• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2010.tde-07062010-144250
Documento
Autor
Nome completo
Jonathan de Andrade Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2010
Orientador
Banca examinadora
Hruschka, Eduardo Raul (Presidente)
Liang, Zhao
Oliveira, Stanley Robson de Medeiros
Título em português
Substituição de valores ausentes: uma abordagem baseada em um algoritmo evolutivo para agrupamento de dados
Palavras-chave em português
Agrupamento de dados
Imputação
Mineração de dados
Valores ausentes
Resumo em português
A substituição de valores ausentes, também conhecida como imputação, é uma importante tarefa para a preparação dos dados em aplicações de mineração de dados. Este trabalho propõe e avalia um algoritmo para substituição de valores ausentes baseado em um algoritmo evolutivo para agrupamento de dados. Este algoritmo baseia-se na suposição de que grupos (previamente desconhecidos) de dados podem prover informações úteis para o processo de imputação. Para avaliar experimentalmente o algoritmo proposto, simulações de valores ausentes foram realizadas em seis bases de dados, para problemas de classificação, com a aplicação de dois mecanismos amplamente usados em experimentos controlados: MCAR e MAR. Os algoritmos de imputação têm sido tradicionalmente avaliados por algumas medidas de capacidade de predição. Entretanto, essas tradicionais medidas de avaliação não estimam a influência dos métodos de imputação na etapa final em tarefas de modelagem (e.g., em classificação). Este trabalho descreve resultados experimentais obtidos sob a perspectiva de predição e inserção de tendências (viés) em problemas de classificação. Os resultados de diferentes cenários nos quais o algoritmo proposto, apresenta em geral, desempenho semelhante a outros seis algoritmos de imputação reportados na literatura. Finalmente, as análises estatísticas reportadas sugerem que melhores resultados de predição não implicam necessariamente em menor viés na classificação
Título em inglês
Missing value substitution: an approach based on evolutionary algorithm for clustering data
Palavras-chave em inglês
Clustering
Data mining
Imputation
Missing values
Resumo em inglês
The substitution of missing values, also called imputation, is an important data preparation task for data mining applications. This work proposes and evaluates an algorithm for missing values imputation that is based on an evolutionary algorithm for clustering. This algorithm is based on the assumption that clusters of (partially unknown) data can provide useful information for the imputation process. In order to experimentally assess the proposed method, simulations of missing values were performed on six classification datasets, with two missingness mechanisms widely used in practice: MCAR and MAR. Imputation algorithms have been traditionally assessed by some measures of prediction capability. However, this traditionall approach does not allow inferring the influence of imputed values in the ultimate modeling tasks (e.g., in classification). This work describes the experimental results obtained from the prediction and insertion bias perspectives in classification problems. The results illustrate different scenarios in which the proposed algorithm performs similarly to other six imputation algorithms reported in the literature. Finally, statistical analyses suggest that best prediction results do not necessarily imply in less classification bias
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2010-06-10
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.