• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2006.tde-08022007-151417
Document
Auteur
Nom complet
Manoel Silvino Batalha de Araújo
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2006
Directeur
Jury
Tomé, Murilo Francisco (Président)
Alves, Manuel António Moreira
Cuminato, José Alberto
Nóbrega, João Miguel de Amorim Novais da Costa
Wendland, Edson Cezar
Titre en portugais
Extensão de GENSMAC para escoamentos de fluidos governados pelos modelos integrais Maxwell e K-BKZ
Mots-clés en portugais
Contração planar
Diferenças finitas
Escoamentos incompressíveis
Modelo K-BKZ
Modelo Maxwell
Reologia computacional
Superfície livre
Resumé en portugais
Este trabalho tem como objetivo desenvolver um método numérico para simular escoamentos incompressíveis, isotérmicos, confinados ou com superfícies livres, de fuidos viscoelásticos governados pelos modelos integrais de Maxwell e K-BKZ (Kaye-Bernstein, Kearsley e Zapas). A técnica numérica apresentada é uma extensão do método GENSMAC (Tomé McKee - J. Comp. Phys., (110), pp 171--186, 1994 ) para a solução das equações de conservação, juntamente com as equações constitutivas integrais de Maxwell e K-BKZ. As equações governantes são resolvidas pelo método de diferenças finitas em uma malha deslocada. O tensor de Finger, B_t'(t) é calculado com base nas idéias do método de campos de deformação (Peters et al. - J. Non-Newtonian Fluid Mech. (89), de maneira que não há a necessidade de seguir a trajetória da partícula de fuido para descrever a história de deformação da partícula. Uma abordagem diferente para a discretização do instante passado é utilizada e o tensor de Finger e o tensor das tensões são calculados utilizando um método de segunda ordem. A validação do método numérico descrito nesse trabalho foi feita utilizando o escoamento em um canal bidimensional e a solução numérica obtida para a velocidade e para as componentes de tensão com o modelo de Maxwell foram comparadas com as respectivas soluções analíticas no estado estacionário, mostrando excelente concordância. Os resultados numéricos para a simulação do escoamento em uma contração planar 4 : 1 mostraram bons resultados, tanto qualitativos quanto quantitativos, quando comparados com os resultados experimentais de Quinzani et al. ( J. Non-Newtonian Fluid Mech. (52), pp 1?36, 1994 ). Além disso, utilizando os modelos Maxwel e K-BKZ, o escoamento em uma contração planar 4 : 1 foi simulado para vários números de Weissenberg e os resultados obtidos estão de acordo com os encontrados na literatura. Resultados numéricos de escoamentos com superfícies livres modelados pelas equações integrais de Maxwell e K-BKZ são apresentados. Em particular, a simulação numérica do jato oscilante para diferentes números de Weissenberg e diferentes números de Reynolds é apresentada.
Titre en anglais
Extension of GENSMAC to incompressible flows governed by the Maxwell and K-BKZ integral models
Mots-clés en anglais
computational rheology.
finite difference
free surface
Incompressible ?ows
Incompressible fows
K-BKZ model
Maxwell model
planar contraction
Resumé en anglais
The aim of this work is to develop a numerical technique for simulating incompressible, isothermal, free surface (also con¯ned) viscoelastic flows of fuids governed by the integral models of Maxwell and K-BKZ (Kaye-Bernstein, Kearsley and Zapas). The numerical technique described herein is an extension of the GENSMAC method (Tome and McKee, J. Comput. Phys., 110, pp. 171-186, 1994) to the solution of the momentuum and mass conservation equations together with the integral constitutive Maxwell and K-BKZ equations. The governing equations are solved by the finite difference method on a staggered grid using a Marker-and-Cell approach. The fluid is represented by marker particles on the fluid surface only. This provides the visualization and location of the fluid free surface so that the free surface stress conditions can be applied. The Finger tensor Bt0(t) is computed using the ideias of the deformation fields method (Peters et al. J. Non-Newtonian Fluid Mech., 89, pp. 209-228, 2001) so that it is not necessary to track a fluid particle in order to calculate its deformation history. However, in this work modifcations to the deformation fields method are introduced: the past time is discretized using a different formula, the Finger tensor Bt0(x; t) is obtained by a second order method and the stress tensor ? (x; t) is computed by a second order quadrature formula. The numerical method presented in this work is validated by simulating the flow of a Maxwell fluid in a two-dimensional channel and the numerical solutions of the velocity and the stress components are compared with the respective analytic solutions providing a good agreement. Further, the flow through a 4:1 planar contraction of a specific fuid studied experimentally by Quinzani et al. (J. Non-Newtonian Fluid Mech., 52, pp. 1-36, 1994) was simulated and the numerical results were compared qualitatively and quantitatively with the experimental results and very good agreement was obtained. The Maxwell and the K-BKZ models were applied to simulate the 4:1 planar contraction problem using various Weissenberg numbers and the numerical results were in agreement with those published in the literature. Finally, numerical results of free surface flows using the Maxwell and K-BKZ integral constitutive equations are presented. In particular, the numerical simulation of jet buckling using several Weissenberg numbers and various Reynolds numbers are presented
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TeseSilvino.pdf (1.77 Mbytes)
Date de Publication
2007-02-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.