• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.54.1990.tde-25032015-105837
Documento
Autor
Nombre completo
Jorge Chahine
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1990
Director
Tribunal
Felicio, Jose Roberto Drugowich de (Presidente)
Alcaraz, Francisco Castilho
Koberle, Roland
Oliveira, Paulo Murilo Castro de
Santos, Raimundo Rocha dos
Título en portugués
Método de Monte Carlo com evolução no espaço de parâmetros
Palabras clave en portugués
Não disponível
Resumen en portugués
Nesta tese estudamos vários tópicos ligados a simulações Monte Carlo de sistemas clássicos de spin em rede. Estamos interessados mais nos métodos do que nos resultados de aplicações com grande precisão numérica, devido a limitações computacionais. A ênfase é dada principalmente ao método de Grupo de Renormalização via Monte Carlo. Em primeiro lugar levamos a cabo um estudo detalhado do truncamento no espaço de Hamiltonianas para poder controlar numericamente os efeitos de operadores marginais. Um estudo detalhado do modelo Ashkin Teller N= 2 em duas dimensões é apresentado. Procuramos, a seguir, entender melhor o método de Ferrenberg e Swendsen de histogramas estudando-o para poder calcular, em uma só simulação, valores de expoentes não universais. Apresentamos resultados do modelo de Ising com defeito em 2d. Este método é aplicado ao problema da determinação da ordem de transições. Exemplos de modelos de Ising com interação de multispin são apresentados. Mostramos a seguir uma nova e poderosa técnica de investigar transições de fase que é obtida da combinação de idéias do Grupo de Renormalização via Monte Carlo e do método de histograma. Estes métodos são finalmente usados para estudar o modelo Ashkin Teller N= 3 anisotrópico em duas dimensões
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
In this thesis we study various topics in the realm of Monte Carlo simulations of classical spin systems. We are more interested in the methods themselves than in precise numerical results, due to computational limitations. Emphasis lies in the study of the Monte Carlo renormalization group. First of all, we study the effects of truncations in Hamiltonian space on the marginal operators of a theory. A case study of the Ashkin Teller N= 2 in 2d is presented. Next we turn to trying to understand better Ferrenberg and Swendsen´s histogram method, extending it so that non universal exponents can be obtained from a single simulation. Results from simulations of the 2d Ising model with a defect are shown. This method is then applied to the problem of phase transition order determination. Examples from 2d Ising models with multispin interactions are presented. We then present a new and powerful method for investigating phase transitions which derives from the combination of MCRG and the histogram method. This new technique is then used in the study of the N= 3, 2d, anisotropic Ashkin Teller model
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
JorgeChahineD.pdf (3.89 Mbytes)
Fecha de Publicación
2015-03-25
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.