• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2014.tde-12082014-101301
Documento
Autor
Nome completo
Bruno Lorenço Lopes
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2014
Orientador
Banca examinadora
Goularte, Rudinei (Presidente)
Pimentel, Maria da Graça Campos
Willrich, Roberto
Título em português
Detecção de cenas em segmentos semanticamente complexos
Palavras-chave em português
Bag of Visual Words
Descritores sonoros
Descritores visuais
Detecção de cenas
Multimídia
Resumo em português
Diversas áreas da Computação (Personalização e Adaptação de Conteúdo, Recuperação de Informação, entre outras) se beneficiam da segmentação de vídeo em unidades menores de informação. A literatura apresenta diversos métodos e técnicas cujo objetivo é identificar essas unidades. Uma limitação é que tais técnicas não tratam o problema da detecção de cenas em segmentos semanticamente complexos, definidos como trechos de vídeo que apresentam mais de um assunto ou tema, e cuja semântica latente dificilmente pode ser determinada utilizando-se somente uma única mídia. Esses segmentos são muito relevantes, pois estão presentes em diversos domínios de vídeo, tais como filmes, noticiários e mesmo comerciais. A presente Dissertação de Mestrado propõe uma técnica de segmentação de vídeo capaz de identificar cenas em segmentos semanticamente complexos. Para isso utiliza a semântica latente alcançada com o uso de Bag of Visual Words para agrupar os segmentos de um vídeo. O agrupamento é baseado em multimodalidade, analisando-se características visuais e sonoras de cada vídeo e combinando-se os resultados por meio da estratégia fusão tardia. O presente trabalho demonstra a viabilidade técnica em reconhecer cenas em segmentos semanticamente complexos
Título em inglês
Detection of scenes in semantically complex segments
Palavras-chave em inglês
Bag of Visual Words
Multimedia
Scene detection
Sound descriptors
Visual descriptors
Resumo em inglês
Many Computational Science areas (Content Personalization and Adaptation, Information Retrieval, among other) benefit from video segmentation in smaller information units. The literature reports lots of techniques and methods, whose goal is to identify these units. One of these techniques limitations is that they dont handle scene detection in semantically complex segments, which are defined as video snippets that present more than one subject or theme, whose latent semantics can hardly be determined using only one media. Those segments are very relevant, since they are present in multiple video domains as movies, news and even television commercials. This Masters dissertation proposes a video scene segmentation technique able to detect scenes in semantically complex segments. In order to achieve this goal it uses latent semantics extracted by the Bag of VisualWords to group a video segments. This grouping process is based on multimodality, through the visual and aural features analysis, and their results combination using late fusion strategy. This works demonstrates technical feasibility in recognizing scenes in semantically complex segments
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-08-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.