT apresenta uma estrutura complexa que não possui atribuição simples, mas em comparação aos outros sistemas assumiremos que a banda de menor energia em ca. 388 nm é atribuída à transição de transferência de carga do grupo N$_3$H para os grupos NO$_2$. Assim como em outros casos em que o grupo NO$_2$ encontra-se na posição 2 em relação ao grupo elétron doador, a banda de transferência de carga possui menor intensidade relativa à banda π-π^* do anel em ca. 221 nm.

A presença dos grupos NO$_2$ em posição orto aumenta consideravelmente a acidez do próton do grupo N$_3$H, devido a grande deslocalização eletrônica π na estabilização da carga do ânion.

A Figura 90 mostra os espectros eletrônicos UV-Vis do ONFT em solução neutra e básica de metanol.
A deslocalização eletrônica é evidenciada pelo deslocamento da banda de transferência de carga de ca. 388 nm para ca. 478 nm. A banda em ca. 368 nm provavelmente deve-se ao deslocamento da banda em ca. 327 nm do espectro da espécie neutra.

A Figura 91 mostra os espectros Raman da espécie neutra, obtidos em diferentes radiações de excitação.

Figura 90. Espectro de absorção do ONFT em solução neutra e básica de metanol na região de 200 a 600 nm.

Figura 91. Espectros Raman do ONFT em solução neutra de metanol obtidos com diferentes radiações de excitação na região de 400 a 1700 cm\(^{-1}\)

(\(^*\) banda do padrão interno: 1036 cm\(^{-1}\) do metanol)
À medida que a energia de excitação se aproxima da energia da transição de transferência de carga em ca. 388 nm, observamos a intensificação simultânea de todos os modos: modo ϕ(8a) em 1615 cm$^{-1}$, $\nu_{as}(N_3H)$ em 1473 cm$^{-1}$, $\nu_s(N_3H)$ em 1445 cm$^{-1}$, $\nu_s(NO_2)$ em 1343 cm$^{-1}$, modo ϕ(13) do anel acoplado aos estiramentos $\nu(C-NO_2)$ e $\nu(C-N_3H)$ em 1299 cm$^{-1}$ e estiramento $\nu(C-N_3H)$ em 1218 cm$^{-1}$. Esse padrão de intensificação sugere uma deslocalização eletrônica muito estendida.

A Figura 92 mostra os espectros Raman da espécie aniônica, obtidos em diferentes radiações de excitação, que correspondem às linhas indicadas na Figura 90.

![Espectros Raman do ONFT em solução básica de metanol obtidos com diferentes radiações de excitação na região de 400 a 1700 cm$^{-1}$](image)

Figura 92. Espectros Raman do ONFT em solução básica de metanol obtidos com diferentes radiações de excitação na região de 400 a 1700 cm$^{-1}$ (*banda do padrão interno: 1036 cm$^{-1}$ do metanol)

Em condições de ressonância ($\lambda_0 = 488$ nm) com a banda de transferência de carga em ca. 478 nm observa-se a intensificação preferencial do modo $\nu_s(NO_2)$ em 1348 cm$^{-1}$, já em condições de ressonância ($\lambda_0 = 363$ nm) com a banda em ca. 368 nm são intensificados os modos do grupo N_3^- $\nu_{as}(N_3^-)$ em 1472 cm$^{-1}$, $\nu_s(N_3^-)$ em 1451 cm$^{-1}$ e nota-se uma diminuição da intensidade do modo $\nu_s(NO_2)$ em relação à banda do padrão interno. O alargamento de
banda observado na região dos estiramentos \(N_3^- \) deve-se à formação de ligações N-N equivalentes com a deslocalização de carga na espécie aniónica.

Uma maneira fácil para a visualização da intensificação dos modos vibracionais consiste na construção dos chamados perfis de excitação Raman, em que é feito um gráfico da intensidade das bandas com relação à banda do padrão pela energia da radiação excitante. Os respectivos perfis de excitação Raman para o ONFT em solução neutra e básica de metanol são apresentados nas Figuras 93 e 94. Os espectros eletrônicos (UV-Vis) em cm\(^{-1}\) estão sobrepostos aos perfis.

![Figura 93. Perfil de excitação Raman das principais bandas do ONFT em solução neutra de metanol, e o respectivo o espectro UV-Vis na região de energia investigada.](image)

![Figura 94. Perfil de excitação Raman das principais bandas do ONFT em solução básica de metanol, e o respectivo o espectro UV-Vis na região de energia investigada.](image)
A análise dos perfis de excitação do ONFT (Figura 93) e [ONFT] (Figura 94) mostra que enquanto na molécula neutra temos um sistema cromofórico altamente estendido, no caso do anion temos um sistema bicromofórico (dois máximos no perfil), sendo que cada um deles envolve ainda considerável deslocalização eletrônica.

3.5.2. 1,3-bis-(4-nitrofenil)triazeno

![Chemical Structure](image)

3.5.2.1. Espectroscopia vibracional Raman e Infra-vermelho do 1,3-bis(4-nitrofenil)triazeno e de seu sal de potássio no estado sólido

A Figura 95 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do PNFT no estado sólido na região de 400 a 1700 cm$^{-1}$.

![Spectra](image)

Figura 95. Espectros (A) FT-Raman ($\lambda_0 = 1064$ nm) e (B) FT-IR do PNFT no estado sólido na região de 400 a 1700 cm$^{-1}$.
Os modos característicos dos grupos NO$_2$ são: ν_{as}(NO$_2$) em 1508 cm$^{-1}$ ν_s(NO$_2$) com um dubleto em 1341 e 1326 cm$^{-1}$, ν(C-NO$_2$) em 1109 cm$^{-1}$ e δ(NO$_2$) em 863 cm$^{-1}$. Os modos característicos dos anéis e do grupo triazenó são: modo ϕ(8a) em 1597 cm$^{-1}$, ν_{as}(N$_3$H) em 1450 cm$^{-1}$, ν_s(N$_3$H) em 1405 cm$^{-1}$, estiramento ν(C-N$_3$H) em 1245 cm$^{-1}$ e modo ϕ(12) em 1006 cm$^{-1}$. O modo ϕ(13) acoplado aos estiramentos ν(C-NO$_2$) e ν(C-N$_3$H) é observado em 1284 cm$^{-1}$.

Na Tabela XV são apresentados os valores das frequências vibracionais e a atribuição tentativa dos principais modos normais dos espectros Raman e IR do PNFT no estado sólido.

Tabela XV. Valores das frequências vibracionais em número de onda (cm$^{-1}$) dos espectros Raman e IR do PNFT no estado sólido, suas intensidades relativas e atribuição tentativa.

<table>
<thead>
<tr>
<th>Raman (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Infra-vermelho (cm$^{-1}$)</th>
<th>I (intensidade relativa)</th>
<th>Atribuição tentativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>413</td>
<td>0.4</td>
<td></td>
<td></td>
<td>ϕ(16b)</td>
</tr>
<tr>
<td>494</td>
<td>0.1</td>
<td>490</td>
<td>w</td>
<td>ρ(NO$_2$)</td>
</tr>
<tr>
<td>537</td>
<td>0.1</td>
<td>536</td>
<td>w</td>
<td>ϕ(11)</td>
</tr>
<tr>
<td>627</td>
<td>0.4</td>
<td>632</td>
<td>w</td>
<td>γ(NO$_2$)</td>
</tr>
<tr>
<td>693</td>
<td></td>
<td>693</td>
<td>m</td>
<td>ϕ(12)</td>
</tr>
<tr>
<td>754</td>
<td>0.1</td>
<td>754</td>
<td>m</td>
<td>δ(NO$_2$)</td>
</tr>
<tr>
<td>853</td>
<td>1.2</td>
<td>848</td>
<td>m</td>
<td>ϕ(18a)</td>
</tr>
<tr>
<td>1006</td>
<td>0.9</td>
<td>1008</td>
<td>v</td>
<td>ν(C-NO$_2$)</td>
</tr>
<tr>
<td>1069</td>
<td>5.3</td>
<td>1111</td>
<td>s</td>
<td>ν(C-N$_3$H)</td>
</tr>
<tr>
<td>1159</td>
<td>2.5</td>
<td>1174</td>
<td>s</td>
<td>ϕ(9a)</td>
</tr>
<tr>
<td>1245</td>
<td>2.3</td>
<td>1248</td>
<td>v</td>
<td>ϕ(13)+ν(C-NO$_2$)+ν(C-N$_3$H)</td>
</tr>
<tr>
<td>1283</td>
<td>2.8</td>
<td>1295</td>
<td>m</td>
<td>ϕ(13)</td>
</tr>
<tr>
<td>1326</td>
<td>3.2</td>
<td>1326</td>
<td>v</td>
<td>ν_s(NO$_2$)</td>
</tr>
<tr>
<td>1341*</td>
<td>10.0</td>
<td>1344</td>
<td>v</td>
<td>ν_s(NO$_2$)</td>
</tr>
<tr>
<td>1382</td>
<td>0.8</td>
<td>1385</td>
<td>w</td>
<td>ϕ(3)</td>
</tr>
<tr>
<td>1405</td>
<td>4.1</td>
<td>1408</td>
<td>m</td>
<td>ν_s(N$_3$H)</td>
</tr>
<tr>
<td>1450</td>
<td>5.0</td>
<td>1449</td>
<td>m</td>
<td>ν_{as}(N$_3$H)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1481</td>
<td>m</td>
<td>ϕ(8a)</td>
</tr>
<tr>
<td>1508</td>
<td>0.6</td>
<td>1507</td>
<td>S</td>
<td>ν_{as}(NO$_2$)</td>
</tr>
<tr>
<td>1597</td>
<td>6.7</td>
<td>1589</td>
<td>v</td>
<td>ϕ(8a)</td>
</tr>
</tbody>
</table>
A Figura 96 (A e B) mostra os espectros FT-Raman ($\lambda_0 = 1064$ nm) e infravermelho (FT-IR) do sal de K'+[PNFT]' no estado sólido na região de 400 a 1700 cm$^{-1}$.

No caso dos grupos NO$_2$ em posição para fica ainda mais evidente a contribuição da estrutura de ressonância canônica que acopla o modo $\phi(13)$ aos estiramentos ν(C-NO$_2$) e ν(C-N$_3$H) que dá origem à banda mais intensa do espectro FT-Raman do K'+[PNFT]' sólido (Figura 97A) em 1295 cm$^{-1}$. O modo ν_s(NO$_2$) em 1342 e 1325 cm$^{-1}$ e os modos ν_{as}(N$_3$) em 1450 cm$^{-1}$ e ν_s(N$_3$H) em 1405 cm$^{-1}$ aparecem com baixã intensidade relativa.

A seguir serão mostrados os resultados referentes à espectroscopia Raman ressonante das espécies neutra e aniónica do PNFT, e assim como em todos os outros casos investigados, a transição de transferência de carga é muito mais efetiva quando os substituintes encontram-se em posição para.
3.5.2.2. Espectroscopia eletrônica, vibracional e Raman ressonante do 1,3-bis(4-nitrofenil)triazeno em meio metanólico neutro e básico

A Figura 97 mostra o espectro eletrônico (UV-Vis) da PNFT em solução de metanol.

![Figura 97](image1.png)

Figura 97. Espectro de absorção do PNFT em solução de metanol na região de 200 a 600 nm.

Fica evidente a grande intensidade da banda de transferência de carga em ca. 396 nm em relação à intensidade da transição π-π* do anel benzênico. A retirada do próton do grupo N₃H provoca um deslocamento de aproximadamente 125 nm da banda de transferência de carga (λmax = 522 nm) como mostra a Figura 98.

![Figura 98](image2.png)

Figura 98. Espectro de absorção do PNFT em solução neutra e básica na região de 200 a 600 nm.
A Figura 99 mostra os espectros Raman da espécie neutra, obtidos em diferentes radiações de excitação.

![Figura 99. Espectros Raman do PNFT em solução neutra de metanol obtidos com diferentes radiações de excitação na região de 200 a 1700 cm\(^{-1}\) (* banda do padrão interno: 1036 cm\(^{-1}\) do metanol)](image)

Da mesma maneira que no ONFT, na espécie neutra do PNFT observamos a intensificação simultânea de todos os modos à medida que a energia de excitação se aproxima da energia de transição em 396 nm, o que sugere considerável extensão do cromóforo por toda a molécula. Os principais modos são: \(\phi(8a)\) em 1603 cm\(^{-1}\), \(v_{as}(N_3H)\) em 1451 cm\(^{-1}\), \(v_s(N_3H)\) em 1407 cm\(^{-1}\), \(v_s(NO_2)\) em 1348 cm\(^{-1}\), estiramento \(v(C-NO_2)\) em 1113 cm\(^{-1}\) e modo \(\delta(NO_2)\) em 864 cm\(^{-1}\).

A Figura 100 mostra os espectros Raman da espécie aniônica, obtidos em diferentes radiações de excitação, que correspondem às linhas indicadas na Figura 99.
Em condições de ressonância ($\lambda_0 = 514$ nm) com a banda de transferência de carga em ca. 522 nm são observados praticamente apenas os modos dos grupos NO$_2$, ν_s(NO$_2$) em 1324 cm$^{-1}$, estiramento ν(C-NO$_2$) em 1112 cm$^{-1}$ e modo δ_p(NO$_2$) em 853 cm$^{-1}$. Em condições de pré-ressonância ($\lambda_0 = 363$ nm) com a banda em ca. 387 nm e fora de ressonância com a banda em 522 nm são observados apenas os modos do grupo N$_3^-$, ν_{as}(N$_3^-$) em 1467 cm$^{-1}$, ν_s(N$_3^-$) em 1456 cm$^{-1}$ e o alargamento de banda deve-se à formação de ligações N-N equivalentes com a deslocalização de carga na espécie aniônica. Dessa maneira fica clara a relação da intensificação dos modos nos espectros Raman com a intensidade das transições observadas nos espectros eletrônicos. Isso é facilmente observado nos perfis de excitação Raman das espécies neutra e aniônica, mostrados nas Figuras 101 e 102, respectivamente.

Figura 100. Espectros Raman do [PNFT] em solução básica de metanol obtidos com diferentes radiações de excitação na região de 200 a 1700 cm$^{-1}$ (* banda do padrão interno: 1036 cm$^{-1}$ do metanol)
Observamos que no caso do PNFT -2 fica clara a formação do sistema bicromofórico com a intensificação seletiva dos modos vibracionais.

Figura 101. Perfil de excitação Raman das principais bandas do PNFT em solução neutra de metanol, e o respectivo espectro UV-Vis na região de energia investigada.

Figura 102. Perfil de excitação Raman das principais bandas do [PNFT] em solução básica de metanol, e o respectivo espectro UV-Vis na região de energia investigada.

Observamos que no caso do [PNFT] fica clara a formação do sistema bicromofórico com a intensificação seletiva dos modos vibracionais.
3.5.3. Conclusões parciais

A análise em conjunto dos dados dos ânions [ONFT]⁻ e [PNFT]⁻ em solução mostra o grande auxílio da espectroscopia Raman ressonante na interpretação de espectros eletrônicos complexos. Em resumo, as transições de menor energia estão ligadas a transições de transferência de carga envolvendo orbitais dos grupos NO₂ e do anel aromático, enquanto que as transições de maior energia envolvem a transferência de carga dos orbitais das ligações do grupo N₃ e do anel aromático.
4. CONCLUSÕES

Em sistemas moleculares do tipo “push-pull”, aqui representados por nitrobenzenos ou nitropiridinas substituídas com grupos elétron doadores (NH₂, OH, N₃H) a natureza das transições de transferência de carga intramolecular (CT) pode ser em grande parte racionalizada com base na análise conjunta dos espectros eletrônicos e Raman ressonante.

No caso da espectroscopia Raman ressonante das espécies neutras em solução, a intensificação preferencial foi sempre dos modos vibracionais associados ao grupo NO₂, especialmente do modo νₛ(NO₂), o que mostra a contribuição substancial no estado excitado de transferência de carga da estrutura com alta densidade de carga nos orbitais das ligações do grupo NO₂.

No caso das espécies aniónicas a intensificação preferencial do modo νₛ(NO₂) ou do modo que contém a participação expressiva do modo ν(C-X) (onde X é o grupo elétron doador) depende criticamente da posição relativa dos grupos NO₂ e X (orto ou para), sendo sempre mais significativa a intensificação do modo associado ao ν(C-X) nos isômeros para. Tal comportamento pode ser racionalizado pelo peso substancial da estrutura “pseudoquinóide” no caso das espécies aniónicas para substituídas.

No caso de sistemas mais estendidos, [ONFT]⁻ e [PNFT]⁻, os dados mostram de maneira clara a formação de um sistema molecular bicromofórico envolvendo os grupos NO₂ e N₃⁻.
5. REFERÊNCIAS BIBLIOGRÁFICAS

APÊNDICE I - Modos normais de vibração do benzeno de acordo com Varsanyi