• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2016.tde-09112016-141922
Document
Author
Full name
Yule Vaz
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Mello, Rodrigo Fernandes de (President)
Delbem, Alexandre Cláudio Botazzo
Pagliosa, Paulo Aristarco
Soriano, Diogo Coutinho
Title in Portuguese
Extração de características para a classificação de imagética motora em interfaces cérebro-computador
Keywords in Portuguese
Aprendizado de máquina
Extração de características
Imagética motora
Interface cérebro-computador
Abstract in Portuguese
As Interfaces Cérebro-Computador (do inglês Brain-Computer Interfaces BCI) são sistemas que visam permitir a interação entre usuários e máquinas por meio do monitoramento das atividades cerebrais. Sistemas de BCI são considerados como uma alternativa para que pessoas com perda severa ou total do controle motor, tais como as que sofrem de Esclerose Lateral Amiotrófica, possam contar com algum controle sobre o ambiente externo. Para mapear intenções individuais em operações de máquina, os sistemas de BCI empregam um conjunto de etapas que envolvem a captura e pré-processamento dos sinais cerebrais, a extração e seleção de suas características mais relevantes e a classificação das intenções. O projeto e a implementação de sistemas de BCI viáveis ainda são questões em aberto devido aos grandes desafios encontrados em cada uma de suas etapas. Esta lacuna motivou este trabalho de mestrado o qual apresenta uma avaliação dos principais extratores de características utilizados para classificar ensaios de imagética motora, cujos dados foram obtidos por meio de eletroencefalografia (EEG) e apresentam influências de artefatos, mais precisamente daqueles produzidos por interferências provenientes de atividades oculares (monitoradas por eletrooculografia EOG). Foram considerados sinais coletados pela BCI Competition IV-2b, os quais contêm informações sobre três canais de EEG e três outros de EOG. Como primeira etapa, foi realizado o pré-processamento desses canais utilizando a técnica de Análise de Componentes Independentes (ICA) em conjunto com um limiar de correlação para a remoção de componentes associados a artefatos oculares. Posteriormente, foram avaliadas diferentes abordagens para a extração de características, a mencionar: i) Árvore Diádica de Bandas de Frequências (ADBF); ii) Padrões Espaciais Comuns (CSP); iii) Padrões Espectro-Espaciais Comuns (CSSP); iv) Padrões Esparsos Espectro-Espaciais Comuns (CSSSP); v) CSP com banco de filtros (FBCSP); vi) CSSP com banco de filtros (FBCSSP); e, finalmente, vii) CSSSP com banco de filtros (FBCSSSP). Contudo, como essas técnicas podem produzir espaços de exemplos com alta dimensionalidade, considerou-se, também, a técnica de Seleção de Características baseada em Informação Mútua (MIFS) para escolher os atributos mais relevantes para o conjunto de dados adotado na etapa de classificação. Finalmente, as Máquinas de Vetores de Suporte (SVM) foram utilizadas para a classificação das intenções de usuários. Experimentos permitem concluir que os resultados do CSSSP e FBCSSSP são equiparáveis àqueles produzidos pelo estado da arte, considerando o teste de significância estatística de Wilcoxon bilateral com confiança de 0, 95. Apesar disso o CSSSP tem sido negligenciado pela área devido ao fato de sua parametrização ser considerada complexa, algo que foi automatizado neste trabalho. Essa automatização reduziu custos computacionais envolvidos na adaptação das abordagens para indivíduos específicos. Ademais, conclui-se que os extratores de características FBCSP, CSSP, CSSSP, FBCSSP e FBCSSSP não necessitam da etapa de remoção de artefatos oculares, pois efetuam filtragens por meio de modelos autoregressivos.
Title in English
Feature extraction for motor imagery classification in brain-computer interfaces
Keywords in English
Brain-computer interfaces
Feature extraction
Machine learning
Motor imagery
Abstract in English
Brain-Computer Interfaces (BCI) employ brain imaging to enable human-machine interaction without physical control. BCIs are an alternative so that people suffering from severe or complete loss of motor control, like those with Amyotrophic Lateral Sclerosis (ALS), may have some interaction with the external environment. To transform individual intentions onto machine operations, BCIs rely on a series of steps that include brain signal acquisition and preprocessing, feature extraction, selection and classification. A viable BCI implementation is still an open question due to the great challenges involved in each one of these steps. This gap motivated this work, which presents an evaluation of themain feature extractors used to classify Motor Imagery trials, whose data were obtained through Electroencephalography (EEG) influenced by ocular activity, monitored by Electrooculography (EOG). In this sense, signals acquired by BCI Competition IV-2b, were considered. As first step the preprocessing was performed through Independent Component Analysis (ICA) together with a correlation threshold to identify components associated with ocular artifacts. Afterwards, different feature extraction approaches were evaluated: i) Frequency Subband Dyadic Three; ii) Common Spatial Patterns (CSP); iii) Common Spectral-Spatial Patterns (CSSP); iv) Common Sparse Spectral-Spatial Patterns (CSSSP); v) Filter Bank Common Spatial Patterns (FBCSP); vi) Filter Bank Common Sectral-Spatial Patterns (FBCSSP); and, finally, vii) Filter Bank Sparse Spectral- Spatial Patterns (FBCSSSP). These techniques tend to produce high-dimensional spaces, so a Mutual Information-based Feature Selection was considered to select signal attributes. Finally, Support Vector Machines were trained to tackle the Motor Imagery classification. Experimental results allow to conclude that CSSSP and FBCSSSP are statistically equivalent the state of the art, when two-sided Wilcoxon test with 0, 95 confidence is considered. Nevertheless, CSSSP has been neglected by this area due to its complex parametrization, which is addressed in this work using an automatic approach. This automation reduced computational costs involved in adapting the BCI system to specific individuals. In addition, the FBCSP, CSSP, CSSSP, FBCSSP and FBCSSSP confirm to be robust to artifacts as they implicitly filter the signals through autoregressive models.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
YuleVaz.pdf (1.05 Mbytes)
Publishing Date
2016-11-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.