• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2013.tde-06122013-142810
Documento
Autor
Nome completo
José Augusto Andrade Filho
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2013
Orientador
Banca examinadora
Carvalho, André Carlos Ponce de Leon Ferreira de (Presidente)
Carvalho, Francisco de Assis Tenório de
Delbem, Alexandre Cláudio Botazzo
Hruschka Júnior, Estevam Rafael
Mello, Rodrigo Fernandes de
Título em português
Definição automática da quantidade de atributos selecionados em tarefas de agrupamento de dados
Palavras-chave em português
Agrupamento de dados
Aprendizado de máquina
Seleção de atributos
Teoria do caos
Resumo em português
Conjuntos de dados reais muitas vezes apresentam um grande número de atributos preditivos ou de entrada, o que leva a uma grande quantidade de informação. Entretanto, essa quantidade de informação nem sempre significa uma melhoria em termos de desempenho de técnicas de agrupamento. Além disso, alguns atributos podem estar correlacionados ou adicionar ruído, reduzindo a qualidade do agrupamento de dados. Esse problema motivou o desenvolvimento de técnicas de seleção de atributos, que tentam encontrar um subconjunto com os atributos mais relevantes para agrupar os dados. Neste trabalho, o foco está no problema de seleção de atributos não supervisionados. Esse é um problema difícil, pois não existe informação sobre rótulos das classes. Portanto, não existe um guia para medir a qualidade do subconjunto de atributos. O principal objetivo deste trabalho é definir um método para identificar quanto atributos devem ser selecionados (após ordená-los com base em algum critério). Essa tarefa é realizada por meio da técnica de Falsos Vizinhos Mais Próximos, que tem sua origem na teoria do caos. Resultados experimentais mostram que essa técnica informa um bom número aproximado de atributos a serem selecionados. Quando comparado a outras técnicas, na maioria dos casos analisados, enquanto menos atributos são selecionados, a qualidade da partição dos dados é mantida
Título em inglês
Automatic feature quantification in data clustering tasks
Palavras-chave em inglês
Chaos theory
Clustering
Feature selection
Machine learning
Resumo em inglês
Real-world datasets commonly present high dimensional data, what leads to an increased amount of information. However, this does not always imply on an improvement in terms of clustering techniques performance. Furthermore, some features may be correlated or add unexpected noise, reducing the data clustering performance. This problem motivated the development of feature selection techniques, which attempt to find the most relevant subset of features to cluster data. In this work, we focus on the problem of unsupervised feature selection. This is a difficult problem, since there is no class label information. Therefore, there is no guide to measure the quality of the feature subset. The main goal of this work is to define a method to identify the number of features to select (after sorting them based on some criterion). This task is carried out by means of the False Nearest Neighbor, which has its root in the Chaos Theory. Experimental results show that this technique gives an good approximate number of features to select. When compared to other techniques, in most of the analyzed cases, while selecting fewer features, it maintains the quality of the data partition
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-12-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.