• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2013.tde-06052014-103312
Documento
Autor
Nome completo
Bruno Magalhães Nogueira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2013
Orientador
Banca examinadora
Rezende, Solange Oliveira (Presidente)
Dutra, Inês de Castro
Faceli, Katti
Jorge, Alípio Mário Guedes
Prati, Ronaldo Cristiano
Título em inglês
Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections
Palavras-chave em inglês
Active learning
Semi-supervised clustering
Topic hierarchies
Resumo em inglês
Topic hierarchies are efficient ways of organizing document collections. These structures help users to manage the knowledge contained in textual data. These hierarchies are usually obtained through unsupervised hierarchical clustering algorithms. By not considering the context of the user in the formation of the hierarchical groups, unsupervised topic hierarchies may not attend the user's expectations in some cases. One possible solution for this problem is to employ semi-supervised clustering algorithms. These algorithms incorporate the user's knowledge through the usage of constraints to the clustering process. However, in the context of semi-supervised hierarchical clustering, the works in the literature do not efficient explore the selection of cases (instances or cluster) to add constraints, neither the interaction of the user with the clustering process. In this sense, in this work we introduce two semi-supervised hierarchical clustering algorithms: HCAC (Hierarchical Confidence-based Active Clustering) and HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). These algorithms employ an active learning approach based in the confidence of cluster merges. When a low confidence merge is detected, the user is invited to decide, from a pool of candidate pairs of clusters, the best cluster merge in that point. In this work, we employ HCAC and HCAC-LC in the extraction of topic hierarchies through the SMITH framework, which is also proposed in this thesis. This framework provides a series of well defined activities that allow the user's interaction in the generation of topic hierarchies. The active learning approach used in the HCAC-based algorithms, the kind of queries employed in these algorithms, as well as the SMITH framework for the generation of semi-supervised topic hierarchies are innovations to the state of the art proposed in this thesis. Our experimental results indicate that HCAC and HCAC-LC outperform other semi-supervised hierarchical clustering algorithms in diverse scenarios. The results also indicate that semi-supervised topic hierarchies obtained through the SMITH framework are more intuitive and easier to navigate than unsupervised topic hierarchies
Título em português
Agrupamento hierárquico semissupervisionado ativo baseado em confiança e sua aplicação para extração de hierarquias de tópicos a partir de coleções de documentos
Palavras-chave em português
Agrupamento semissupervisionado
Aprendizado ativo
Hierarquias de tópicos
Resumo em português
Hierarquias de tópicos são formas eficientes de organização de coleções de documentos, auxiliando usuários a gerir o conhecimento materializado nessas publicações textuais. Tais hierarquias são usualmente construídas por meio de algoritmos de agrupamento hierárquico não supervisionado. Entretanto, por não considerarem o contexto do usuário na formação dos grupos, hierarquias de tópicos não supervisionadas nem sempre conseguem atender as suas expectativas. Uma solução para este problema e o emprego de algoritmos de agrupamento semissupervisionado, os quais incorporam o conhecimento de domínio do usuário por meio de restrições. Entretanto, para o contexto de agrupamento hierárquico semissupervisionado, não são eficientemente explorados na literatura métodos de seleção de casos (instâncias ou grupos) para receber restrições, bem como não há formas eficientes de interação do usuário com o processo de agrupamento hierárquico. Dessa maneira, neste trabalho, dois algoritmos de agrupamento hierárquico semissupervisionado são propostos: HCAC (Hierarchical Confidence-based Active Clustering) e HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). Estes algoritmos empregam uma abordagem de aprendizado ativo baseado na confiança de uma junção de clusters. Quando uma junção de baixa confiança e detectada, o usuário e convidado a decidir, em um conjunto de pares de grupos candidatos, a melhor junção naquele ponto. Estes algoritmos são aqui utilizados na extração de hierarquias de tópicos por meio do framework SMITH, também proposto nesse trabalho. Este framework fornece uma série de atividades bem definidas que possibilitam a interação do usuário para a obtenção de hierarquias de tópicos. A abordagem de aprendizado ativo utilizado nos algoritmos HCAC e HCAC-LC, o tipo de restrição utilizada nestes algoritmos, bem como o framework SMITH para obtenção de hierarquias de tópicos semissupervisionadas são inovações ao estado da arte propostos neste trabalho. Os resultados obtidos indicam que os algoritmos HCAC e HCAC-LC superam o desempenho de outros algoritmos hierárquicos semissupervisionados em diversos cenários. Os resultados também indicam que hierarquias de tópico semissupervisionadas obtidas por meio do framework SMITH são mais intuitivas e fáceis de navegar do que aquelas não supervisionadas
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-05-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.