• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.55.2020.tde-20022020-162711
Documento
Autor
Nombre completo
Geraldo Garcia Duarte Junior
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1987
Director
Tribunal
Reis, José Geraldo dos (Presidente)
Avellar, Cerino Ewerton de
Bassanezi, Rodney Carlos
Claeyssen, Julio Cesar Ruiz
Táboas, Plácido Zoega
Título en portugués
COMPORTAMENTO ASSINTOTICO DE UMA CLASSE DE EQUACOES DIFERENCIAIS RETARDADAS COM APLICACOES EM BIOLOGIA.
Palabras clave en portugués
Não disponível
Resumen en portugués
Não disponível
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
In the first chapter of this work, the retarded functional differential equations x(t) = - λx(t) + λf(x(t - 1)) are studied. We show the existence of an unbounded continuun of slowly oscillating periodic solutions that bifurcates from a non zero equilibrium. In Chapter II, we apply the results of the first chapter in three mathematical models used in Biology; In the last part we study the stability of the equations x(t) = - λx (t) + f(g(t - R1), x(t - R2),...,x(t - Rk)) where x ε R and f: Rn → R. Some results that are independent of the size of the delays are established.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2020-02-21
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.