• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2019.tde-10102019-091702
Documento
Autor
Nome completo
Jesimar da Silva Arantes
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2019
Orientador
Banca examinadora
Toledo, Cláudio Fabiano Motta (Presidente)
Correia, Luiz Henrique Andrade
Delbem, Alexandre Cláudio Botazzo
Menotti, Ricardo
Título em português
Sistema autônomo para supervisão de missão e segurança de voo em VANTs
Palavras-chave em português
Arquitetura embarcada
Planejamento de missão
Replanejamento de rota
Sistema autônomo
Veículos aéreos não tripulados
Resumo em português
O presente documento tem por objetivo apresentar a tese desenvolvida no programa de doutorado em Ciência da Computação e Matemática Computacional do ICMC/USP. Esta tese aborda o desenvolvimento de sistemas autônomos, de baixo custo, para supervisão de missão e segurança de voo em Veículos Aéreos Não Tripulados (VANTs). A supervisão da missão é assegurada através da implementação de um sistema do tipo Mission Oriented Sensor Array (MOSA), responsável pelo adequado cumprimento da missão. A segurança de voo é garantida pelo sistema In-Flight Awareness (IFA), que visa monitorar o funcionamento da aeronave. Os assuntos missão e segurança são complexos e os sistemas MOSA e IFA foram idealizados e desenvolvidos de forma independente, fundamentando-se na ideia de separação de interesses. O desenvolvimento desses sistemas foi baseado em dois modelos de referência: MOSA e IFA, propostos pela literatura. Em trabalhos anteriores da literatura, alguns sistemas do tipo MOSA e IFA foram propostos para situações específicas de missão. Numa outra abordagem, esta tese propõe um único sistema MOSA e IFA capaz de se adequar a um conjunto distinto de missões. Neste trabalho, foi desenvolvida toda arquitetura de comunicação que integra os sistemas MOSA e IFA. No entanto, apenas esses dois sistemas não são suficientes para fazer a execução da missão com segurança, necessitando-se de um sistema capaz de se comunicar com o Piloto Automático (AP) do VANT. Logo, um sistema capaz de enviar requisições e comandos ao AP foi também implementado. Através desses três sistemas, missões autônomas com desvio de obstáculos puderam ser realizadas sem intervenção humana, mesmo diante de situações críticas ao voo. Assegurar os aspectos de segurança e missão pode se tornar conflitante durante o voo, pois em situações emergenciais deve-se abortar a missão. Diferentes estratégias para planejamento e replanejamento de rotas, baseadas em computação evolutiva e heurísticas, foram desenvolvidas e integradas nos sistemas MOSA e IFA. Os sistemas, aqui propostos, foram validados em quatro etapas: (i) experimentos com o simulador de voo FlightGear; (ii) simulações com a técnica Software-In-The-Loop (SITL); (iii) simulações com a técnica Hardware-In- The-Loop (HITL); (iv) voos reais. Na última etapa, os sistemas foram embarcados em dois modelos de VANTs, desenvolvidos pelo grupo de pesquisa. Durante a experimentação, alguns modelos de pilotos automáticos (APM e Pixhawk), computadores de bordo (Raspberry Pi 3, Intel Edison e BeagleBone Black), planejadores de missão e replanejadores de rotas emergenciais foram avaliados. Ao todo, três planejadores de rotas e oito replanejadores são suportados pela plataforma autônoma. O sistema autônomo desenvolvido permite alterar missões com diferentes características de hardware e de software de forma fácil e transparente, sendo, desse modo, uma arquitetura com características plug and play.
Título em inglês
Autonomous system for mission control and flight safety in UAVs
Palavras-chave em inglês
Autonomous system
Embedded architecture
Mission planning
Route replanning
Unmanned aerial vehicle
Resumo em inglês
This document aims to present the thesis developed in the doctoral program in Computer Science and Computational Mathematics at ICMC/USP. This thesis addresses the development of low- cost autonomous systems for mission supervision and flight safety in Unmanned Aerial Vehicles (UAVs). The mission supervision is ensured through the implementation of a Mission Oriented Sensor Array (MOSA) system, which is responsible for the proper fulfillment of the mission. The flight safety is guaranteed by the In-Flight Awareness (IFA) system, which aims to monitor the aircraft operation. The mission and safety issues are complex, and the MOSA and IFA systems were idealized and developed independently, based on the idea of separation of concerns. The development of these systems was based on two reference models: MOSA and IFA, proposed in the literature. In previous works of the literature, some MOSA and IFA systems have been proposed for specific mission situations. In another approach, this thesis proposes a single MOSA and IFA system capable of adapting to a distinct set of missions. All the communication architecture that integrates the MOSA and IFA systems were developed in this work. However, only these two systems are not sufficient to carry out the mission safely; a system that can communicate with the AutoPilot (AP) of the UAV its also needed. In this way, a system that is capable of sending commands and requests to the AP was implemented in this work. Through these three systems, autonomous missions with a diversion of obstacles could be carried out without human intervention, even in critical situations to the flight. Ensuring the safety and mission aspects can become conflicting during the flight because in hazards situations the mission must be aborted. Different strategies for path planning and path replanning, based on evolutionary computation and heuristics, were developed and integrated into the MOSA and IFA systems. The systems proposed here were validated in four stages: (i) experiments with FlightGear flight simulator; (ii) simulations using Software-In-The-Loop (SITL); (iii) simulations using Hardware- In-The-Loop (HITL); (iv) real flights. In the last stage, the systems were embedded in two models of UAVs, developed by the research group. During the experiment were evaluated some models of autopilots (APM and Pixhawk), companion computers (Raspberry Pi 3, Intel Edison and BeagleBone Black), mission planners and emergency route planners. In all, three route planners and eight replanners are supported by the autonomous platform. The developed autonomous system allows changing missions with different hardware and software characteristics in an easy and transparent way, being, therefore, an architecture with Plug and play characteristics.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-10-10
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.