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ABSTRACT

TUBONE, G. H. 3D Facial Reconstruction from Point Clouds with Hermite Radial Basis
Functions and Multilevel Partition of Unity. 2024. 64 p. Dissertação (Mestrado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

Point cloud surface reconstruction is the process of transforming raw data from 3D scanners
into a digital representation of an object surface. This process has applications in various fields,
and as a result, many methods have been proposed to solve this problem over the years. In this
work, we focus on methods that generate surfaces represented as level sets of implicit functions.
Specifically, we propose a method based on Hermite Radial Basis Functions (HRBF) with
Multilevel Partition of Unity (MPU). The HRBF allows a precise and detailed representation
of the surface geometry, even when dealing with nonuniform data, while the MPU enables
a efficient and adaptive reconstruction process. To demonstrate the efficacy of our method,
we applied it to a dataset of human faces. The results show that the method can successfully
reconstruct the facial geometry, capturing details of the surfaces.

Keywords: Point clouds, Surface reconstruction, Faces, Hermite Radial Basis Functions, Multi-
level Partition of Unity.





RESUMO

TUBONE, G. H. Reconstrução Facial 3D a Partir de Nuvem de Pontos com Funções de Base
Radial de Hermite e Partição da Unidade Multinível. 2024. 64 p. Dissertação (Mestrado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

A reconstrução de superfície de nuvem de pontos é o processo de transformar dados brutos
de scanners 3D em uma representação digital da superfície de um objeto. Esse processo tem
aplicações em vários campos, e por isso, muitos métodos têm sido propostos ao longo dos
anos para resolver esse problema. Neste trabalho, nos concentramos em métodos que geram
superfícies representadas como níveis de funções implícitas. Especificamente, propomos um
método baseado em Funções de Base Radial de Hermite (HRBF) com Partição de Unidade
Multinível (MPU). A HRBF permite uma representação precisa e detalhada da geometria da
superfície, mesmo quando se trabalha com dados não uniformes, enquanto o MPU permite um
processo de reconstrução eficiente e adaptativo. Para demonstrar a eficácia do nosso método,
aplicamos-no a um conjunto de dados de faces humanas. Os resultados mostram que o método
pode reconstruir com sucesso a geometria facial, capturando detalhes das superfícies.

Palavras-chave: Nuvem de pontos, Reconstrução de superfícies, Faces, Funções de Base Radial
de Hermite, Partição da Unidade Multinível.





LIST OF FIGURES

Figure 1 – Input skull and output facial reconstruction. (ROMEIRO et al., 2014) . . . . 23
Figure 2 – Example of extra points added to the initial set of points. (CARR et al., 2001) 28
Figure 3 – Example of a point set partitioned with a Quadtree. . . . . . . . . . . . . . 32
Figure 4 – Example of the Stanford Bunny point cloud partitioned with an Octree. . . . 33
Figure 5 – Example of a partitioned domain and its supports. . . . . . . . . . . . . . . 33
Figure 6 – Increasing the support radius of a sub-domain. . . . . . . . . . . . . . . . . 34
Figure 7 – Example of a 2D adaptive partitioning, where the stop condition is to have

less than 5 points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8 – Triangulated cubes. (LORENSEN; CLINE, 1987) . . . . . . . . . . . . . . 36
Figure 9 – Workflow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 10 – Examples of 3D models of Florence dataset. (BAGDANOV; BIMBO; MASI,

2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 11 – Octree partitioning in 4 levels . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 12 – Face 1 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 13 – Face 2 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 14 – Face 3 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 15 – Face 4 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 16 – Face 5 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 17 – Face 8 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 18 – Face 12 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 19 – Face 14 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 20 – Face 16 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 21 – Face 17 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 22 – Face 20 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 23 – Face 25 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 24 – Face 26 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57





LIST OF TABLES

Table 1 – Global supported radial basis functions. (MO; SHOU; CHEN, 2022) . . . . . 29
Table 2 – Number of points and faces in the original meshes. . . . . . . . . . . . . . . 39
Table 3 – Perfomance metrics of our method. . . . . . . . . . . . . . . . . . . . . . . 44





CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Content of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Global Supported RBF interpolation . . . . . . . . . . . . . . . . . . . 21
2.2 Compactly Supported RBF interpolation . . . . . . . . . . . . . . . . 22
2.3 Hermite RBF intepolation . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . . . . 25
3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Surface reconstruction with RBF . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 RBF Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 HRBF Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 2n-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Quadtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Multilevel Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Adaptive Approximation based on Octree . . . . . . . . . . . . . . . . 34
3.5 Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . 37
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Multilevel Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 HRBF Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Evaluating points on a grid . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Extracting mesh with Marching Cubes . . . . . . . . . . . . . . . . . 41

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



17

CHAPTER

1
INTRODUCTION

Recent advances in 3D scanners have enabled the collection of high-resolution informa-
tion about object surfaces. However, the raw point clouds generated by these scanners need to
be converted into digital representations of the scanned surfaces, a process known as surface
reconstruction. Surface reconstruction finds applications in various fields, such as computer-aided
design, computer graphics, computer vision, and medical imaging (LU et al., 2005). Given the
relevance of this task, many methods have been proposed over the years (BERGER et al., 2017).

There are two main types of surface representations: explicit and implicit. Explicit
representations can be a triangulation of the initial set of points or approximated by a parametric
equation, while implicit representations are defined by a function such that one of its level
sets is the surface approximation. Implicit representations require post-processing, such as the
Marching Cubes algorithm (LORENSEN; CLINE, 1987), to be visualized.

One implicit approach to surface reconstruction is the Radial Basis Function (RBF)
Interpolation. There are many works describing the usage of Radial Basis Functions (RBF) for
surface reconstruction, such as Carr, Fright and Beatson (1997), Fasshauer (2007), Morse et al.

(2005), Turk and O’brien (2002). RBF interpolation has been widely used for implicit surface
reconstruction, but it can be time-consuming for large point clouds due to the need to solve a
linear system of equations. This issue has been addressed by several techniques, including center
reduction, the Fast Multipole Method (FMM) (CARR et al., 2001), and the usage of Compactly
Supported Radial Basis Functions (WU, 1995; WENDLAND, 1995).

Later, the Multilevel Partition of Unity (MPU) method was presented by Ohtake et al.

(2003) as another implicit solution that is able to deal with large point sets. The core idea of this
method is to partition the point set domain in several sub-domains, then solve the local problems
by finding local interpolants and, finally, mix these local solutions into a global interpolant.

The Multilevel Partition of Unity (MPU) method, introduced by (OHTAKE et al., 2003),
is another implicit solution for handling large point sets in surface reconstruction. The MPU
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method partitions the point set domain into several sub-domains, solves local problems by finding
local interpolants, and combines these local solutions into a global interpolant. This approach
can also reduce the computational cost and memory requirements of RBF interpolation, making
it more practical for large point clouds.

Another issue with regular RBF interpolation is the need to create extra points on the
normal vectors direction to the initial point set before performing interpolation. This problem
is addressed by Hermite Radial Basis Function Implicits (HRBF), which was introduced by
Macedo, Gois and Velho (2011). HRBF offers better performance than previous methods in
handling nonuniform samples and close sheets.

In this work, we propose a method that combines the advantages of Hermite Radial
Basis Function Implicits (HRBF) and the efficiency provided by the Multilevel Partition of Unity
(MPU). The 2D/3D Florence Face Dataset (BAGDANOV; BIMBO; MASI, 2011) was used
to evaluate the performance of the method, and it was found to accurately reconstruct facial
geometry with details in a reasonable time and memory usage.

1.1 Contributions
The main contribution of this MSc project is to perform surface reconstruction from point

clouds using HRBF Interpolation along with Multilevel Partition of Unity. This approach makes
it possible to reconstruct surfaces with all benefits of HRBF, but with less time and memory
consumption. This idea was suggested by Macedo, Gois and Velho (2011), but until now, it
hasn’t been implemented.

Also, being part of a FAPESP project called "Mapeamento de características robustas
entre diferentes domínios e espaços R2 e R3", this project performed surface reconstruction for a
dataset of human faces, the 2D/3D Face Dataset from The Media Integration and Communication
Center (MICC) and University of Florence.

1.2 Content of the manuscript
This work is organized as follows:

Chapter 2 Discusses related work in the field of surface reconstruction, more specif-
ically: Global Supported RBF Interpolation, Compactly Supported RBF
Interpolation, Hermite RBF Interpolation and Partition of Unity.

Chapter 3 Introduces the necessary theoretical background to understand the work:
Radial Basis Function Interpolation, Hermite Radial Basis Functions In-
terpolation, 2n-trees (Quadtree, Octree), Multilevel Partition of Unity and
Marching Cubes algorithm.
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Chapter 4 Describes how the theory described in the last chapter was used to solve the
surface reconstruction problem.

Chapter 5 Presents the results of our work.

Chapter 6 Summarizes the main contributions and findings of our work, and discusses
the implications of our results for the field of surface reconstruction. It also
provides suggestions for future research in this area.
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CHAPTER

2
RELATED WORK

In this chapter we will explore relevant research in our area of interest. First, we will delve
into surface reconstruction from point clouds with Global Supported Radial Basis Functions
(GSRBF) and Compactly Supported Radial Basis Function (CSRBF) interpolations, then we
will present pieces of reaserch that employ Hermite Radial Basis Function (HRBF) interpolation
and Multilevel Partition of Unity (MPU).

An extensive review for implicit surface reconstruction via RBF was recently conducted
by Mo, Shou and Chen (2022). Some of the discussion presented in this chapter is based on their
work.

2.1 Global Supported RBF interpolation

Hoppe et al. (1992) described and demonstrated an algorithm to solve the problem of
taking an unorganized set of points {x1, ...,xn}⊂R3 from a surface M, yielding an approximation
M′ of it as a simplicial surface. The solution was based on finding the zero set of a signed distance
function. Later, Savchenko et al. (1995) suggested a new approach to reconstruct surfaces from
point clouds, by interpolating it via a linear system with RBF.

Carr, Fright and Beatson (1997) proposed a practical solution to a problem of medical
imaging using RBF. The problem was to interpolate incomplete surfaces from cranial implants
in order to repair defects, such as holes, in the skull. A similar approach was used by Turk and
O’brien (1999) to create smooth implicit surfaces of arbitrary topology.

Both works mentioned in the previous paragraph provided the following way to represent
the interpolant: f (x) = p(x)+∑

N
i=1 αiφ(|x− xi|), where p(x) is a polynomial of degree k, αi

are coefficients, xi are the centers of the RBF and || is the euclidian norm in R3. From this
formulation, it is possible to find the coefficients by solving a linear system of equations.

These works that make use of Global Supported Radial Basis Functions (GSRBF) were
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later improved by several authors in combination with more efficient methods, such as the ones
proposed by Carr et al. (2001) and Tobor, Reuter and Schlick (2004). The prior uses FMM
(Fast Multipole Method) (GREENGARD; ROKHLIN, 1987) to fastly evaluate RBF and Center
Reduction - a technique to reduce the initial set of points aiming at faster interpolation, while
keeping accuracy. The latter employs a multi-scale approach, where the domain of the given
point cloud is subdivided by means of a balanced binary tree (solved separately) and then blended
together with partition of unity.

2.2 Compactly Supported RBF interpolation

One of the problems related to GSRBF is that the interpolation matrix is completely
filled and when applied to a big set of points exhibits a high computational cost. Moreover, small
changes in the values can propagate as large changes in the final result. In the light of such
limitations, Wendland (1995) and Buhmann (1998) proposed CSRBF (Compactly Supported
RBF), functions with finite support, which means they are nonzero only for a certain distance from
the center. As a result, CSRBF will have a better local interpolation, with lower computational
cost.

CSRBF has been widely used in implicit surface reconstruction for very large point
clouds. Morse et al. (2001), for example, introduced CSRBF for surface reconstruction and
showed that it could be used along with computational methods and data structures for spatial
subdivision. Ohtake, Belyaev and Seidel (2003) presented a coarse-to-fine hierarchical method
for surface reconstruction and Liu et al. (2018) introduced a method to generate implicit surfaces
from polygon soups.

2.3 Hermite RBF intepolation

The reconstruction of implicit surfaces from scattered points using RBF interpolation
often requires offset-points in the direction of the normals in order to avoid the trivial solution.
However, this is not ideal as the tuning of parameters is sometimes necessary to properly find the
ideal offset-points for the interpolation.

Macedo, Gois and Velho (2011) proposed the HRBF Implicits, a method to reconstruct an
implicit functions that interpolates Hermite data (i.e., scattered points and their normal vectors).
The HRBF Implicits is a particular case of the Hermite-Birkoff interpolation (WENDLAND,
2004) with RBF and it is proven to be fairly efficient when compared to similar approaches. It is
particularly suitable when the set of point are irregular or coarse or also in the presence of close
sheets.

The original HRBF Implicits have been further improved and used in different contexts.
Brazil et al. (2011) employed them to render implicit surfaces in various pen-and-ink styles.
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Gois et al. (2013) proposed the reconstruction of implicit surfaces from polygonal meshes, while
Batagelo and Gois (2013) came up with a faster implementation by selecting a small subset of
point-normals in a adaptive way. Finally, Trevisan, Gois and Batagelo (2014) used the Conjugate
Gradients Method on GPU to solve the linear systems.

Nonetheless, the work done by Romeiro et al. (2014) is the one which best resembles the
approach implemented in our project. The aforementioned used HRBF in forensic facial recon-
struction, where faces of individuals are rebuilt from their skulls. The method uses anatomical
rules to reconstruct the face surface by HRBF deformation over a mesh.

Figure 1 – Input skull and output facial reconstruction. (ROMEIRO et al., 2014)

2.4 Partition of Unity
In order to reconstruct surface models from very large datasets, Ohtake et al. (2003)

proposed a new shape representation called the multi-level partition of unity. They used piecewise
quadratic functions to approximate the local shape of the surfaces, weight functions to blend
these local approximations and an octree subdivision algorithm that adapts to the complexity of
the local shape. Later Ohtake, Belyaev and Seidel (2006) improved the method by combining
least-squares RBF and PU, achieving high quality models even in the presence of noisy and
imcomplete data.

Then, Gois et al. (2008) introduced the Twofold Adaptive Partition of Unity Implicits, a
method that combines the Partition of Unity Implicits with a space decomposition by tetrahedra
based in the Ja

1 triangulation (CASTELO et al., 2006). And more recently, Drake, Fuselier and
Wright (2022) presented a method similar to the approach used in our work. Their work is
grounded on curl-free RBFs based on polyharmonic splines and they use partition of unity to
make the method efficient and able to adapt to local shape features.
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CHAPTER

3
THEORETICAL BACKGROUND

In this chapter, we present the fundamental concepts that serve as the foundation for the
creation of our proposed project, which focuses on the reconstruction of surfaces from point
clouds. We begin by providing essential mathematical definitions, followed by an explanation
of Radial Basis Function interpolation and Hermite Radial Basis Function interpolation. We
then introduce the 2n-tree data structure, with a special focus on Quadtree and Octree and their
application in space partitioning. Next, we discuss Multilevel Partition of Unity with Octree and
conclude with the Marching Cubes algorithm, which is used to extract meshes from isosurfaces.

3.1 Basic concepts

In this section, we introduce the mathematical definitions and terminologies that are
crucial to our project. To further explore some of the concepts presented in this section, we
recommend the following books: Lima (2011), Bachman and Narici (2000).

Definition 3.1.1 (Euclidian Space). A Euclidian Space of dimension n is the space Rn equipped
with the usual Euclidian metric, that is, given two points p= (p1, ..., pn) and q= (q1, ...,qn)∈Rn,
we measure their distance by:

||p−q||=
√
(p1−q1)2 + ...+(pn−qn)2

Definition 3.1.2 (Homeomorphism). Let U ⊂ Rn and V ⊂ Rm. A function f : U → V is a
homeomorphism if it is a bijection that is continuous and has a continuous inverse. If such a
function f exists, U and V are homeomorphic.

Definition 3.1.3 (Diffeomorphism). A function f : U → V is a diffeomorphism of class Cr if
it is a bijective, differentiable function with a differentiable inverse, and both f and f−1 have
continuous derivatives up to order r. If such a function f exists, U and V are diffeomorphic.
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Definition 3.1.4 (Manifold). A set M ⊂ Rk is an n-dimensional manifold of class Cr if for every
point x ∈M, there is an open neighborhood U 3 x, with U ⊂Rk, an open subset V of Rn−1×R+,
and a diffeomorphism of class Cr, φ : U ∩M→V .

Definition 3.1.5 (Surface). A surface S⊂ R3 is a 2-dimensional manifold in R3.

Definition 3.1.6 (Isosurface). An Isosurface is a surface defined by the implicit function
f (x,y,z) = c. In other words, it is a level set of a continuous function in R3.

Definition 3.1.7 (Radial Basis Function). A Radial Basis Function is a real-valued function
φ(x) : Rd → R, such that φ(x) = φ̂(||x− c||). In other words, its value depends on the distance
between x and another point c, called a center.

Definition 3.1.8 (Inner product). Let V be a vector space over the field of scalars F. An Inner

Product on V is a function 〈·, ·〉 : V ×V → F that satisfies the following properties for all vectors
x,y, and z ∈V and scalars a,b ∈ F:

1. Linearity in the first argument: 〈ax+by,z〉= a〈x,z〉+b〈y,z〉.

2. Conjugate Symmetry: 〈x,y〉= 〈y,x〉, where 〈y,x〉 denotes the complex conjugate of 〈y,x〉.

3. Positive-definiteness: 〈x,x〉> 0, if x 6= 0.

Definition 3.1.9 (Linear Functional). A linear functional is a linear map from the vector space
to its corresponding field of scalars.

Definition 3.1.10 (Hilbert Space). A Hilbert Space H is a vector space that has an inner product
and is complete in regards to the metric derived from its inner product.

Definition 3.1.11 (Dual Space). The Dual Space H∗ of a real Hilbert Space H is the set of all
continuous linear functionals from H to its field of scalars.

Definition 3.1.12 (Generalized interpolant). Consider a set of linearly independent functionals
Λ = {λ1, ...,λn} ⊆H∗ and a set of values { fi ∈ R : i = 1, ...,n}. A generalized interpolant s ∈H
is a function such that λi(s) = fi,1≤ i≤ n.

Definition 3.1.13 (Gradient of a function). The gradient of a function f : R3→ R, denoted as
∇ f , is given by: ∇ f (x,y,z) = (∂ f

∂x ,
∂ f
∂y ,

∂ f
∂ z ).

Definition 3.1.14 (Support). The support of a function f is the closure of the set {x : f (x) 6= 0},
and is denoted by supp( f ).

Definition 3.1.15 (Compact set). In the Euclidian Space, a compact set is defined as a closed
and bounded set.
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Definition 3.1.16 (Compact support). A function f has a compact support if supp( f ) is a
compact set.

Definition 3.1.17 (Graph). A graph G is defined by (V,E), where V is a set of vertices and E is
a set of edges, connecting those vertices.

Definition 3.1.18 (Tree). A tree is a acyclic and connected graph.

3.2 Surface reconstruction with RBF

3.2.1 Problem formulation

Task: Given a point cloud, that is, n distinct points {xi}n
i=1 of a surface M, find a surface

M′, that is an approximation of M. In this case, an implicit function f (x), such that M′ = f−1(0).

That means this method defines a surface implicitly by a function f : R3→ R, where
each of the surface points satisfies f (xi) = 0.

However, with these conditions alone a function like s(x) = 0 would be a trivial solution.
Therefore, it is necessary to add some extra points, like shown in Figure 2, that do not belong to
the surface. Hence:

• f (x) = 0, on the surface

• f (x)< 0, inside the surface

• f (x)> 0, outside the surface

For each point of the initial set, two more points will be added, both in the direction of
the normal vector of that point, one inside and another outside the surface:

xi
in = xi− ε~n (3.1)

xi
out = xi + ε~n (3.2)

And given δi > 0:

f (xi
in) =−δ (3.3)

f (xi
out) = δ (3.4)

Knowing that only surface points are available at first, it is necessary to find approxima-
tions of the normal vectors to generate the extra points. To that, two approaches are available: a)
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Figure 2 – Example of extra points added to the initial set of points. (CARR et al., 2001)

get information from the scanner used to acquire the point cloud or b) make this approximation
using a neighbourhood of the points as suggested by Hoppe et al. (1992). In case no normal
vector can be generated for a specific point, no new points are added to it.

3.2.2 RBF Interpolation

Given all points {xi}n
i=1 ⊂ R3 and a set of values { f (xi)}n

i=1 ⊂ R, the goal is to find an
interpolant s(xi) = fi, i = 1, ...,n. This interpolant will be as follows:

s(x) = p(x)+
n

∑
i=1

αiφ(|x−xi|), (3.5)

where xi are called RBF centers, p(x) is a low-degree polynomial, αi are real coefficients,
|| is the euclidean norm in R3 and φ(x) is a real function called Radial Basis Function (RBF).

It is also necessary to satisfy the following conditions of orthogonality: ∑
n
i=1 αi p j(xi) = 0.

The above equations can be written in matrix form as

(
A P

PT O

)(
α

c

)
=

(
f

0

)
, (3.6)

where

A =


φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

... . . . ...
φn1 φn2 · · · φnn

 , (3.7)
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GSRBF φ(r) Continuity

Biharmonic (Linear) φ(r) = r C0

Triharmonic (Cubic) φ(r) = r3 C2

Gaussian φ(r) = e−r2/c2
C∞

Multiquadric (MQ) φ(r) = (r2 + c2)k,k > 0,k 6∈ N C∞

Inverse multiquadric (IMQ) φ(r) = (r2 + c2)−k,k > 0,k 6∈ N C∞

Thin plate spline (TPS) φ(r) =

{
r2k−1, k ∈ N
r2klog(r), k ∈ N

C2k

Table 1 – Global supported radial basis functions. (MO; SHOU; CHEN, 2022)

with φi j = φ(|xi−xj|), for i, j = 1,2, ...,n, and

P =


p11 p12 · · · p1k

p21 p22 · · · p2k
...

... . . . ...
pn1 pn2 · · · pnk

 , (3.8)

with pi j = p j(xi), for i = 1,2, ...,n, j = 1,2, ...,k, and O is a zero matrix of dimensions
(k× k).

There are several RBFs that can be used, which have been used in various works, some
of which can be seen in Table 1.

By solving the linear system 3.6, the coefficients α and c can be defined, which leads
to the computation of the interpolant s(x). However, the direct methods to solve linear systems,
like Cholesky Decompostion, are very time-consuming. Hence, using them is only feasible for
an initial point set that contains at most a few thousands points. This problem will be solved by
using methods presented in the next sections.

3.2.3 HRBF Interpolation

Constructing offset-points poses challenges as it demands parameter tuning, introducing
a potential for errors in the process. In light of these difficulties, an alternative approach is
presented here, the Hermite Radial Basis Functions (HRBF). The methodology detailed in this
subsection is based on the work of Fasshauer (2007) and Macedo, Gois and Velho (2011).
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Unlike the standard RBF formulation, for the Hermite Radial Basis Function Interpola-
tion, the surface is reconstructed by using a set of points with their their normal vectors. So, a
set of points {xi}n

i=1 ⊂ R3 and their normals {ni}n
i=1 ⊂ R3 are given and we’re trying to find a

function s : R3→ R that satisfies both s(xi) = 0 and ∇s(xi) = ni.

Theorem 3.2.1 (Riesz Representation Theorem). For every linear functional λi ∈H∗, there is a
unique vector vi ∈H, called Riesz representer, such that λi(s) = 〈vi,s〉, for all s ∈H.

What we aim to find is the norm-minimal generalized interpolant, denoted as s∗, which
satisfies the following optimization problem:

||s∗||= min{||s|| : s ∈H,λi(s) = fi,1≤ i≤ n}, (3.9)

where λ1, ...,λn ∈H are linearly independent functionals with Riesz representers v1, ...,vn

and f1, ..., fn ∈ R are given values. It is known that the unique solution for 3.9 is a linear combi-
nation of the Riesz representers:

s∗ =
n

∑
i=1

αivi, (3.10)

where the coefficients {αi} will be determined by the conditions λi(s∗) = fi,1≤ i≤ n.

Denoting δx(s) := s(x) as the evaluation functional at the point x ∈ R3, we will have the
following intepolating conditions:

λi(s) = δxi = 0

λ
x
i (s) = δxi ◦

∂

∂x
(s) = nx

i

λ
y
i (s) = δxi ◦

∂

∂y
(s) = ny

i

λ
z
i (s) = δxi ◦

∂

∂ z
(s) = nz

i .

(3.11)

Following the theory of Hermite-Birkhoff interpolation, what we need to construct is a
Hilbert Space H, such that these functionals are continuous and linearly independent and where
both Riesz representers and inner products between them can be easily computed.

Actually, for the positive-definite radial basis functions φ : R+ → R, such that Ψ :=
φ(|| · ||) ∈C2k(R3)∩L1(R3), there is a native Hilbert Space Hφ ⊂Ck(R3). For this space, the
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functionals from 3.12 are continuous and if they are pairwise distinct, they are also linearly
independent. Their Riesz representers are given by:

vi = Ψ(·−x)

vx
i =−

∂

∂x
Ψ(·−x)

vy
i =−

∂

∂y
Ψ(·−x)

vz
i =−

∂

∂ z
Ψ(·−x).

(3.12)

Thus, the resulting minimum H-norm generalized interpolant s∗ has the form

s∗(x) =
n

∑
i=1
{αiΨ(x−xi)−〈βi,∇Ψ(x−xi)〉}, (3.13)

where αi ∈ R and βi ∈ R3 are uniquely determined by the following conditions:

s∗(xi) =
n

∑
j=1
{α jΨ(xi−xj)−〈βj,∇Ψ(xi−xj)〉}= 0

∇s∗(xi) =
n

∑
j=1

αi∇Ψ(xi−xj)−HΨ(x−xi)βj}= ni,

(3.14)

with H being the hessian operator of the second order partial derivatives.

3.3 2n-tree
2n-tree is a type of spatial partitioning data structure. A 2n-tree represents the partitioning

of a n-dimensional space into several regions in a hierarchical fashion. It is a tree in which each
non-leaf node has exactly 2n nodes. Each node is a region that comes from the sub-division of its
parent node, except the root node, that represents the initial space. Two particular cases of this
tree will be presented next: Quadtree(22-tree) and Octree(23-tree).

3.3.1 Quadtree

Quadtree is a particular case of the 2n-tree, where n = 2. It was first presented by Finkel
and Bentley (1974). The purpose of this data structure is to represent a 2D space by recursively
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subdividing it at each step into four regions (quadrants). These regions can be squares, rectangles
or another shape which are subdivided until a predetermined condition is reached. Each node of
this tree has either four or zero nodes. In the latter, the node is a leaf, where the relevant data of
the application are kept. The type of data kept in the data structure depends on the purpose of the
application. They could be, for example, points, lines or curves. Figure 3 illustrates a Quadtree
partitioning a set of points.

-20 -10 0 10 20

-30

-20

-10

0

10

20

Figure 3 – Example of a point set partitioned with a Quadtree.

3.3.2 Octree

Octree is another particular case of the 2n-tree, where n = 3. It is similar to Quadtree,
but it suits the representation of 3D spaces. Here, at each step, the space is subdivided into 8
regions (octants). This data structure can be used to represent points, surfaces or volumes in 3D.
An example of an Octree is shown in Figure 4. More information about this data structure can be
found on Samet (1984), Samet (2006).

3.4 Multilevel Partition of Unity

One major problem with the RBF method described in section 3.2 is its global charac-
teristic. That is, solving the linear systems for large point sets can be infeasible and, also, after
interpolants are calculated, it is necessary to perform many operations to evaluate a certain point,
given that there is a coefficient for each RBF center.

The Partition of Unity is a method that partitions the function domain into several sub-
domains and calculates an interpolant for each sub-domain created. This way, the linear systems
needed to be solved are smaller and when it is necessary to evalute a point in the function, the
result can be a mix of the interpolants of a close neighbourhood of that point.
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Figure 4 – Example of the Stanford Bunny point cloud partitioned with an Octree.
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Figure 5 – Example of a partitioned domain and its supports.

3.4.1 Partition of Unity

Consider a bounded domain Ω in an Euclidian space and a set of functions Φ, where
each of its elements Φi is relative to a sub-domain of Ω and ∑i Φi = 1.

Given the functions si that locally approximate the points belonging to each sub-domain,
the global function that interpolates the points can be given by:

f (x) = ∑
i

Φi(x)si(x). (3.15)

And given a set of non-negative functions that have compact support wi such that
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Ω⊂
⋃

i supp(wi), the partition of unity can be generated by

Φi(x) =
wi(x)

∑
n
j=1 w j(x)

, (3.16)

where the inverse-distance singular weights (FRANKE; NIELSON, 1980; RENKA,
1988) is going to be used as the weight function

wi(x) =
(
(Ri−|x− ci|)+

Ri|x− ci|

)2

, where (a)+ =

a if a > 0

0 otherwise
(3.17)

centered at ci and having Ri as the support radius.

This way, when to evaluate a point in f (x), the considered local interpolants si are those
such that |x− ci|< Ri. An illustration of the partition of unity in 2D can be seen in Figure 5.

For each sub-domain, the support radius Ri is initially given by Ri = αd, where d is the
cell diagonal. If the amount of points inside this radius is less than Nmin, the radius is increased
by setting R′i = Ri and iterating until it contains at least Nmin points, as follows:

R′i = R′i +λRi. (3.18)

This iterative process in illustrated in Figure 6.

Figure 6 – Increasing the support radius of a sub-domain.

3.4.2 Adaptive Approximation based on Octree

The Octree data structure, presented in 3.3, is employed to make the domain partitioning.
With this data structure, it is possible to make an adaptive partitioning of our domain, that is, it is
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possible to have a higher refinement where there are more points or the surface complexity is
higher.

The root node of the Octree represents a cube that bounds the initial set of points. Next,
a stop condition for the partitioning is defined. That could be the amount of points inside the
cell being small enough, a threshold of an error function that has been reached, etc. Then, the
partitioning goes recursively as follows:

• If the defined stop condition hasn’t been reached yet, then, for each of the eight octants, a
new node is created as a child of the current node being processed.

• Else, this node becomes a leaf of the tree and a local interpolant is calculated for this
sub-domain.

For a better understanding of the process, please refer to Figure 7.

After having a local interpolant calculated for each sub-domain, i.e. the Octree leafs,
when it is necessary to evaluate a point in the global interpolant, we can only navigate through the
tree going down to the nodes such that the space it represents has a support radius that contains
the point. Then, we can mix the local interpolants results obtained in the leafs as described in the
previous sub-section.

Figure 7 – Example of a 2D adaptive partitioning, where the stop condition is to have less than 5 points.

3.5 Marching Cubes
Marching Cubes is an algorithm, presented by Lorensen and Cline (1987), to extract

triangular meshes from isosurfaces like those generated by the previous sections methods. The
first step of this algorithm is to create a mesh grid of equally spaced points that bounds the input
volume and then evaluating all points of this grid in the implicit function, detecting for each
point if they are inside or outside the surface.

After knowing for each point if they are inside or outside the surface, the algorithm
iterates over all cubes (sets of eight neighbour points) of the mesh grid and, for each one of
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them, creates the triangles that will represent the part of the surface that passes through the cube.
Finally, all generated triangles are mixed into the final triangular mesh.

To detect which triangles are going to be created for each cube, a mapping of possibilities
is precalculated. This mapping tells which triangles should be created depending on the configura-
tion of which points are inside and outside the surface. There are 28 = 256 different possibilities
of configurations for a given cube, because each point can be either inside or outside the surface.
However, if the symmetries are not considered, there are only 15 different configurations, those
are illustrated in Figure 8.

Figure 8 – Triangulated cubes. (LORENSEN; CLINE, 1987)
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CHAPTER

4
MATERIALS AND METHODS

In this chapter we will introduce our strategy to solve the surface reconstruction problem
based on the methods presented in Chapter 3. First, we present the dataset used in the experiments.
Next, we show how we obtain the interpolant using Multilevel Partition of Unity with HRBF.
Finally, we demonstrate how the Marching Cubes algorithm was applied to extract the triangular
mesh from the implicit function obtained in the previous methods. Figure 9 depicts the pipeline
of our proposed method.

Figure 9 – Workflow diagram

The surface reconstruction methods and mesh extraction were all implemented using
the Python programming language. HRBF interpolation and Multilevel Partition of Unity im-
plementation included the numerical and scientific libraries NumPy and SciPy, the Marching
Cubes implementation we used came from the Scikit-image library and the tool to visualize the
generated surfaces was MeshLab, an open source system for processing and editing triangular
meshes.

4.1 Dataset

The dataset employed in this work is the 2D/3D Face Dataset from The Media Integration
and Communication Center (MICC) and University of Florence (BAGDANOV; BIMBO; MASI,
2011). This dataset was built specifically for research in various face analysis and recognition
works. It consists of high-resolution 3D scans of human faces from several subjects and some
videos on different conditions, zoom level and resolution, as illustrated in Figure 10.
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Figure 10 – Examples of 3D models of Florence dataset. (BAGDANOV; BIMBO; MASI, 2011)

The 2D/3D Florence Face Dataset consisted of 53 subjects at the time of our access.
However, the authors have indicated that it is a work in progress, suggesting the possibility of
additional subjects in the future. Each subject has four distinct scans, consisting of two frontal
and two side views. In our project, we specifically used 27 subjects, selecting only one frontal
scan per subject. The models have around 40,000 vertices and 80,000 facets in average and are
accurate to 0.2mm. The details regarding the number of vertices and faces for the utilized models
can be referenced in Table 2.

4.2 Multilevel Partition of Unity

We utilize the Multilevel Partition of Unity based on Octree with HRBF to derive the
implicit function defining the surface approximation, as detailed in Section 3.4.

The initial step involves identifying a cube that encapsulates all points within the initial
set, serving as the root node of the Octree. Recursively, we partition this space into 8 octants
until the defined stopping conditions are met. To illustrate, the figure 11 shows the initial four
levels of the Octree partition for a point cloud.

The stopping conditions for partitioning are twofold: a) having 100 points, or fewer
inside the cell or b) the tree depth reaching a maximum of 12. Upon meeting these criteria, the
node becomes a leaf in the tree, requiring the calculation of the local interpolant.

We initialize the support radius of a sub-domain as Ri = d, where d is the cell diagonal.
If the number of points inside the cell is less than Nmin, we increment its support radius by setting
R′i = Ri and iterate, as mentioned in Section 3.4, until there are at least Nmin points inside it:

R′i = R′i +λRi. (4.1)

Here, we set Nmin = 15 and λ = 0.1, as in Ohtake et al. (2003).

We employed a K-D Tree to determine the number of points enclosed by a given sphere.
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Dataset # of points in
the original mesh

# of faces in
the original mesh

Face 1 39694 77868
Face 2 58390 114865
Face 3 48813 96635
Face 4 39115 77800
Face 5 47237 93791
Face 6 50401 99581
Face 7 45808 90224
Face 8 48445 96310
Face 9 47947 94196

Face 10 26629 52758
Face 11 45260 89869
Face 12 43950 86711
Face 13 46810 92176
Face 14 45730 88155
Face 15 35234 69940
Face 16 50730 100192
Face 17 44487 87495
Face 18 44093 87575
Face 19 46327 90693
Face 20 45798 90784
Face 21 45796 90765
Face 22 47318 93033
Face 23 44178 87504
Face 24 37349 73553
Face 25 43669 85986
Face 26 27567 52604
Face 27 36836 72912

Table 2 – Number of points and faces in the original meshes.

4.3 HRBF Interpolation

Once the cell and the size of the support radius are established, we compute an HRBF
Interpolation for this set of points. Our choice for the Radial Basis Function (RBF) is Ψ(x) :=
φ(||x||) = ||x||3. By solving the linear system derived from these points, we obtain the local
interpolant for the leaf node. The Python NumPy library was used to solve linear systems. It is
based on LAPACK, more specifically the Cholesky decomposition.

It is worth noting that the fitting time can be enhanced by means of parallelism, as the
linear systems of each Octree node can be solved concurrently.
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Figure 11 – Octree partitioning in 4 levels

4.4 Evaluating points on a grid

After obtaining the local interpolants calculated for each node of the Octree, the next
step involves evaluating them on an NxNxN grid for subsequent triangular mesh extraction. In
our work, we generated a 150x150x150 grid for this purpose.

However, once the grid is established, we selectively compute the values for points that
are near the surface. During the evaluation of a point, we assess whether its distance to the point
cloud is within 6 times the size of the cube cell edge of the mesh grid. This criterion allows
us to focus computation efforts on points that are close enough to the surface, optimizing the
efficiency of our process. In order to efficiently determine the distance to the closest point in the
point cloud, we make use of a K-D Tree.

To evaluate the function at a point x, we gather all pertinent local interpolants by travers-
ing the Octree from the root node downwards, selecting nodes where the support radius bounds
the point, i.e., |x− ci|< Ri.
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4.5 Extracting mesh with Marching Cubes
Now that we have the implicit function that interpolates the surface, the next step involves

extracting the triangular mesh from this function for visualization.

For this, we used the Marching Cubes algorithm, as discussed in 3.5. The process begins
with the mesh grid that was generated in the previous step. Hence, we can determine which
points are either inside or outside the surface. This information serves as input to the Marching
Cubes algorithm, that will generate the triangular mesh.

We used the the Marching Cubes implementation from Scikit-image. The resulting
meshes are saved in the OBJ format and , hence, easily visualized with MeshLab.
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CHAPTER

5
RESULTS

In this chapter we present the results obtained by our method from the Florence 2D/3D
Face Dataset described in 4.1. The tests were conducted on an Apple Macbook Air 2020
computer, with M1 processor and 16GB RAM, with the macOS 13.5.2 operating system.

We have selected 13 models and presented the reconstructions to show the strengths and
the pitfalls of our strategy. For each model we show (a) the original mesh with texture, (b) the
original mesh without texture, (c) the point cloud extracted from the original mesh and, finally,
(d) the mesh obtained from our reconstruction.

For certain faces, the method demonstrated the ability to fill in some gaps in the surfaces.
In the model shown in 12, 13, 16, 21, 22, 23 and 24 the method was capable of reconstruct
missing parts of the hair. The model in 19 was reconstructed with the missing parts of both the
hair and beard.

In the depicted surface of Figure 21, a noticeable area with sparse data appears in the
head. But although the method filled the gap, it is evident that the reconstruction in this specific
region lacks precision.

However, in some cases, we observed that the method generated surfaces external to the
main surface. This is primarily attributed to point clouds in complex or data-sparse areas. Figures
18, 23, and 24 highlight this problem in the hair region. While in 20, the issue becomes evident
in the beard region.

The analysis of the resulting data revealed that the implementation of an Octree structure
led to a significant improvement in both memory efficiency and computational time. This was
primarily due to the ability of the Octree to effectively partition the point cloud data into smaller,
more manageable subsets, thereby reducing the complexity of the surface reconstruction process.
Furthermore, the choice of mesh grid size for the surface reconstruction process resulted in a
high-resolution mesh, which in turn captured a greater level of detail on the surface.
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Dataset
# of points

on resulting
mesh

# of facets
on resulting

mesh

Fitting
time
(sec)

Evaluation
time
(sec)

Memory
peak
(MB)

# of
nodes

in
octree

Avg # of
points in

octree
node

Face 1 104694 209208 80.08 278.63 140.41 2918 42.97
Face 2 97690 195042 101.34 264.47 160.85 5477 34.84
Face 3 107646 215002 102.60 315.26 150.64 4297 37.01
Face 4 107127 214118 86.39 296.99 138.92 2559 46.95
Face 5 113017 225848 107.96 308.27 149.12 4163 36.92
Face 6 94223 188340 89.94 275.15 153.27 4819 34.48
Face 7 106321 212570 83.89 280.11 148.64 4344 34.84
Face 8 106521 212908 98.60 118.60 149.17 3837 40.07
Face 9 99485 198784 77.10 268.55 151.19 4759 33.57

Face 10 111543 222872 44.02 286.85 128.33 2099 39.86
Face 11 107000 213780 81.56 295.75 147.44 4083 36.13
Face 12 119846 239510 90.71 314.63 144.62 3424 40.64
Face 13 111161 222134 93.36 296.73 149.03 4229 36.30
Face 14 118848 237526 81.81 83.27 149.21 4524 34.19
Face 15 112682 225226 93.15 303.46 135.39 2302 46.75
Face 16 96939 193644 111.27 295.92 153.58 4861 34.60
Face 17 101108 202056 98.58 278.62 147.23 4250 34.59
Face 18 111819 223430 105.10 315.10 145.34 3625 38.96
Face 19 99190 198102 93.31 278.14 149.16 4450 34.34
Face 20 107843 215526 111.22 313.80 146.92 3762 38.70
Face 21 105453 210750 98.66 295.66 148.35 4271 35.22
Face 22 117196 234232 100.36 308.83 148.54 3939 38.57
Face 23 113856 227420 94.59 331.34 144.12 3103 44.52
Face 24 113992 227700 81.84 304.49 137.14 2340 48.92
Face 25 133957 267628 91.30 326.81 144.69 3487 40.04
Face 26 104707 209302 64.11 267.63 128.46 1828 46.85
Face 27 119009 237826 76.21 303.85 136.62 2361 47.28

Table 3 – Perfomance metrics of our method.

Details, including the number of points and facets on the resulting mesh, fitting time,
evaluation time, peak memory usage, number of nodes in the octree, and average number of
points inside an octree node, are provided in Table 3.
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 12 – Face 1 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 13 – Face 2 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 14 – Face 3 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 15 – Face 4 result



49

(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 16 – Face 5 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 17 – Face 8 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 18 – Face 12 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 19 – Face 14 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 20 – Face 16 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 21 – Face 17 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 22 – Face 20 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 23 – Face 25 result
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(a) Original mesh with texture. (b) Original mesh without texture.

(c) Point cloud extracted from original mesh. (d) Mesh obtained from our reconstruction.

Figure 24 – Face 26 result
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CHAPTER

6
CONCLUSION

6.1 Conclusion
In this work, we presented an approach for surface reconstruction from point clouds

that combines the advantages of Hermite Radial Basis Function Implicits (HRBF) and the
Multilevel Partition of Unity (MPU) method, such as proposed by Macedo, Gois and Velho
(2011). Throughout the work, we covered all the necessary background theoretical topics for the
development of this project, including Radial Basis Function (RBF) and Hermite Radial Basis
Function (HRBF) interpolation, 2n-tree (and more specifically, Quadtree and Octree), Multilevel
Partition of Unity, and Marching Cubes.

Since our work is part of the FAPESP project "Mapeamento de características robustas
entre diferentes domínios e espaços R2 e R3", which includes other works related to faces, for
testing, we used the 2D/3D Florence Face Dataset. Our approach is able to accurately reconstruct
facial geometry with details within a reasonable time and memory consumption, making it
suitable for large point clouds.

As future work, there are several paths for exploration. The method can be subjected to
experimentation with different stop conditions for Octree partitioning, other weight functions,
and alternative Radial Basis Functions (RBF). Testing the method with different point clouds,
including variations in size and shape, will help us understand its versatility and robustness. The
method can also be implemented in a distributed manner to improve efficiency, as we can solve
the linear systems of each partition of the Octree in parallel.
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