• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Celi Vasques Crepaldi
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1986
Directeur
Jury
Dias, Candido Lima Silva (Président)
Conde, Antonio
Manzoli Neto, Oziride
Qualifik, Paul
Teixeira, Mario Tourasse
Titre en portugais
A ÁLGEBRA DE CLIFFORD CANÔNICA
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
Our intention was to construct and study one Clifford algebra CM, which has a fundamental importance to the determination of other Clifford al gebras. Moreover, it allows the stablishment of the relation between the Clifford algebra of vector space E, of a finite dimension, and the exterior algebra of that space: ΛE. The algebra CM is a Clifford algebra of the space M = E ⊕ E8, which the quadratic form Q((x,x')) = <x, x'>. When we have studied the properties of this algebra, we have come to the conclusion that the quadratic space M (and the space E) over the field K, has an inner product. The orthogonal group G de CM and the Clifford group de G are very important and have been described and analysed in Chapter IL. In Chapter III, we have construct one algebra on the vector space E with a quadratic form Q, induced from Q, and by analogy, we have construct one algebra on the vector space E*, we have also stablished the relations among the algebras CM, CE e CE*. On Chapter IV, we have shown that the Clifford algebra of E can be obtained as a deformation of the exterior algebra *Lambda;E, based.on the works of J. Helmstetter and using the interior products. Finally, we have shown an analogy between the reasoning of Helmstetter and the results we have attained.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-11-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.