• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2006.tde-08062006-124838
Document
Author
Full name
Leandro Cavaleri Gerhardinger
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2006
Supervisor
Committee
Batista Neto, João do Espírito Santo (President)
Andrade Filho, Mário de Castro
Morimoto, Carlos Hitoshi
Title in Portuguese
"Segmentação de imagens e validação de classes por abordagem estocástica"
Keywords in Portuguese
campos de markov
segmentação de imagens
segmentação de malhas
validação de classes
Abstract in Portuguese
Uma etapa de suma importância na análise automática de imagens é a segmentação, que procura dividir uma imagem em regiões cujos pixels exibem um certo grau de similaridade. Uma característica que provê similaridade entre pixels de uma mesma região é a textura, formada geralmente pela combinação aleatória de suas intensidades. Muitos trabalhos vêm sendo realizados com o intuito de estudar técnicas não-supervisionadas de segmentação de imagens por modelos estocásticos, definindo texturas como campos aleatórios de Markov. Um método com esta abordagem que se destaca é o EM/MPM, um algoritmo iterativo que combina a técnica EM para realizar uma estimação de parâmetros por máxima verossimilhança com a MPM, utilizada para segmentação pela minimização do número de pixels erroneamente classificados. Este trabalho desenvolveu um estudo sobre a modelagem e a implementação do algoritmo EM/MPM, juntamente com sua abordagem multiresolução. Foram propostas uma estimação inicial de parâmetros por limiarização e uma combinação com o algoritmo de Annealing. Foi feito também um estudo acerca da validação de classes, ou seja, a busca pelo número de regiões diferentes na imagem, mostrando as principais técnicas encontradas na literatura e propondo uma nova abordagem, baseada na distribuição dos níveis de cinza das classes. Por fim, foi desenvolvida uma extensão do modelo para a segmentação de malhas em duas e três dimensões.
Title in English
Image segmentation and class validation in a stochastic approach
Keywords in English
class validation
Image segmentation
markov random field
mesh segmentation
Abstract in English
An important stage of the automatic image analysis process is segmentation, that aims to split an image into regions whose pixels exhibit a certain degree of similarity. Texture is known as an efficient feature that provides enough discriminant power to differenciate pixels from distinct regions. It is usually defined as a random combination of pixel intensities. A considerable amount of researches has been done on non-supervised techniques for image segmentation based on stochastic models, in which texture is defined as Markov Random Fields. Such an important method in this category is the EM/MPM, an iterative algorithm that combines the maximum-likelihood parameter estimation model EM with the MPM segmentation algorithm, whose aim is to minimize the number of misclassified pixels in the image. This work has carried out a study on stochastic models for segmentation and shows an implementation for the EM/MPM algorithm, together with a multiresolution approach. A new threshold-based scheme for the estimation of initial parameters for the EM/MPM model has been proposed. This work also shows how to incorporate the concept of annealing to the current EM/MPM algorithm in order to improve segmentation. Additionally, a study on the class validity problem (search for the correct number of classes) has been done, showing the most important techniques available in the literature. As a consequence, a gray level distribution-based approach has been devised. Finally, the work shows an extension of the traditional EM/MPM technique for segmenting 2D and 3D meshes.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
root.pdf (6.20 Mbytes)
Publishing Date
2006-06-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.