
Techniques for cattle detection, duplicate removal
and counting in large pasture areas using multiple

aerial images

Victor Hugo Andrade Soares
Doctoral Thesis of the Postgraduate Program in Computer Science and
Computational Mathematics (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ____________________

Victor Hugo Andrade Soares

Techniques for cattle detection, duplicate removal and
counting in large pasture areas using multiple aerial images

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação, Universidade
de São Paulo - ICMC/USP, in partial
fulfillment of the requirements for the
degree of the Doctor in Science - Program
in Computer Science and Computational
Mathematics.

Concentration area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Ricardo José Gabrielli
Barreto Campello

Coadvisor: Prof. Dr. Moacir Antonelli Ponti

Final version

USP - São Carlos
February 2024

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

S676t
Soares, Victor Hugo Andrade
 Techniques for cattle detection, duplicate
removal and counting in large pasture areas using
multiple aerial images / Victor Hugo Andrade
Soares; orientador Ricardo José Gabrielli Barreto
Campello; coorientador Moacir Antonelli Ponti. --
São Carlos, 2024.
 133 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2024.

 1. CONTAGEM DE ANIMAIS. 2. DETECÇÃO DE OBJETOS.
3. VISÃO COMPUTACIONAL. 4. PECUÁRIA DE PRECISÃO. 5.
REMOÇÃO DE DUPLICATAS. I. Campello, Ricardo José
Gabrielli Barreto, orient. II. Ponti, Moacir
Antonelli, coorient. III. Título.

Victor Hugo Andrade Soares

Técnicas para detecção de gado, remoção de duplicatas e
contagem em grandes áreas de pastagem usando múltiplas

imagens aéreas

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação, Universidade
de São Paulo - ICMC/USP, como parte dos
requisitos para obtenção do título de Doutor
em Ciências - Ciências de Computação e
Matemática Computacional.

Área de concentração: Ciências de
Computação e Matemática Computacional

Orientador: Prof. Dr. Ricardo José Gabrielli
Barreto Campello

Co-orientador: Prof. Dr. Moacir Antonelli
Ponti

Versão revisada

USP - São Carlos
Fevereiro 2024

Em memória de Jonatas Batista Costa das Chagas,
que por vezes contribuiu com ideias e conhecimento

que me ajudaram na construção deste trabalho.

ACKNOWLEDGEMENTS

Agradeço primeiramente a Deus pelo dom da vida e Sua infinita misericórdia para
comigo.

Às instituições financeiras que apoiaram este projeto e o tornaram possível. Este
trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Código de Financiamento 001. Também agradeço à
empresa Nitryx, que apoiou o projeto financeiramente, forneceu equipamentos e acesso às
fazendas que serviram de base para a coleta dos dados necessários ao desenvolvimento
deste trabalho.

Ao meu orientador, Dr. Ricardo Campello, pela paciência, suporte intelectual e
imensurável contribuição para o meu crescimento pessoal e profissional, desde o mestrado.

Ao meu co-orientador, Dr. Moacir Ponti, por todo o conhecimento compartilhado e
pela disposição e suporte ao assumir a co-orientação deste trabalho.

Ao Dr. Rodrigo Gonçalves, que desempenhou um papel fundamental no surgimento
e motivação para o desenvolvimento do tema proposto.

Aos meus pais, José Luiz e Marli, que desde cedo me motivaram a estudar e
aprender mais sobre computadores, o que se tornou uma paixão.

Ao meu irmão, Vinícius, pela compreensão e apoio em minha vida acadêmica,
muitas vezes tendo que cobrir minha ausência no trabalho devido à universidade.

Agradeço à minha esposa, Dominique Ferreira, minha companheira que sempre me
suporta em amor. Sem ela, eu não teria ingressado no ensino superior e, consequentemente,
não teria chegado até aqui.

Por fim, agradeço ao meu filho, Elliot Ferreira Soares, que nasceu durante este
doutorado e, desde então, tem sido minha constante fonte de motivação para ser sempre
alguém melhor.

“As coisas são mais belas quando vistas de cima.”
Santos Dumont

ABSTRACT

SOARES, V.H.A. Techniques for cattle detection, duplicate removal and
counting in large pasture areas using multiple aerial images. February 2024. 133p.
Thesis (Doctorate in Science) - Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, USP - São Carlos, February 2024.

Among the production areas with largest impact on global economy, agriculture and
livestock play a prominent role. Technologies have been developed in order to automate
and increase the efficiency of these fields. The use of Unmanned Aerial Vehicles (UAVs)
has been extensively investigated to improve the efficiency of agricultural production
and in the monitoring of animals. One of the most important and challenging tasks in
animal monitoring is cattle counting. Traditional manual counting methods are laborious
and error-prone, while existing automated approaches struggle with duplicate animal
detection. This work presents a method for detecting and counting cattle in aerial images
acquired via UAVs. This method leverages Convolutional Neural Networks (CNNs) and
employs a graph-based optimization technique to eliminate duplicate animal detection in
overlapping images. Our results emphasize the importance of maximizing animal matching
to mitigate duplicate counts. Additionally, we integrate multi-attributes, encompassing
velocity, direction, state (lying down or standing), color, and distance, to enhance duplicate
removal and counting precision. We conducted extensive experiments and training to
seamlessly incorporate these attributes into our methodology. Furthermore, we provide a
dataset comprising authentic images captured in extensive pasture areas, suitable for both
training and testing/benchmarking cattle counting techniques. When evaluating detection
and counting, our outcomes underscore the competitiveness of the proposed method
while significantly reducing the computational cost of the overall counting process. When
focusing solely on duplicate removal, our method surpasses state-of-the-art techniques,
achieving an average percentage error of 2.34%. In summary, the proposed method marks
a substantial stride towards more efficient cattle counting practices and enhanced livestock
management in agriculture.

Keywords: Object Detection, Cattle Counting, Duplicate Removal, Precision Farming,
Unmanned Aerial Vehicles (UAVs), Graph-based method, Livestock

RESUMO

SOARES, V.H.A. Técnicas para detecção de gado, remoção de duplicatas e
contagem em grandes áreas de pastagem usando múltiplas imagens aéreas.
February 2024. 133p. Tese (Doutorado em Ciências) - Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, USP - São Carlos, February 2024.

Nas áreas de produção com maior impacto na economia global, a agricultura e a pecuária
desempenham um papel proeminente. Tecnologias têm sido desenvolvidas com o intuito
de automatizar e aumentar a eficiência desses setores. O uso de Veículos Aéreos Não
Tripulados (VANTs) tem sido amplamente investigado para aprimorar a eficiência da
produção agrícola e o monitoramento de animais. Uma das tarefas mais importantes e
desafiadoras no monitoramento de animais é a contagem de gado. Métodos tradicionais de
contagem manual são trabalhosos e propensos a erros, enquanto abordagens automatizadas
existentes lutam com detecções duplicadas de animais. Este trabalho apresenta um método
para detectar e contar bovinos em imagens aéreas obtidas por meio de VANTs. Este método
é baseado em Redes Neurais Convolucionais (CNNs) para detecção, e utiliza uma técnica
de otimização baseada em gráfos para eliminar detecções duplicadas de animais em imagens
sobrepostas. Nossos resultados destacam a importância de maximizar a correspondência
de animais para mitigar contagens duplicadas. Além disso, integramos múltiplos atributos
dos gados, incluindo velocidade, direção, estado (deitado ou em pé), cor e distância,
para aprimorar a remoção de duplicatas e a precisão da contagem. Realizamos extensos
experimentos e treinamentos para incorporar esses atributos em nossa metodologia. Além
disso, fornecemos um conjunto de dados com imagens capturadas em extensas áreas de
pastagem, adequadas tanto para o treinamento quanto para testes e avaliação de técnicas
de contagem de gado. Ao avaliar a detecção e a contagem, nossos resultados destacam a
competitividade do método proposto, ao mesmo tempo em que reduzem significativamente
o custo computacional do processo de contagem como um todo. Ao focar exclusivamente
na remoção de duplicatas, nosso método supera as técnicas mais avançadas, atingindo um
erro médio percentual de 2,34%. Em resumo, o método proposto representa um grande
avanço em direção a práticas de contagem de gado mais eficientes e ao aprimoramento da
gestão do gado na agricultura.

Palavras-chave: Detecção de Objetos, Contagem de Gado, Remoção de Duplicados,
Fazenda de precisão, Veículos Aéreos não Tripulados, Método baseado em grafos, Pecuária

LIST OF FIGURES

Figure 1 – How relief correction is applied in orthophoto generation. 35

Figure 2 – Model of a MCP Artificial Neuron . 38

Figure 3 – Example architecture of a Multilayer Perceptron network (MLP). . . . 39

Figure 4 – Example of the backpropagation method. The red values are obtained
through data propagation. The blue values are the expected (ideal)
values. The sum of differences between obtained and expected values
results in an error. 40

Figure 5 – Example of convolution with a Laplacian kernel for edge detection in
an image. 42

Figure 6 – Common structure of a Convolutional Neural Network (CNN). 43

Figure 7 – Inception module of the GoogLeNet network with dimensionality reduc-
tion. 44

Figure 8 – Complete structure of the GoogLeNet network. 45

Figure 9 – R-CNN: Regions with CNN features. 46

Figure 10 – R-CNN: Regions with CNN features. 46

Figure 11 – Drone DJI Mavic Pro . 56

Figure 12 – Flight plan creation screen (DroneDeploy application). The red line
frame on the map is the area to be photographed. The route to be taken
by the drone is represented by the green line. The left panel displays
the flight settings and descriptions. 58

Figure 13 – Example of the diversity of photos collected in this work: (a) and (b)
were collected at Água Boa farm and taken at an altitude of 90m. (c),
(d), (e) and (f) were collected at Bela Vista, Duas Anas, Imec and
Primavera farms, at altitudes of 120m, 100m, 120m and 90m, respectively. 59

Figure 14 – Illustration of the LabelImg tool (TZUTALIN, 2015), used to manually
demarcate and label all the animals in the image. 62

Figure 15 – Camera’s field of view computation as a function of altitude (alt), focal
length (fl) and sensor size (S). 64

Figure 16 – YAW angle values obtained in the image metadata according to the
direction in which the drone is flying. 66

Figure 17 – Example where the yaw angle read from the metadata is 18o. To calculate
the geolocation of the 4 vertices of the image (projections) it is necessary
to calculate the yaw angle of the direction of each vertex. To achieve
this, displacements of αo and βo are applied to the initial yaw angle. . 66

Figure 18 – Pipeline for cattle counting from a set of images. 68
Figure 19 – Example of a bipartite Graph G, where the vertices X are the animals

∈ Li and the vertices Y are the animals ∈ Lt. The edges E connect
animals whose distance is less than the threshold. 68

Figure 20 – Example of solution for the maximum flow problem using Ford-Fulkerson
algorithm. A vertex S (source) fully connected to the vertices X and
a vertex D (destination) fully connected to the vertices Y are created,
then the solution is the maximum flow from S to D (blue edges). . . . 70

Figure 21 – Example of a subgraph G′ ⊂ G (where G is the graph in Figure 19),
where E ′ are the edges selected by the Ford-Fulkerson maximum flow
solution, which connect the animals X ∈ Li considered to be the same
as in Y ∈ Lt. 71

Figure 22 – Example of displacement of four animals recorded in two moments. At
moment 2 (blue) the 4 animals moved 5m to the right, when compared
to moment 1 (red). 72

Figure 23 – Average training (blue) and testing (orange) loss curves and standard
deviation (reported every 10 epochs) — 10-fold cross-validation. 74

Figure 24 – Image with 4 animals, where 3 were detected correctly (TP - blue boxes),
1 was detected incorrectly (FP - red box), and one was missed (FN -
green box). 75

Figure 25 – Two images of the same area taken at different time instants during
the same flight plan. Matching color boxes represent matching animals
according to our method. 78

Figure 26 – Example of unsuccessful orthophoto generation due to low overlap
between images. 80

Figure 27 – Drone’s flight plan illustrating the path (green line) and photo capture
locations (red dots) for a pasture area. The yellow and blue dotted
boxes represent adjacent photos taken with a significant time lapse. . . 86

Figure 28 – Graphical abstract showcasing the main components of the proposed
cattle counting approach. At a very high-level of abstraction, the method-
ology involves aerial image acquisition, cattle attribute detection, hy-
perparameter learning, and duplicate removal, leading to accurate and
efficient cattle counting in large pasture areas. 87

Figure 29 – Drone DJI Phantom 4 . 89

Figure 30 – Photo from the Pasto1-15-10-12h dataset, featuring diverse cattle colors:
white, black, and spotted. 91

Figure 31 – Example of DC = 10 Direction Classes for Cattle Head Rotation in
Image Perspective, with each class representing 36◦ of the circumference. 97

Figure 32 – Distance threshold variation according to cattle direction class: highest
threshold (DT) for head direction (shaded in dark blue), proportional
decrease for others (light blue, green, yellow, and orange), and minimum
threshold (DT · minR) for opposite direction (shaded in red). 99

Figure 33 – Graph representation for duplicate cattle detection using maximum flow
in networks. The graph consists of a source node, nodes in VX and VY

(representing cattle in images X and Y , respectively), and a destination
(sink) node. Directed edges (E) contain matching probabilities as weights,
representing maximum flow capacity between VX and VY 101

Figure 34 – Result of the Ford-Fulkerson algorithm for duplicate cattle detection.
The graph illustrates the selected edges (E ′), (0, 6), (1, 3), and (2, 7),
indicating the identified duplicates. Cattle 4 and 5 are deemed new
observations in image Y rather than duplicates of animals previously
observed in image X. 102

Figure 35 – Example of images representing both classes of cattle state in the T2606
dataset: Laying down (left) and Standing up (right). 105

Figure 36 – Example of cattle images from each of the four annotated color classes
in the T2606 dataset: white, black, red/brown, and others. 106

Figure 37 – Cattle velocity computation for the "Same Cattle" and "Other Cattle"
classes. The velocity of the black animal with a blue bounding box in (a)
and (b) belongs to the "Same Cattle" velocity class. The hypothetical
velocity of the black cattle with a blue bounding box in (a), had it
moved to the location of the white cattle with a red bounding box in
(b), belongs to the "Other Cattle" velocity class. 108

Figure 38 – Histograms of velocity for the "Same Cattle" (blue) and "Other Cattle"
(red) classes. 109

Figure 39 – Sigmoid curve learned by the logistic regression model for the velocity
attribute: the black vertical line indicates a 50% probability cut-off value.109

Figure 40 – Example of a cattle image annotated as class 6 for the direction attribute.
The class is defined by the direction where the cattle’s head is pointed. 110

Figure 41 – Example of two images from Dataset C: (A) captures the initial moment,
depicting the positions of seven cattle. (B) shows a subsequent moment
less than a minute later, revealing significant movement by some cattle.
(C) provides a visualization of the movement, illustrating the distance
covered by four rapidly moving cattle within this short interval. Notably,
other cattle in the image exhibit more typical behavior. 115

Figure 42 – Unsuccessful mosaic generation for the dataset Pasto1-15-10-12h, illus-
trating gaps in the image due to a shortage of matching points. 119

LIST OF TABLES

Table 1 – Description of the location and characteristics of the farms where the
images were obtained, as well as the times and altitudes at which flights
were performed. 57

Table 2 – Number and average size of pastures, approximate total number of
animals, and number of photographs taken at each farm. 59

Table 3 – Datasets used in this work to evaluate the proposed animal counting
method. 61

Table 4 – Description of the metadata needed to estimate the geolocation of the
animals located in the images. 64

Table 5 – Detection results of the Net1 network over 1, 337 images. 75
Table 6 – Result of cattle counting for the flight sections classified as “Motionless” —

estimated count against the ground truth (GT). The bottom bar displays
the baseline results from (SHAO et al., 2020). 76

Table 7 – Result of cattle counting for the flight sections classified as “Moving” —
estimated count against the ground truth (GT). The bottom bar displays
the baseline results from (SHAO et al., 2020). 76

Table 8 – Results of cattle counting for the new flight sections BR_set — estimated
count against the ground truth (GT). 77

Table 9 – Comparison between the runtime of the proposed method against that
of generating a 3D surface (using SfM) as required in (SHAO et al., 2020). 79

Table 10 – Results of cattle counting estimates against the ground truth (GT) for
the Leave-one-pasture-out (LOPO) fine-tuning protocol. 82

Table 11 – Results of cattle counting estimates against the ground truth (GT) for
the Cross-dataset fine-tuning protocol. 82

Table 12 – Overview of 26 datasets used in our experiments, featuring 5 new ones. 90
Table 13 – Number of images for each state class before and after data augmentation

(DA). 105
Table 14 – 10-fold cross-validation results for the state and color classifiers within the

val2 subsets across the non-training folds. The softmax score represents
the classifier’s confidence in predicting the correct (ground-truth) class. 106

Table 15 – Number of images for each color class before and after data augmentation
(DA). 107

Table 16 – Number of images for each direction class before and after data augmen-
tation (DA). 111

Table 17 – Absolute counting error for each candidate value for the maximum
distance threshold (DT), varying from 3 to 20 meters. 113

Table 18 – Absolute and percentage counting errors with respect to the ground truth
(GT) in Leave-One-Out Cross Validation for each of the 26 validation
datasets. For each dataset, the counting results are obtained using a
distance threshold (DT) value learned from the other 25 datasets. . . . 114

Table 19 – Ablation study configurations and their attribute combinations. 116
Table 20 – Ablation study results for the cattle counting method. It shows the

absolute and percentage errors for different attribute configurations on
26 datasets, along with their total absolute sum and average percentage
errors across all datasets. 116

Table 21 – Wilcoxon signed-rank p-values for the ablation study. 117
Table 22 – Absolute and percentage counting errors for the 4 compared counting

methods on the 26 datasets. Results with * indicate datasets where
counting could not be performed by the mosaic-based competitor due to
unsuccessful mosaic generation. 121

Table 23 – Wilcoxon signed-rank p-values for comparison of counting methods. . . . 121

LIST OF ABBREVIATIONS AND ACRONYMS

ABS Absolute

alt Relative Altitude

ANN Artificial Neural Network

API Application Programming Interface

AVG Average

BFS Breadth-first search

BR Brazil

CMOS Complementary metal–oxide–semiconductor

CNN Convolutional Neural Network

DA Data Augmentation

DC Direction Classes

DEM Digital Elevation Model

DT Distance Threshold

f35 Focal In 35mm

fl Focal Length

FN False Negative

FP False Positive

GBmulti Graph-based Multi-attribute

GBD Graph-based Distance

GBTmulti Graph-based Thresholded Multi-attribute

GIS Geographic Information Systems

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

GSD Ground Sample Distances

GT Ground truth

H Height

ILSVRC14 2014 ImageNet Large-Scale Visual Recognition Challenge

ISO International Organization for Standardization

lat Latitude

lng Longitude

LOPO Leave-One-Pasture-Out

minR Minimum Threshold

MLP Multilayer Perceptron

MOT Multiple Object Tracking

MS Mato Grosso do Sul

MS-COCO Common Objects in Context

R-CNN Region-based Convolutional Network

RAM Random Access Memory

RGB Red Green Blue

RTK Real Time Kinematics

SfM Structure from Motion

SGD Stochastic Gradient Descent

STD Standard Deviation

SVM Support Vector Machine

TN True Negative

TP True Positive

UAV Unmanned Aerial Vehicle

W Width

CONTENTS

1 INTRODUCTION . 29
1.1 Contributions . 31
1.2 Outline of the Thesis . 32

2 BACKGROUND . 33
2.1 Drones for Precision Farming . 33
2.1.1 Mapping and Geolocation Estimation with Drone Imagery 34
2.2 Computer Vision . 36
2.2.1 Artificial Neural Networks (ANNs) . 37
2.2.1.1 Neural Network Training . 38
2.2.2 Convolutional Neural Network (CNN) 41
2.2.2.1 Convolution . 41
2.2.2.2 CNN Structure . 42
2.2.2.3 GoogLeNet - Inception . 43
2.2.2.4 Region-based Convolutional Network (R-CNN) 44
2.3 Chapter Remarks . 47

3 RELATED WORK . 49
3.1 Counting Animals From Single Images 49
3.2 Counting Animals From Multiple Images 51
3.3 Chapter Remarks . 53

4 LIVESTOCK DETECTION AND COUNTING IN THE WILD . . . 55
4.1 Materials and Methods . 55
4.1.1 Devices and Software . 56
4.1.2 Novel image collection for training . 57
4.1.3 Datasets for Cattle Counting . 60
4.1.4 Labeling . 60
4.1.5 Training the Convolutional Neural Network (CNN) 61
4.2 Counting Method . 63
4.2.1 Computing the Projections . 63
4.2.2 Performing Cattle Detection . 67
4.2.3 Cattle Counting and Removal of Duplicates 68
4.3 Evaluation . 73

4.3.1 Cattle Detection . 73
4.3.2 Cattle Counting . 75
4.4 Results and Discussion . 76
4.4.1 Runtime Analysis: 3D Surface Location vs. Geolocation Estimates . 78
4.4.2 Experimental Framework for Benchmarking of Cattle Detection and

Counting . 80
4.5 Chapter Remarks . 82

5 MULTI-ATTRIBUTE APPROACH FOR DUPLICATE LIVESTOCK
REMOVAL AND COUNTING . 85

5.1 Materials and Methods . 87
5.1.1 Devices . 88
5.1.2 Datasets for Training . 88
5.1.3 Datasets for Cattle Counting . 89
5.1.4 Convolutional Neural Network (CNN) 91
5.1.5 Evaluation Methods . 92
5.2 Duplicated Removal and Counting Method 93
5.2.1 Multi-Attribute Enhancement . 93
5.2.1.1 State Attribute . 94
5.2.1.2 Color Attribute . 95
5.2.1.3 Velocity Attribute . 95
5.2.1.4 Direction Attribute . 96
5.2.1.5 Distance Threshold Attribute . 98
5.2.2 Modified Ford-Fulkerson Algorithm for Duplicate Cattle Detection . 99
5.2.3 Complete Counting Method . 102
5.3 Hyperparameter Determination and Attribute Learning 104
5.3.1 State Attribute Learning . 104
5.3.2 Color Attribute Learning . 106
5.3.3 Velocity Attribute Learning . 107
5.3.4 Direction Attribute Learning . 110
5.3.5 Distance Attribute Learning . 111
5.4 Evaluation . 112
5.4.1 Leave-One-Out Cattle Counting Evaluation 112
5.4.2 Ablation Study . 115
5.4.3 Thresholded Variant: An Unweighted Version Using Multi-Attribute 117
5.4.4 Comparison Against Baselines . 118
5.5 Chapter Remarks . 122

6 CONCLUSIONS AND FUTURE WORK 123
6.1 Future Works and Limitations . 124

REFERENCES . 127

29

CHAPTER

1
INTRODUCTION

Livestock farming and agriculture have a significant impact on global food pro-
duction and the economy (BANK, 2021). The sectors are responsible for the use of
approximately 40% of the world’s land area (ALSTON; PARDEY, 2014). Despite the high
occupancy rate, in 2012 it was estimated that these sectors were responsible for 2.8% of
gross world product and 19% of the world’s workers population (World Bank, 2012).

Efficient management of cattle, particularly in large pasture areas, is crucial for
optimizing production and ensuring animal welfare. Traditional manual counting methods
are laborious, time-consuming, and prone to high error rates (FARJON; HUIJUN; EDAN,
2023). In recent years, Unmanned Aerial Vehicles (UAVs), commonly known as drones, have
emerged as a highly promising technology for monitoring and management of cattle (REJEB
et al., 2022). Equipped with high-resolution cameras, these drones offer a significant
advancement by capturing aerial images of vast territories, providing valuable information
for various agricultural applications, including monitoring of plantations, pastures and
livestock, to identify/control possible problems as well as to determine the location of
these problems in the field (GÓMEZ-CANDÓN; CASTRO; LÓPEZ-GRANADOS, 2014;
ALANEZI et al., 2022).

The popularization of drones has been mainly driven by the consolidation of
technologies such as the Global Positioning System (GPS), embedded microelectronics,
miniature autopilot systems, mobile communication equipment, compact high-resolution
digital cameras and high-power batteries. This makes drones low-cost, safe and easy to
operate (GUO et al., 2018).

The use of cameras and GPS embedded in drones allows it to estimate the geoloca-
tion of objects on the ground (JOHNSTON, 2006), mapping areas with high resolution
and precision (GRAYSON et al., 2018). GPS accuracy is related to external factors such as
climate, wind and topography of the region overflown. In ideal flight conditions, such as a

30

sunny day with little wind and under flat terrain, the accuracy of the estimated geolocation
of points on the ground can reach an average error of 2cm (BARRY; COAKLEY, 2013).

In spite of these remarkable advances in technology, there are still several factors
that hinder the use of drones for monitoring animals, especially livestock. Regarding one
of the most important drone related tasks in this context, namely, counting animals using
aerial images, the main drawback is related to the movement of animals through the field,
which poses major challenges (BARBEDO; KOENIGKAN, 2018). Ideally, one would like
to obtain an image record of the entire area with just one photograph, however, there are
laws that limit the flight altitude of drones in many countries. For large properties with
40ha or more, which includes the farms visited to collect the images used in this work,
capturing the entire area with only one photograph is only possible via satellite. However,
most satellites do not have sufficient resolution to allow the detection and monitoring of
animals. Even satellites currently considered to be high resolution, such as Geo Eye 1 and
WorldView (XUE; WANG; SKIDMORE, 2017), generate images in which each animal is
represented by a few pixels, making precise detection virtually impossible. Additionally, the
acquisition of images through these satellites has a high cost (BARBEDO; KOENIGKAN,
2018).

When it is not possible to capture the entire area in just one photograph, it is
common practice to use the drone to register the entire area through multiple images
(SHAO et al., 2020; XU et al., 2020a; XU et al., 2020b). In this scenario, animals can be
counted in each image separately, but this requires dealing with duplicated animals, since
the same animal can appear in more than one image (BARBEDO et al., 2020). Another
approach is to generate a single image, where pixel combination algorithms are used to
form a single mosaic from all the original images. However, current rendering algorithms do
not prevent animals from appearing replicated in the final mosaic/image. In addition, the
rendering process may cause image distortions and is highly computationally demanding,
becoming prohibitive/infeasible in many application scenarios.

Careful consideration of cattle behavior and meticulous flight planning can increase
the likelihood of capturing photos when the cattle are relatively stationary, thus reducing
the chances of incorrect matching (KILGOUR, 2012; BARBEDO et al., 2020). However,
this is not always possible in large areas and it may only mitigate the problem to a
limited extent. For instance, covering a large area while attempting to minimize cattle
movement requires minimizing flight times, which in turn depends on the degree of overlap
between images. Typically, there is a challenging trade-off involved in the definition of
the image overlap degree, which plays a pivotal role in flight planning. High overlap is
essential, e.g., for constructing mosaics (DANDOIS; OLANO; ELLIS, 2015). In general,
some degree of overlap is also important for cattle detection and counting techniques more
broadly, because the absence of a minimum degree of overlap may lead to undetected

31

cattle, which will end up unaccounted for, particularly if they are located near the edges
of images and move between photograph shots. On the other hand, higher overlap can
significantly extend the required flight times, providing more opportunities for cattle to
move, potentially resulting in duplicate counts. In addition, using high overlap levels can
be impractical in large areas, as drones may not cover the entire area within a single
battery cycle. In this case, mid-flight battery changes may be required, increasing flight
times and the uncertainty about cattle position and count even further.

For counting animals in the images (individual or mosaics), object detection
techniques have been used, with emphasis on Convolutional Neural Networks (CNNs) (PE-
NATTI; NOGUEIRA; SANTOS, 2015). These networks were designed as a solution to the
problem of image recognition, initially for classification (CNNs) and subsequently for object
detection and segmentation. These methods are designed as deep artificial neural networks,
which use convolution operations to learn features in the space of input images (PONTI et
al., 2017) guided by an objective function that aims to achieve the desired task. In livestock,
CNNs have been widely used in studies of dairy cows behavior (JIANG et al., 2019),
posture estimation (LI et al., 2019), segmentation and contour extraction to calculate
body condition score (QIAO; TRUMAN; SUKKARIEH, 2019), measure individual food
consumption (BEZEN; EDAN; HALACHMI, 2020), breed recognition (WEBER et al.,
2020), disease diagnosis (MOHAN; RAJU; JANARTHANAN, 2019) and, particularly,
counting animals using images from drones (CHAMOSO et al., 2014; SHAO et al., 2020;
BARBEDO et al., 2020; XU et al., 2020a).

In this work, we propose methods for detecting and counting animals in large
areas, using images obtained by drones and geolocation data. The methods include data
acquisition, evaluation of deep neural networks for animal detection, and a novel graph-
based counting algorithm. We also present the culmination of research efforts along multiple
directions to improve effectiveness in cattle counting and duplicate removal. Our combined
approach involves the analysis of multiple attributes beyond image pixel level. In particular,
for each detected cattle, we take into account not only its estimated geolocation, but also
its state (lying down or standing), color, velocity and direction. We investigate how such
attributes can be properly combined and used to assign weights to the graph algorithm
that we use to model and effectively solve the duplicate removal problem.

1.1 Contributions

The contribution of this thesis is three-fold:

• a novel method for cattle counting in extensive areas based on geolocations of animals
and a graph-based algorithm to remove duplicates. This approach outperforms
the state of the art, notably in terms of reducing duplicate counting, while also

32

significantly improving runtime efficiency.

• a thorough investigation into the use of cattle visual attributes to enhance the
duplicate removal algorithm. By leveraging these attributes, we achieved more
accurate and reliable results in the cattle counting process.

• a novel diverse and extensive dataset of real-world images captured using drones
across various pastures. These images encompass a wide range of cattle breeds,
backgrounds, altitudes, times of the day, and lighting conditions. This dataset serves
as a valuable resource for the research community, aiding in the training of new
methods and providing a benchmark for cattle counting tasks.

1.2 Outline of the Thesis

The remainder of this thesis is organized as follows:

In Chapter 2, we explore the background that form the basis of this research. This
chapter provides an overview of key concepts, including a brief description of applications
using drones in Precision Farming. It also details methods employed to Computer Vision,
as Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) for
both, image classification and object detection tasks, which are important components of
this study.

Chapter 3 presents an extensive review of related work in the field. Existing research
is categorized into two main sections: works focusing on animal detection and counting
from single images, and those addressing the task of counting animals from multiple images.
This chapter sets the stage for the novel contributions in subsequent chapters.

Chapter 4 unveils the proposed methodology for cattle detection and counting
across large areas, leveraging geolocation data and employing a graph-based algorithm
to eliminate duplicate counts. Additionally, it introduces a new dataset for training and
evaluation purposes, enriching the resources available to the research community.

Chapter 5 embarks on an in-depth exploration of multi-attribute analysis for cattle.
It proposes a method to integrate attributes like color, state (lying down or standing up),
direction, and velocity into the duplicate removal algorithm. Classifiers are employed to
learn and detect the attributes within the counting pipeline, while additional evaluation
methods, such as ablation studies, assess the contribution of each attribute.

The final chapter, Chapter 6, serves as a culmination of the research. It summarizes
the main findings and contributions discussed throughout the thesis. Additionally, it
acknowledges the limitations of the work and illuminates potential avenues for future
research and exploration in this dynamic field of study.

33

CHAPTER

2
BACKGROUND

In this chapter, we present concepts that encompass the use of drones in precision
agriculture and the field of computer vision. Specifically, we provide an overview of drone
applications in precision farming. Furthermore, we delve into essential concepts in computer
vision, with a particular focus on image classification and object detection tasks. The
chapter offers a concise explanation of key concepts within Artificial Neural Networks
(ANNs), Convolutional Neural Networks (CNNs), and some examples of networks for
images classification and object detection. These foundational insights set the stage for a
comprehensive exploration of the ensuing chapters.

2.1 Drones for Precision Farming

In recent years, Unmanned Aerial Vehicles (UAVs), more commonly known as
drones, have experienced a surge in popularity, particularly within the realm of precision
farming. This newfound enthusiasm stems from the confluence of various factors, including
advancements in drone technology, the availability of high-quality cameras, GPS precision,
and a significant reduction in the cost of embedded components (GUO et al., 2018).

Drones are increasingly used for a range of agricultural tasks, such as mapping
extensive agricultural areas (VEROUSTRAETE, 2015), monitoring and surveying crops
or livestock (HUANG et al., 2022), delivering items (FRACHTENBERG, 2019), and crop
dusting (KURKUTE et al., 2018). The latter involves transporting tanks of fertilizers and
pesticides for precise, targeted crop spraying, a task that drones perform with significantly
higher accuracy compared to traditional tractors or manual labor (ME et al., 2016).

In the realm of agricultural drones, two primary categories dominate the landscape:
fixed-wing and multi-rotor drones (BUDIHARTO et al., 2019). Each of these drone types
offers distinct advantages. Multi-rotor drones are popular for their agility and ease of use.
However, their batteries typically have shorter lifespans, limiting the amount of time they

34

can spend in the air. On the other hand, fixed-wing drones are rarer, bet they are better
suited for larger farms due to their extended flight time capacity. With the ability to spend
more time in the air, they can cover more substantial agricultural areas. Furthermore,
fixed-wing drones are capable of carrying larger payloads, including multiple sensors. This
broader sensor array significantly enhances data collection capabilities, making them a
compelling choice for precision farming applications.

Central to the effectiveness of agricultural drones is their reliance on Global
Positioning System (GPS) or Global Navigation Satellite System (GNSS) technology (GUO
et al., 2018). The integration of these positioning systems enables drones to operate
autonomously and navigate the complex geographical landscapes of farms. Without
GPS/GNSS, drones would merely function as radio-controlled aircraft, limiting their
potential to perform autonomous and precise tasks (BUDIHARTO et al., 2019)

Drones not only capture traditional photographs but also offer support to Ge-
ographic Information Systems (GIS) (BUDIHARTO et al., 2021). This support allows
for the production of orthophotos, which are geometrically corrected aerial images, free
from distortions (CHEN et al., 2023). Moreover, the sensor-rich environment of drones
provides an abundance of data, facilitating precise estimation of the position of objects
on the ground (HABCHI et al., 2020). This wealth of information enables farmers to
make informed decisions, manage resources efficiently, and enhance crop yields through
data-driven insights.

By leveraging this advanced technology, precision farming has taken a giant leap
forward, ensuring sustainable and productive agricultural practices that align with the
demands of our modern world. The integration of drones into agricultural landscapes
represents a important step toward smarter, data-driven, and sustainable farming practices
(KRISHNA, 2018).

2.1.1 Mapping and Geolocation Estimation with Drone Imagery

Drone imagery plays a pivotal role in precision agriculture, supporting applications
like mapping (RACHMAWATI et al., 2021) and geolocation estimation (HABCHI et al.,
2020). The use of orthophotos and mosaics is widespread due to their capacity to provide
undistorted, georeferenced images that serve as the foundation for a variety of applications.

Orthophotos are precise, orthorectified images that rectify the distortion effects
present in standard aerial photos and in the relief. This correction is achieved through the
amalgamation of geographical and elevation data, resulting in images where objects are
uniformly scaled, and their positions precisely correspond to a constant coordinates (MOR-
GAN; FALKNER, 2001), as illustrated in Figure 1.

Orthophotos are used in tasks like land mapping, crop health assessment, and

35

Figure 1 – How relief correction is applied in orthophoto generation.

Source: Morgan and Falkner (2001)

environmental monitoring.

Creating an orthophoto involves the following steps:

1. Georeferencing: Each aerial image is tagged with geographic coordinates, often
through GPS data, ensuring precise spatial referencing.

2. Camera Calibration: The characteristics of the camera lens and sensor, including
focal length and lens distortion, are meticulously calibrated to ensure accurate
measurements.

3. Digital Elevation Model (DEM): The utilization of a Digital Elevation Model,
often derived from sources like LiDAR, provides crucial terrain elevation data. The
DEM is essential for correcting image distortions linked to terrain variations.

4. Bundle Adjustment: Bundle adjustment algorithms optimize camera positions
and orientation parameters to enhance alignment with the acquired images.

5. Orthorectification: Geometric transformations are applied to correct perspective
distortions. The orthorectification process can be mathematically represented as:

(X, Y, Z)orthophoto = (X, Y, Z)image + f(X, Y, Z)DEM

Here, (X, Y, Z)orthophoto represents corrected orthophoto coordinates, (X, Y, Z)image

denotes image coordinates, and f(X, Y, Z)DEM compensates for terrain elevation.

Mosaics, on the other hand, involve the composition of multiple images into a
seamless, comprehensive view of a specific area. While orthophotos rectify individual
images, mosaics focus on the amalgamation of these images to create a singular, large-scale

36

view. The process entails matching key points in overlapping images and blending them to
yield a cohesive result.

In drone photography, overlap refers to the degree to which successive images share
common features and details (MORGAN; FALKNER, 2001). Overlap is classified into two
main categories:

• Longitudinal Overlap: This type of overlap occurs when images overlap along the
flight direction, often referred to as “along-track” overlap.

• Lateral Overlap: Lateral overlap is created when images overlap side to side or
“across-track”.

A higher degree of overlap, typically around 60-80%, allows redundancy in informa-
tion, leading to the production of accurate orthophotos and mosaics (DANDOIS; OLANO;
ELLIS, 2015). The algorithms take into account this overlap, enabling corrections for even
minor terrain variations, ensuring the highest level of accuracy. Although, high overlap
results in more images capturing the same area, which lead to extended flight plans. In
scenarios where the goal is detailed land mapping, high overlap is essential to produce
precise orthophotos and mosaics. However, in scenarios where long flight plans are not
possible or convenient, a more efficient approach can be adopted, leveraging metadata and
geolocation estimation for accurate results with reduced computational demands.

Through an analysis of metadata, including drone location, sensor specifications,
lens configuration, and camera pointing position, the geolocation of objects on the ground
can be estimated (JOHNSTON, 2006). The precision of geolocation estimation depends on
factors such as GPS accuracy, sensor calibration, and drone altitude (WOLF; DEWITT;
WILKINSON, 2013). While orthophotos provide a high degree of accuracy due to rigorous
correction processes, geolocation estimation from images offers rapid assessment capabilities
but may not achieve the same level of precision. By optimizing the balance between
geolocation accuracy and processing efficiency, drone-based geolocation estimation proves
to be a valuable asset for tasks that do not require millimeter precision considering global
coordinates, but with good relative precision across the images.

In summary, drone imagery emerges as a versatile resource for mapping, orthophoto
generation, and geolocation estimation. These techniques find widespread application
in precision agriculture, enhancing land management, resource allocation, crop health
assessment, and animal monitoring.

2.2 Computer Vision

Humans have a remarkable ability to perceive and recognize the three-dimensional
structure of the world around them. When looking at a photograph, for instance, we can

37

easily count (and label) all the individuals appearing in the image, while also discerning
their emotions through facial expressions. This is made possible by our complex and
efficient visual system. The field of computer science that aims to replicate the attributes
of human vision using software and hardware is called Computer Vision (SZELISKI, 2010).

When we aim to solve a visual recognition problem using computational methods,
it may be tempting to underestimate the challenge. However, among the visual tasks
that we can instruct a computer to perform, analyzing a scene and recognizing all the
objects within it remains one of the most challenging tasks (SZELISKI, 2010). This
difficulty arises because the appearances of objects can vary considerably due to changes
in lighting, viewpoint, deformations, and the natural intra-class variability, such as the
“dog” class, which can contain visually distinct animals due to the presence of different
breeds (FELZENSZWALB et al., 2010).

The problem of image recognition can be mainly categorized into two distinct
approaches. If we have an image with an object and we want to classify it based on a
pre-defined set of classes, it is referred to as a recognition or classification task (SZELISKI,
2010). In such tasks, we identify key visual features and determine whether these features
align with the geometric characteristics of any class in a predefined model created from
known examples. Conversely, if we have an image and we know what we are looking
for, and the objective is to traverse the image and determine the location of that object,
this task is referred to as Object Detection (SZELISKI, 2010). In this work, our primary
objective is the counting of animals using aerial images, making it an object detection task.
However, we will also employ classification networks to differentiate specific attributes of
the animals.

The following sections provide a foundational understanding of Artificial Neural
Networks (ANNs) and Convolutional Neural Networks (CNNs), which are instrumental in
the domains of image classification and object detection.

2.2.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are computational methods that present a
mathematical model inspired by the neural structure of intelligent organisms (WITTEN;
FRANK; HALL, 2011). An ANN is composed of simple units known as artificial neurons,
which are interconnected and organized into layers (MELLO; PONTI, 2018). Figure 2
illustrates a neuron model known as McCulloch and Pitts (MCP) (MCCULLOCH; PITTS,
1943). In this model, where x ∈ Rn represents a multidimensional vector with input values,
the neuron operates by associating these inputs with corresponding weights, forming a
weighted sum u = ∑n

i=1 wi · xi. Additionally, a bias term, b ∈ R, is (optionally) introduced
and added to the weighted sum, contributing to the overall activation of the neuron.

The activation function, represented here as f(u), plays a crucial role in determining

38

Figure 2 – Model of a MCP Artificial Neuron

Source: Elaborated by the author.

the neuron’s output y. There are various activation functions suitable for this task, but
they are generally required to be differentiable. One widely used activation function is the
sigmoid function, f(u) = 1/(1 + exp−u), which ensures that the output of the neuron falls
within a bounded range between 0 and 1. The neuron processes its inputs and produces an
output determined by the activation function applied to u (MCCULLOCH; PITTS, 1943).

The architecture of ANNs is typically organized in layers. These layers can be
broadly classified into three groups: Input layers, where patterns are introduced into the
network; Hidden layers, where the majority of processing takes place through weighted
connections, which can be thought of as feature extractors; and Output layers, where the
final result is presented (MELLO; PONTI, 2018).

An ANN is specified primarily by its topology and the characteristics of its nodes
and training rules. A Multilayer Perceptron (MLP), illustred in Figure 3, is a classic example
of this structure, and it resembles a weighted graph that is directed and acyclic. In this
network, the nodes represent neurons, and the edges signify the connections among them,
allowing the output of one neuron to serve as the input to another (SHALEV-SHWARTZ;
BEN-DAVID, 2014).

Notably, the “knowledge” of the MLP is stored in the weights of the neuron
connections. These weights can be initially assigned random values or pre-learned from
previous tasks, and they play a crucial role in shaping the network’s ability to model
complex relationships and solve specific problems.

2.2.1.1 Neural Network Training

The essence of neural networks’ capabilities lies in their ability to “learn”. In this
context, learning signifies the network’s quest to find a general solution within a specific
problem class (SHALEV-SHWARTZ; BEN-DAVID, 2014). This journey of acquiring
knowledge within neural networks takes place through various learning paradigms. The
three primary learning paradigms are:

39

Figure 3 – Example architecture of a Multilayer Perceptron network (MLP).

Source: Elaborated by the author.

• Supervised Learning: In this paradigm, the network is provided with input data
and corresponding correct output data. It aims to learn a mapping from inputs to
outputs.

• Unsupervised Learning: Here, the network deals with unlabeled data and must
discover patterns or structures in the data without explicit guidance.

• Reinforcement Learning: This paradigm involves an agent interacting with an
environment, taking actions to maximize cumulative rewards, thus learning how to
behave in various situations.

Training a neural network involves repeated iterations through the dataset, where
each complete pass is termed an “epoch”(SARKAR; BALI; SHARMA, 2018). Each epoch
allows the network to refine its internal parameters (usually, the weights of the connections
between neurons) and inch closer to producing the correct output for a given input.

During training, there are two main modes for defining an epoch:

• Standard Mode: In this mode, the network computes the weights in each presen-
tation of input data. This means that for each epoch, there are N weight updates,
where N is the number of input data points.

• Batch Mode: Contrastingly, in this mode, only one weight update is computed per
epoch. The network processes all the input data, and only one update is performed
for the entire epoch.

40

In our work, we focus on supervised training, which is particularly relevant for
tasks like image classification. Now, let’s delve into the specific training method used in
supervised learning.

The most common method for training an Artificial Neural Network (ANN) is
Backpropagation (LANG, 1988). This approach comprises two crucial phases: forward and
weight update.

Figure 4 illustrates a fully connected network where the red values in the output
layer result from forward propagation, while the blue values represent the model, i.e., the
ideal values that should be obtained. The sum of the differences between the obtained
and ideal values generates an error of 1.13. The error values are then backpropagated, and
deltas are computed for each node or neuron in the network.

Figure 4 – Example of the backpropagation method. The red values are obtained through
data propagation. The blue values are the expected (ideal) values. The sum of
differences between obtained and expected values results in an error.

Source: Elaborated by the author.

To update the weights, gradients are calculated by multiplying the output delta
(error) and the input activation. A learning rate is employed to determine the percentage
of the gradient to subtract from the original weight, effectively updating the node weights
(SARKAR; BALI; SHARMA, 2018).

These two steps, forward and weight update, are repeated several times through
multiple epochs until satisfactory results are achieved. Typically, Backpropagation is used
in conjunction with optimization algorithms or functions, with Stochastic Gradient Descent
(SGD) being one of the most commonly used optimization methods in the field of Machine
Learning (GOODFELLOW; BENGIO; COURVILLE, 2016).

This iterative process of forwarding input data, computing errors, backpropagating,
and adjusting weights is what allows neural networks to “learn” and adapt their internal

41

parameters to achieve their intended goals.

2.2.2 Convolutional Neural Network (CNN)

Starting from 2012, when the competition ImageNet (RUSSAKOVSKY et al.,
2015), of image recognition, was won by the team of (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012), the winning neural network, AlexNet, began to be successfully applied to
various tasks in the field of Computer Vision (GIRSHICK et al., 2014a; KARPATHY et
al., 2014; LONG; SHELHAMER; DARRELL, 2015; WANG; YEUNG, 2013). The success
of the AlexNet network is considered the great milestone in the research of Convolutional
Neural Networks (CNNs) and Deep Learning nomenclature (SZEGEDY et al., 2015b).
From it, several new neural networks emerged, causing great advances in the field of
Computer Vision.

CNNs are a specialized type of neural network for data processing with a grid-like
topology, similar to a grid (GOODFELLOW; BENGIO; COURVILLE, 2016). Common
examples include time series data, which can be seen as a 1D grid with samples at regular
time intervals, and images, which form a 2D grid of pixels.

2.2.2.1 Convolution

Convolution is an operation performed on a pixel’s neighborhood, denoted as I(i, j),
by a filter or kernel K, resulting in a scalar value for pixel S(i, j). Convolution between
image I and kernel K is typically represented as an asterisk (∗):

S(i, j) = (I ∗ K)(i, j)

Assuming the kernel has dimensions of m × n, where m = 2a + 1 and n = 2b + 1,
the convolution of the image by the kernel is computed as follows:

S(i, j) = (I ∗ K)(i, j) =
a∑

s=−a

b∑
t=−b

I(i − s, j − t)K(s, t) (2.1)

It is worth noting that convolution results in a scalar value representing only pixel
(i, j). Consequently, the kernel slides over the image, computing convolution for all the
pixels.

In the field of neural networks, for the sake of simplicity, convolution is often
implemented as cross-correlation, which is equivalent to computing convolution with the
kernel values mirrored:

S(i, j) = (I ⋆ K)(i, j) =
a∑

s=−a

b∑
t=−b

I(i + s, j + t)K(s, t) (2.2)

42

Note that if the kernel is symmetric, convolution and cross-correlation are equivalent.
In practice, this differentiation is not crucial for neural network implementations, as many
libraries implement cross-correlation and call it convolution (GOODFELLOW; BENGIO;
COURVILLE, 2016). Throughout this text, we consider both operations as convolution by
convention.

Figure 5 illustrates a convolution result using a Laplacian kernel for edge detection.
In the field of neural networks, the values of convolution kernels are learned by the network
itself. This means that programmers usually don’t need to define the specific convolutions,
as the network adapts the kernels to make the filtering more discriminative.

Figure 5 – Example of convolution with a Laplacian kernel for edge detection in an image.

Source: Elaborated by the author.

2.2.2.2 CNN Structure

CNNs typically consist of three main components (SARKAR; BALI; SHARMA,
2018):

1. Convolutional Layers: These layers involve multiple filters (kernels) that convolve
input data across all dimensions. Convolutions help identify spatial features in images,
and each kernel generates a 2D activation map. These maps are stacked to form the
final output of the convolutional layers.

2. Subsampling Layers: These layers perform non-linear operations on input data
and the outputs of convolutional layers. This subsampling aims to improve model
generalization, prevent overfitting, and reduce computational cost. Common pooling
operations include sum, average, and max pooling.

3. Fully Connected Multilayer Perceptron (MLP): This part is similar to fully
connected layers in traditional ANNs. Each neuron is connected to all neurons in
the previous layer. The values computed by these neurons reach the output layer,
where image classification is achieved.

Figure 6 illustrates the common structure of a CNN. In broad strokes, convolu-
tional layers transform the data to extract features. Subsampling layers reduce data sizes

43

while preserving important values, improving generalization, preventing overfitting, and
enhancing computational performance. Finally, a fully connected network classifies the
image.

Figure 6 – Common structure of a Convolutional Neural Network (CNN).

Source: Trakoolwilaiwan et al. (2017)

The number of new networks and applications for image recognition have been
increasing dramatically. Some networks consist of hundreds or even thousands of layers.
This characteristic has driven the usage of the term “Deep Learning” (SZEGEDY et al.,
2015b) in neural networks. The next sections introduce some of the primary CNNs for
image recognition and object detection.

2.2.2.3 GoogLeNet - Inception

GoogLeNet, also known as Inception, is a CNN developed by Google for image
recognition (classification). It won the 2014 ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC14), the world’s largest annual challenge for image recognition meth-
ods. In addition to achieving significantly better results than AlexNet, the 2012 winner,
GoogLeNet reduced the number of parameters by a factor of 12 (SZEGEDY et al., 2015a).

The GoogLeNet network consists of Inception convolution modules, where filters of
sizes 1 × 1, 3 × 3, and 5 × 5 are applied. Figure 7 displays the architecture of an Inception
module. Data comes from the “Previous Layer” and is then passed through four rows
of convolution. The 1 × 1 convolutions are used to halve the dimensionality in the filter
space, reducing computational cost. As such, they are applied before the 3 × 3 and 5 × 5
convolutions. In Figure 2.2.2.3, the light blue block (3 × 3 max pooling) subsamples the
image, keeping only the maximum value for each 3 × 3 window in the image. The module’s
final output is a concatenation of these four convolution rows.

44

Figure 7 – Inception module of the GoogLeNet network with dimensionality reduction.

Source: Szegedy et al. (2015a)

Having defined the structure of an Inception module, the GoogLeNet network is
built by stacking multiple Inception modules. Figure 8 illustrates the final structure of the
GoogLeNet network. In blue, you can see the convolutions; in red, the sub-samplings; in
green, normalizations; and in yellow, fully connected networks for classification. The light
green rectangle highlights one of the Inception modules within the network. In total, nine
Inception modules are stacked.

As seen in the light yellow blocks in Figure 8, besides the classifier at the end
of the network, two additional auxiliary classifiers are connected to intermediate layers.
Given the network’s depth, the authors were concerned about the effectiveness of gradient
propagation during training. Middle layers are expected to be highly discriminative as
well. During training, the error of these auxiliary classifiers is added to the total error with
a discount weight. However, these auxiliary classifiers are used only during the training
phase. In the inference phase, they are discarded.

2.2.2.4 Region-based Convolutional Network (R-CNN)

The Region-based Convolutional Network (R-CNN) (GIRSHICK et al., 2014b) is a
CNN developed for object detection. While the R-CNN concept is simple, the method is
robust. Figure 9 illustrates the R-CNN detection process. The method involves extracting
approximately 2,000 regions of interest. Convolution operators are then used to compute
the features for each extracted region, followed by classification. In the original proposal
(GIRSHICK et al., 2014b), a Support Vector Machine (SVM) is employed as the classifier.

A more efficient version of R-CNN, called Fast R-CNN, was proposed in (GIRSHICK,
2015). In (HUANG et al., 2017), several CNNs for object detection are compared, with Fast

45

Figure 8 – Complete structure of the GoogLeNet network.

Source: Szegedy et al. (2015a)

R-CNN yielding the best detection results but having the highest computational cost. Fast
R-CNN, a network designed for object detection, is also used in conjunction with image

46

Figure 9 – R-CNN: Regions with CNN features.

Source: Girshick et al. (2014b)

recognition networks. For example, the GoogLeNet network can be used in the feature
extraction step of the Fast R-CNN pipeline. In (HUANG et al., 2017), the authors compare
the usage of Inception (SZEGEDY et al., 2015a), Inception v3 (SZEGEDY et al., 2015b),
Resnet (HE et al., 2016), VGG (SIMONYAN; ZISSERMAN, 2014), MobileNet (HOWARD
et al., 2017), and Inception Resnet (SZEGEDY et al., 2017) as feature extractors for the
Fast R-CNN network. Figure 10 illustrates object detection results using the Fast R-CNN
network combined with the Inception Resnet CNN for feature extraction. It demonstrates
that the method can identify objects of various sizes with a high level of precision.

Figure 10 – R-CNN: Regions with CNN features.

Source: Huang et al. (2017)

47

2.3 Chapter Remarks

In this chapter, we have provided a concise exposition on the utilization of drones
in precision farming. We’ve also introduced fundamental concepts within the realm of
computer vision, along with the methodologies of Artificial Neural Networks and Convolu-
tional Neural Networks, with a specific focus on image classification and object detection
tasks. These concepts serve as vital background knowledge, preparing the foundation for
the subsequent chapters where we delve deeper into the practical application of these
technologies.

49

CHAPTER

3
RELATED WORK

Within the domain of computer vision and remote sensing, a body of research
is dedicated to the detection and counting of animals in aerial imagery. These images
can originate from various sources, including UAVs and satellites. While many studies
concentrate on the essential tasks of animal detection and counting within single images or
frames, another set of studies addresses the challenges of counting animals across multiple
images, which remains an area that merits further exploration in the literature.

This chapter provides a comprehensive overview of pertinent research, delving into
the landscape of related studies concerning the detection and counting of animals from
aerial imagery. Section 3.1 examines works that primarily revolve around the detection
and, to some extent, counting of animals in aerial images within single frames or images. It
will spotlight studies that leverage Convolutional Neural Networks (CNNs) and other deep
learning techniques for these purposes. On the other hand, section 3.2 places a specific focus
on methodologies that tackle the intricate task of counting animals across multiple images.
These approaches may involve the creation of image mosaics or methodologies designed
to handle overlapping areas. This section addresses the significant challenges associated
with counting animals in large, complex landscapes, requiring specialized methods distinct
from those focused on single-image analysis.

3.1 Counting Animals From Single Images

In the domain of animal detection and counting from aerial imagery, a consider-
able portion of the related studies has predominantly focused on detecting animals or
estimating counts in single images using detection or density estimation methods (XU et
al., 2020a; CHAMOSO et al., 2014; BARBEDO et al., 2019; LONGMORE et al., 2017).
This task presents several significant challenges, primarily revolving around the precise
detection of animals within the image. These challenges encompass dealing with occlusion,
shadows, background variations, and lighting changes, which can lead to potential false

50

negatives if not effectively addressed. Moreover, the detection systems, primarily relying
on Convolutional Neural Networks (CNNs) for object detection, must accurately learn the
intricate shapes of animals to prevent false positives, ensuring that objects on the ground
are not misclassified as the animals to be detected. Despite these complexities, counting in
this scenario becomes relatively straightforward once the animals are detected, as the final
count is essentially determined by the number of successfully identified animals within a
single image.

The use of drone images for animal monitoring and counting has gained popularity
across different fields. It has been applied to wildlife conservation (GEDEON et al.,
2022; GEMERT et al., 2015; KELLENBERGER; MARCOS; TUIA, 2018) and livestock
management, including various species such as cattle (BARBEDO et al., 2020; SHAO et
al., 2020), sheep (SARWAR et al., 2021; SARWAR, 2022), goats (VAYSSADE; ARQUET;
BONNEAU, 2019), and others.

Longmore et al. (2017) used astronomical software and images obtained by infrared
sensors, installed in an UAV, to detect and monitor animals. The object detector identifies
the “hot” points in an image, considered points of interest. Then, a point size criterion is
applied to classify the object. The authors propose as future work the use of the method
for systematic monitoring of parks and large fauna, such as the monitoring of rhinos.

In the context of cattle classification, the authors in (BARBEDO et al., 2019)
compared the accuracy of 15 CNNs performing classification of images of cattle captured
by drones. The evaluation involved the classification of blocks of images cut off each
photograph, where a block may or may not contain cattle. The experiments were conducted
to evaluate the performance of the networks simulating different ground sample distances
(GSD), that is, the altitude at which the photograph is taken, in addition to changes
in lighting and shadows, which vary according to the season or time of the day that
photographs are taken. The authors concluded that CNNs are robust to almost all
variations of lighting, with the exception of rare situations where there are severe specular
reflections, making the contrast between the animal and background very subtle, and
detection more difficult. Regarding the GSD variation, the reported experiments used
images taken at 30m high, which were also downsampled to simulate the resolution of
images that would have been obtained at 60m and 120m high. For most CNNs, the images
corresponding to 60m altitude resulted in better accuracy than the other images. CNNs
NASnet Large (ZOPH et al., 2018) and Inception ResNet V2 (SZEGEDY et al., 2017)
obtained acceptable results for all altitudes though, even for 120m. This is important as
altitude is the main mechanism for minimizing the amount of photos required to cover an
entire area/pasture. However, this work assumes that the region to be classified (as cattle
or not) has been previously cropped, which makes it not practical for counting multiple
animals in large images.

51

In the context of cattle count, Xu et al. (2020a) used semantic classification and
segmentation of animals with the objective of enhancing their biometric monitoring and
the possibility of distinguishing them individually for tracking or studying behavior.
The experiments reported accuracy close to the ground truth when counting animals in
individual images, although counting scenarios that require traversal of large pastures,
multiple images, and duplicate counting of animals have not been addressed. In addition,
since the segmentation method related to annotation, training and detection is more
complex than the traditional bounding box method, the images must be obtained at low
altitude (the authors use images obtained from 6m to 25m high) and, preferably, in oblique
angle, for better identification of shapes and correct semantic segmentation of animals.
These requirements are particularly restrictive for applications involving large areas and
possibly sparse animals.

The detection of animals from a bounding box is addressed in (CHAMOSO et al.,
2014), where the authors describe a system to monitor large areas of livestock production
using drones. The system consists of controlling the drone and identifying animals using
a communication mechanism between a laptop and the drone. Object recognition is
performed in real-time through the analysis of individual frames received from the camera.
The system then uses a sliding window approach to sequentially analyze small portions of
the image. Each fragment of the image is evaluated by a trained CNN and an activation
function, which returns a probability value that the window belongs to the target class
“cattle”. The probabilities of these windows are then aggregated on a 2D probability grid,
which will indicate the positions where the animals were found, according to a predefined
threshold. Although the authors report promising results for counting animals in an image
frame, the work does not propose a strategy to estimate the number of animals in the
entire pasture.

Weber et al. (2023) proposed the use of CNN models like YOLOv4 (BOCHKOVSKIY;
WANG; LIAO, 2020) and YOLOv5 (JOCHER, 2020) for cattle detection and counting.
The results showed that the YOLOv5-m model could achieve high values of precision
(0.945) and recall (0.979), indicating the viability of using CNNs for certain cattle counting
tasks. However, the study acknowledges limitations such as the focus on a single specific
type of cattle (Nelore) and, mainly, the requirement to count from single images.

3.2 Counting Animals From Multiple Images

While the previous section delved into the challenges of detecting and counting
animals in single images, this section shifts its focus to the intricate task of counting
animals across multiple images or frames. The distinction lies in the need to track animals
between these images or remove duplicates in overlapping areas, considering that animals
may move between frames. This adds a layer of complexity to the counting process,

52

transforming it into a considerable challenge.

In contrast to the extensive body of work dedicated to counting within single images,
the realm of counting from multiple images remains relatively less explored in the literature.
This scarcity of existing research accentuates the wide-open field for investigations. The
need for counting from multiple images typically arises when the area to be covered cannot
be effectively captured within the confines of a single photograph.

A common technique employed in some existing methods involves creating a mosaic
of a collection of images to obtain an overall view of the area (CHEN et al., 2023; SHAO et
al., 2020). However, this approach presents challenges due to potential movements of animals
between images, which can lead to distortions such as full or partial animal replications
and/or omissions in the mosaic, with potentially detrimental impact on both the detection
as well as the counting tasks. In this context, Chen et al. (2023) presented a method
for automatic counting of cranes (Grus grus bird) using UAVs equipped with thermal
cameras for night monitoring and visible light (RGB) cameras for daytime observations.
The cranes assemble in a large communal roost at night, facilitating generation of an
image mosaic for the counting process, once they are relatively static and grouped together.
Image analysis and computer vision algorithms were developed to identify and count
individual cranes, achieving an overall accuracy of 91.47% for nighttime thermal images
and 94.51% for daytime RGB images. Although the algorithms were specifically designed
for crane counting, they have potential applicability to other animal management scenarios.
However, it should be noted that this method’s suitability for cattle counting is limited
since cattle behavior is often dynamic and the areas to cover can be much larger.

Regarding cattle counting in scenarios exceeding the coverage of a single photograph,
Barbedo et al. (2020) proposed a multi-module method to address this challenge without
using a mosaic approach. The method comprises four modules: a CNN for region of
interest identification, color manipulation to segment white cattle from the background,
mathematical morphology to separate animal clusters and remove spurious objects, and
image matching to handle overlaps. This approach achieved a precision of approximately
93.3% for cattle counting across all datasets considered, which encompass variations in
cattle density, backgrounds, and illumination. However, it lacks scenarios featuring animals
of different colors within the same pasture, as the method is tailored for collections with
animals of a single color. Additionally, the method employs a simplistic approach for
duplicate removal, where animals from overlapping areas of the image are removed, without
considering the possibility of animals moving in or out of the overlapping area between
adjacent images.

Counting cattle in large areas is also addressed in (SHAO et al., 2020). The
authors propose a pipeline for detecting and counting animals in order to avoid duplicate
counts. To that end, they use the YOLOv2 CNN method (REDMON; FARHADI, 2017)

53

to detect animals in individual images, and the results are combined by the use of the
three-dimensional reconstruction model Structure from Motion (SfM) (WU et al., 2011),
where the position of animals in 2D images are projected and calculated on a merged
3D surface. The proposed method was tested in areas ranging from 1.5ha to 5ha and
obtained an F-measure of 0.952 for the detection task in the training dataset. When tested
on unseen images, the F-measure was 0.713. For the counting task, the method achieved
results close to the ground truth, however, it is worth noticing that it depends on the SfM
model, which is highly computationally demanding and may become infeasible depending
on the number of images, which in turn depends on the size of the area to be covered.

A study by Sarwar (2022) employed drone-recorded videos to count sheep in
paddocks. The approach involved multiple object tracking (MOT) and the Kalman
filter (BROWN; HWANG et al., 1992) to predict object trajectories. The Hungarian
algorithm (MILLER; STONE; COX, 1997) was used to link trajectories to objects based
on predicted states and object detector estimations. The drone’s coverage of the entire
paddock width allowed for straightforward removal of duplicates, as animals did not
reappear once they left the frame. However, in our work, which deals with larger pasture
areas that require more complex flight plans, the potential for cattle to reappear after
leaving a frame presents unique challenges for the task of duplicate removal.

It is noteworthy that authors of most studies in this area do not provide access
to their models or methods for reproduction of results and comparisons. Additionally,
only (SHAO et al., 2020) offers a publicly available dataset of images, which will be
included as part of a larger collection of datasets to be used in the experiments conducted
in this thesis.

3.3 Chapter Remarks

This chapter systematically explored the landscape of animal detection and counting
in aerial imagery, encompassing both single-image and multi-image scenarios. The initial
section, “Counting Animals from Single Images”, shed light on extensive research dedicated
to precise animal detection within individual images, employing CNNs and deep learning.

In contrast, the subsequent section, “Counting Animals from Multiple Images”,
emphasized the relatively limited research addressing the complexities of animal counting
across multiple images. This included tracking and duplicate removal in overlapping areas.
These insights set the stage for our comprehensive pipeline, detailed in the following
chapters.

The next chapter introduces a novel pipeline for cattle detection and counting
across large areas using multiple drone-obtained images. This approach incorporates the
step of automatically cattle detection, and encompasses a graph-based algorithm to remove

54

duplicates, addressing one of the significant challenges associated with counting animals
in large pastures.

55

CHAPTER

4
LIVESTOCK DETECTION AND COUNTING

IN THE WILD

In the preceding chapters, we explored the core principles of Convolutional Neural
Networks (CNNs) and introduced methodologies employing drone-captured images for
ground mapping (Chapter 2). We also conducted a comprehensive survey of relevant
literature in the field of animal detection and counting (Chapter 3). Leveraging this
foundational understanding, the current chapter takes a substantial leap forward.

In this chapter, we detail the contributions to advance the research on automatic
cattle counting from aerial images by developing methods that can be applied to large
areas at a low computational cost, which were published in (SOARES et al., 2021). As
main contributions we propose an efficient graph-based method for detecting and counting
animals from drone images, as well as a new benchmark image collection that covers larger
areas than those currently available in the literature. The proposed method is based on
geolocation parameters, which contrasts with the one proposed in (SHAO et al., 2020),
based on the SfM three-dimensional reconstruction model (WU et al., 2011). We obtain
a counting accuracy close to that obtained with the use of SfM but with a significantly
lower computational cost that makes the method applicable to larger areas and image
collections.

4.1 Materials and Methods

In this section, we outline the materials and methods used in this stage of the
research. We detail the devices and software used for cattle image acquisition and introduce
the datasets for model pretraining and cattle counting evaluation. Construction of this
datasets was motivated by the scarcity of publicly available livestock aerial images. Lastly,
we discuss the CNN configuration and training methodology, emphasizing key strategies
and considerations.

56

Figure 11 – Drone DJI Mavic Pro

Source: Elaborated by the author.

4.1.1 Devices and Software

Below we list the materials used in this stage of work, in particular the drone and
the software used to plan the flights, as well as the computer used to train the models and
perform the experiments.

• Image capture equipment: DJI four-propeller drone (quadcopter), Mavic Pro
model (Figure 11), with the following characteristics:

– Camera:

∗ Sensor: CMOS 1/2.3”, 12.35 megapixels
∗ Lens: 28mm
∗ Maximum aperture: f 2.2
∗ ISO range (photo): 100-1600
∗ Maximum image size: 4000 × 3000 pixels

– Battery: 3830 mAh (≈ 27 minutes of flight)

– Controller: maximum range of 7 km

– Maximum speed in flight plans: 36 km/h

• Software: for planning and executing flights we use the application “DroneDeploy -
Mapping for DJI”1, on an Apple iPhone 5s mobile phone.

• Computer system: to pre-process, develop and execute experiments for this project,
a DELL XPS-8700 desktop computer was used, with an Intel Core i7-4790 3.60GHz×8
processor, with 16GB of RAM and 4GB Nvidia GeForce GTX-745 GPU .

1 Information available at https://www.dronedeploy.com

https://www.dronedeploy.com

57

Table 1 – Description of the location and characteristics of the farms where the images
were obtained, as well as the times and altitudes at which flights were performed.

Farm Location Time Altitude (m) Animal color Soil type

Água Boa Rochedo, MS/BR
20o07’22.3"S 54o42’53.6"W

Morning
Noon

Afternoon
80, 90, 110, 120 Various Red soil,

Green Pasture

Bela Vista Ribas do Rio Pardo, MS/BR
20o40’02.1"S 53o31’57.0"W

Noon
Afternoon 90, 120 White Sandy soil,

Dry Pasture

Imec Ribas do Rio Pardo, MS/BR
20o40’53.0"S 53o31’20.3"W

Morning
Noon

Afternoon
90, 120 White Sandy soil,

Dry Pasture

Lagoa Ribas do Rio Pardo, MS/BR
20o36’31.8"S 53o09’22.5"W Morning 90 White Sandy soil,

Dry Pasture

Primavera Terenos, MS/BR
20o25’14.4"S 55o07’22.7"W Morning 90 Various Red soil,

Dry Pasture

Duas Anas Campinas, SP/BR
22o48’53.1"S 47o00’07.4"W

Morning
Afternoon 90, 100, 120 Various Red soil,

Green Pasture

4.1.2 Novel image collection for training

In light of the current limitation of publicly available databases, a novel database
of georeferenced images was acquired, intended to sample different types of soil, types of
cattle (in terms of their visual aspects), altitudes, and times of the day, as shown in Table 1.
The goal was to comprise image samples where animals are represented in different sizes,
colors and backgrounds, in addition to scenarios with a variety of lighting and shadows,
depending on the time of the day the images were taken. For which, authorization was
obtained from farmers to fly over and capture images of their properties

If training was otherwise carried out, say, using only images of black animals on a
green pasture, the classification algorithm would tend to learn that a cattle is just a black
animal on a green background; in this case, when an image of a white cattle is given as
input, the trained model would hardly classify it correctly. For example, in (SHAO et al.,
2020), in which a neural network was trained using a database of images from a single
pasture, the accuracy of detection and counting of animals dropped considerably when
performed on a new database of images not yet seen by the network, even though the
images are from the very same pasture, but taken at different times (with different pasture
coloring) and altitude. When flexible models such as neural networks are trained using a
diversified dataset instead, they are driven to learn animal characteristics that go beyond
the obvious (e.g. colours) and the result is a model with greater generalization capacity.

Table 1 provides information about the collection of images from 6 farms, at
altitudes ranging from 90m to 120m, and acquisition at different times of the day. In three
of the farms there were only Nellore cattle, whose coat color is white. These farms have
drier and sandy soil. In the other three farms, where soil is more reddish and the pasture
is greener, the cattle is diverse, where there were animals of white, black, brown, red and
spotted/piebald color.

58

Figure 12 – Flight plan creation screen (DroneDeploy application). The red line frame on
the map is the area to be photographed. The route to be taken by the drone
is represented by the green line. The left panel displays the flight settings and
descriptions.

Source: Elaborated by the author.

The planning of autonomous flights to photograph the farms was made using
the DroneDeploy application. Figure 12 shows the flight plan creation screen for the
application. The left panel displays the flight description and the available settings. The
example involves a flight plan over the Primavera farm. The pasture is marked on the
map by the red frame with a total area of 78ha. The green line represents the route to be
taken by the drone to photograph the entire area. In this case, the flight will be carried
out at an altitude of 90m, an estimated duration of 15min53s, and it will capture 143
images. Considering the resolution of the drone’s camera used, each pixel of the images
will represent 3.9cm on the ground. The flight will be completed without the need for a
battery change. It is also possible to select the rate of overlap between images, with 30%
being the minimum value. While overlays of 80% or higher are required for the purpose
of creating maps and 3D surfaces, in animal counting we will use the smallest possible
overlay, in order to minimize the amount of images and maximize the flight area with a
single battery. In the example mentioned, the frontal and lateral overlap was set at 30%.
All flight plans were performed in July 2017 and April 2018.

Table 2 describes the pastures imaged at each farm, including their area, the
number of animals as declared by the farmers, as well as the number of photos recorded.
Our database, which will be used for training, has a total of 5,058 images. As the flight
plan covers the entire pasture region, a significant part of the images do not contain
animals. This represents natural scenarios, in the wild, and is fundamental for training
and validating methods with respect to false positives under realistic conditions.

Figure 13 exemplifies the variety of scenarios in the images collected: Figures 13(a)

59

Table 2 – Number and average size of pastures, approximate total number of animals, and
number of photographs taken at each farm.

Farm # Pastures AVG Area (ha) # Animals # Photos

Água Boa 5 71 ≈ 1000 3,178
Bela Vista 1 56 ≈ 1000 106
Imec 2 28 ≈ 250 268
Lagoa 1 90 ≈ 300 46
Primavera 4 76 ≈ 300 543
Duas Anas 1 50 ≈ 50 917

TOTAL: 5,058

Figure 13 – Example of the diversity of photos collected in this work: (a) and (b) were
collected at Água Boa farm and taken at an altitude of 90m. (c), (d), (e) and
(f) were collected at Bela Vista, Duas Anas, Imec and Primavera farms, at
altitudes of 120m, 100m, 120m and 90m, respectively.

Source: Elaborated by the author.

and 13(b) show images captured at an altitude of 90m from the same property at 08:07am
and 2:06pm, respectively. In the former, most of the cattle are white and are lying on the
ground. In the latter, black, white, brown and gray animals are standing on a green pasture.
The image shown in Figure 13(c) was captured at 9:14am, containing white animals on
dry pasture. In Figure 13(d) the cattle have a diverse color and several animals are under
the shade of a tree, which makes their identification more difficult. In Figure 13(e), the
image was captured at 1:36pm at 120m altitude, and it is possible to see light colored
stones, typical of places with sandy terrain, which can be confused with white animals.
Finally, in Figure 13(f), captured from Primavera farm at 8:46am, most animals are white,
while some have dark colors. The pasture is predominantly dry, with a mixture of animals
lying and standing.

60

4.1.3 Datasets for Cattle Counting

This section provides an overview of the datasets employed for cattle counting
tasks. The dataset compilation comprises 670 images from 22 flight sessions, sourced
from the work of (SHAO et al., 2020). Additionally, 667 new images were meticulously
gathered from 4 flight sessions (referred to hereafter as “BR_set”) and making them
publicly available for the research community.

Table 3 offers a comprehensive breakdown of these datasets, including their flight
session name, image count, cattle count, coverage area, and class. The 22 flight sections
contributed by (SHAO et al., 2020) contain a ground truth count of 218 animals in total.
These sections were classified into two categories based on cattle movement within the
images:

• Motionless: Sections where all cattle moved less than their body length during the
flight plan.

• Moving: Sections in which some cattle moved more than their body length.

The BR_set collection, assembled for this research, consists of 4 flight sections.
Due to the expansive nature of these sections, precise classification into “motionless”
and “moving” categories was challenging. Therefore, such categorization was not applied.
Table 3 provides details of this collection, which encompasses a total of 200 cattle and
covers an average area of approximately 60 hectares. Notably, this scale represents a
substantial increase compared to the datasets from (SHAO et al., 2020), which typically
covered areas ranging from 1.5 to 5 hectares.

The images constituting the BR_set were acquired from three of the farms de-
scribed in Table 1: “Água Boa”, “Primavera” and “Duas Anas”. It is important to note
that none of the images in the training datasets detailed in Section 4.1.2 are present in
these datasets used for cattle counting, i.e., there is no overlap between these two dataset
collections.

4.1.4 Labeling

The algorithm for detecting animals in the images used in this work is based on
models trained from annotated data. The LabelImg tool (TZUTALIN, 2015) was used for
this task, which consists of demarcating animals by boxes, then setting a label for that
box (class). Figure 14 illustrates the LabelImg screen, where the animals in the image
were properly demarcated and labeled with the class “cattle”. The LabelImg tool then
generates an xml file with the positions and labels of each box (animal) in the image. All
images were labeled by a single person.

61

Table 3 – Datasets used in this work to evaluate the proposed animal counting method.

Datasets Flight
Section

No. of
Images

No. of
Cattle Area (ha) Class

From (SHAO et al., 2020)

A 32 4 1.5 to 5.0 Motionless
B 45 7 1.5 to 5.0 Motionless
C 32 12 1.5 to 5.0 Moving
D 40 5 1.5 to 5.0 Moving
E 184 5 1.5 to 5.0 Moving

F-1 20 8 1.5 to 5.0 Motionless
F-2 20 20 1.5 to 5.0 Motionless
F-3 20 24 1.5 to 5.0 Moving
F-4 20 20 1.5 to 5.0 Motionless
F-5 20 14 1.5 to 5.0 Motionless
F-6 20 0 1.5 to 5.0 Motionless
F-7 20 0 1.5 to 5.0 Motionless
F-8 20 0 1.5 to 5.0 Motionless
G-1 20 2 1.5 to 5.0 Motionless
G-2 20 17 1.5 to 5.0 Motionless
G-3 20 25 1.5 to 5.0 Motionless
G-4 20 25 1.5 to 5.0 Motionless
G-5 20 19 1.5 to 5.0 Moving
G-6 20 5 1.5 to 5.0 Motionless
G-7 20 0 1.5 to 5.0 Motionless
G-8 20 0 1.5 to 5.0 Motionless

Dataset 2 14 6 1.5 to 5.0 Moving

BR_set

SD_PV_90 143 5 78 -
2A_90 325 32 56 -

P1_AB_120 61 63 50 -
PD_AB_90 138 100 54 -

4.1.5 Training the Convolutional Neural Network (CNN)

The detection of animals in the images was performed using the deep neural network
Faster RCNN Inception Resnet V2 (HUANG et al., 2017), which is an object detector of
the type Faster R-CNN that uses a mixture of units from the Inception (SZEGEDY et al.,
2015a) and Resnet (HE et al., 2016) networks. We use a pre-trained model2 learnt from
the MS-COCO (Common Objects in Context)3 dataset. The choice is justified by recent
evidence showing that the better a model is in the database in which it was pre-trained,
the better it tends to be when learning is transferred to other databases (KORNBLITH;
SHLENS; LE, 2019). In this context, the Faster RCNN Inception Resnet V2 was one of the
networks with the best accuracy for high-altitude cattle detection in recent experiments,
reported in (BARBEDO et al., 2019).

2 Available at: https://github.com/tensorflow/models/blob/master/research/object_detection/
g3doc/detection_model_zoo.md

3 http://cocodataset.org

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
http://cocodataset.org

62

Figure 14 – Illustration of the LabelImg tool (TZUTALIN, 2015), used to manually de-
marcate and label all the animals in the image.

Source: Elaborated by the author.

We use Transfer Learning, which consists of initializing parameters with values
obtained by training in a source database, and then adjusting only the layers of interest
through a second training process commonly called fine-tuning. In this chapter, the
output layer was redefined in order to address the cattle detection problem only, with its
parameters randomly initialized.

To perform the training and test of the model, the 5,058 images described in Table 2
were used according to the following procedure:

1. Split images into training and test sets: the 5,058 labeled images are used in a
10-fold cross validation setup.

2. Definition of parameters and training: The API Object Detection4 from Tensor-
Flow v. 1.4 was used to train the final layer of the neural network. For this training,
the following parameters were used:

• Mini-Batch: 16;

• Epochs: 100. An epoch is reached after training goes through all the images in
the set. With batch size equal 16 and a 4,552 image training data set, it took
285 iterations to reach an epoch;

• Model selection for testing: the last model, resulting from the last iteration,
is used to perform the test;

4 https://github.com/tensorflow/models/tree/master/research/object_detection

https://github.com/tensorflow/models/tree/master/research/object_detection

63

• Optimization algorithm: Gradient Descent with Momentum (SUTSKEVER
et al., 2013) of 0.9 and fixed learning rate of 0.0003.

Training was undertaken using the Desktop DELL XPS described in Section 4.1 and
took approximately 27 hours.

4.2 Counting Method

The proposed counting method has as input the set of images that cover the
entire pasture. The total number of animals with the list of their respective geographical
coordinates is the output. To achieve this, 3 steps are performed, which will be detailed in
the next sections:

• Computing the projections of the image vertices on the ground;

• Performing cattle detection in the images;

• Identifying/removing duplicates and counting.

4.2.1 Computing the Projections

For the counting method to be performed, it is necessary that the images contain
metadata related to the GPS position and altitude of the drone in relation to the ground,
as well as the position and technical information of the camera and lens used. Most
commercial drones record this data on the images. This information is necessary to
estimate the GPS coordinates of each detected animal and filter out duplicates using
these coordinates. Table 4 describes the metadata available in drone’s images that will be
necessary to estimate the geolocation of the animals found in the images. In this work, all
the images used were photographed with the camera orthogonal to the ground, that is,
with the camera at a 90o angle to the drone, as know as vertical photography (WOLF;
DEWITT; WILKINSON, 2013). All equations for calculating the geolocation of animals
have been adapted from the calculations proposed in Johnston (2006) and from the vertical
photographic geometry explained in Wolf, DeWitt and Wilkinson (2013), to simplify and
adjust the computation to the available metadata.

Figure 15 illustrates how the camera’s field of view is calculated from a drone,
depending on the altitude, focal length and sensor size. From the metadata obtained in
the images, shown in Table 4, the diagonal size, S, of the camera sensor can be calculated
according to Equation 4.1.

S = 43.2666
f35
fl

(4.1)

64

Table 4 – Description of the metadata needed to estimate the geolocation of the animals
located in the images.

Metadata Abbr. Description

Latitude lat Drone latitude at the time of photography
Longitude lng Drone longitude at the time of photography
RelativeAltitude alt Relative altitude of the drone to the ground at the takeoff point
FlightYawDegree yaw Yaw angle of the drone, which refers to the flight directions
FocalLength fl Focal length of the lens
FocalIn35mm f35 Used to calculate the size of the camera’s capture sensor
ImageWidth W Image width in pixels
ImageHeight H Image height in pixels

Figure 15 – Camera’s field of view computation as a function of altitude (alt), focal length
(fl) and sensor size (S).

Source: Elaborated by the author.

65

Provided that S is the diagonal size of the sensor, the height (Sh) and width (Sw)
of the sensor can be obtained by the ratio of height (H) and width (W) of the image
produced by the camera, as shown in Equation 4.2.

r =
√

H2·W 2

S

Sh = H · r

Sw = W · r

(4.2)

Provided that the camera sensor has size Sh × Sw, it is possible to calculate the
angle of view for the two dimensions (Xv and Yv) of the image, as shown in Equation 4.3.

Xv = 2 · arctan Sw

2·fl

Yv = 2 · arctan Sh

2·fl

(4.3)

Once the viewing angle has been calculated and given the relative altitude of the
flight (alt), it is possible to calculate the area (in meters) in the camera’s field of view,
as shown in Equation 4.4. That is, a photograph taken at an altitude of alt meters, will
result in an image that illustrates an area of Xf × Yf m2.

Xf = alt · tan(Xv)
Yf = alt · tan(Yv)

(4.4)

Since the images are obtained with the camera pointed at the ground, at an angle
of 90o, the latitude (lat) and longitude (lng) metadata represent the location of the central
point of the image, which is the drone location. To estimate the geolocation of other points
in the same image, it is necessary to consider the orientation of the image in relation to
the cardinal points. To this, we will use the flight angle (YAW), obtained from the image
metadata according to the values illustrated in Figure 16.

The YAW angle has a value of 0 when the drone points to the north, +90 to the
east, −90 to the west and ±180 to the south. To facilitate the calculation of the location
of the geographical coordinates of the animals within the images, the coordinates of the 4
vertices of the image, called projections, are computed. To that end, we first normalize the
YAW angle within the interval [0, 360], according to Equation 4.5.

yawN =
360 − |yaw| , if yaw < 0

yaw, otherwise
(4.5)

To calculate the coordinates of each vertex from the coordinates of the center of
the image, we first need to obtain the yaw angle associated with each vertex. Figure 17
illustrates a scenario in which the image has an angle yawN = 18o. In this case, the
angle associated with vertex number 1 (top right) can be computed as yaw1 = yawN + α,

66

Figure 16 – YAW angle values obtained in the image metadata according to the direction
in which the drone is flying.

Source: Elaborated by the author.

Figure 17 – Example where the yaw angle read from the metadata is 18o. To calculate
the geolocation of the 4 vertices of the image (projections) it is necessary
to calculate the yaw angle of the direction of each vertex. To achieve this,
displacements of αo and βo are applied to the initial yaw angle.

Source: Elaborated by the author.

whereas vertex 2’s angle (bottom right) is given by yaw2 = yaw1 + 2 · β, and so on, as
shown in Equation 4.6. The operation (term) mod 360 is used to set the reference back
to zero (0o) whenever the sum of angles and displacements exceeds 360o.

67

yaw1 = (yawN + α) mod 360
yaw2 = (yaw1 + 2 · β) mod 360
yaw3 = (yaw2 + 2 · α) mod 360
yaw4 = (yaw3 + 2 · β) mod 360

(4.6)

Once the vertex angles have been computed, the latitude and longitude of each
vertex must be computed. The distance in meters from the center of the image to each
vertex is calculated as follows:

Dv =
√(

Xf

2

)2
+
(

Yf

2

)2
(4.7)

Since latitude and longitude are represented by decimal degrees and the distance
from the center to the vertices is in meters, it is necessary to convert the distance to decimal
degrees. For latitude (lat), each arc-minute corresponds to 1, 852m, which is equivalent to
a nautical mile. As for longitude (lng), each arc-minute is equivalent to cos(lat) · 1, 852m,
due to the narrowing of the terrestrial sphere towards the poles. The calculation of lat

and lng for each vertex is done as shown in Equation 4.8, where x in latx, lngx and yawx

refer to each one of the vertices (1, 2, 3 and 4). We first obtain a conversion factor:

Ω = 1 ÷ 60 ÷ 1, 852,

and then compute:

latx = lat + (Dv · Ω) · cos(yawx)
lngx = lng + (Dv · Ω ÷ cos(lat)) · sin(yawx)

(4.8)

We than calculate the coordinates of any point within the image using a simple
cross-multiplication. In the next section, we will describe how the detection of cattle in
the images is done.

4.2.2 Performing Cattle Detection

Once the projections of the image have been calculated, the Faster R-CNN network,
described in Section 4.1.5, is then used to detect the cattle in the image. The network
processes the image and returns a list with the coordinates (x1, y1, x2, y2) of the bounding
box for each detected animal.

As illustrated in Figure 18, the set of images is provided as input to the CNN,
which detects the cattle and returns the bounding boxes. Then, the coordinates of the
bounding boxes in the images are used to compute the global coordinates of each animal,
based on the image projections. Finally, duplicated animals are identified and removed
before the total tally is finalized. Our proposed duplicate removal strategy is detailed in
the next section.

68

Figure 18 – Pipeline for cattle counting from a set of images.

Source: Elaborated by the author.

Figure 19 – Example of a bipartite Graph G, where the vertices X are the animals ∈ Li

and the vertices Y are the animals ∈ Lt. The edges E connect animals whose
distance is less than the threshold.

Source: Elaborated by the author.

4.2.3 Cattle Counting and Removal of Duplicates

Due to the overlap between regions, an individual animal may appear in multiple
images, so it is paramount to remove duplicates. Alongside with the detection of cattle,
this represents the second most relevant step in the whole pipeline. In this chapter, we
define a distance threshold to determine whether an animal should be considered the
same or not when detected in different images with similar location. Algorithm 1 shows
all steps to detect and remove duplicated cattle from all images, which are sequentially
(chronologically) processed.

Algorithm 1 takes as input the list of images from a pasture where the cattle should
be counted, as well as a distance threshold in meters, used to define the maximum distance
within which animals located at similar coordinates but in different images are considered
duplicates. Once all images have been provided as input, the algorithm outputs a final list
Lt, with all valid animals and updated locations of detected animals in the entire image
collection.

The algorithm starts with an empty Lt list. Then, for each image i, in chronological

69

Algorithm 1 Verify duplicated cattle
Input: image_list, threshold
Output: Lt

1: Lt = ∅
2: for each i ∈ image_list in chronological order do
3: Li = get cattle coordinate list from image i
4: M = |Li|
5: N = |Lt|
6: if M == 0 then
7: continue
8: if N == 0 then
9: add all cattle ∈ Li to Lt

10: else
11: T(M,N) = dist. matrix between all x ∈ Li and y ∈ Lt

12: Create a bipartite graph G = (X, Y, E), where E
is the set of edges from X to Y with weight 1 when the
distance T(x,y) ≤ threshold.

13: Apply the maximum flow algorithm on G, generating
a new graph G′ = (X, Y, E′), where E′ contains only
edges selected as part of the maximum flow solution.

14: for x ∈ G′ do
15: if deg(x) == 0 then
16: add Li(x) to Lt

17: continue
18: for y ∈ G′ do
19: if (x, y) /∈ E′ then
20: continue
21: else
22: if (T(x,y) ≤ T(x,y′) ∀ y′ ∈ G′ where deg(y′) == 0) then
23: update location of Lt(y) as Li(x)
24: else
25: # A smaller distance T(x,y′) where y′ ∈ G′ and deg(y′) == 0 was found:
26: replace (x, y) with (x, y′) in E′

27: update location of Lt(y′) as Li(x)
28: break
29: return Lt

70

Figure 20 – Example of solution for the maximum flow problem using Ford-Fulkerson
algorithm. A vertex S (source) fully connected to the vertices X and a vertex
D (destination) fully connected to the vertices Y are created, then the solution
is the maximum flow from S to D (blue edges).

Source: Elaborated by the author.

order, a partial list Li with the geolocation of detected animals in that image is created
(line 3). If Li is empty (line 6), which means no animals were detected in the current
image, then the algorithm skips to the next image; otherwise, it checks whether Lt is
empty (line 8). If so, either no image was processed so far, or no animals were detected in
the previously processed image(s). In this case, we can initialize Lt with all animals in
the current Li. Once Lt is no longer empty (N ̸= 0), the algorithm generates a distance
matrix TM,N from all M animals ∈ Li to all N animals ∈ Lt (line 11). From the distance
matrix, in line 12 the algorithm creates a bipartite graph G = (X, Y, E), where the sets of
vertices X and Y refer to the cattle in Li and Lt, respectively, and E is the set of edges
generated from X to Y if the distance Tx,y is less than the threshold, as illustrated in the
Figure 19. All the edges have weight 1.

Selecting an edge (x, y) ∈ E means that an animal x ∈ X is deemed the same as
y ∈ Y , as they are at a distance within the threshold apart. However, each animal in
X can only be associated with at most one animal in Y and vice versa. Subject to this
constraint, the objective is to select edges in order to match as many animals as possible.
For this purpose, the Ford-Fulkerson (JR; FULKERSON, 1962) algorithm is employed
to solve the maximum flow problem and obtain the maximum selection of edges of G, as
illustrated in Figure 20, and described below.

71

Figure 21 – Example of a subgraph G′ ⊂ G (where G is the graph in Figure 19), where E ′

are the edges selected by the Ford-Fulkerson maximum flow solution, which
connect the animals X ∈ Li considered to be the same as in Y ∈ Lt.

Source: Elaborated by the author.

As illustrated in Figure 20, to solve the maximum flow problem we need to define
vertices to be the source and the destination of the flow. For this, we create a vertex S

(source) fully connected to the vertices X and a vertex D (destination) fully connected
to the vertices Y . All edges are directed with unit weight. The Ford-Fulkerson algorithm
considers that the flow cannot be greater than the capacity of each edge (weight) and,
except for the source and destination vertices, the flow that enters a vertex must be equal
to the flow that leaves the vertex. As all edges have weight 1 and each vertex in Y has only
one outgoing edge connecting to D, each vertex in X can be connected to a maximum of
1 vertex in Y .

In Algorithm 1, line 13, the solution of the maximum flow problem is used to
generate a new graph G′ = (X, Y, E ′), where E ′ has only the edges selected by the Ford-
Fulkerson algorithm, as illustrated in Figure 21. The animals (vertices) x ∈ X that have
degree 0 in G′, i.e. those that are not connected to any other vertex, represent cattle in Li

that do not correspond to any cattle in Lt (line 15), so these animals are added to Lt (line
16).

If a vertex x ∈ X is adjacent (i.e. connected) to a vertex y ∈ Y in G′, it is necessary
to check if there is some y′ ∈ Y with degree 0 in G′ (i.e. without a paired vertex in X)
whose distance T(x,y′) < T(x,y). If such a vertex exists, then the (x, y) edge in E ′ is replaced
with (x, y′) and the location of y′ in Lt, Lt(y′), is updated with the location of the identified
duplicate, Li(x) (lines 25 to 27). Otherwise, Lt(y) is updated with Li(x) (lines 22 and
23).5 This proximity check is needed because the Ford-Fulkerson algorithm considers all
matches between animals to be the same (unit weight), so this step aims to prevent an x

5 Notice that the location of duplicated cattle is updated due to the chronological order whereby
images are processed: if an animal is moving, then it is necessary to keep the last location
where it was detected.

72

Figure 22 – Example of displacement of four animals recorded in two moments. At moment
2 (blue) the 4 animals moved 5m to the right, when compared to moment 1
(red).

Source: Elaborated by the author.

to be matched to a y when there is a closer animal y′ without a match.

In (SHAO et al., 2020), the authors remove duplicates with the use of the Hungarian
method (MILLER; STONE; COX, 1997), which addresses the assignment problem by
seeking to minimize the weight (distances) between associations (matched animals). The
authors apply a penalty defined by the value of the distance threshold to animals that
are not paired to any other. However, we advocate that maximizing matches should be
prioritized over minimizing distances. Figure 22 illustrates an example in which four
animals (A, B, C and D) move 5m in the same direction between two images, when
comparing their locations at moment 1 (1st image, in red) and moment 2 (2nd image,
in blue). If we define the distance threshold for an animal to be considered the same
in different images as 5m, then all four animals at moment 1 should be matched to the
corresponding animals at moment 2, because their displacement distance is within the
threshold. However, in the Hungarian method, which seeks to minimize distances, the
animals C and D at moment 1 (red) would be matched to animals A and B at moment 2
(blue), which are at distances of 1m and 2m from each other, respectively, while the other
two animals would be unmatched, since they are at a distance above the threshold. Using
our maximum flow method to maximize correspondences, all 4 animals would be correctly
associated, since they all have a match at a distance within the defined threshold.

The Hungarian method complexity is O(V 3), where V is the number of vertices on
the smallest side of the bipartite graph, while the Ford-Fulkerson algorithm, used in our
method, is bounded by O(Ef), where E is the number of edges and f is the maximum
flow in the graph (AHUJA; MAGNANTI; ORLIN, 1988).

The 3 major steps of our method (described above in this section) are performed
for all input images in chronological order. After processing all images, Lt will contain

73

the geographical coordinates of all valid cattle, discarding duplicates. The next section
describes the experiments carried out to study the behaviour of this method in practice.

4.3 Evaluation

This section describes the evaluation of the cattle counting method. We first
evaluate the deep network for the cattle detection task. Then, we report experiments for
cattle counting in whole areas, followed by a runtime analysis. Finally, we make available
a novel benchmark dataset, where we propose two protocols for training and test, in order
to contribute to the field of research in cattle counting in large areas. These experiments
are detailed below.

4.3.1 Cattle Detection

A critical step in the cattle counting method is detection. If there is no guarantee
that the trained CNN model is capable of detecting cattle in the images, the accuracy of
the counting method is seriously compromised. A 10-fold cross-validation was carried out to
evaluate the deep network (Faster RCNN Inception Resnet V2), described in Section 4.1.5.
The 5,058 labeled images described in Section 4.1.2 were divided into 10 subsets such that,
at each cross-validated step, 9 subsets (90% of images) are used for training and 1 subset
(10% of images) is used for testing. Performance on the 10 test subsets are aggregated as
usual.

Figure 23 displays the average loss curves for training (blue) and testing (orange),
respectively, after training was carried out during 100 epochs for each cross-validated
training/test data split. In addition, the figure also displays the standard error around the
mean value every 10 epochs. Note that in both graphs the curves have the same behavior,
declining rapidly in the first 25 epochs (where reduction in bias is more prominent),
continuing to decrease yet more slowly for approximately 25 epochs, and finally stabilizing
after 50 training epochs. The low variance between the 10 experiments indicates that the
model generalizes well within the dataset for all test subsets, and the absence of a test
loss rebound suggests that no overfitting is taking place. For this reason, we just selected
the model with the lowest training loss at the end of the 100 epochs to be used in our
cattle detection and counting experiments, as described in the following sections. We will
call this trained model Net1.

In addition to cross-validation for model performance assessment, we also evaluate
Net1 using the 1, 377 new images described in Section 4.1.3, of which 670 are from two
datasets provided by (SHAO et al., 2020); and the remaining 667 new images from the
“BR_set” dataset. It is worth noticing that none of these 1, 337 images were used in the
CNN’s training process.

74

Figure 23 – Average training (blue) and testing (orange) loss curves and standard deviation
(reported every 10 epochs) — 10-fold cross-validation.

Source: Elaborated by the author.

For evaluation, we use Precision, Recall and F -measure (RIJSBERGEN, 1974)
calculated according to Equations 4.9, 4.10 and 4.11, described below. We consider correctly
classified cattle as true positives (TP), other objects misclassified as cattle as false positives
(FP), and missed cattle as false negatives (FN).

Precision = TP

TP + FP
(4.9)

Recall = TP

TP + FN
(4.10)

F -measure = 2 × Precision × Recall

Precision + Recall
(4.11)

Figure 24 shows an example of an image with 4 animals, where 3 correct detections

75

Figure 24 – Image with 4 animals, where 3 were detected correctly (TP - blue boxes), 1
was detected incorrectly (FP - red box), and one was missed (FN - green box).

Source: Elaborated by the author.

Table 5 – Detection results of the Net1 network over 1, 337 images.

CNN Precision Recall F -measure

Net1 0.928 0.935 0.932

(TP) are indicated by blue boxes, 1 incorrect detection (FP) is indicated by a red box,
and 1 missed animal (FN) is indicated by a green box.

The Net1 model was applied to detect the cattle in all of the 1, 337 test images.
Table 5 shows the results, where it is clear that high performance was achieved across all
measures, particularly considering that the test images were never seen by the network.
This shows that the training set collected in this work covers a good variety of scenarios,
allowing generalization with good accuracy for other sets obtained in areas not yet seen.

Once the CNN for cattle detection in the images has been validated, the next step
is to evaluate the method of counting animals in an entire area, considering the overlap of
the images and possible replication of animals.

4.3.2 Cattle Counting

To assess the method of counting livestock, we will use the 26 counting datasets
described in Section 4.1.3. Our proposed animal counting method was applied to all flight
sections using the Net1 model, already described in Section 4.3.1. The default distance
threshold for two detected animals to be duplicate candidates when located in different
images (see Algorithm 1) is 6m. This value was determined from the observation that
a single animal usually does not exceed 3m, and we empirically assume that an animal
moves at most twice its size during image acquisition. This value has been set as default
and used as such in our experiments, but it can be seen as an optional parameter that

76

Table 6 – Result of cattle counting for the flight sections classified as “Motionless” —
estimated count against the ground truth (GT). The bottom bar displays the
baseline results from (SHAO et al., 2020).

Flight section GT Estimated FN Duplicates FP

A 4 6 0 0 2
B 7 8 0 0 1
F-1 8 6 2 0 0
F-2 20 20 2 0 2
F-4 20 19 1 0 0
F-5 14 14 0 0 0
F-6 0 2 0 0 2
F-7 0 0 0 0 0
F-8 0 0 0 0 0
G-1 2 2 0 0 0
G-2 17 18 0 0 1
G-3 25 25 0 0 0
G-4 25 27 0 0 2
G-6 5 4 1 0 0
G-7 0 0 0 0 0
G-8 0 2 0 0 2

Overall 147 153 6 0 12

Reported by
Shao et al. (2020) 143 9 0 5

Table 7 – Result of cattle counting for the flight sections classified as “Moving” — estimated
count against the ground truth (GT). The bottom bar displays the baseline
results from (SHAO et al., 2020).

Flight section GT Estimated FN Duplicates FP

C 12 17 2 6 1
D 5 6 0 0 1
E 5 7 0 0 2
F-3 24 25 0 0 1
G-5 19 20 1 0 2
Dataset 2 6 4 3 0 1

Overall 71 79 6 6 8

Reported by Shao et al. (2020) 86 14 19 10

could be adjusted for different application scenarios.

4.4 Results and Discussion

In order to compare the efficiency of our method against the state-of-the-art, we
count the cattle in images provided by (SHAO et al., 2020). Tables 6 and 7 display the
results for the “Motionless” and “Moving” cases, respectively.

77

Table 8 – Results of cattle counting for the new flight sections BR_set — estimated count
against the ground truth (GT).

Flight Section GT Estimated FN Duplic. FP

SD_PV_90 5 5 1 0 1
2A_90 32 34 3 1 4
P1_AB_120 63 59 5 0 1
PD_AB_90 100 106 7 7 6

Overall 200 204 16 8 12

As shown in Tables 6 and 7, the proposed method slightly overestimated the amount
of cattle in both scenarios, obtaining a counting value of 153 animals for the “Motionless”
flight sections, where the ground truth is 147, and a counting value of 79 for the “Moving”
sections, where the ground truth is 71. In contrast, (SHAO et al., 2020) reported an
underestimation (143) in the “Motionless” scenario and a larger overestimation (86) in the
“Moving” scenario.

Although the difference between the total count errors made by each method is not
major (14 for our method versus 19 for (SHAO et al., 2020)), it is worth emphasizing that
our Net1 model was never faced with images from (or analogous to) the collection used for
test in this experiment, which was provided by (SHAO et al., 2020). In spite of this, we
report significantly less false negatives than (SHAO et al., 2020), while also improving on
false positives in a number of flight sections, most noticeably in the “Moving” scenario.

Regarding the strategy used to detect/remove duplicates, notice from Table 7
that our novel graph-based algorithm for duplicate removal outperformed the competing
method by a large margin, partially failing only in flight section C, where there is a major
movement of cattle involved.

The counting results for the 4 new flight sections BR_set, made available in this
work, are shown in Table 8. The sum of the total count obtained by our method was
204 animals, whereas the ground truth is 200. Although the total result obtained by
our method is only 2% above the ground truth, the numbers of FN and FP (16 and 12,
respectively) represent 8% and 6% of the ground truth value, respectively.

In regard to the double count problem, in the SD_PV_90 and P1_AB_120
sections, the cattle movement is small because at the time of acquisition most animals were
lying on the ground (as can be observed visually), and there was no duplicate counting.
As for the 2A_90 section, only 1 of the 32 animals was counted in duplicate, because its
movement was greater than the defined threshold. The PD_AB_90 section, which has
the largest number of animals, was also the one with the largest amount of undetected
duplicates (7 animals were counted more than once).

Figure 25 illustrates an area that is overlapped by two images taken at different times

78

Figure 25 – Two images of the same area taken at different time instants during the same
flight plan. Matching color boxes represent matching animals according to our
method.

Source: Elaborated by the author.

during the same flight plan. Boxes with the same color in Figure 25(a) and Figure 25(b)
represent the same animals according to our method of duplicate cattle detection. As it
can be seen, there is a small change in the location of the cattle marked with matching
colour boxes from scene (a) to scene (b). However, the distance traveled by them is within
the threshold defined in the method, enabling the correct detection and assignment of
each animal to its new location.

4.4.1 Runtime Analysis: 3D Surface Location vs. Geolocation Estimates

As shown in Tables 6 and 7, our method obtains very competitive results when
compared to (SHAO et al., 2020), which uses 3D surface reconstruction of the photographed
area to estimate the location of the detected animals. The code used in (SHAO et al., 2020)
is not publicly available, but in order to compare the runtime, we performed and timed the
reconstruction of the 3D surface of each flight section to be used as a baseline. Note that
the 3D reconstruction is required to produce the final result in (SHAO et al., 2020) and
represents the highest computational cost in that method, so it is a lower bound for its
runtime and, as such, it allows a fair comparison against our complete detection pipeline.
Table 9 shows the runtime in minutes to generate the reconstruction of the surface of each
flight section using SfM as in (SHAO et al., 2020), contrasted with the runtime to detect
cattle using our geolocation estimates proposed in this chapter.

The 3D reconstruction alone takes, on average, 15 times longer to run than our

79

Table 9 – Comparison between the runtime of the proposed method against that of gener-
ating a 3D surface (using SfM) as required in (SHAO et al., 2020).

Flight Section 3D reconstruction
runtime (min)

Our method
runtime (min)

A 189.54 9.06
B 203.15 12.21
C 175.9 9.02
D 194.26 10.32
E 563.12 46.07
F-1 102.53 5.75
F-2 99.7 5.63
F-3 97.52 6.45
F-4 101.64 5.68
F-5 100.3 5.65
F-6 95.12 5.7
F-7 97.01 5.73
F-8 93.12 5.81
G-1 96.15 5.88
G-2 101.22 5.86
G-3 96.14 5.71
G-4 105.93 5.75
G-5 99.54 5.92
G-6 99.11 5.61
G-7 100.42 5.58
G-8 102.3 5.68
Dataset 2 69.22 4.38
SD_PV_90 576.13 40.13
2A_90 1277.2 84.34
P1_AB_120 257.31 17.45
PD_AB_90 539.12 33.56

complete detection method. Considering only our own flight sections, on average our
method takes 42sec/ha to be performed, while the 3D reconstruction takes more than
11min/ha on average.

In addition to the large runtime differences, the 3D surface reconstruction may
fail if the images are not obtained with high overlap. According to (DANDOIS; OLANO;
ELLIS, 2015), an overlap of at least 80% is desired to produce an accurate mapping.
Another fundamental factor that limits its use is the flight time. The use of high overlap
makes the flight plan time longer, impacting battery consumption, which may make it
not possible to acquire images in a single flight. It also increases the possibility of cattle
moving around, which often hinders correct counting. In our setup, a flight of ≈ 27 minutes
suffices to cover an area of approximately 100ha using 30% overlap. For 80% overlap,
as recommended for 3D reconstruction, and with the same acquisition system used in
this chapter, a single flight would cover at most 15ha due to battery autonomy, which
represents an area almost 7 times smaller.

80

Figure 26 – Example of unsuccessful orthophoto generation due to low overlap between
images.

Source: Elaborated by the author.

Figure 26 illustrates the result of an orthophoto generation from the 3D mapping
of a pasture at Primavera farm, using the 143 images obtained in the flight plan illustrated
in Figure 12, where the overlap was set at 30%. As we can see in Figure 26, the mapping
generated several gaps in the image due to the lack of matching points. It took 9 hours
of processing to generate this mapping, while, for the same area, the counting method
proposed in this work was able to finish in ≈ 40 minutes. Therefore, we believe our method
represents a viable option for a realistic scenario and monitoring of large areas.

Considering the counting results presented in Tables 6 and 7 and the execution
times presented in Table 9, it is noticeable that our cattle counting approach is competitive
against the state-of-the art results (SHAO et al., 2020), improving performance in terms
of double counting with significantly reduced runtimes.

4.4.2 Experimental Framework for Benchmarking of Cattle Detection and
Counting

As an additional contribution to the field of research of cattle counting in large
areas, we make publicly available all the new image collections acquired for use in this work,
namely, the training collection with 5058 images previously described in Section 4.1.2 as
well as the BR_set test collection with 667 images previously described in Section 4.3.1.

These collections enable a variety of possible experimental protocols for future

81

benchmarking of cattle detection and counting. In the following, we illustrate two examples
of such protocols, namely Leave-One-Pasture-Out (LOPO) and Cross-Dataset, both of
which are focused on scenarios where the compared models are supposed to have been
somehow pre-trained and are now entitled to self-tuning (using a more specialised collection
of images) before they are assessed and compared on a collection that has not been used
either for training or self-tuning.

Our first illustrative protocol, LOPO, takes a flight section with images from the
same pasture as a fold and performs a leave-one-out type cross-validation across a collection
of such flight sections by self-tuning a pre-trained model using all sections but one, which
is used for test, then systematically repeating so that every flight section is used exactly
once for test. Our second protocol, Cross-Dataset, takes two separate collections of images,
each of which may consist of multiple flight sections, and uses one collection for self-tuning
of a pre-trained model, while the other collection is used for test; then, the collections
swap roles and the process is repeated.

We illustrate the two protocols above by using the pre-trained Net1 model described
in Section 4.3.1, subject to a fine-tuning procedure (ft), as follows:

• LOPO (using the four flight sections from BR_set)

1. Net1 with ft(SD_PV_90 + 2A_90 + P1_AB_120), test on PD_AB_90

2. Net1 with ft(SD_PV_90 + 2A_90 + PD_AB_90), test on P1_AB_120

3. Net1 with ft(SD_PV_90 + P1_AB_120 + PD_AB_90), test on 2A_90

4. Net1 with ft(2A_90 + P1_AB_120 + PD_AB_90), test on SD_PV_90

• Cross-dataset (using BR_set and the image collection from (SHAO et al., 2020))

1. Net1 with ft(BR_set), test on dataset from (SHAO et al., 2020)

2. Net1 with ft(dataset from (SHAO et al., 2020)), test on BR_set

Fine-tuning is a procedure recommended when it is necessary to adapt a model
already trained to new scenarios, in particular when the target dataset differs from the
original training set (PONTI et al., 2017). Fine-tuning was carried out during 50 training
epochs for each one of the 6 scenario described above. Tables 10 and 11 show the cattle
counting results obtained following the protocols LOPO and Cross-dataset, respectively.

For the LOPO protocol (Table 10), our method estimates a total number of 206
animals, while the ground truth is 200. Although the estimated number is farther from
the ground truth than the number estimated by Net1 without fine-tuning (Table 8), the
fine-tuned model improved precision for cattle detection, reducing the number of FN and
FP from 16 and 12 to 11 and 9, respectively. The number of duplicates remained at 8.

82

Table 10 – Results of cattle counting estimates against the ground truth (GT) for the
Leave-one-pasture-out (LOPO) fine-tuning protocol.

Flight Section GT Estimated FN Duplic. FP

SD_PV_90 5 5 1 0 1
2A_90 32 34 2 1 3
P1_AB_120 63 60 3 0 0
PD_AB_90 100 107 5 7 5

Overall 200 206 11 8 9

Table 11 – Results of cattle counting estimates against the ground truth (GT) for the
Cross-dataset fine-tuning protocol.

Dataset GT Estimated FN Duplic. FP

from (SHAO et al., 2020) 218 231 9 6 16
BR_set 200 208 12 8 12

Overall 418 439 21 14 28

For the cross-dataset protocol, our method estimates a total of 439 animals, while
the ground truth is 418, which represents an overestimation of ≈ 5%. Considering the
results obtained from Net1 without fine-tuning (Tables 6, 7 and 8), the fine tuned model
also improves precision of cattle detection, reducing the number of FN and FP from 28
and 32 to 21 and 28, respectively.

4.5 Chapter Remarks

In this chapter, we have introduced an innovative approach to cattle counting in
large areas, a method underpinned by the precise geolocation of animals and a graph-based
algorithm designed for duplicate removal. Our outcomes have surpassed current state of
the art practices, notably excelling in the realm of duplicate count reduction, all while
significantly enhancing runtime efficiency by approximately 15 times. Additionally, we
have put forward a novel cattle counting benchmark, featuring a fresh image collection
and two experimental protocols. These resources serve as valuable tools for comparing
and validating methods within real-world scenarios encompassing vast terrains.

This chapter underscores the feasibility of achieving comprehensive coverage with
smaller image overlap, thereby providing accurate estimations of ground truth. Moreover,
we have demonstrated that for the sole task of cattle counting, individual geolocated images
suffice to generate precise estimates for both cattle location and count. This eliminates
the necessity of constructing computationally intensive 3D maps or mosaics.

In the forthcoming chapter, we will delve into an in-depth analysis of cattle
attributes, laying the foundation for an innovative approach to cattle counting and

83

duplicate removal.

85

CHAPTER

5
MULTI-ATTRIBUTE APPROACH FOR

DUPLICATE LIVESTOCK REMOVAL AND
COUNTING

In the previous chapter, we focused on cattle detection and counting in aerial images
obtained by UAVs. The study proposed a method that employed Convolutional Neural
Networks (CNNs) (PENATTI; NOGUEIRA; SANTOS, 2015) for cattle detection and a
graph-based optimization technique to remove duplicated detections in overlapping images
based on estimated animal geolocations and their distances. The results demonstrated the
superiority of our proposed method as compared to the state-of-the-art, both in terms of
counting accuracy as well as in reducing computational costs.

However, the previous approach relied solely on a fixed heuristic distance threshold
to build the graph used for duplicate removal, based on the assumption that the same
animal cannot move and appear further apart than the threshold in two different images.
This assumption works reasonably well in many scenarios, but it is particularly over
simplistic due to variable time gaps that inevitably occur between spatially adjacent images
(especially in large areas), which can also be influenced by the flight plan configuration.
As an example, Figure 27 illustrates a drone’s flight plan designed to cover a pasture area.
The green line represents the drone’s path to survey the entire region, whereas the red dots
indicate the locations where aerial photos are captured. In this plan, the drone starts from
the top right green dot. The nearby yellow dotted box outlines the area imaged by the first
photo. After the drone progresses from right to left and reaches the border, it descends and
then returns covering an adjacent region from left to right, capturing additional photos.
The blue dotted box indicates a photo whose area is adjacent to that of the first photo,
taken after a time lapse that is significantly larger than the typical time lapse between
any two consecutive photos. Of course, as the figure shows, this is just an extreme case
of an effect that also occurs to different degrees involving other pairs of adjacent images.

86

Figure 27 – Drone’s flight plan illustrating the path (green line) and photo capture locations
(red dots) for a pasture area. The yellow and blue dotted boxes represent
adjacent photos taken with a significant time lapse.

Source: Elaborated by the author.

Due to variable time gaps between spatially adjacent photos (and regardless of their level
of overlap), using a fixed distance threshold as a basis for duplicate candidate removal is
an important limitation of the previous approach. Relying solely on distances is another
limitation, since there are many ambiguous scenarios that simply cannot be resolved with
distances alone, as we will show later in this chapter.

To overcome these limitations and address the gaps in existing research, in this
chapter we present the culmination of research efforts along multiple directions to improve
effectiveness in cattle counting and duplicate removal. Our combined approach involves the
analysis of multiple attributes beyond image pixel level. In particular, for each detected
cattle, we take into account not only its estimated geolocation, but also its state (lying
down or standing), color, velocity and direction. We investigate how such attributes can
be properly combined and used to assign weights to a graph algorithm that we use to
model and effectively solve the duplicate removal problem. Furthermore, thresholds on the
graph weights are no longer set to heuristic default values as in Chapter 4, they are now
learned from annotated training data following a cross-validation procedure instead.

We conducted an ablation study (MEYES et al., 2019) to assess the contribu-
tion of each newly incorporated attribute to the overall accuracy of the cattle counting
pipeline. This rigorous analysis ensures that every attribute incorporated into the counting
methodology significantly contributed to improving the results. Also, to focus solely on
counting and duplicate removal, we utilized manually annotated images for an independent
evaluation of these tasks, ignoring potential object detection errors such as false positives
and negatives that may precede such tasks in the pipeline. These errors constitute a
separate concern that relates exclusively to the accuracy of the off-the-shelf convolutional
networks we used for object detection, which is not the problem addressed in this chapter.

87

Figure 28 – Graphical abstract showcasing the main components of the proposed cattle
counting approach. At a very high-level of abstraction, the methodology in-
volves aerial image acquisition, cattle attribute detection, hyperparameter
learning, and duplicate removal, leading to accurate and efficient cattle count-
ing in large pasture areas.

Source: Elaborated by the author.

Figure 28 provides a concise overview of our cattle counting approach. It highlights
key stages, such as aerial image acquisition, cattle attribute detection, hyperparameter
learning, duplicate removal and counting. These critical components form the backbone of
a comprehensive methodology employed in this work, designed to achieve accurate and
efficient cattle counting in large pasture areas.

As an additional contribution, we introduce (and make it publicly available) a new
collection of datasets comprising real images obtained from large pasture areas, which can
be utilized to train and evaluate other cattle counting techniques to be developed in the
future.

The remainder of this chapter is organized as follows. In Section 5.1, we present the
materials and methods used in this study, including our new dataset collection. Section 5.2
details our proposed method for duplicate removal and cattle counting, emphasizing the
attribute-based analysis. In Section 5.3, we delve into the hyperparameter specifications
and parameter training. Moving forward, Section 5.4 offers a comprehensive account of our
experiments and results, demonstrating the efficacy of our feature analysis and substantial
improvements in counting accuracy when compared to prior work and state-of-the-art
methods. Finally, in Section 5.5, we draw the chapter remarks.

5.1 Materials and Methods

This section provides a comprehensive overview of the materials and methods
employed in our research. We first describe the devices used to acquire cattle images and

88

outline the datasets used for pretraining models and learning hyperparameters, as well
as those used to evaluate the cattle counting process. Specifically, we introduce five new
datasets meticulously collected for this study, ensuring diverse and representative samples.
Additionally, we detail the evaluation methods utilized to assess the performance of our
approach. In this section, we also detail the Convolutional Neural Network (CNN) used to
identify key attributes of the cattle, such as state, color, and direction.

5.1.1 Devices

The aerial images were captured using a Drone DJI Phantom 4 (Figure29) equipped
with the following characteristics:

• Camera:

– Sensor: CMOS 1/2.3”, 12.4 megapixels

– Lens: 28mm

– Maximum aperture: f 2.8

– ISO range (photo): 100-1600

– Maximum image size: 4000 · 3000 pixels

• Battery: 5350 mAh (≈ 28 minutes of flight)

• Controller: maximum range of 5 km

• Maximum speed: 20 m/s

The camera’s specifications allowed us to obtain high-resolution photographs of
the pasture areas and the cattle therein, ensuring the clarity and detail required for our
analysis. The application DroneDeploy1 was employed on an Apple iPhone 6s mobile device
to plan and execute our flights. We also utilized a laptop Dell Precision 5560 equipped
with an i7 processor, 16GB RAM, and an NVIDIA T1200 graphics card to process and
analyze the collected images efficiently.

5.1.2 Datasets for Training

This section provides an overview of the two image collections employed to train
the machine learning models used in our work. The first dataset, T2606, is used for training
three Convolutional Neural Network (CNN) models designed for cattle attribute detection
(Section 5.1.4). The second dataset, ADJ165, is used for training a logistic regression model
intended to assess the likelihood that a pair of detected cattle could be the same animal
based on its movement across images (Section 5.3.3). Both datasets are detailed below.
1 Information available at https://www.dronedeploy.com

https://www.dronedeploy.com

89

Figure 29 – Drone DJI Phantom 4

Source: Elaborated by the author.

• T2606 dataset: comprises a total of 2,606 individual cattle images. These images
were cropped from aerial photographs taken in 2017, 2018 and 2020 at several farms
in Brazil. The dataset encompasses cattle with diverse characteristics, including a
wide range of coat colors (such as black, white, red, spotted, etc.), positions (standing
or lying down), and backgrounds featuring red soil, sandy soil, dry pastures, and
green pastures.

• ADJ165 dataset: comprises a total of 330 full-frame aerial photographs, also
captured in 2017, 2018 and 2020 at various farms in Brazil. In contrast to the T2606
dataset, the images in this collection have not been cropped and they feature multiple
cattle each. Specifically, the dataset consists of 165 pairs of spatially adjacent photos,
where each pair contains at least one individual animal appearing in both images.
The adjacent photos were taken at different time intervals; some were captured
sequentially just a few seconds apart, while others involve a round-trip of the drone
(lateral adjacency) with time gaps of up to 4 minutes.

5.1.3 Datasets for Cattle Counting

In this section, we present the datasets used for the cattle counting task, encom-
passing 4 datasets from (SOARES et al., 2021) and 17 datasets from (SHAO et al., 2020).
Originally, the dataset collection from (SHAO et al., 2020) consists of 22 datasets, but 5
of those datasets do not contain any cattle. As our focus is on cattle counting rather than
detection, these 5 datasets were excluded from our study. In addition to the 21 datasets
from these previous studies, we also introduce 5 novel datasets carefully curated for cattle
counting, making them publicly available for the research community.

90

Table 12 – Overview of 26 datasets used in our experiments, featuring 5 new ones.

Source Dataset No. of
Images

No. of
Cattle Area (ha)

A 32 4 1.5 to 5.0
B 45 7 1.5 to 5.0
C 32 12 1.5 to 5.0
D 40 5 1.5 to 5.0
E 184 5 1.5 to 5.0
F-1 20 8 1.5 to 5.0
F-2 20 20 1.5 to 5.0
F-3 20 24 1.5 to 5.0

From F-4 20 20 1.5 to 5.0
(SHAO et al., 2020) F-5 20 14 1.5 to 5.0

G-1 20 2 1.5 to 5.0
G-2 20 17 1.5 to 5.0
G-3 20 25 1.5 to 5.0
G-4 20 25 1.5 to 5.0
G-5 20 19 1.5 to 5.0
G-6 20 5 1.5 to 5.0
Dataset 2 14 6 1.5 to 5.0

SD_PV_90 143 5 78
2A_90 325 32 56

BR_set P1_AB_120 61 63 50
PD_AB_90 138 100 54

Pasto4-16-10-7h 146 109 71
Sede-18-10-7h 50 22 20

New Datasets Brejo-19-10-12h 62 43 27
Pasto2-17-10-7h 198 275 98
Pasto1-15-10-12h 224 239 102

Our five novel datasets were acquired specifically for cattle counting at “Água Boa”
farm, located in the state of Mato Grosso do Sul, Brazil, over five consecutive days in
October 2020. The DroneDeploy application was used to plan flight paths with 30% front
and side overlap between images. The mapping speed during the flight plan was set to
15m/s to ensure efficient image capture. All flight plans were conducted at an altitude
of 90m. The images were acquired at two distinct hours of the day (7 am and 12 pm).
The areas span from 20 to 102 hectares, with animal counts ranging from 22 to 275 and
the number of photos varying between 50 and 224. These datasets offer a wide range of
variation for training and evaluating cattle counting algorithms.

Table 12 provides an overview of all 26 datasets used in this work. It includes
details such as the number of images, number of cattle and area covered in hectares (ha)
for each dataset. The animals in these datasets exhibit varied color patterns, reflecting the
diverse breeds observed in real-world cattle counting scenarios. Figure 30 showcases an
example image from the Pasto1-15-10-12h dataset, featuring cattle of various colors, such

91

Figure 30 – Photo from the Pasto1-15-10-12h dataset, featuring diverse cattle colors: white,
black, and spotted.

Source: Elaborated by the author.

as white, black, and spotted.

The datasets, exclusively consisting of cattle, can serve the purpose of a standard
benchmark collection for evaluating cattle counting and cattle detection methodologies,
providing researchers with a diverse set of real-world scenarios to further advance the field.
Importantly, the cattle in these counting datasets were manually labeled. This ensures
evaluation can focus exclusively on counting accuracy, rather than automatic detection
performance, if so desired. This is the case in our study.

It is important to note that none of the images in the training datasets T2606 and
ADJ165 (Section 5.1.2) are present in the datasets used for cattle counting (Table 12),
i.e., there is no overlap between these two dataset collections.

5.1.4 Convolutional Neural Network (CNN)

Our approach employs a pretrained MobileNetV3 Large CNN architecture (HOWARD
et al., 2019) to address the tasks of color, state, and direction detection in cattle. This
architecture strikes a balance between computational efficiency and high accuracy (PONTI
et al., 2021). As a successor to MobileNetV2 (SANDLER et al., 2019), MobileNetV3
continues the lineage of efficient MobileNets, which have been widely adopted for vari-
ous computer vision tasks due to their lightweight and fast nature. With MobileNetV3
Large, we were able to achieve accurate attribute detection for cattle counting while still
maintaining a low computational footprint, making it ideal for real-world applications.

92

We train three attribute detection models using MobileNetV3 Large as backbone:

1. State Detection: Classifies cattle into two states: standing up or lying down.

2. Color Detection: Classifies cattle into four color categories: black, white, red/brown,
and other.

3. Direction Detection: Determines cattle orientation in ten classes of 36-degree
segments.

To optimize both time and accuracy, we fine-tuned each MobileNetV3 Large
model on the T2606 dataset over a total of 50 epochs, divided into two distinctive
phases. During the initial 25 epochs, only the classification layer undergoes training. In
the subsequent 25 epochs, all layers from the fifth (and last) block of the network are
unfrozen and trained along with the classification layer. The choice of 50 epochs was
determined through visual analysis of the training and validation loss curves averaged
in a cross-validated fashion, whose details will be discussed in Section 5.3. The chosen
optimizer is AdamW (LOSHCHILOV; HUTTER, 2017), featuring a scheduled learning
rate. The learning rate embarked at 0.01 and remained constant for the initial 10 epochs.
Subsequently, a gradual decay was initiated, adhering to an exponential reduction factor
of exp(−0.1) per epoch. For all models we employed the categorical cross-entropy loss
function and batch size of 32.

The attribute detection models play an important role in our enhanced cattle
counting pipeline, as we will discuss later in this chapter.

5.1.5 Evaluation Methods

To assess the performance of our counting method, we employ two evaluation
measures: absolute error and percentage error, both computed in relation to the ground
truth. The absolute error directly measures the deviation between the counted number
of animals and the actual number present. The percentage error, in turn, represents this
deviation as a percentage relative to the ground truth value, allowing for a more realistic
interpretation and facilitating comparison across different scenarios, as it accounts for
errors proportionally to the size of the dataset.

In addition to evaluating the overall performance of our counting method, we also
conduct an ablation study to validate the effectiveness of individual features used in our
approach. This study involves systematically analyzing the impact of removing specific
components or attributes — namely, state, color, velocity, direction, and distance — from
our method to assess their individual contributions to the overall performance.

To statistically compare different configurations of our method in the ablation
study, as well as to compare our cattle counting method against state-of-the-art approaches,

93

we are utilizing the Wilcoxon signed-rank test (REY; NEUHÄUSER, 2011). It is a non-
parametric statistical test that evaluates whether the differences in percentage errors
between compared configurations are statistically significant or simply due to random
chance. The test involves calculating the differences in percentage errors between paired
samples, ranking the absolute values of these differences, then summing the ranks of positive
differences. The resulting p-value measures the probability of obtaining the observed results
by chance under the null hypothesis, where no difference is assumed to exist.

The Wilcoxon signed-rank test is well-suited for our work as it does not assume a
specific data distribution, allowing for robust non-parametric evaluation of cases potentially
involving outliers and/or non-normally distributed data. This test allows us to make data-
driven decisions about the relative importance of each candidate attribute to be adopted
in the counting pipeline as well as to compare our cattle counting method against state-of-
the-art approaches.

5.2 Duplicated Removal and Counting Method

In this section, we present our proposed Duplicate Removal and Cattle Counting
Method, which aims to accurately detect and remove duplicate cattle when counting
the animals in a collection of images. The method encompasses three key components:
Multi-Attribute Enhancement, Modified Ford-Fulkerson Algorithm for Duplicate Cattle
Detection, and the Complete Counting Method.

The Multi-Attribute Enhancement involves computing weights for pairs of can-
didate cattle detected in two different images. The Modified Ford-Fulkerson Algorithm
incorporates these computed attribute weights and adapts the concept of maximum flow
in a bipartite graph to address the assignment problem, whereby potential duplicate cattle
can be identified. Finally, the Complete Counting Method processes the image collection
in chronological order, cross-referencing each image with the cumulative list of previously
counted cattle, resulting in the final cattle count. These components will be detailed below.

5.2.1 Multi-Attribute Enhancement

In this section, we introduce a comprehensive multi-attribute enhancement that
plays a crucial role as a weight measure in our graph-based cattle matching method.
Extensive research and experimentation have been conducted to incorporate attributes
into the cattle identification process, contributing to improved accuracy and robustness.

Given an animal x in an image X and an animal y in an image Y , where image
X was taken chronologically before image Y , we define wx,y ∈ [0, 1] as the probability
(weight) that x and y refer to the same animal. The weight formula is defined as follows:

wx,y = state(x, y) · color(x, y) · Pv(x, y) · Dt(x, y) (5.1)

94

Each term in the weight formula represents a specific attribute contributing to the
matching process, as follows:

• state(x, y) ∈ {0, 1}: Represents the (dis)agreement between animals x and y regarding
their state (e.g., laying down or standing up).

• color(x, y) ∈ {0, 1}: Represents the (dis)agreement in terms of color category between
animals x and y.

• Pv(x, y) ∈ [0, 1]: Models the probability that animals x and y are the same, based
on their velocity, considering the movement from x’s to y’s coordinates.

• Dt(x, y) ∈ {0, 1}: Models whether or not the pair x and y is deemed a realis-
tic/possible duplicate pair candidate based on their distance as well as on their
orientation (and, accordingly, their most likely directions of movement).

Notably, Pv(x, y) is the only attribute with a value ranging between 0 and 1. All
other attributes are binary. Consequently, if any binary attribute is equal to 0, the overall
weight wx,y in Equation 5.1 becomes 0. Conversely, if all binary terms are 1, the weight
wx,y is then fully determined by Pv(x, y). The intuition is that our velocity model will only
effectively apply in those cases that cannot be promptly resolved (i.e., duplicate candidates
cannot be discarded) with very high confidence based on the other attributes.

In the following sections, we delve into the details of each attribute and explain
precisely how they are computed.

5.2.1.1 State Attribute

The state attribute requires a classifier to determine whether a cattle is standing up
or lying down in each image. For an animal x, we denote its individual state as state(x):

state(x) =
 0, if cattle x is standing up

1, if cattle x is lying down
(5.2)

The degree of confidence (certainty) of this classification as returned by the corresponding
CNN model is represented by Ss(x) ∈ [0, 1]. The individual states of two animals x and y

in different images are combined to form attribute state(x, y) in Equation 5.1. Since this
binary attribute has the power to fully determine the weight wx,y as zero when indicating
a disagreement between animals x and y regarding their state (i.e., when state(x, y) = 0),
such an indication requires not only that the individual states are detected as different
(state(x) ̸= state(y)) but also that both classifications have been made with very high
confidence, as follows:

95

state(x, y) =

0, if state(x) ̸= state(y)

and Ss(x) > Cs and Ss(y) > Cs

1, otherwise

(5.3)

In short, state(x, y) is 0 if one animal is standing up whereas the other is lying
down, and their classifications as such have a confidence score (degree of certainty) above
a threshold Cs (otherwise, state(x, y) = 1). Threshold Cs is a hyperparameter that will be
learned during experiments.

Incorporating the state attribute allows us to eliminate upfront candidate matches
that involve animals in obviously conflicting (standing or lying) positions.

5.2.1.2 Color Attribute

As for the state attribute, a classifier is also used to detect the color patterns
associated with different cattle breeds. By considering the color of the cattle in each image,
we can discard potential matches that clearly do not belong to the same cattle, based on
their distinctive colors.

The agreement for the color attribute is defined similarly to the state attribute.
Let color(x) represent the predicted color class of animal x, and Sc(x) ∈ [0, 1] denote the
degree of certainty about this classification. The color agreement between animals x and y

is given by:

color(x, y)

0, if color(x) ̸= color(y)

and Sc(x) > Cc and Sc(y) > Cc

1, otherwise

(5.4)

The value of color(x, y) is 0 if the predicted color classes (black, white, red/brown,
other) for animals x and y are different, and their classifications have a degree of certainty
above a threshold Cc, which will be learned during experiments. Otherwise, color(x, y) = 1.

While this attribute may not influence the results in pastures where all cattle share
the same color, it becomes very useful in pastures with multiple cattle breeds, helping
avoid mismatches during the identification process.

5.2.1.3 Velocity Attribute

The velocity attribute is designed to measure the speed of cattle presumably moving
between consecutive images. Let ∆t be the time interval between images X and Y , and let
dist(x, y) denote the geographical distance between cattle x and y based on their latitude
and longitude coordinates, which can be derived from the GPS and camera metadata
in the images as described in (SOARES et al., 2021). The velocity V (x, y) of an animal
potentially moving from the coordinates of x to the coordinates of y can be calculated as

96

follows:
V (x, y) = dist(x, y)

∆t
(5.5)

To estimate the probability Pv(x, y) that cattle x and y are the same based on
their velocity, we use a classic Logistic Regression model, given by the following formula:

Pv(x, y) = 1
1 + exp(−(β0 + β1 · V (x, y))) (5.6)

where β0 and β1 are the model coefficients. These coefficients will be learned from the
collection of manually annotated training data. The idea is to learn the match vs. mismatch
probability profile from labelled data containing examples from both scenarios, in a way
that properly accounts for the fact that the time lapse between images varies.

Unlike the other attributes, which yield binary values to determine whether a
candidate match should be discarded or not, the velocity attribute stands out as the sole
attribute providing a probability value between 0 and 1. This characteristic makes the
velocity attribute particularly important in our graph-based cattle matching method, as it
solely defines the weight value assigned to potential matches that have not been discarded
by the other attributes in Equation 5.1.

5.2.1.4 Direction Attribute

The direction attribute utilizes a classifier to detect the orientation of cattle x

within image X, based on the direction its head is pointing to. It then compares this
detected orientation with the direction along which cattle x would supposedly move from
its location in image X to the location of a candidate match y in image Y , accounting for
cattle movement rather than simply attributing it to (and indiscriminately handling it as)
drone positioning errors.

Let DC be the number of direction classes chosen to train the classification model,
where each class represents (360/DC) degrees of the rotation circumference in the image
perspective. We define cx ∈ {0, 1, . . . , DC − 1} as the direction class value for cattle x.
For instance, cx = 0 corresponds to the first direction class, which starts at 0 degrees of
rotation, whereas cx = DC − 1 corresponds to the last direction class, which starts at
(360 − (360/DC)) degrees of rotation. Figure 31 illustrates an example with DC = 10,
where each class covers 36◦. In this case, cx = 0 corresponds to angles between 0◦ and 35◦,
while cx = 9 corresponds to angles between 324◦ and 359◦.

The direction class considers only the direction of the cattle relative to the image,
not the compass direction. To obtain the compass (global) direction of a cattle x, we must
account for both the direction class of this cattle as well as the direction of the drone,
which is given by the yaw attribute obtained from the image’s metadata. As shown in
Section 4.2.1, the yaw value ranges between −180 and 180 degrees. For simplicity, we
normalize the yaw angle within the interval [0, 360] according to Equation 5.7.

97

Figure 31 – Example of DC = 10 Direction Classes for Cattle Head Rotation in Image
Perspective, with each class representing 36◦ of the circumference.

Source: Elaborated by the author.

yawN(X) =
360 − |yaw(X)|, if yaw(X) < 0

yaw(X), otherwise
(5.7)

With the normalized yaw of image X (yawN(X)) and the cattle’s direction class,
cx, we determine the global direction (ϕ) of cattle x as:

ϕx =
(

cx ·
(360

DC

)
+ yawN(X)

)
mod 360 (5.8)

After determining the global direction to which cattle x’s head is pointing (ϕx),
the next step involves calculating the direction of the supposed movement from cattle x

to cattle y (ϕxy), where y is the candidate match in question. This computation relies on
their geographic coordinates (latx, lngx) and (laty, lngy) as follows:

ϕxy = tan−1
(

laty − latx

lngy − lngx

)
· 180◦

π
(5.9)

Having obtained the global direction of cattle x (ϕx) and the direction of the
supposed movement from x to y (ϕxy), the rotation difference between them (∆rx,y) can
be calculated as:

∆rx,y = min (|ϕx − ϕxy|, 360 − |ϕx − ϕxy|) (5.10)

Using the rotation difference we can now compute the final threshold ratio, θxy,
which indicates how aligned the supposed movement from x to y is with respect to cattle
x’s direction. The ratio is:

θxy = 1 −
(⌊

∆rx,y
360
DC

+ 0.5
⌋

· (1 − minR)
DC

2

)
(5.11)

with θxy ∈ [minR, 1], where 0 < minR < 1 is a minimum threshold imposed on
θxy. Notice that θxy is assigned a value of 1 when the supposed movement correctly

98

aligns with the cattle’s direction class (i.e., when 0 ≤ ∆rx,y < (360/DC/2), such that
⌊(∆rx,y/360/DC) + 0.5⌋ = 0). On the other extreme, θxy is assigned a minimum value of
minR when these are in opposite directions, namely, when (180 − (360/DC/2)) ≤ ∆rx,y < 180,
such that ⌊(∆rx,y/360/DC) + 0.5⌋ = DC/2.

The use of a minimum threshold minR ∈ (0, 1) prevents completely ruling out the
possibility of x and y matching, despite the supposed movement from x to y and cattle
x’s head being in opposite directions. This minimum threshold allows accommodating
potential GPS precision errors and inaccuracies in location estimation. Setting the value
of minR will be discussed later. For rotation deviations other than correct alignment
or opposite alignment, the method proportionally decreases the ratio from 1 to minR

according to the number of classes (DC) between them.

5.2.1.5 Distance Threshold Attribute

Incorporating velocity as an attribute is important to account for the different
time intervals between adjacent images, but it requires establishing a maximum distance
threshold to account for the plausible range of cattle movement. When a drone executes
a flight plan to cover a large pasture area, photos of certain adjacent regions may be
captured with a significant time lapse between them. If we only consider velocity of cattle
movement, this could increase the number of potential cattle mismatches, making it more
challenging to accurately identify duplicates. The reason is that, while certain velocities
may be realistic over short periods of time that are observed between most adjacent images,
they would imply that very unlikely distances would need to be traversed over larger time
lapses observed between some images, so a large number of unlikely candidate matches in
those images would not be discarded based on velocity alone.

Let dist(x, y) denote the distance between cattle x and y in adjacent images X and
Y , respectively, and let DT be a maximum distance threshold beyond which a movement
is very unlikely, so it is deemed not plausible. This threshold will be experimentally
learned from data later in our study. Now, consider the direction-based threshold ratio,
θxy, computed in the previous section. Then, the distance threshold agreement between
cattle x and y is defined as:

Dt(x, y) =
 0, if dist(x, y) > (DT · θxy)

1, otherwise
(5.12)

In this formulation, the maximum plausible distance DT is adjusted by the direction-
based ratio θxy. Specifically, when the supposed movement from x to y correctly aligns with
x’s direction, then θxy = 1 and the full threshold DT applies. When θxy < 1, indicating
misalignment and, accordingly, a less likely movement, the effective acceptable distance
threshold DT · θxy becomes tighter. If the distance between cattle x and y exceeds such
an adjusted maximum distance, then Dt(x, y) = 0, indicating that cattle x cannot be

99

Figure 32 – Distance threshold variation according to cattle direction class: highest thresh-
old (DT) for head direction (shaded in dark blue), proportional decrease
for others (light blue, green, yellow, and orange), and minimum threshold
(DT · minR) for opposite direction (shaded in red).

Source: Elaborated by the author.

matched to cattle y. Otherwise, if the distance satisfies the threshold, Dt(x, y) = 1 (valid
matching candidate).

Figure 32 illustrates an example of how the distance threshold behaves based on
the direction of the cattle (as a categorical class variable with DC = 10 classes). The
figure illustrates the relationship between the maximum distance threshold (DT) and
the direction class to which the head of the cattle is pointed. The area shaded in dark
blue represents the direction to which the cattle’s head is facing, thence the effective
threshold within that class (direction) is equal to DT . In contrast, the area shaded in red
represents the opposite direction, where the minimum threshold is applied as DT · minR.
For the remaining directions (shaded in light blue, green, yellow, and orange), the threshold
gradually decreases from DT down to DT · minR. This dynamic thresholding mechanism
ensures good adaptability to various cattle movement patterns, accounting for both perfect
and opposite alignments, as well as anything in between, while accommodating GPS
precision errors and location estimation inaccuracies.

Next, we present the modified Ford-Fulkerson algorithm that employs our final
combined probability estimate in Equation 5.1 (wx,y) as graph weights to detect duplicate
cattle based on the assignment problem.

5.2.2 Modified Ford-Fulkerson Algorithm for Duplicate Cattle Detection

The Ford-Fulkerson algorithm (JR; FULKERSON, 1962) is a well-known method
for solving the maximum flow problem in a network. In the Chapter 4, we employed the
Ford-Fulkerson algorithm to solve the maximum flow problem in a bipartite graph with
unweighted edges. This approach allowed us to determine the maximum selection of edges,
effectively obtaining the maximum matching for duplicate removal.

100

In the present work, we have introduced weighted edges into the problem specifica-
tion. In a weighted bipartite graph, it can be shown that by imposing a constraint that
each node in one partition can be matched to at most one node in the other partition,
the original maximum flow problem becomes fully equivalent to an assignment problem.
Although there are alternative methods available to solving the assignment problem, such
as the Hungarian algorithm (MILLER; STONE; COX, 1997) and the Jonker-Volgenant
algorithm (CROUSE, 2016), both offering improved asymptotic complexity, for the sake of
compatibility with the method proposed in Chapter 4, we have chosen to use an adapted
version of the original Ford-Fulkerson maximum flow algorithm to handle the assignment
problem (TRIPPI; ASH; II, 1974). It should be noted that all these algorithms are guar-
anteed to find the same (globally optimal) solution, so the choice of algorithm does not
affect the results (FLORIAN; KLEIN, 1970).

Our implementation of the Ford-Fulkerson algorithm incorporates steps specifically
tailored for detecting duplicate cattle in image analysis, as summarized in Algorithm 2.
The key specializations lie in the definition of the graph, the calculation of edge weights,
and the aforementioned constraint imposed on matches.

1. Graph Construction: We start by constructing a bipartite graph using two sets
of nodes, VX and VY , representing cattle in different photos (X and Y , where X

denotes photos preceding Y in chronological order). The graph consists of a source
node, a destination node, and edges (E) connecting nodes in VX to nodes in VY .
Each edge represents the probability that a cattle node in VX is the same as a cattle
node in VY . The graph is initialized with zero flow (lines 1 and 2).

2. Edge Weight Calculation: The edge weights are the probabilities wx,y resulting
from the multi-attribute aggregation formula in Equation 5.1. The edge weights are
assigned values between 0 and 1, where higher values indicate a higher likelihood of
a match between the corresponding adjacent cattle nodes.

3. Constraint Enforcement: We impose a constraint during the flow augmentation
process to ensure that each cattle node in VX is matched with at most one cattle
node in VY (and vice versa). At each step, when selecting an augmenting path, the
algorithm considers only edges that maintain this constraint. This ensures that the
resulting flow corresponds to a valid matching (assignment) of cattle nodes between
the two photos.

Figure 33 provides an illustration of a graph constructed to solve the cattle duplicate
detection problem using the modified maximum flow algorithm. In this example, the graph
consists of a source node, which is fully connected to all the three nodes in VX . These nodes
in VX are connected to nodes in VY by weighted edges (E), describing the probability that

101

Algorithm 2 Modified Ford-Fulkerson Algorithm for Duplicate Cattle Detection
Input: VX : Set of cattle nodes in image X

VY : Set of cattle nodes in image Y
E: Edges with probability weights (wx,y)

Output: E ′: Chosen edges

1: Create bipartite graph with nodes VX , VY , source, and destination
2: Initialize graph with zero flow
3: while augmenting path exists do
4: Find augmenting path using breadth-first search
5: Calculate maximum flow along the path based on

edge capacities and matching constraint
6: Update flow and residual capacities
7: Determine maximum flow value
8: return E ′

Figure 33 – Graph representation for duplicate cattle detection using maximum flow in
networks. The graph consists of a source node, nodes in VX and VY (represent-
ing cattle in images X and Y , respectively), and a destination (sink) node.
Directed edges (E) contain matching probabilities as weights, representing
maximum flow capacity between VX and VY .

Source: Elaborated by the author.

the corresponding end nodes represent the same animal (the absence of an edge indicates
a weight equal to zero). Additionally, all five nodes in VY are connected to a destination
node. The graph is initialized with zero flow.

The Ford-Fulkerson algorithm adheres to the principle that the flow through an edge
cannot exceed its capacity (weight). Additionally, except for the source and destination
vertices, the inflow to a vertex must equal its outflow.

The algorithm iteratively finds augmenting paths in the graph using a breadth-first

102

Figure 34 – Result of the Ford-Fulkerson algorithm for duplicate cattle detection. The
graph illustrates the selected edges (E ′), (0, 6), (1, 3), and (2, 7), indicating
the identified duplicates. Cattle 4 and 5 are deemed new observations in image
Y rather than duplicates of animals previously observed in image X.

Source: Elaborated by the author.

search (BFS) (BUNDY; WALLEN, 1984) approach (line 4). Once an augmenting path is
found, the algorithm calculates the maximum flow that can be sent along the path based
on the edge capacities and the constraint on cattle matching (line 5). The flow is updated,
and the process continues until no more augmenting paths can be found (line 6). At the
end, given the equivalence between the result of this modified maximum flow algorithm
and the solution to the assignment problem as previously discussed, the final chosen edges
indicate the specific matches between cattle detected as duplicates in the two photos in
question.

Figure 34 depicts the result of the modified Ford-Fulkerson algorithm applied to
the scenario illustrated in Figure 33. The graph in this figure includes only the selected
subset of edges E ′ resulting from solving the maximum flow problem. Specifically, the
chosen edges are (0, 6), (1, 3), and (2, 7), indicating that the method identifies cattle 0
as the same as 6, cattle 1 as the same as 3, and cattle 2 as the same as 7. Conversely,
cattle 4 and 5 are deemed new observations to be added to the total cattle count (see next
section).

5.2.3 Complete Counting Method

In this subsection, we present our method for counting cattle in multiple images
captured by a drone in a systematic flight pattern. The drone follows a predefined path
that covers the entire area using a serpentine movement strategy, resulting in overlapping
images. Due to the drone’s forward and backward motions along this serpentine path,

103

cattle may appear in different locations across different images. Leveraging the metadata
from drone images, including GPS location, camera angle, sensor size, focal length, rotation
(yaw), and altitude, we can compute the coordinates of cattle on the ground as seen in the
images (SOARES et al., 2021).

The set of images is processed in chronological order, ensuring a consistent sequence.
To handle duplicate cattle and accurately count the unique instances, we employ the
Ford-Fulkerson algorithm, as described earlier. The Ford-Fulkerson algorithm assesses
the probability of a cattle in one image being the same as a cattle in another image,
considering attributes such as state, color, velocity, direction and distance. Algorithm 3
shows all steps of the cattle counting and duplicate removal method for a set of images.

Algorithm 3 Cattle Counting Algorithm
Input: image_list
Output: Lt

1: Lt = ∅
2: for each i ∈ image_list in chronological order do
3: Li = get cattle coordinate list from image i
4: M = |Li|
5: N = |Lt|
6: if M == 0 then
7: continue
8: if N == 0 then
9: add all cattle ∈ Li to Lt

10: else
11: Apply the Ford-Fulkerson algorithm on Lt and Li, resulting in a graph G′ = (X, Y, E′),

where E′ contains only edges selected as part of the maximum flow solution.
12: for y ∈ G′ do
13: if deg(y) == 0 then
14: add Li(y) to Lt

15: else
16: for x ∈ G′ do
17: if (x, y) /∈ E′ then
18: continue
19: else
20: update location and timestamp of Lt(x) as Li(y)
21: break
22: return Lt

Algorithm 3 takes a list of images from a pasture as input, where cattle need to
be counted, and outputs a final list Lt containing all valid animals with their updated
locations throughout the image collection.

The algorithm starts by initializing an empty list Lt (line 1). For each image i in
chronological order, a partial list Li is created, containing the geolocation of the detected
animals in that image (line 3). If Li is empty (line 6), indicating no animals were detected
in the current image, the algorithm moves to the next image. If Lt is empty (line 8),

104

it means either no images have been processed yet or no animals were detected in the
previous processed images. In this case, we initialize Lt with all the animals from Li.

As long as Lt is not empty (N ̸= 0), the modified Ford-Fulkerson algorithm is
employed to identify duplicates among the cattle in Lt and Li (line 11). Solving the
constrained maximum flow problem yields a graph G′ = (VX , VY , E ′), where E ′ contains
the optimal assignment edges. Here, VX represents the vertices in Lt (animals already
counted in all previously processed images, with their updated locations) and VY represents
the vertices in Li (animals detected in the current image). Vertices y ∈ VY with degree
0 in G′ correspond to cattle in Li without a matching animal in Lt (line 13). As these
animals are not deemed duplicates, we add all of them to Lt (line 14).

When a vertex x ∈ VX is adjacent to a vertex y ∈ VY in G′, which means they
are considered duplicates, the location and timestamp of the corresponding cattle in
Lt, denoted as Lt(x), is updated with the coordinates from Li(y) (line 20). Importantly,
the location of duplicated cattle is updated based on the chronological order of image
processing. If an animal is in motion, the algorithm keeps track of its last detected location.
Upon processing all images, the resulting list Lt contains the total number of cattle
discounting duplicates.

5.3 Hyperparameter Determination and Attribute Learning

As it will be discussed in detail in the following subsections, the values of each
hyperparameter are automatically learned from data alongside the corresponding attribute
models, or they are justified taking into account relevant technical information and specific
characteristics of the datasets of interest, or both.

5.3.1 State Attribute Learning

Recall that, according to the state attribute, we define the matching probability
in Equation 5.3 as zero if the predicted classes for cattle x and y are different with a
confidence score greater than or equal to a threshold Cs. To determine the value of Cs,
we conducted experiments using the T2606 dataset, presented in Section 5.1.2. In this
dataset, we manually annotated the 2,606 cattle images in both standing up and lying
down positions, as illustrated in Figure 35.

To address the challenge of imbalanced class distribution, we adopted data aug-
mentation (DA) techniques (PEREZ; WANG, 2017) to effectively increase the number of
training samples and achieve a balanced representation across all classes. Table 13 provides
an overview of the image distribution for each state class in both the original dataset and
the augmented dataset.

We employed a standard 10-fold cross-validation strategy, where each non-training

105

Figure 35 – Example of images representing both classes of cattle state in the T2606
dataset: Laying down (left) and Standing up (right).

Source: Elaborated by the author.

Table 13 – Number of images for each state class before and after data augmentation
(DA).

State Class Before DA After DA
Img. % # Img. %

Standing Up 2,103 80.70% 2,500 50%
Lying Down 503 19.30% 2,500 50%
Total 2,606 100% 5,000 100%

fold (containing 10% of the dataset) was then subdivided into two validation subsets. One of
these validation subsets (val1) was used for computing the error curve and determining the
optimal number of epochs for early stopping of the training process. The other validation
subset (val2) was reserved for determining the Cs threshold. The remaining 9 folds (90% of
the data) were used for training the MobileNetV3 large architecture, following the details
provided in Section 5.1.4.

We performed the 10-fold cross-validation for 100 epochs, tracking the training and
val1 losses for each fold and epoch. To determine the optimal epoch for early stopping,
we analyzed the cross-validated average training and average val1 losses at each epoch.
We found that at epoch 50 the val1 loss reaches a minimum; past that point, it begins to
increase, while the average training loss is still decreasing, indicating overfitting. Thus, we
selected 50 epochs as the best point to stop training the model.

For each (alternating) non-training fold, we obtained the average softmax score
using the val2 validation subset with respect to the actual class labels (ground-truth
annotation). The total average (AVG) and standard deviation (STD) of the softmax score
across all 10 folds are shown in Table 14.

Based on the cross-validation results, we determined that the average softmax
score for the state classifier is Cs = 0.8571. This value indicates the degree of confidence
required for the agreement between classes of cattle x and y to be considered reliable.
Following this rationale, if the confidence scores for the individual states of both x and y

exceed Cs, and state(x) ̸= state(y), we confidently affirm that the states are different, so

106

Table 14 – 10-fold cross-validation results for the state and color classifiers within the
val2 subsets across the non-training folds. The softmax score represents the
classifier’s confidence in predicting the correct (ground-truth) class.

10-Fold Total AVG Total STD
Softmax Score Softmax Score

State 0.8571 0.112
Color 0.7692 0.215

x and y are not the same cattle and they are promptly discarded as a candidate match.

5.3.2 Color Attribute Learning

To determine the confidence threshold for the color attribute in Equation 5.4, Cc,
we followed the same methodology described above for the state attribute, using the
T2606 dataset. We manually annotated the 2,606 cattle images in this dataset into four
color classes: white, black, red/brown, and others, as shown in Figure 36. As with the
state classes, the number of images for each color class was imbalanced. To mitigate this
imbalance, we once again applied data augmentation (DA), as shown in Table 15.

Figure 36 – Example of cattle images from each of the four annotated color classes in the
T2606 dataset: white, black, red/brown, and others.

Source: Elaborated by the author.

Analogous to the state attribute, we employed a 10-fold cross-validation strategy
using the color augmented dataset for training the MobileNetV3 network across the
alternating training folds and then using the results within the validation subset of each
non-training fold as a basis to tune the confidence threshold Cc. Table 14 presents the
total average (AVG) and standard deviation (STD) of the softmax score with respect to
the actual class of the validation examples across all 10 folds.

107

Table 15 – Number of images for each color class before and after data augmentation
(DA).

Color Class Before DA After DA
Img. % # Img. %

White 1,120 42.98% 2,000 25%
Black 760 29.16% 2,000 25%
Red/Brown 422 16.19% 2,000 25%
Others 304 11.67% 2,000 25%
Total 2,606 100% 8,000 100%

Based on the cross-validation results, we determined that the average softmax
score for the color classifier is Cc = 0.7692. Following the same rationale as for the state
attribute, if the confidence scores for the individual colors of both x and y exceed Cs, and
color(x) ̸= color(y), we confidently affirm that the colors are different, so x and y are not
the same cattle and they are promptly discarded as a candidate duplicate match.

5.3.3 Velocity Attribute Learning

The velocity attribute aims to model the movement speed of cattle between adjacent
images. To determine the probability of a cattle pair being the same animal based on
velocity, we use a classic logistic regression model. In this case, logistic regression models
the probability of two cattle detected in different images being the same animal (as
discriminated from being different animals), using velocity as independent variable. Using
the ADJ165 dataset (Section 5.1.2), we have data with examples of two classes for training
the logistic regression model:

1. Same Cattle (positive class): We have 165 examples consisting of pairs of images
where the same animal appears in both. By using the cattle coordinate estimator
and the timestamp of the images, we calculated the velocity of each animal moving
between the coordinates in the first and second images where it appears. These 165
velocities constitute the data corresponding to the "Same Cattle" class.

2. Other Cattle (negative class): For each pair of images containing an example
of the "Same Cattle" class, we took another animal in the latest image with the
closest coordinate to the animal corresponding to the "Same Cattle" example in that
image. The coordinate of this closest non-matching animal was then used to compute
the hypothetical velocity (should the corresponding movement have occurred, as
a worst-case negative example that we want to be able to discriminate from). We
collected 158 such hypothetical velocities belonging to the "Other Cattle" class. The
reason why this is smaller than the number of positive examples (165) is that in 7
positive examples the pair of images contain a single (i.e., the same) animal.

108

To ensure that the animal in the negative class is not the same as the one in
the first image, we selectively choose image pairs featuring cattle with distinct colors or
visually identifiable characteristics. This deliberate selection minimizes the possibility of
misidentifying the negative class as the same cattle in the initial image.

Figure 37 presents two images, (a) and (b), captured at different moments but
depicting the same area with four cattle. In both images, there is a black animal marked
with a blue bounding box. The timestamps of the photos allow us to compute the velocity
of this black animal, resulting in a sample of the "Same Cattle" velocity class. Additionally,
a white animal with a red bounding box appears in image (b) and is the closest to the
location of the black cattle in that image. The velocity that would be required for the
black animal to move from its blue bounding box in image (a) to the location of the red
bounding box in image (b) represents a sample of the "Other Cattle" velocity class.

Figure 37 – Cattle velocity computation for the "Same Cattle" and "Other Cattle" classes.
The velocity of the black animal with a blue bounding box in (a) and (b)
belongs to the "Same Cattle" velocity class. The hypothetical velocity of the
black cattle with a blue bounding box in (a), had it moved to the location of
the white cattle with a red bounding box in (b), belongs to the "Other Cattle"
velocity class.

Source: Elaborated by the author.

The histogram in Figure 38 illustrates the distribution of velocities for both classes.
The "Same Cattle" velocities (in blue) tend to be lower, indicating that cattle pairs that
correspond to the same animal typically have lower movement speeds between adjacent
images. Conversely, the "Other Cattle" velocities (shown in red) tend to be higher.

Using the "Same Cattle" and "Other Cattle" velocities as training data, we ap-
plied linear logistic regression adopting the lbfgs solver from sklearn.linear_model to
learn the model coefficients β0 (intercept) and β1 (slope), as defined in Equation 5.6 in
Section 5.2.1.3.

The logistic regression model fits a sigmoid curve to the data, allowing us to
estimate the probability of any cattle pair in different images being the same animal

109

Figure 38 – Histograms of velocity for the "Same Cattle" (blue) and "Other Cattle" (red)
classes.

Source: Elaborated by the author.

based on its velocity. Figure 39 shows the sigmoid curve learned by the logistic regression
model, plotted over the velocity histograms. As expected, as the velocity decreases, the
estimated probability of the pair being the same animal increases. The point where the
curve intersects the 50% probability line (black line) is approximately 7km/h. Cattle pairs
with velocities below this threshold are more likely to be classified as "Same Cattle", while
those with velocities above the threshold are more likely to be classified as "Other Cattle".

Figure 39 – Sigmoid curve learned by the logistic regression model for the velocity attribute:
the black vertical line indicates a 50% probability cut-off value.

Source: Elaborated by the author.

The logistic regression model yields a matching probability for each candidate cattle
pair. Instead of performing a binary classification by applying a cut-off (threshold) value
to this probability, as illustrated by the black vertical line in Figure 39, the real-valued

110

probability score is directly used as term Pv(x, y) in the computation of the weights wx,y

for the Ford-Fulkerson algorithm in Equation 5.1. Cattle pairs with higher probability
scores are given higher weights, indicating a higher likelihood of being the same animal.
The Ford-Fulkerson algorithm will use these weights to find the maximum flow through
the graph, determining the optimal matching of cattle nodes and effectively identifying
duplicate cattle in the image analysis process.

5.3.4 Direction Attribute Learning

The direction attribute plays a significant role in determining the orientation of
cattle and enables the identification of their most likely movement directions. To represent
the direction attribute, we divide the 360-degree circle into DC = 10 classes, with each
class representing 36 degrees (see Figure 31). For training the direction classifier, we utilize
the T2606 dataset, which has been manually annotated to include the direction to which
the animal’s head is pointed within the image. The training data encompasses samples
from all possible directions, ensuring comprehensive coverage for the classifier. Figure 40
illustrates an example of a cattle image annotated with class 6, representing the specific
direction where the cattle’s head is pointed.

Figure 40 – Example of a cattle image annotated as class 6 for the direction attribute.
The class is defined by the direction where the cattle’s head is pointed.

Source: Elaborated by the author.

To ensure a balanced representation of each direction class, we apply data augmen-
tation techniques (DA). After data augmentation, each direction class has 530 samples,
resulting in a total of 5,300 samples for training (Table 16).

To tackle the direction classification task, we again employed the MobileNetV3
network. The trained model is employed to detect the direction class of cattle with respect
to the image frame, which is subsequently converted into compass direction through
the image’s GPS metadata, and then used to compute the direction ratio attribute in
Equation 5.11, as previously detailed in Section 5.2.1.4.

111

Table 16 – Number of images for each direction class before and after data augmentation
(DA).

Class Direction Before DA After DA
(degrees) # Img. % # Img. %

0 0◦ to 35◦ 296 11.3% 530 10%
1 36◦ to 71◦ 247 9.4% 530 10%
2 72◦ to 107◦ 162 6.2% 530 10%
3 108◦ to 143◦ 269 10.3% 530 10%
4 144◦ to 179◦ 339 13.0% 530 10%
5 180◦ to 215◦ 257 9.8% 530 10%
6 216◦ to 251◦ 226 8.6% 530 10%
7 252◦ to 287◦ 267 10.2% 530 10%
8 288◦ to 323◦ 336 12.8% 530 10%
9 324◦ to 359◦ 207 7.9% 530 10%

Total 2,606 100% 5,300 100%

To compute the direction ratio attribute, we also need to define the hyperparameter
minR, namely, the percentage of the maximum plausible distance threshold to be allowed
even when the presumed movement direction of a candidate match between two images is
opposite to the direction of the animal in question in the earliest image. The exact value
of minR will be determined in the next section, as it depends on another hyperparameter
related to the distance attribute.

5.3.5 Distance Attribute Learning

As previously discussed in Section 5.2.1.5, establishing an appropriate distance
threshold (DT) is essential to adjust tolerance to assumed cattle movements between
adjacent images. If a distance threshold is not defined, and the timestamp between two
photos is substantial, the potential matching range for cattle could become excessively
large. To mitigate this issue, recall that we set a maximum distance threshold (DT) to
limit the distance of movement deemed plausible.

In our approach, if the distance between a cattle instance in one photo and a
candidate match in a subsequent adjacent photo is greater than DT , they are promptly
discarded as a potential duplicate, regardless of the animal’s orientation and most likely
directions of movement.

For distances smaller than DT , recall from Serction 5.2.1.5 that this maximum
threshold can be further adjusted (tightened) according to the orientation of the cattle,
which in turn depends on a hyperparameter minR. We set this hyperparameter accounting
for possible GPS imprecision when estimating the cattle’s coordinates on the ground, as
well as the accuracy of the drawn bounding box that detects the cattle. For example, a
static cattle instance may appear to move backwards due to estimated location errors,
leading to potential matches being discarded. By considering minR, we can account for

112

such errors and retain candidate matches that might otherwise be incorrectly discarded.

To define the value of minR, we refer to studies evaluating the accuracy of drone-
based photogrammetry using GPS technology. In 2020phantom4precision, a DJI Phantom
4 RTK drone achieved an accuracy close to 2 cm. However, our drone is not equipped with
RTK technology, a GPS correction system enabling centimeter-level positioning accuracy,
due to its higher cost. A study on a DJI Mavic Pro Platinum, which contains similar GPS
technology to ours, reported an average horizontal positional discrepancy of approximately
0.883 meters 2021mavic. Based on this information, we rounded up this value and set
the smallest adjusted maximum distance threshold to DT · minR = 0.9 meters in our
experiments, i.e., minR = 0.9/DT .

To determine a value for DT , we undertake a training process using the dataset
collection for cattle counting described in Section 5.1.3. However, this collection will also
be used for the final evaluation (test) of our complete counting pipeline and, with only
26 datasets available, conventional train-test splits would entail sacrificing a significant
portion of our valuable data just for the purpose of DT training, limiting our scope for
evaluation (test) of the counting task itself. To address this issue, we employ a leave-one-out
cross-validation methodology, as elaborated in Section 5.4.1. This well-known, principled
approach enables us to leverage our entire dataset collection for both learning DT as well
as for properly testing our complete counting pipeline in the final counting task, without
violating the fundamental machine learning requirement that the same data cannot be
used simultaneously both for learning as well as for testing.

5.4 Evaluation

In this section, we present a range of experimental results involving the cattle
counting task. We begin by reporting the results of our cattle counting method using a
leave-one-out cross-validation approach. Next, we conduct an ablation study to assess the
significance of each attribute in our counting method. Finally, we compare our approach
against state of the art baseline techniques to evaluate its effectiveness.

5.4.1 Leave-One-Out Cattle Counting Evaluation

Recall from Section 5.3.5 that, unlike other hyperparameters in our counting method,
which were pretrained using specialized training datasets described in Section 5.1.2, the DT

hyperparameter needs to be ultimately learned from a dataset collection that represents
cattle counting scenarios. We conducted preliminary counting experiments on all 26
datasets in Section 5.1.3 using candidate DT values ranging from 3 to 20 meters (in steps
of 1 meter). The resulting absolute errors, with respect to the actual number of cattle in
each dataset (ground truth — GT), were recorded in Table 17.

113

Table 17 – Absolute counting error for each candidate value for the maximum distance
threshold (DT), varying from 3 to 20 meters.

Dataset GT 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F-1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F-2 20 1 0 0 0 0 0 0 0 0 1 2 2 2 3 5 5 5 7
F-4 20 2 1 0 0 0 0 0 0 1 2 2 3 3 4 4 6 6 7
F-5 14 1 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 5
G-1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G-2 17 1 1 0 0 0 0 0 0 0 0 1 1 1 2 3 3 3 4
G-3 25 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 4 4 4
G-4 25 0 0 0 0 0 0 1 0 1 1 1 1 2 2 2 3 5 5
G-6 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 12 6 6 6 6 6 6 4 4 4 5 5 5 5 5 5 5 5 6
D 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F-3 24 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
G-5 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
Dataset2 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SD_PV_90 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2
2A_90 32 7 7 5 5 4 4 3 2 2 2 2 2 3 3 3 3 4 5
P1_AB_120 63 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PD_AB_90 100 9 9 7 7 6 6 5 5 5 5 5 5 7 7 8 8 8 12
Pasto4-16-10-7h 109 8 8 7 8 8 7 6 5 5 5 6 6 7 7 7 7 7 9
Sede-18-10-7h 22 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2
Brejo-19-10-12h 43 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 5 5
Pasto2-17-10-7h 275 19 17 15 14 13 9 7 6 6 7 7 7 8 8 8 10 10 10
Pasto1-15-10-12h 239 2 2 1 2 2 1 2 1 1 1 2 3 3 3 3 3 3 4
TOTAL ERROR 69 62 46 47 44 39 32 26 28 32 36 39 45 51 59 67 74 89

Once all the absolute counting errors for the various candidate DT values in
Table 17 have been pre-computed, we can apply a standard leave-one-out cross-validated
approach as follows: each time, we leave one dataset out for evaluation (test) of the
counting error, using the best DT value with respect to the remaining 25 datasets (i.e.,
the value that provides the least total counting error, excluding the error associated with
the left-out dataset). This approach ensures that the test error is assessed on a left-out
dataset that has never been seen before in any stage during model training/learning. We
repeated this process for all 26 datasets, leaving a different dataset out each time for test.
The resulting absolute and percentage counting errors for each test dataset are shown in
Table 18.

114

Table 18 – Absolute and percentage counting errors with respect to the ground truth (GT)
in Leave-One-Out Cross Validation for each of the 26 validation datasets. For
each dataset, the counting results are obtained using a distance threshold (DT)
value learned from the other 25 datasets.

Dataset GT Error
ABS %

A 4 0 0,00%
B 7 0 0,00%
F-1 8 0 0,00%
F-2 20 0 0,00%
F-4 20 0 0,00%
F-5 14 0 0,00%
G-1 2 0 0,00%
G-2 17 0 0,00%
G-3 25 0 0,00%
G-4 25 0 0,00%
G-6 5 0 0,00%
C 12 4 33,33%
D 5 0 0,00%
E 5 0 0,00%
F-3 24 0 0,00%
G-5 19 0 0,00%
Dataset2 6 0 0,00%
SD_PV_90 5 0 0,00%
2A_90 32 2 6,25%
P1_AB_120 63 0 0,00%
PD_AB_90 100 5 5,00%
Pasto4-16-10-7h 109 5 4,59%
Sede-18-10-7h 22 1 4,55%
Brejo-19-10-12h 43 2 4,65%
Pasto2-17-10-7h 275 6 2,18%
Pasto1-15-10-12h 239 1 0,42%

SUM AVG
TOTAL: 26 2,34%

The results reported in Table 18 represent the cross-validated performance of our
proposed cattle counting method. The method achieved a total absolute counting error
of 26 cattle, with an average percentage error of 2.34%. While accurately estimating the
count in 18 out of 26 validation datasets, there is some variability in error across the
remaining 8 datasets. This is mostly within the range [0.42%, 6.25%], except for Dataset
C, which exhibits a noticeable 33.33% error and calls for further analysis.

This substantial error can be attributed to the unique characteristics of Dataset C.
Firstly, its small size, with only 12 cattle, means a discrepancy of four cattle results in a
significant percentage error. Secondly, this dataset contains images where the movement
of some animals is both atypical as well as in marked contrast to other animals appearing
in the same images. For instance, consider Figure 41, where the images show four cattle

115

Figure 41 – Example of two images from Dataset C: (A) captures the initial moment,
depicting the positions of seven cattle. (B) shows a subsequent moment
less than a minute later, revealing significant movement by some cattle. (C)
provides a visualization of the movement, illustrating the distance covered by
four rapidly moving cattle within this short interval. Notably, other cattle in
the image exhibit more typical behavior.

Source: Elaborated by the author.

that have moved considerably within a minute. Our method, designed for typical grazing
scenarios, faced a challenge with this abnormal behavior. The rapid and uncharacteristic
movement of this subset of animals, which is in contrast to the other cattle exhibiting
more typical behavior captured in the same images, misled the algorithm to consider the
former as distinct instances, contributing to the observed error.

In the following section, we delve into an ablation study, where we systematically
evaluate the impact of each attribute employed in our proposed method.

5.4.2 Ablation Study

We conduct this study by systematically removing one attribute at a time and
analyzing its impact on the counting performance. The attributes considered in this study
are state, color, velocity, direction, and distance. Table 19 enumerates the configurations
of all combinations of attributes for the ablation study. Configuration A1 includes all
attributes, while configurations A2 to A6 remove one attribute at a time. Specifically, A2
removes only the distance threshold, A3 removes only the direction attribute, A4 removes
only the velocity attribute, A5 removes only the color attribute, and A6 removes only the
state attribute.

Table 20 presents the absolute counting error and percentage error for each ablation
configuration on each of the 26 datasets, along with the total sum of absolute errors and
the average percentage error for each configuration across all datasets. To compare the
different model configurations, we focus mainly on the percentage error measure as it
provides a more meaningful interpretation of the counting error, relative to the size of the

116

Table 19 – Ablation study configurations and their attribute combinations.

Config. State Color Velocity Direction Distance
A1 ✓ ✓ ✓ ✓ ✓
A2 ✓ ✓ ✓ ✓
A3 ✓ ✓ ✓ ✓
A4 ✓ ✓ ✓ ✓
A5 ✓ ✓ ✓ ✓
A6 ✓ ✓ ✓ ✓

Table 20 – Ablation study results for the cattle counting method. It shows the absolute
and percentage errors for different attribute configurations on 26 datasets,
along with their total absolute sum and average percentage errors across all
datasets.

Dataset GT A1 A2 A3 A4 A5 A6
ABS % ABS % ABS % ABS % ABS % ABS %

A 4 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
B 7 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
F-1 8 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
F-2 20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
F-4 20 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
F-5 14 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
G-1 2 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
G-2 17 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
G-3 25 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
G-4 25 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
G-6 5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
C 12 4 33.33 5 41.67 5 41.67 5 41.67 4 33.33 4 33.33
D 5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
E 5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
F-3 24 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
G-5 19 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Dataset2 6 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
SD_PV_90 5 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
2A_90 32 2 6.25 3 9.38 2 6.25 3 9.38 3 9.38 2 6.25
P1_AB_120 63 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
PD_AB_90 100 5 5.00 5 5.00 5 5.00 6 6.00 5 5.00 5 5.00
Pasto4-16-10-7h 109 5 4.59 6 5.50 6 5.50 6 5.50 8 7.34 6 5.50
Sede-18-10-7h 22 1 4.55 2 9.09 1 4.55 2 9.09 2 9.09 2 9.09
Brejo-19-10-12h 43 2 4.65 2 4.65 2 4.65 4 9.30 3 6.98 3 6.98
Pasto2-17-10-7h 275 6 2.18 11 4.00 10 3.64 8 2.91 6 2.18 6 2.18
Pasto1-15-10-12h 239 1 0.42 34 14.23 3 1.26 2 0.84 3 1.26 2 0.84

SUM AVG SUM AVG SUM AVG SUM AVG SUM AVG SUM AVG
TOTAL: 26 2.34 68 3.60 34 2.79 36 3.26 34 2.87 30 2.66

dataset (in terms of its actual total number of cattle, GT).

Note that no error was observed across all configurations (A1 to A6) in 18 datasets.
These datasets involve relatively stationary cattle in the overlapping areas, leading to
consistently accurate counting results even after removing any attribute. However, in the
remaining 8 datasets, the results noticeably changed depending on the attribute removed.

Among all configurations, the complete configuration (A1) achieved the best
performance, with an absolute error of 26 counts across all datasets and the least percentage
error of 2.34%. This indicates that all attributes, including state, color, velocity, direction,
and distance, play a relevant role in contributing to the counting accuracy.

117

In contrast, configuration A2, which doesn’t include the distance threshold attribute,
yielded the worst result, with an absolute error of 68 counts (3.6%). This highlights the
importance of maintaining a distance threshold when incorporating velocity information
in the counting method. Without the distance threshold, by assuming constant cattle
movement speed the method may generate mismatches between distant animals over long
time intervals, leading to a negative impact on counting accuracy. By retaining the distance
threshold, we can effectively address such mismatches and uphold the reliability of the
counting process.

To statistically assess the differences between the results, we use the Wilcoxon
signed-rank test on the percentage error from each dataset and configuration, which
provides p-values with respect to each ablation setup when compared against the full
model (A1) across the collection of datasets. The results are shown in Table 21. To avoid
the pitfalls of assessing significance based on a fixed critical value while performing multiple
pairwise tests, we only report the p-values without imposing an arbitrary significance level.

Table 21 – Wilcoxon signed-rank p-values for the ablation study.

Comparison P-value
A1 vs. A2 0.027
A1 vs. A3 0.067
A1 vs. A4 0.011
A1 vs. A5 0.046
A1 vs. A6 0.079

Based on the p-values in Table 21, configurations A2, A4, and A5 exhibited the most
significant deterioration in percentage errors compared to A1, while configurations A3 and
A6 show less significant changes. It is important to note that, even though removing these
attributes shows less significant differences, the total absolute error for the full configuration
(A1) remains smaller. This suggests that attributes related to distance, velocity, and color
have more significantly contributed to the accuracy of the cattle counting method.

Overall, the ablation study provides valuable insights into the importance of
individual cattle attributes and helps understanding which aspects of the method could
be further optimized to enhance counting accuracy.

5.4.3 Thresholded Variant: An Unweighted Version Using Multi-Attribute

In addition to the proposed complete method (A1), we present an alternative
version based on the cattle counting approach introduced in Chapter 4. Referred to as
the "Thresholded Variant," this version aims to explore the adaptability of multi-attribute
analysis in an unweighted graph format. In the Thresholded Variant, edge connections are

118

binary, representing either the presence or absence of connections between cattle within
the image data.

The Thresholded Variant acts as an experimental bridge between our weighted
multi-attribute method and the prior unweighted algorithm. While in the complete A1
method, the state, color, direction, and distance attributes define the presence or absence
of edges in the graph, with the velocity attribute providing weight even if it’s low, the
Thresholded Variant employs a different strategy. This variant retains an edge only if its
weight exceeds 0.5, setting the weight to 1 in such cases. If the weight falls below this
threshold, the edge is removed. Formally, this adjustment is described by Equation 5.1:

wx,y =
 0, if wx,y ≤ 0.5

1, if wx,y > 0.5
(5.13)

Following this weight adjustment, the counting algorithm adopts a binary maximum
flow approach, similar to the one outlined in Section 4.2.3. In the next section, we will
compare the complete weighted method (A1) and this Thresholded Variant against two
baseline methods.

5.4.4 Comparison Against Baselines

In this section, we present the counting results of our complete cross-validated
method (A1), as well as the previously introduced Thresholded Variant. These are pitted
against two state-of-the-art techniques. It is important to note that the field of counting
cattle in large pastures, particularly regarding duplicate removal, is relatively underexplored,
with very limited existing work that address this specific topic. As a consequence, there
are currently very few code distributions available for reproduction and comparison.

As a first baseline competitor, we adopted our own implementation of the approach
employed in (CHEN et al., 2023). This method involves constructing a mosaic from multiple
images for animal (cranes) detection and counting, which uses a proprietary software called
PIX4D. Since we do not have access to the proprietary code, we employed a well-known
open-source drone mapping tool called OpenDroneMap (ODM, 2020) to generate the
bi-dimensional mosaics and count the cattle following the procedures described in the
original work (CHEN et al., 2023).

Since our primary focus is on the counting task itself, we generated a bi-dimensional
mosaic from all images of each dataset and manually counted the cattle directly on the
mosaic, without relying on the detection step. This allowed us to assess the accuracy of
using mosaics independently from the detection process and, accordingly, a fair comparison
with our approach.

Upon deploying the mosaic-based approach on all 26 datasets, technical limitations

119

Figure 42 – Unsuccessful mosaic generation for the dataset Pasto1-15-10-12h, illustrating
gaps in the image due to a shortage of matching points.

Source: Elaborated by the author.

became apparent in three specific datasets (SD_PV_90, Sede-18-10-7h, and Pasto1-15-10-
12h), where mosaic generation failed, rendering the baseline counting method infeasible for
those datasets. Figure 42 visually illustrates an instance of such a failed mosaic generation
attempt for the dataset Pasto1-15-10-12h. As displayed in the figure, the resulting mapping
exhibited significant gaps, which is prone to occur due to a shortage of referential matching
points in the collection of images.

When images lack distinctive objects that can be used to identify matching points
(apart from mostly cleared pasture), construction of the mosaic as guided by these referential
points may be compromised. This aligns with observations by the authors in (CHEN et
al., 2023), even when using proprietary software. For instance, the authors noted that in
areas largely dominated by water, without other observable objects, the software tends to
be less accurate.

Another reason that can cause mosaic construction to fail is the lack of enough
overlap between images. According to (DANDOIS; OLANO; ELLIS, 2015), an overlap of
at least 80% is recommended to produce an accurate mapping, whereas in our approach,
we can afford to use much lower overlap levels (30% in our experiments). The use of higher
overlap levels is very restrictive in large pastures due to practical constraints such as limited
flight time. Adopting high overlap levels requires longer flight plans, leading to increased
battery consumption, potentially preventing the acquisition of images in a single flight,

120

which increases the possibility of cattle movement during the survey, complicating accurate
counting. For instance, Soares et al. (2021) substantiate this by evaluating that an 80%
overlap level reduces the drone’s surveyable area per battery charge from 100ha to only
15ha. These challenges highlight the importance of balancing the flight plan parameters
and considering the specific characteristics of the pasture areas when utilizing mosaic-based
methods for cattle counting.

As our second competitor, we consider our method proposed in Chapter 4. This
method also uses the Ford-Fulkerson algorithm for duplicate removal but it is based solely
on a fixed distance threshold of 6 meters as a binary attribute used to determine the
(unweighted) edges of the bipartite graph. We use the very same manually labeled images
given to our current method as input to this baseline.

In the subsequent discussions we refer to our method from Chapter 4 as Graph-
based distance (GBD), our current proposed complete method as Graph-based multi-
attribute (GBmulti), the Thresholded Variant as Graph-based Thresholded multi-attribute
(GBTmulti)and the mosaic-based baseline following the approach in (CHEN et al., 2023)
as “mosaic”.

Table 22 displays the absolute and percentage counting errors for GBmulti, GBTmulti,
Mosaic, and GBD for all 26 datasets. Notably, results marked with an asterisk (*) denote
datasets for which counting using the mosaic-based method was infeasible. The table shows
that, even if we just ignore these three datasets for the purpose of performance assessment
of the mosaic-based method, our GBmulti method still performs significantly better, with a
total absolute error of 26 counts across 26 datasets. In contrast, the mosaic-based method
produced an absolute error of 53 counts across 23 datasets, whereas GBTmulti and GBD

exhibited an absolute error of 37 and 42, respectively, across 26 datasets. Considering each
dataset individually, our complete method, GBmulti, consistently exhibits counting errors
that are at least as good as the competitors’ across all datasets.

Table 22 shows a 0% error rate across all four methods in 14 out of the 26 datasets.
Notably, these datasets, referred to as "motionless" in (SHAO et al., 2020), involve relatively
stationary cattle within overlap areas. In such scenarios, all four methods yielded accurate
and robust performance.

In contrast, among the remaining 12 datasets, where errors manifest in at least one
method, GBmulti and GBTmulti systematically outperformed Mosaic (except for a single
tie in dataset 2A_90) and they also outperformed GBD in seven and five of these datasets,
respectively, while tying with the others.

To assess the statistical significance of the differences between the counting methods,
we performed the Wilcoxon signed-rank test for all three pairwise comparisons. Table 23
displays the corresponding p-values, which not surprisingly in this case are all noticeably

121

Table 22 – Absolute and percentage counting errors for the 4 compared counting methods
on the 26 datasets. Results with * indicate datasets where counting could
not be performed by the mosaic-based competitor due to unsuccessful mosaic
generation.

Dataset GT GBmulti GBTmulti Mosaic GBD

ABS % ABS % ABS % ABS %
A 4 0 0.00 0 0.00 0 0.00 0 0.00
B 7 0 0.00 0 0.00 0 0.00 0 0.00
F-1 8 0 0.00 0 0.00 0 0.00 0 0.00
F-2 20 0 0.00 0 0.00 0 0.00 0 0.00
F-4 20 0 0.00 0 0.00 0 0.00 0 0.00
F-5 14 0 0.00 0 0.00 0 0.00 0 0.00
G-1 2 0 0.00 0 0.00 0 0.00 0 0.00
G-2 17 0 0.00 0 0.00 0 0.00 0 0.00
G-3 25 0 0.00 0 0.00 0 0.00 0 0.00
G-4 25 0 0.00 0 0.00 0 0.00 0 0.00
G-6 5 0 0.00 0 0.00 0 0.00 0 0.00
C 12 4 33.33 4 33.33 9 75.00 6 50.00
D 5 0 0.00 0 0.00 2 40.00 0 0.00
E 5 0 0.00 0 0.00 1 20.00 0 0.00
F-3 24 0 0.00 0 0.00 0 0.00 0 0.00
G-5 19 0 0.00 0 0.00 0 0.00 0 0.00
Dataset2 6 0 0.00 0 0.00 0 0.00 0 0.00
SD_PV_90 5 0 0.00 0 0.00 * * 0 0.00
2A_90 32 2 6.25 2 6.25 2 6.25 2 6.25
P1_AB_120 63 0 0.00 0 0.00 3 4.76 0 0.00
PD_AB_90 100 5 5.00 7 7.00 9 9.00 7 7.00
Pasto4-16-10-7h 109 5 4.59 6 5.5 13 11.93 7 6.42
Sede-18-10-7h 22 1 4.55 1 4.55 * * 2 9.09
Brejo-19-10-12h 43 2 4.65 3 6.98 5 11.63 4 9.30
Pasto2-17-10-7h 275 6 2.18 8 2.91 9 3.27 8 2.91
Pasto1-15-10-12h 239 1 0.42 6 2.51 * * 6 2.51

SUM AVG SUM AVG SUM AVG SUM AVG
TOTAL: 26 2.34 37 2.65 53∗ 7.91∗ 42 3.60

small. Overall, GBmulti significantly outperformed GBTmulti and both state-of-the-art
competitors.

Table 23 – Wilcoxon signed-rank p-values for comparison of counting methods.

Comparison P-value
GBmulti vs. GBTmulti 0.043
GBmulti vs. Mosaic 0.011
GBmulti vs. GBD 0.017
GBTmulti vs. Mosaic 0.011
GBTmulti vs. GBD 0.067
Mosaic vs. GBD 0.011

122

Despite this overall performance, the results on individual datasets indicate that
there are still scenarios that may benefit from further research, such as dataset C, where the
ground truth contains 12 animals, yet our proposed method GBmulti (as the top performer)
produced a result that is 4 counts off (an error of 33.33%), which is proportionally high.

The results of our experiments show that while a group of datasets yielded low
counting errors across all three methods, other datasets proved themselves more challenging.
Interestingly, there is a strong association between the first group and the dataset collection
referred to as “motionless” in (SHAO et al., 2020). This suggests that accuracy of cattle
counting is closely related to cattle behavior, in addition to the flight plan used for data
acquisition. Some of the features of our proposed method, such as modelling the velocity
profile of moving cattle, the traversed distances deemed realistic, and whether animals are
standing up or laying down, have been designed aiming at explicitly considering cattle
behavior into the counting problem. There still more to be done in this direction though,
as discussed next.

5.5 Chapter Remarks

In this chapter, we embark on a comprehensive exploration of multi-attribute
analysis, a novel approach to enhancing the efficiency of our duplicate removal method.
Unlike the preceding chapter, our primary focus here is not on cattle detection but rather
the task of cattle counting and duplicate removal. We delve into the intricate world of
attribute analysis, considering factors such as state, color, direction, velocity, and distance,
all of which prove instrumental in refining our existing methodology.

Furthermore, within this chapter, we introduce an array of new datasets tailored
for training and cattle counting. These datasets significantly contribute to the evolution of
our methods and the subsequent enhancement of our results.

The upcoming section will feature the conclusions of this thesis, where we will
consolidate our findings and provide insights into the culmination of this extensive body
of work.

123

CHAPTER

6
CONCLUSIONS AND FUTURE WORK

In this thesis, the challenge of counting cattle across extensive pasture areas using
Unmanned Aerial Vehicles (UAVs) equipped with high-resolution cameras is addressed.
Traditional manual counting methods, known for their labor-intensive nature and suscepti-
bility to errors, and existing automated approaches, which often struggle with duplicate
animal detections, were the motivation behind this research. Counting cattle in vast
landscapes requires meticulous flight planning to capture comprehensive aerial imagery.
However, this strategy frequently leads to multiple images of the same cattle, necessitating
the development of robust methods for duplicate identification and removal.

Our research endeavors have been fundamentally motivated by the goal of enhanc-
ing cattle counting accuracy, particularly in extensive pastures employing geolocated aerial
imagery. We successfully introduced innovative methodologies that combine Convolutional
Neural Networks (CNNs) with graph-based optimization techniques. Our approach signifi-
cantly improved cattle counting precision and, importantly, reduced processing times by
approximately 15 times. This substantial advancement in efficiency, compared to tradi-
tional methods relying on image mosaics to address duplicate removal, underscores the
contribution of our work.

Additionally, our research explored the use of CNNs for automated cattle detection
in aerial images. Through meticulous model training on real-world images, we have
demonstrated the effectiveness of CNNs in accurately detecting cattle within these images,
particularly in scenarios with varying backgrounds and cattle colors.

Furthermore, our research has revealed that the problem of duplicate removal in
multiple images is under-explored in the literature. We have embarked on an extensive
exploration of this aspect by incorporating multi-attribute analysis into our methodology.
By incorporating attributes such as velocity, direction, state (lying down or standing),
color, and distance, we have significantly refined the matching process. This enhancement

124

not only contributed to improved duplicate removal but also elevated the overall accuracy
of cattle counting. Our in-depth ablation study show the contributions of attributes such
as velocity, color, and distance to the system’s overall performance. Consequently, our
multi-attribute analysis achieved an average error rate of only 2.34% across a diverse
collection of 26 datasets, marking a significant advancement in the field.

Moreover, our research legacy extends to the creation of a comprehensive cattle
counting benchmark and datasets for training. This benchmark includes a novel image
collection and two experimental protocols, designed to enable exhaustive evaluations under
real-world scenarios. The training datasets encompass an array of images, each featuring
multiple variations. These variations span a range of cattle breeds, colors, backgrounds,
lighting conditions, times of the day, altitudes, and distinct scenarios. Some datasets
capture individual cattle in cropped shots, while others feature scenes with multiple cattle
present in each frame. This thorough curation ensures that our datasets are not only diverse
but also faithfully representative, positioning them as invaluable resources for training
and rigorously testing cattle counting and classification methods across a multitude of
real-world challenges.

In conclusion, we have tackled a substantial challenge in the field of cattle detection
and counting, particularly relevant in the context of large pastures. Our innovative methods,
which combine CNNs with graph-based optimization and multi-attribute analysis, have
significantly improved the accuracy and efficiency of cattle counting in these extensive
environments. Our contributions, ranging from the development of novel methodologies to
the creation of comprehensive benchmark datasets, mark a significant advancement in this
field.

6.1 Future Works and Limitations

While our research has indeed achieved significant milestones, we are cognizant
of certain limitations that warrant consideration. Notably, we have not systematically
evaluated our methods on datasets characterized by extensive cattle movements, a common
occurrence when herds migrate to feeding and hydration areas. To address potential
counting inaccuracies in such scenarios, we recommend scheduling counting sessions during
periods when cattle predominantly graze. This strategic timing can mitigate the chances
of erroneously identifying management-induced movements as duplicate instances.

Future research within our domain offers several promising directions. To further
enhance counting precision, prospective investigations could delve into a comprehensive
understanding of cattle behavioral patterns. These insights may then be leveraged to
inform the development of optimal flight plans, which, in conjunction with the detection
and counting method, can evolve into cohesive and effective counting strategies. These
strategies may encompass factors such as the time of the day when cattle tend to move

125

less, preferred flight routes to enhance animal tracking, or adaptive adjustments to flight
plans based on real-time cattle movement detection.

Alternative approaches may involve the exploration of variations in image overlap
rates, drone flight paths, or even the deployment of multiple drones simultaneously.
Moreover, the acquisition of more diverse datasets under a range of real-world conditions
provides the opportunity to fine-tune CNN training and investigate conditions that have the
potential to further enhance counting methodologies. This multidimensional exploration
signifies the exciting and fruitful future prospects in our research field.

Additionally, future work could also explore the application and/or extension (or
adaptation) of our method to video data. This extension could facilitate real-time and
continuous cattle tracking and counting, adding a layer of practicality and versatility to
the proposed approach. In this context, the scope could also expand to include datasets
encompassing mixed animals in the same pasture, allowing for the separate counting of
various livestock types.

127

REFERENCES

AHUJA, R. K.; MAGNANTI, T. L.; ORLIN, J. B. Network flows. [S.l.: s.n.]: Cambridge,
Mass.: Alfred P. Sloan School of Management, Massachusetts, 1988.

ALANEZI, M. A. et al. Livestock management with unmanned aerial vehicles: A review.
IEEE Access, v. 10, p. 45001–45028, 2022.

ALSTON, J. M.; PARDEY, P. G. Agriculture in the global economy. Journal of
Economic Perspectives, v. 28, n. 1, p. 121–46, 2014.

BANK, W. Moving towards sustainability: The livestock sector and the world bank. World
Bank, March 2021. Available at: https://www.worldbank.org/en/topic/agriculture/brief/
moving-towards-sustainability-the-livestock-sector-and-the-world-bank.

BARBEDO, J. G. A.; KOENIGKAN, L. V. Perspectives on the use of unmanned aerial
systems to monitor cattle. Outlook on Agriculture, SAGE Publications Sage UK:
London, England, p. 0030727018781876, 2018.

BARBEDO, J. G. A. et al. Counting cattle in UAV images—dealing with clustered
animals and animal/background contrast changes. Sensors, Multidisciplinary Digital
Publishing Institute, v. 20, n. 7, p. 2126, 2020.

BARBEDO, J. G. A. et al. A study on the detection of cattle in UAV images using deep
learning. Sensors, Multidisciplinary Digital Publishing Institute, v. 19, n. 24, p. 5436,
2019.

BARRY, P.; COAKLEY, R. Accuracy of UAV photogrammetry compared with network
RTK GPS. Int. Arch. Photogramm. Remote Sens, v. 2, p. 2731, 2013.

BEZEN, R.; EDAN, Y.; HALACHMI, I. Computer vision system for measuring individual
cow feed intake using RGB-D camera and deep learning algorithms. Computers and
Electronics in Agriculture, Elsevier, v. 172, p. 105345, 2020.

BOCHKOVSKIY, A.; WANG, C.; LIAO, H. M. Yolov4: Optimal speed and
accuracy of object detection. CoRR, abs/2004.10934, 2020. Available at: https:
//arxiv.org/abs/2004.10934.

BROWN, R. G.; HWANG, P. Y. et al. Introduction to random signals and applied
Kalman filtering. [S.l.: s.n.]: Wiley New York, 1992. v. 3.

BUDIHARTO, W. et al. A review and progress of research on autonomous drone in
agriculture, delivering items and geographical information systems (gis). In: IEEE. 2019
2nd world symposium on communication engineering (WSCE). [S.l.: s.n.], 2019.
p. 205–209.

BUDIHARTO, W. et al. Mapping and 3d modelling using quadrotor drone and gis
software. Journal of Big Data, Springer, v. 8, p. 1–12, 2021.

https://www.worldbank.org/en/topic/agriculture/brief/moving-towards-sustainability-the-livestock-sector-and-the-world-bank
https://www.worldbank.org/en/topic/agriculture/brief/moving-towards-sustainability-the-livestock-sector-and-the-world-bank
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934

128

BUNDY, A.; WALLEN, L. Breadth-first search. In: . Catalogue of Artificial
Intelligence Tools. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984. cap. 25, p. 13–13.
ISBN 978-3-642-96868-6. Available at: https://doi.org/10.1007/978-3-642-96868-6_25.

CHAMOSO, P. et al. UAVs applied to the counting and monitoring of animals. In:
RAMOS, C. et al. (ed.). Ambient Intelligence - Software and Applications. Cham:
Springer International Publishing, 2014. p. 71–80. ISBN 978-3-319-07596-9.

CHEN, A. et al. Using computer vision, image analysis and uavs for the automatic
recognition and counting of common cranes (grus grus). Journal of Environmental
Management, Elsevier, v. 328, p. 116948, 2023.

CROUSE, D. F. On implementing 2d rectangular assignment algorithms. IEEE
Transactions on Aerospace and Electronic Systems, v. 52, n. 4, p. 1679–1696, 2016.

DANDOIS, J. P.; OLANO, M.; ELLIS, E. C. Optimal altitude, overlap, and weather
conditions for computer vision UAV estimates of forest structure. Remote Sensing,
Multidisciplinary Digital Publishing Institute, v. 7, n. 10, p. 13895–13920, 2015.

FARJON, G.; HUIJUN, L.; EDAN, Y. Deep-learning-based counting methods, datasets,
and applications in agriculture: a review. Precision Agriculture, Springer, p. 1–29,
2023.

FELZENSZWALB, P. F. et al. Object detection with discriminatively trained part-based
models. IEEE transactions on pattern analysis and machine intelligence, IEEE,
v. 32, n. 9, p. 1627–1645, 2010.

FLORIAN, M.; KLEIN, M. An experimental evaluation of some methods of solving the
assignment problem. INFOR, v. 8, p. 101–106, 1970.

FRACHTENBERG, E. Practical drone delivery. Computer, IEEE, v. 52, n. 12, p. 53–57,
2019.

GEDEON, C. I. et al. Identification and counting of european souslik burrows from
uav images by pixel-based image analysis and random forest classification: A simple,
semi-automated, yet accurate method for estimating population size. Remote Sensing,
MDPI, v. 14, n. 9, p. 2025, 2022.

GEMERT, J. C. van et al. Nature conservation drones for automatic localization
and counting of animals. In: AGAPITO, L.; BRONSTEIN, M. M.; ROTHER, C.
(ed.). Computer Vision - ECCV 2014 Workshops. Cham: Springer International
Publishing, 2015. p. 255–270. ISBN 978-3-319-16178-5.

GIRSHICK, R. Fast R-CNN. In: Proceedings of the IEEE international conference
on computer vision. [S.l.: s.n.], 2015. p. 1440–1448.

GIRSHICK, R. et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2014. p. 580–587.

GIRSHICK, R. et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2014. p. 580–587.

https://doi.org/10.1007/978-3-642-96868-6_25

129

GÓMEZ-CANDÓN, D.; CASTRO, A. D.; LÓPEZ-GRANADOS, F. Assessing the
accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture
purposes in wheat. Precision Agriculture, Springer, v. 15, n. 1, p. 44–56, 2014.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.: s.n.]: MIT
Press, 2016. http://www.deeplearningbook.org.

GRAYSON, B. et al. GPS precise point positioning for UAV photogrammetry. The
Photogrammetric Record, Wiley Online Library, v. 33, n. 164, p. 427–447, 2018.

GUO, X. et al. Application of UAV remote sensing for a population census of large wild
herbivores—taking the headwater region of the yellow river as an example. Remote
Sensing, Multidisciplinary Digital Publishing Institute, v. 10, n. 7, p. 1041, 2018.

HABCHI, A. E. et al. Cga: A new approach to estimate the geolocation of a ground
target from drone aerial imagery. In: IEEE. 2020 Fourth International Conference
On Intelligent Computing in Data Sciences (ICDS). [S.l.: s.n.], 2020. p. 1–4.

HE, K. et al. Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p.
770–778.

HOWARD, A. et al. Searching for MobileNetV3. 2019.

HOWARD, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861, 2017.

HUANG, J. et al. Speed/accuracy trade-offs for modern convolutional object detectors.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2017. p. 7310–7311.

HUANG, R. et al. Multi-uav collaboration to survey tibetan antelopes in hoh xil. Drones,
v. 6, n. 8, 2022. ISSN 2504-446X. Available at: https://www.mdpi.com/2504-446X/6/8/196.

JIANG, B. et al. FLYOLOv3 deep learning for key parts of dairy cow body detection.
Computers and Electronics in Agriculture, Elsevier, v. 166, p. 104982, 2019.

JOCHER, G. YOLOv5 by Ultralytics. 2020. Available at: https://github.com/
ultralytics/yolov5.

JOHNSTON, M. G. Ground object geo-location using UAV video camera. In: IEEE. 2006
IEEE/AIAA 25TH Digital Avionics Systems Conference. [S.l.: s.n.], 2006. p. 1–7.

JR, L. R. F.; FULKERSON, D. R. Flows in networks. [S.l.: s.n.]: Princeton University
Press, 1962.

KARPATHY, A. et al. Large-scale video classification with convolutional neural networks.
In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2014. p. 1725–1732.

KELLENBERGER, B.; MARCOS, D.; TUIA, D. Detecting mammals in UAV images:
Best practices to address a substantially imbalanced dataset with deep learning. Remote
Sensing of Environment, Elsevier, v. 216, p. 139–153, 2018.

http://www.deeplearningbook.org
https://www.mdpi.com/2504-446X/6/8/196
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

130

KILGOUR, R. J. In pursuit of “normal”: A review of the behaviour of cattle at pasture.
Applied Animal Behaviour Science, Elsevier, v. 138, n. 1-2, p. 1–11, 2012.

KORNBLITH, S.; SHLENS, J.; LE, Q. V. Do better imagenet models transfer better?
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2019. p. 2661–2671.

KRISHNA, K. R. Agricultural drones: a peaceful pursuit. [S.l.: s.n.]: CRC Press,
2018.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems. [S.l.: s.n.], 2012. p. 1097–1105.

KURKUTE, S. et al. Drones for smart agriculture: A technical report. International
Journal for Research in Applied Science and Engineering Technology,
International Journal for Research in Applied Science and Engineering . . . , v. 6, n. 4, p.
341–346, 2018.

LANG, K. The development of the time-delay neural network architecture for speech
recognition. Technical Report CMU-CS-88-152, Carnegie Mellon University, 1988.

LI, X. et al. Deep cascaded convolutional models for cattle pose estimation. Computers
and Electronics in Agriculture, Elsevier, v. 164, p. 104885, 2019.

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. [S.l.: s.n.], 2015. p. 3431–3440.

LONGMORE, S. et al. Adapting astronomical source detection software to help detect
animals in thermal images obtained by unmanned aerial systems. International journal
of remote sensing, Taylor & Francis, v. 38, n. 8-10, p. 2623–2638, 2017.

LOSHCHILOV, I.; HUTTER, F. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. Available at: http://arxiv.org/abs/1711.05101.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, Springer, v. 5, p. 115–133, 1943.

ME, S. M. et al. Quadcopter uav based fertilizer and pesticide spraying system. Int.
Acad. Res. J. Eng. Sci, v. 1, n. 2016, p. 8–12, 2016.

MELLO, R. F. de; PONTI, M. A. Statistical learning theory. Machine Learning,
Springer, p. 75–128, 2018.

MEYES, R. et al. Ablation Studies in Artificial Neural Networks. 2019.

MILLER, M. L.; STONE, H. S.; COX, I. J. Optimizing murty’s ranked assignment
method. IEEE Transactions on Aerospace and Electronic Systems, IEEE, v. 33,
n. 3, p. 851–862, 1997.

MOHAN, A.; RAJU, R. D.; JANARTHANAN, P. Animal disease diagnosis expert system
using convolutional neural networks. In: IEEE. 2019 International Conference on
Intelligent Sustainable Systems (ICISS). [S.l.: s.n.], 2019. p. 441–446.

http://arxiv.org/abs/1711.05101

131

MORGAN, D.; FALKNER, E. Aerial mapping: methods and applications. [S.l.:
s.n.]: CRC Press, 2001. v. 2.

ODM, O. A. A command line toolkit to generate maps, point clouds, 3D models
and DEMs from drone, balloon or kite images. 2020. OpenDroneMap/ODM
GitHub Page. Available at: https://github.com/OpenDroneMap/ODM.

PENATTI, O. A.; NOGUEIRA, K.; SANTOS, J. A. D. Do deep features generalize from
everyday objects to remote sensing and aerial scenes domains? In: Proceedings of the
IEEE conference on computer vision and pattern recognition workshops. [S.l.:
s.n.], 2015. p. 44–51.

PEREZ, L.; WANG, J. The Effectiveness of Data Augmentation in Image
Classification using Deep Learning. 2017.

PONTI, M. A. et al. Everything you wanted to know about deep learning for computer
vision but were afraid to ask. In: IEEE. 2017 30th SIBGRAPI conference on
graphics, patterns and images tutorials (SIBGRAPI-T). [S.l.: s.n.], 2017. p. 17–41.

PONTI, M. A. et al. Training deep networks from zero to hero: avoiding pitfalls and going
beyond. In: IEEE. 2021 34th SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI). [S.l.: s.n.], 2021. p. 9–16.

QIAO, Y.; TRUMAN, M.; SUKKARIEH, S. Cattle segmentation and contour extraction
based on mask R-CNN for precision livestock farming. Computers and Electronics in
Agriculture, Elsevier, v. 165, p. 104958, 2019.

RACHMAWATI, S. et al. Application of drone technology for mapping and monitoring
of corn agricultural land. In: 2021 International Conference on ICT for Smart
Society (ICISS). [S.l.: s.n.], 2021. p. 1–5.

REDMON, J.; FARHADI, A. YOLO9000: better, faster, stronger. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.],
2017. p. 7263–7271.

REJEB, A. et al. Drones in agriculture: A review and bibliometric analysis. Computers
and Electronics in Agriculture, v. 198, p. 107017, 2022. ISSN 0168-1699. Available at:
https://www.sciencedirect.com/science/article/pii/S0168169922003349.

REY, D.; NEUHÄUSER, M. Wilcoxon-signed-rank test. In: . International
Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. cap. 606, p. 1658–1659. ISBN 978-3-642-04898-2. Available at:
https://doi.org/10.1007/978-3-642-04898-2_616.

RIJSBERGEN, C. J. V. Foundation of evaluation. Journal of documentation, MCB
UP Ltd, 1974.

RUSSAKOVSKY, O. et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, Springer, v. 115, n. 3, p. 211–252, 2015.

SANDLER, M. et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
2019.

https://github.com/OpenDroneMap/ODM
https://www.sciencedirect.com/science/article/pii/S0168169922003349
https://doi.org/10.1007/978-3-642-04898-2_616

132

SARKAR, D.; BALI, R.; SHARMA, T. Practical Machine Learning with Python.
[S.l.: s.n.]: Springer, 2018.

SARWAR, F. Robust Livestock Detection and Counting Using an Unmanned
Aerial Vehicle (UAV). 2022. Tese (Doutorado) — Auckland University of Technology,
2022.

SARWAR, F. et al. Detecting sheep in uav images. Computers and Electronics in
Agriculture, Elsevier, v. 187, p. 106219, 2021.

SHALEV-SHWARTZ, S.; BEN-DAVID, S. Understanding machine learning: From
theory to algorithms. [S.l.: s.n.]: Cambridge university press, 2014.

SHAO, W. et al. Cattle detection and counting in UAV images based on convolutional
neural networks. International Journal of Remote Sensing, Taylor & Francis, v. 41,
n. 1, p. 31–52, 2020.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

SOARES, V. H. A. et al. Cattle counting in the wild with geolocated aerial images in
large pasture areas. Computers and Electronics in Agriculture, Elsevier, v. 189, p.
106354, 2021.

SUTSKEVER, I. et al. On the importance of initialization and momentum in deep
learning. In: International conference on machine learning. [S.l.: s.n.], 2013. p.
1139–1147.

SZEGEDY, C. et al. Inception-v4, inception-resnet and the impact of residual connections
on learning. In: AAAI. [S.l.: s.n.], 2017. v. 4, p. 12.

SZEGEDY, C. et al. Going deeper with convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2015. p. 1–9.

SZEGEDY, C. et al. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015. Available at: http://arxiv.org/abs/1512.00567.

SZELISKI, R. Computer vision: algorithms and applications. [S.l.: s.n.]: Springer
Science & Business Media, 2010.

TRAKOOLWILAIWAN, T. et al. Convolutional neural network for high-accuracy
functional near-infrared spectroscopy in a brain–computer interface: three-class
classification of rest, right-, and left-hand motor execution. Neurophotonics, v. 5, p. 5 –
5 – 15, 2017. Available at: https://doi.org/10.1117/1.NPh.5.1.011008.

TRIPPI, R. R.; ASH, A. W.; II, J. V. R. A mathematical approach to large scale personnel
assignment. Computers & Operations Research, Elsevier, v. 1, n. 1, p. 111–117, 1974.

TZUTALIN. LabelImg. 2015. Git code. Available at: https://github.com/tzutalin/
labelImg.

VAYSSADE, J.-A.; ARQUET, R.; BONNEAU, M. Automatic activity tracking of goats
using drone camera. Computers and Electronics in Agriculture, v. 162, p. 767–772,
2019. ISSN 0168-1699. Available at: https://www.sciencedirect.com/science/article/pii/
S0168169918312894.

http://arxiv.org/abs/1512.00567
https://doi.org/10.1117/1.NPh.5.1.011008
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://www.sciencedirect.com/science/article/pii/S0168169918312894
https://www.sciencedirect.com/science/article/pii/S0168169918312894

133

VEROUSTRAETE, F. The rise of the drones in agriculture. EC agriculture, v. 2, n. 2,
p. 325–327, 2015.

WANG, N.; YEUNG, D.-Y. Learning a deep compact image representation for visual
tracking. In: Advances in neural information processing systems. [S.l.: s.n.], 2013.
p. 809–817.

WEBER, F. de L. et al. Recognition of pantaneira cattle breed using computer vision and
convolutional neural networks. Computers and Electronics in Agriculture, Elsevier,
v. 175, p. 105548, 2020.

WEBER, F. de L. et al. Counting cattle in uav images using convolutional neural network.
Remote Sensing Applications: Society and Environment, Elsevier, v. 29, p.
100900, 2023.

WITTEN, I. H.; FRANK, E.; HALL, M. A. Data Mining: Practical Machine
Learning Tools and Techniques. 3rd. ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011. ISBN 0123748569, 9780123748560.

WOLF, P.; DEWITT, B.; WILKINSON, B. Elements of Photogrammetry
with Application in GIS, Fourth Edition. McGraw-Hill Education, 2013. ISBN
9780071761116. Available at: https://books.google.com.br/books?id=bCx5rmWMHyAC.

World Bank. World development indicators 2012 (English). 2012. World
development indicators. Washington, DC: World Bank. Available at: http://documents.
worldbank.org/curated/en/553131468163740875/World-development-indicators-2012.

WU, C. et al. Multicore bundle adjustment. In: IEEE. CVPR 2011. [S.l.: s.n.], 2011. p.
3057–3064.

XU, B. et al. Automated cattle counting using mask R-CNN in quadcopter vision system.
Computers and Electronics in Agriculture, Elsevier, v. 171, p. 105300, 2020.

XU, B. et al. Livestock classification and counting in quadcopter aerial images using mask
R-CNN. International Journal of Remote Sensing, Taylor & Francis, p. 1–22, 2020.

XUE, Y.; WANG, T.; SKIDMORE, A. K. Automatic counting of large mammals from
very high resolution panchromatic satellite imagery. Remote sensing, Multidisciplinary
Digital Publishing Institute, v. 9, n. 9, p. 878, 2017.

ZOPH, B. et al. Learning transferable architectures for scalable image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2018. p. 8697–8710.

https://books.google.com.br/books?id=bCx5rmWMHyAC
http://documents.worldbank.org/curated/en/553131468163740875/World-development-indicators-2012
http://documents.worldbank.org/curated/en/553131468163740875/World-development-indicators-2012

	Folha de rosto com carimbo
	Title page additional
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Contributions
	Outline of the Thesis

	Background
	Drones for Precision Farming
	Mapping and Geolocation Estimation with Drone Imagery

	Computer Vision
	Artificial Neural Networks (ANNs)
	Neural Network Training

	Convolutional Neural Network (CNN)
	Convolution
	CNN Structure
	GoogLeNet - Inception
	Region-based Convolutional Network (R-CNN)

	Chapter Remarks

	Related Work
	Counting Animals From Single Images
	Counting Animals From Multiple Images
	Chapter Remarks

	Livestock detection and Counting in the Wild
	Materials and Methods
	Devices and Software
	Novel image collection for training
	Datasets for Cattle Counting
	Labeling
	Training the Convolutional Neural Network (CNN)

	Counting Method
	Computing the Projections
	Performing Cattle Detection
	Cattle Counting and Removal of Duplicates

	Evaluation
	Cattle Detection
	Cattle Counting

	Results and Discussion
	Runtime Analysis: 3D Surface Location vs. Geolocation Estimates
	Experimental Framework for Benchmarking of Cattle Detection and Counting

	Chapter Remarks

	Multi-Attribute Approach for Duplicate Livestock Removal and Counting
	Materials and Methods
	Devices
	Datasets for Training
	Datasets for Cattle Counting
	Convolutional Neural Network (CNN)
	Evaluation Methods

	Duplicated Removal and Counting Method
	Multi-Attribute Enhancement
	State Attribute
	Color Attribute
	Velocity Attribute
	Direction Attribute
	Distance Threshold Attribute

	Modified Ford-Fulkerson Algorithm for Duplicate Cattle Detection
	Complete Counting Method

	Hyperparameter Determination and Attribute Learning
	State Attribute Learning
	Color Attribute Learning
	Velocity Attribute Learning
	Direction Attribute Learning
	Distance Attribute Learning

	Evaluation
	Leave-One-Out Cattle Counting Evaluation
	Ablation Study
	Thresholded Variant: An Unweighted Version Using Multi-Attribute
	Comparison Against Baselines

	Chapter Remarks

	Conclusions and Future Work
	Future Works and Limitations

	References

