• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Rosa Lucia Sverzut Baroni
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1984
Directeur
Jury
Reis, José Geraldo dos (Président)
Avellar, Cerino Ewerton de
Ize, Antonio Fernandes
Nowosad, Pedro
Oliva, Waldyr Muniz
Titre en portugais
INVARIANÇA, CONJUNTOS LIMITES E ESTABILIDADE EM SISTEMAS SEMI-DINÂMICOS GERADOS POR EQUAÇÕES DIFERENCIAIS FUNCIONAIS RETARDADAS AUTÔNOMAS
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
This work is devoted to the study of Dynamical Systems defined by Autonomous Retarded Functional Differential Equations. In general, we don't have backward continuation of solutions then, we must work with Semy-Dynamical Systems. There is an extensive literature on Semy-Dynamical Systems but, usually, it is supposed that the phase space is of finite dimension or, at least, locally compact, wich it is not the case here, because we work with an infinite dimensional space. We try to present all the concepts of the cbassical theory of Dynamical Systems like, for instance, trajectories, invariant sets, critical and periodic points, limit sets , recursiveness, dispersiveness, attraction and stability of sets. We also prove a theorem about existence of periodic solution for equations in R2 that lives S1 invariant.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-11-01
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.