• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2019.tde-07032019-102825
Documento
Autor
Nombre completo
Caroline Lourenço Alves
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Simão, Adenilso da Silva (Presidente)
Papa, João Paulo
Rosa, João Luis Garcia
Suzuki, Adriano Kamimura
Título en portugués
Diagnóstico de doenças mentais baseado em mineração de dados e redes complexas
Palabras clave en portugués
Doenças neurológicas
Inteligência artificial
Mineração de dados
Redes complexas
Resumen en portugués
O uso de técnicas de mineração de dados tem produzido resultados importantes em diversas áreas, tais como bioinformática, atividades de transações bancárias, auditorias de computadores relacionados à segurança, tráfego de redes, análise de textos, imagens e avaliação da qualidade em processos de fabricação. Em medicina, métodos de mineração de dados têm se revelado muito eficazes na realização de diagnósticos automáticos, ajudando na tomada de decisões por equipes médicas. Além do uso de mineração de dados, dados médicos podem ser representados por redes complexas, de modo a incluir conexões entre seus elementos. Por exemplo, no caso do cérebro, regiões corticais podem representar vértices em um grafo e as conexões podem ser definidas através das atividades corticais. Com isso, pode-se comparar a estrutura do cérebro de sujeitos sadios com a de pacientes que apresentam doenças mentais de modo a definir métodos para diagnóstico e obter conhecimento sobre como a estrutura do cérebro está relacionada com alterações comportamentais e neurológicas. Nesse trabalho, estamos interessados em usar métodos de mineração de dados e redes complexas para classificar pacientes portadores de quatro diferentes tipos de doenças mentais, isto é, esquizofrenia, autismo, déficit de atenção/desordem de hiperatividade e paralisia progressiva nuclear.
Título en inglés
Diagnosis of mental disorders based on data mining and complex networks
Palabras clave en inglés
Artificial intelligence
Complex networks
Data mining
Neurological diseases
Resumen en inglés
A data mining and knowledge discovery is in a field of research, with applications in different areas such as bioinformatics, customer transaction activity, security related computer audits, network traffic, text analysis and quality evaluation in manufacturing. In medicine, data mining methods have proven very effective in performing automatic diagnostics, helping in making decisions by medical teams. In addition to the use of data mining, medical data can be represented by complex networks in order to include connections between its elements. For example, in the case of the brain, cortical regions can represent vertices in a graph and the connections can be defined through cortical activities. Thus, we can compare the brain structure of healthy patients with those of patients with mental disorder in order to define methods for diagnosis and to obtain knowledge about how the structure of the brain is related to behavioral and neurological changes. Here, we are interested in using data mining methods and complex networks to classify patients with four different types of mental desorders, that is, schizophrenia, autism, attention deficit / hyperactivity disorder, and progressive supranuclear paralysis.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-03-07
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.