• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2017.tde-14092017-091318
Document
Author
Full name
Paulo Roberto Urio
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2017
Supervisor
Committee
Liang, Zhao (President)
Amancio, Diego Raphael
Breve, Fabricio Aparecido
Martinez, Alexandre Souto
Title in English
Complex network component unfolding using a particle competition technique
Keywords in English
Community detection
Complex networks
Data clustering
Machine learning
Semi-supervised learning
Abstract in English
This work applies complex network theory to the problem of semi-supervised and unsupervised learning in networks that are representations of multivariate datasets. Complex networks allow the use of nonlinear dynamical systems to represent behaviors according to the connectivity patterns of networks. Inspired by behavior observed in nature, such as competition for limited resources, dynamical system models can be employed to uncover the organizational structure of a network. In this dissertation, we develop a technique for classifying data represented as interaction networks. As part of the technique, we model a dynamical system inspired by the biological dynamics of resource competition. So far, similar methods have focused on vertices as the resource of competition. We introduce edges as the resource of competition. In doing so, the connectivity pattern of a network might be used not only in the dynamical system simulation but in the learning task as well.
Title in Portuguese
Desdobramento de componentes de redes complexas utilizando uma técnica de competição de partículas
Keywords in Portuguese
Agrupamento de dados
Aprendizado de máquina
Aprendizado semissupervisionado
Detecção de comunidades
Redes complexas
Abstract in Portuguese
Este trabalho aplica a teoria de redes complexas para o estudo de uma técnica aplicada ao problema de aprendizado semissupervisionado e não-supervisionado em redes, especificamente, aquelas que representam conjuntos de dados multivariados. Redes complexas permitem o emprego de sistemas dinâmicos não-lineares que podem apresentar comportamentos de acordo com os padrões de conectividade de redes. Inspirado pelos comportamentos observados na natureza, tais como a competição por recursos limitados, sistema dinâmicos podem ser utilizados para revelar a estrutura da organização de uma rede. Nesta dissertação, desenvolve-se uma técnica aplicada ao problema de classificação de dados representados por redes de interação. Como parte da técnica, um sistema dinâmico inspirado na competição por recursos foi modelado. Métodos similares concentraram-se em vértices como o recurso da concorrência. Neste trabalho, introduziu-se arestas como o recurso-alvo da competição. Ao fazê-lo, utilizar-se-á o padrão de conectividade de uma rede tanto na simulação do sistema dinâmico, quanto na tarefa de aprendizado.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
PauloRobertoUrio.pdf (5.12 Mbytes)
Publishing Date
2017-09-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.