• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Gustavo Blanco
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2019
Directeur
Jury
Traina, Agma Juci Machado (Président)
Batista Neto, João do Espírito Santo
Fileto, Renato
Gonzaga, Adilson
Titre en portugais
Classificação de úlceras venosas dermatológicas para apoio a consultas por similaridade utilizando superpixels e aprendizado profundo
Mots-clés en portugais
CBIR
CNN
Consultas por similaridade
Processamento de imagens
Resumé en portugais
Sistemas de recuperação de imagens por conteúdo (do inglês Content-based ImageRetrieval - CBIR) têm sido cada vez mais utilizados em diversas aplicações de tratamento e análise de imagens, devido a dois fatores: CBIR é um procedimento que pode ser feito automaticamente, permitindo tratar o grande volume de imagens adquiridos em hospitais, e também é a base para o processamento de consultas por similaridade. No contexto médico tais sistemas auxiliam em diversas tarefas, desde treinamento de profissionais até em sistemas de auxílio a diagnóstico (do inglês Computer-Aided Diagnosis - CAD). Um sistema computacional capaz de comparar e classificar imagens obtidas em exames de pacientes utilizando uma base prévia de conhecimento poderia agilizar o atendimento da população e fornecer aos especialistas informações relevantes de forma rápida e simples. Neste trabalho, o foco foi na análise de imagens de úlceras venosas. Foram desenvolvidas duas técnicas para classificação dessas imagens. A primeira, denominada Counting-Labels Similarity Measure (CL-Measure) possuia vantagem de lidar com imagens segmentadas de forma automática, por superpixels, e ser versátil o suficiente para permitir adaptação para outros domínios. A ideia principal do CL-Measure consiste na criação de sub-imagens baseadas em uma classificação prévia, calcular a distância entre elas e agregar as distâncias parciais obtidas a partir de uma função apropriada. A segunda técnica, denominada Quality of Tissues from Dermatological Ulcers(QTDU), faz uso de redes convolucionais (CNNs) para rotulação dos superpixels com a vantagem de compor todo o processo de identificação de características e classificação, dispensando a necessidade de identificar qual o extrator de características mais adequado para o contexto em questão. Experimentos realizados sobre a base de imagens analisada, utilizando 179572 super pixels divididos em 4 classes, indicam que a QTDU é a abordagem mais eficaz até o momento para o contexto de classificação de imagens dermatológicas, com médias de AUC=0,986, sensitividade = 0,97,e especificidade=0,974 superando as abordagens anteriores baseadas em aprendizado de máquina em 11;7% e 8;2% considerando o coeficiente KAPPAeF-Measure, respectivamente.
Titre en anglais
Classification of venous dermatological ulcers to support similarity queries using superpixels and deep learning
Mots-clés en anglais
CBIR
CNN
Image processing
Similarity search
Resumé en anglais
Content-based Image Retrieval (CBIR) systems have been increasingly used in many image processing and analysis applications because of two factors: CBIR is a procedure that can be done automatically, allowing to handle the large volume of images acquired in hospitals, and it is also the basis for processing similarity queries. In the medical context, such systems assist in various tasks, from training of professionals to develop Computer-Aided Diagnosis CAD systems. A computer system capable of comparing and classifying images obtained from patient exams using a prior knowledge base could expedite the care of the population and provide specialists with relevant information quickly. In this study, the focus was on the analysis of images of venous ulcers. Two techniques were developed to classify these images. The first, called Counting-Labels Similarity Measure (CL-Measure) has the advantage of dealing with automatically segmented images by superpixels, and is versatile enough to allow adaptation to other domains. The main idea of CL-Measure is to create sub-images based on a previous classification, calculate the distance between them and add the partial distances obtained from an appropriate function. The second technique, called Quality of Tissues from Dermatological Ulcers (QTDU), makes use of convolutional networks (CNNs) for superpixels labeling, with the advantage of encompassing the whole process of identification of features and classification, without the need of identifying which extractor would be the best for the context in question. Experiments carried out on the image database using 179,572 superpixels divided into 4 classes, indicate that the QTDU is the most effective approach to date for the context of classification of dermatological ulcer images, with averages of AUC = 0.986, sensitivity = 0.97 , and specificity = 0.974, surpassing previous approaches based on machine learning in 11.7% and 8.2% considering the KAPPA and F-Measure coefficients, respectively.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-06-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.