• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2010.tde-04012011-142551
Documento
Autor
Nome completo
Bruno Feres de Souza
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2010
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Prudêncio, Ricardo Bastos Cavalcante
Silva, Ivan Nunes da
Soares, Carlos Manuel Milheiro de Oliveira Pinto
Zuben, Fernando José von
Título em português
Meta-aprendizagem aplicada à classificação de dados de expressão gênica
Palavras-chave em português
Aprendizagem de máquina
Classificação de dados de expressão gênica
Meta-aprendizagem
Resumo em português
Dentre as aplicações mais comuns envolvendo microarrays, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta da ocorrência de câncer. Essa classificação é realizada com a ajuda de algoritmos de Aprendizagem de Máquina. A escolha do algoritmo mais adequado para um dado problema não é trivial. Nesta tese de doutorado, estudou-se a utilização de meta-aprendizagem como uma solução viável. Os resultados experimentais atestaram o sucesso da aplicação utilizando um arcabouço padrão para caracterização dos dados e para a construção da recomendação. A partir de então, buscou-se realizar melhorias nesses dois aspectos. Inicialmente, foi proposto um novo conjunto de meta-atributos baseado em índices de validação de agrupamentos. Em seguida, estendeu-se o método de construção de rankings kNN para ponderar a influência dos vizinhos mais próximos. No contexto de meta-regressão, introduziu-se o uso de SVMs para estimar o desempenho de algoritmos de classificação. Árvores de decisão também foram empregadas para a construção da recomendação de algoritmos. Ante seu desempenho inferior, empregou-se um esquema de comitês de árvores, que melhorou sobremaneira a qualidade dos resultados
Título em inglês
Meta-learning applied to gene expression data classification
Palavras-chave em inglês
Gene expression data classification
Machine learning
Metalearning
Resumo em inglês
Among the most common applications involving microarray, one can highlight the classification of tissue samples, which is essential for the correct identification of the occurrence of cancer and its type. This classification takes place with the aid of machine learning algorithms. Choosing the best algorithm for a given problem is not trivial. In this thesis, we studied the use of meta-learning as a viable solution. The experimental results confirmed the success of the application using a standard framework for characterizing data and constructing the recommendation. Thereafter, some improvements were made in these two aspects. Initially, a new set of meta-attributes was proposed, which are based on cluster validation indices. Then the kNN method for ranking construction was extended to weight the influence of nearest neighbors. In the context of meta-regression, the use of SVMs was introduced to estimate the performance of ranking algorithms. Decision trees were also employed for recommending algorithms. Due to their low performance, a ensemble of trees was employed, which greatly improved the quality of results
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese.pdf (2.48 Mbytes)
Data de Publicação
2011-01-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.