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RESUMO

GONÇALVES, T. O. Contribuições e avanços em Redes Neurais em Grafos. 2024. 92 p.Tese (Dou-
torado em Ciências – Ciências de Computação e Matemática Computacional) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

A aplicação de Redes Neurais no contexto de grafos é um campo de crescente interesse nos
últimos anos. Uma das principais razões para isso é o grande número de aplicações do mundo
real que dão origem à produção de dados tendo este objeto matemático como estrutura, tais
como sistemas de recomendação em redes sociais, moléculas em química, planeamento urbano,
análise de esportes, etc. No entanto, além dos desafios comuns envolvidos no projeto de uma
solução clássica de Machine Learning para lidar com problemas do mundo real (e.g. overfitting,
desequilíbrio de classes, esparsidade, busca de hiperparâmetros), existem alguns obstáculos
adicionais que precisam ser tratados ao lidar com problemas de Machine Learning em grafos.
Nesta tese, apresentamos as contribuições propostas em relação a uma série de desafios recentes
de Redes Neurais em Grafos. Mais especificamente, primeiro propomos Extreme Learning

Machine to Graph Convolutional Networks (ELM-GCN), uma extensão da teoria de ELM para
ser aplicada a GCNs, um modelo de Rede Neural projetado para operar em grafos. Esta extensão
dá origem a um algoritmo de treinamento analítico com bases teóricas sólidas e que é capaz de
atingir uma precisão semelhante aos métodos concorrentes, mas reduzindo consideravelmente
o tempo de treinamento. Posteriormente, propomos uma nova arquitetura de GNN para ser
aplicada em grafos dinâmicos, i.e. grafos nos quais seus elementos (nós, arestas e vetores de
características) mudam ao longo do tempo. Essa formulação deu origem ao Graph Neural

Networks for Valuing Soccer Players (GNN-VSP), uma metodologia de avaliação de atletas de
futebol baseada em um algoritmo de explicabilidade capaz de considerar a interação da equipe.
Por fim, mostramos as linhas futuras que o autor pretende seguir em sua carreira de pesquisador.

Palavras-chave: Redes Neurais em Grafos, Extreme Learning Machine, Grafos Dinâmicos.





ABSTRACT

GONÇALVES, T. O. Graph Neural Networks contributions and advancements. 2024.
92 p.Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

Applying Neural Networks to the context of graphs is a field of increasing interest in recent
years. One of the main reasons for that is the large number of real-world applications that give
rise to data being produced with this mathematical object as the underlying structure, like social
networks recommendation systems, molecules in chemistry, urban planning, sports analytics,
etc. However, besides the common challenges involved in designing a classic Machine Learning
solution for tackling real-world issues (e.g. overfitting, class imbalance, sparsity, hyperparameter
search, etc), there are some additional obstacles that need to be overcome when dealing with
Machine Learning problems on graphs. In this dissertation, we present the proposed contributions
with respect to a number of the recent Graph Neural Networks challenges. More specifically,
first we propose Extreme Learning Machine to Graph Convolutional Networks (ELM-GCN), an
extension of the ELM theory to be applied to GCNs, a Neural Network model designed to operate
on graphs. This extension gives rise to an analytical training algorithm that comes with solid
theoretical foundations and that is able to reach an accuracy similar to competing methods, but
reducing the training time considerably. Afterward, we propose a novel GNN architecture to be
applied in dynamic graphs, i.e. graphs in which its elements (nodes, edges, and feature vectors)
change over time. This formulation led to Graph Neural Networks for Valuing Soccer Players
(GNN-VSP), a methodology for scoring soccer athletes based on an explainability algorithm that
is able to account for the team interplay. Finally, we show the future lines that the author plans
to follow in his research career.

Keywords: Graph Neural Networks, Extreme Learning Machine, Dynamic Graphs.
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CHAPTER

1
INTRODUCTION

1.1 Graph Neural Networks Overview

Applying Neural Networks to the context of graphs has long been of great interest due to
the potential applications (KÜCHLER; GOLLER, 1996; SCARSELLI et al., 2008). However, it
was only a few years ago that this area has emerged as a main topic in Machine Learning.

A graph is a powerful and versatile structure that arises naturally from many real-world
applications. In a simple mathematical abstraction, a graph can be understood as a set of
entities (nodes) and relationships between these entities (edges), enabling complex systems
such as social networks (ARAZZI et al., 2023), molecules (WANG; LI; FARIMANI, 2023),
street maps (LI; ZHU, 2021), athletes interplay (XENOPOULOS; SILVA, 2021), documents
citations (ACHARYA; ZHANG, 2020), etc, to be modeled as graphs.

Data can be associated to the elements of a graph, making viable the use of Machine
Learning tools to extract non-trivial knowledge, perform classifications, and even group parts
of a graph based on data similarity. For instance, feature vectors can be associated to the graph
nodes (e.g a citation network in which the data is related to the content of each document), graph
edges (e.g. the data is the message between two users in a social network) and/or the whole
graph (e.g. solubility of a molecule). Among typical Machine Learning tasks performed on
graph structures are node-level prediction (e.g. identify the genre of new movies belonging to a
streaming platform), edge-level prediction (e.g. forecast crime incidence in the streets of a city),
link prediction (e.g. recommend songs in a bipartite user-song graph) or graph-level prediction
(e.g. predict how many goals a team will make in a match) (ZHANG et al., 2019).

Analogously to the classical Convolutional Neural Networks (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012) designed to operate on regular grid structures like images and videos, learning
mechanisms on graphs typically aim to build local operators that aggregate information from the



28 Chapter 1. Introduction

nodes and their neighborhoods. However, one of the main differences between graph and classic
convolution is that the graph demands flexibility with respect to the number and ordering of the
neighbors, as graph nodes can have an arbitrary number of neighbors with no canonical order.

Besides of the common challenges involved in designing a classic Machine Learning
solution for a real-world problem (e.g. overfitting, class imbalance, sparsity, hyperparameter
search, etc), there are some additional issues that need to be tackled when dealing with Machine
Learning problems on graphs. In Section 1.2 we discuss the challenges that we address in this
dissertation.

1.2 Some Challenges in Graph Neural Networks

Deep Graph Neural Networks and the Oversmoothing Effect. The term “over-smoothing” in
the context of Deep Learning is often used to describe a situation where a neural network model
becomes too generalized, losing sensitivity to fine-grained details in the data. This phenomenon
is commonly associated with graph-based neural networks, in particular Message-Passing Graph
Neural Networks. Oversmoothing can occur when the model aggregates information from
neighboring nodes iteratively, assigning similar representations to all nodes (LI; HAN; WU,
2018), effectively smoothing out the differences between them.

Kipf and Welling (2016a) when introducing the Graph Convolutional Network (GCN)
model (discussed in detail in Section 2.2), empirically observed that the accuracy of the GCN
dropped when stacking multiple layers. Moreover, they also showed that employing residual
connections (HE et al., 2016) – which helps the training process in non-graph scenarios for
alleviating the Vanishing Gradient problem – did not properly work for GCNs.

Li, Han and Wu (2018) show theoretically that oversmoothing is guaranteed to asymptot-
ically happen when the number of layers grows indefinitely, making data representation converge
to the same vector, hampering downstream task performance.

Additionally to the result of Li, Han and Wu (2018), Oono and Suzuki (2020) showed
that GNNs lose expressive power exponentially with the depth of the network. However, the
neighborhood aggregation mechanism responsible for the Oversmoothing is beneficial for
shallow networks (BARANWAL; FOUNTOULAKIS; JAGANNATH, 2021; BARANWAL;
FOUNTOULAKIS; JAGANNATH, 2022) and thus there must exist an ideal number of stacking
layers that leads to optimal performance (KERIVEN, 2022; WU et al., 2022). As a result, several
works rely on shallow GNN architectures for tackling real-world issues, being the 2-layered
model largely used (JIN et al., 2020; ZHAO et al., 2019; YAN; XIONG; LIN, 2018).
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Dynamic Graphs. Several works design Graph Neural Network architectures to work on static
graphs, that is, a graph or set of graphs that do not change over time (KIPF; WELLING, 2016a;
VELIČKOVIĆ et al., 2017; YING et al., 2021). However, it is not uncommon that a real-world
application gives rise to dynamic graphs, which are time-evolving graphs endowed with time-
dependent features. Some examples of problems being naturally modeled as dynamic graphs are:
social networks in which new users join or delete accounts, networks where new interactions
between nodes show up over time; and a soccer match in which players can be substituted or
expelled, players may change their interplay during the match, and also their personal positioning
and play style may vary.

A possible manner of categorizing dynamic graph problems is the distinction between
Continuous-Time Dynamic Graphs (CTDG) and Discrete-Time Dynamic Graphs (DTDG) (KAZEMI
et al., 2020). The former can be defined as an initial graph and a sequence of changes indexed by a
real-valued time variable, e.g. node i added at time t1 and edge j,k deleted at time t2 (NGUYEN et

al., 2018; CHANG et al., 2020). In contrast, DTDG is a discrete temporal sequence of graphs and
features vector snapshots (MICHELI; TORTORELLA, 2022; SHARMA et al., 2023; ZHANG
et al., 2023).

While both CTDG and DTDG approaches are valid and application-dependent, DTDG
stands out as a popular choice as it enables the use of known architectures designed for static
graphs (KAZEMI et al., 2020). For instance, this discrete modeling proves advantageous in
scenarios where a static graph is derived by summarizing the temporal sequence of snapshots,
and subsequently, a Graph Neural Network tailored for static graphs can be applied.

In this context, some works (LIBEN-NOWELL; KLEINBERG, 2003; HISANO, 2018)
tackle this issue simply by taking the sum (or union) of the temporal sequence of adjacency
matrices. Moreover, an extension of this approach is to summarize the graph by giving more
weight to more recent snapshots given by a decaying kernel function (IBRAHIM; CHEN, 2015;
AHMED et al., 2016).

Irrespective of the chosen approach, the exploration of dynamic graphs to address real-
world problems remains of fundamental importance. There is still ample room for growth in
this field, as the number of existing dynamic graph network alternatives is considerably reduced
when compared to the established literature on Graph Neural Networks for static graphs.
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1.3 Scope of this Dissertation

This dissertation describes the author’s contributions with respect to the Graph Neural
Networks challenges described in Section 1.2. More specifically, since the Oversmoothing
problem pushes for GNNs architectures with a few hidden layers, we propose an analytical
training algorithm suitable for a Graph Neural Network model with 2 layers, described in
Chapter 3. In Chapter 4 we propose a novel GNN architecture to handle dynamic graphs.
This architecture is built upon a temporal summarizing scheme which lets the model learn the
aggregation by an attention mechanism. Moreover, this formulation led to a methodology for
scoring soccer athletes based on a graph explainability algorithm that, unlike other player valuing
mechanisms, is able to also account for the team interplay.
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CHAPTER

2
BASIC CONCEPTS

In this chapter, we discuss in details the main baseline works for this dissertation. More
specifically, Section 2.1 states basic concepts about Graph Signal Processing (GSP), which is of
fundamental importance to discuss Graph Convolutional Networks (GCN) (KIPF; WELLING,
2016a) in Section 2.2. Section 2.3 presents Extreme Learning Machine (ELM) (HUANG; ZHU;
SIEW, 2006) approach that is the basis of the proposed training mechanism.

2.1 Graph Signal Processing (GSP)

Let G = (V,E) be a graph, where V is the set of N vertices (or nodes) and E is the set
of edges, where each edge in E connects two vertices in V . Let A ∈ RN×N be the (optionally
weighted) adjacency matrix of G, i.e., a matrix such that each entry Ai, j encodes the strength
of the connection between the j-th and the i-th node, being Ai, j = 0 if and only if nodes i and j

are not connected. Note that: 1) unweighted graphs are special cases of weighted graphs where
all weights are equal to 1; and 2) a graph G is undirected if and only if A is symmetric. We will
assume G is an undirected graph, unless explicitly stated the contrary.

A graph signal is a function x : V → R, i.e., a mapping that associates a real number
to each node. Moreover, by fixing an arbitrary ordering of the N graph vertices, there is an
isomorphism between the space of graph signals and RN . In other words, we can interpret a
particular N-dimensional vector as a graph signal and vice-versa, which is especially important
for viewing eigenvectors of matrices derived from the graph topology as graph signals, as we
show further.

The degree matrix of G is D = diag(∑ j Ai, j), a diagonal matrix such that each entry Di,i

is the sum of the edge weights with an end in the i-th node. Note that if G in unweighted, then
Di,i encodes the number of neighbors of the i-th node.
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A matrix that plays an important role in GSP is the Laplacian matrix L = D−A. One of
its interesting properties is that there are as many null eigenvalues associated with L as there are
connected components in the graph. In particular, for any graph G, 0 is always an eigenvalue of
L associated with the eigenvector 1 = (1, 1, ... , 1) ∈ RN (STANKOVIC et al., 2020).

Another interesting property of the laplacian is that L is a positive semidefinite symmetric
matrix. Besides, its eigenvectors’ smoothness depends on the associated eigenvalues, i.e., the
eigenvector’s entries, viewed as a graph signal, tend to change more quickly their value in
adjacent nodes if the corresponding eigenvalue is larger (this property is illustrated in Figure 1).
In particular, recall that the (non-oscillatory) 1 eigenvector is associated with the null eigenvalue.

Figure 1 – Four distinct eigenvectors of the graph laplacian matrix and its associated eigenvalues. Eigen-
vectors’ smoothness is given by its associated eigenvalues.

(a) Eigenvector associated with the eigenvalue
λ = 0

(b) Eigenvector associated with the eigenvalue
λ = 0.27

(c) Eigenvector associated with the eigenvalue
λ = 0.75

(d) Eigenvector associated with the eigenvalue
λ = 1.89
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Now consider the spectral decomposition of the laplacian matrix L = UΛUT , where
U, Λ ∈ RN×N are its (orthonormal) matrix with column eigenvectors and diagonal matrix with
real non-negative eigenvalues, respectively. Since the set of eigenvectors U of L forms an
orthonormal basis of the space of graph signals and each eigenvector oscillates according to
the corresponding eigenvalue (which can be seen as frequencies), it is natural to interpret the
eigenvectors as the Fourier basis in graph context. That is, inner products between some graph
signal x and each of the eigenvectors of the Laplacian matrix should result in the Fourier
coefficients associated with frequencies given by the respective eigenvalues.

Figure 2 depicts an arbitrary graph signal in the graph of Figure 1. Each Graph Fourier
coefficient (Figure 2b) is associated with an eigenvalue (x axis in Figure 2b) of the laplacian.
Therefore, one can write the Graph Fourier Transform (GFT) of a graph signal x as x̂ =UT x and
the Inverse Graph Fourier Transform (IGFT) accordingly as x =Ux̂ (STANKOVIC et al., 2020),
where x, x̂ are vectors from RN stated as column matrices.

Another important notion in GSP is the convolution operation between two graph sig-
nals x,y, which in the non-graph continuous case is defined as (x∗ y)(t) =

∫
∞

−∞
x(t − τ)y(τ)dτ .

However, it is not possible to directly extend such a definition to the graph context as the shift
operation x(t − τ) is not defined in this scenario. Thus, this operation is defined in terms of the
Convolution Theorem, which states that the convolution operation in the spatial domain matches
the product operation in the frequency domain, as precisely defined as

Figure 2 – Graph signal represented both in graph and spectral domains. The Fourier coefficients can be
used to reconstruct the original graph signal with respect to the Fourier basis (the Laplacian
eigenvectors).

(a) Graph signal (graph domain) (b) Graph signal (spectral domain)
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x∗ y = IGFT
(

GFT(x)⊙GFT(y)
)

= IGFT
(

x̂⊙ ŷ
)

=U diag(x̂) ŷ , (2.1)

where: x̂, ŷ are the GFT of x,y respectively, seen as column matrices; and ⊙ is the element-wise
product.

Now suppose we want to filter a graph signal x by amplifying or attenuating each of its
Fourier modes x̂ given by a spectral kernel g : R+ → R+ defined in the frequency domain as

ŷ(λi) = g(λi)x̂(λi) , (2.2)

where ŷ is the GFT of the filtered signal y and each λi is one of the N eigenvalues of the laplacian
matrix L. Note that since the kernel is sampled only in Λ, one can define g(Λ) parametrized by
θ ∈ RN and so Equation 2.2 can be written as

ŷ(λi) = θi x̂(λi) , (2.3)

being θi the i-th coordinate of θ . This equation can further be compactly written for all eigenval-
ues as

ŷ = gθ (Λ)x̂ , (2.4)

where gθ (Λ) is the diagonal matrix gθ (Λ) = diag(θ).

Finally, recalling the GFT and IGFT definitions x̂ = UT x and y = Uŷ, Equation 2.4
becomes

y =Ugθ (Λ)UT x . (2.5)

Equation 2.5 can be understood by a sequence of operations at the graph signal x to
obtain the filtered graph signal y by the spectral kernel g parameterized by θ . The operations are
as follows:
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• Compute x̂, the GFT of x (by pre-multiplying x by UT );

• Make a pointwise product between x̂ and θ (by multiplying the diagonal matrix diag(θ) =
gθ (Λ) by the column matrix x̂);

• Compute the IGFT to return to the graph domain (by pre-multiplying the filtered signal ŷ

by U)

Although fairly simple, Equation 2.5 requires the computation of eigenvectors and
eigenvalues of the laplacian matrix L, which may be unfeasible for large graphs. Therefore
one could approximate gθ (Λ) by a truncated expansion in terms of the Chebyshev polynomials
(HAMMOND; VANDERGHEYNST; GRIBONVAL, 2011). This expression can be written as

gθ (Λ)≈
K

∑
k=0

θ
′
kTk(Λ̃) , (2.6)

where: K is the maximum order of the Chebyshev polynomials (also the number of terms used in
the truncation); θ ′ ∈ RK is a vector of Chebyshev coefficients, being θ ′

k is the k-th coordinate of
θ ′; Tk is the k-th order Chebyshev polynomial; and Λ̃ = 2

λmax
Λ− I (with λmax being the maximum

eigenvalue of Λ) is a linear mapping of the graph spectrum to be contained in the interval [−1,1],
which is the domain of the Chebyshev polynomials. Note that θ are the filter coefficients in the
spectral domain while θ ′ are the Chebyshev coefficients. Remind that Chebyshev polynomials
are recursively defined as Tk(x) = 2xTk−1(x)−Tk−2(x) (for k ⩾ 2), with T0(x) = 1 and T1(x) = x.

Plugging Equation 2.6 in Equation 2.5, we obtain

y =Ugθ (Λ)UT x

≈U

(
K

∑
k=0

θ
′
kTk(Λ̃)

)
UT x

=
K

∑
k=0

θ
′
kUTk(Λ̃)UT x

=
K

∑
k=0

θ
′
kTk(UΛ̃UT )x

=
K

∑
k=0

θ
′
kTk(L̃)x , (2.7)

where L̃ =UΛ̃UT = 2
λmax

L− I.

For more detailed readings and deeper GSP theory construction, we refer to Sandryhaila
and Moura (2013a), Sandryhaila and Moura (2013b), Sandryhaila and Moura (2014), Hammond,
Vandergheynst and Gribonval (2011), Stankovic et al. (2020) and Col et al. (2017).



36 Chapter 2. Basic Concepts

2.2 Graph Convolutional Network (GCN)

Convolutional Neural Networks (CNN) marked a new era in Machine Learning since
its proposal (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Nevertheless, they only apply
to regular grid domains like time series, images, and videos. GCN is a natural extension of this
network paradigm to graphs.

Let L̄ = I −D−1/2AD−1/2 be the normalized laplacian matrix of an undirected graph G,
where I is the identity matrix and, as stated in Section 2.1, A and D are the adjacency and degree
matrices of G, respectively. Suppose a graph signal x ∈ RN associated with the N nodes of G

and consider the spectral decomposition L̄ =UΛUT of L̄, where U is the matrix whose columns
correspond to the eigenvectors and Λ is a diagonal matrix with the corresponding eigenvalues of
L̄.

Kipf and Welling (2016a) consider the operation of a convolution layer as filtering of a
graph signal x by a spectral kernel using the truncated expansion of Chebyshev polynomials as
given by Equation 2.7. In terms of Neural Networks terminology, x,y can be seen respectively as
the input and output, and θ ′

k as the layer parameters. Moreover, the authors employ a sequence
of simplifications to state the convolution layer precisely.

First, they note that a K-th order truncation of the Chebyshev polynomials expansion
aggregate information about the up to K-th order neighborhood of each node, since it is a
weighted sum of powers up to K of the normalized laplacian matrix. Hence, the authors consider
a linear model (K = 1) for a single layer. In this way, they expect that overfitting problems can
be alleviated on local neighborhood structures of the graph. Moreover, the information of higher
order neighborhoods of each node can still be accessed by just stacking multiple layers, with
also the advantage of not being limited to the explicit parameterization given by the Chebyshev
polynomials. Thus, setting K = 1 in Equation 2.7 gives

y ≈
(
θ
′
0T0(L̃)+θ

′
1T1(L̃)

)
x

=
(
θ
′
0 +θ

′
1L̃
)
x . (2.8)

Considering that the larger eigenvalue of the normalized laplacian matrix is λmax ≈ 2 (all
eigenvalues of L̄ are in the interval [0,2]) we have that



2.2. Graph Convolutional Network (GCN) 37

y ≈
(
θ
′
0 +θ

′
1L̃
)
x

=

(
θ
′
0 +θ

′
1

(
2

λmax
L̄− I

))
x

≈
(
θ
′
0 +θ

′
1(L̄− I)

)
x

=
(
θ
′
0 −θ

′
1D−1/2AD−1/2)x . (2.9)

Then, aiming to reduce the number of learnable parameters, Kipf and Welling (2016a)
define θ := θ ′

0 =−θ ′
1. Thus, Equation 2.9 becomes

y ≈ θ
(
I +D−1/2AD−1/2)x . (2.10)

Finally, the authors introduce the so-called renormalization trick: I +D−1/2AD−1/2 →

→ D̃−1/2ÃD̃−1/2 (KIPF; WELLING, 2016a), where Ã = A+ I and D̃ = diag(∑ j Ãi, j). Note that
by adding the identity matrix to A they virtually change the graph structure by adding self-loops
in each node, which means that a vertex aggregates the information from its neighbors with their
own. Therefore the convolution operation in a layer is considered as

y ≈ θ
(
D̃−1/2ÃD̃−1/2)x , (2.11)

which can be generalized to a F-dimensional graph signal X ∈ RN×F (i.e., X associates a vector
of RF to each of the N nodes) and, after applying the convolved signal to an activation function
σ , we have that

Y = f (X ,A) = σ
(
D̃−1/2ÃD̃−1/2XΘ

)
= σ

(
ÂXΘ

)
, (2.12)

where Â = D̃−1/2ÃD̃−1/2.

In Equation 2.12, it is considered that the layer gets as input a F-dimensional graph signal
X ∈ RN×F and produces as output a C-dimensional graph signal Y ∈ RN×C. Equivalently, one
could understand X and Y as graph signals with F and C channels or feature maps, respectively.
Matrix Â ∈RN×N is responsible for the neighbor aggregation process and it encodes the structure
of the considered graph, while Θ ∈ RF×C is a matrix of learnable parameters which must be
adjusted with a training algorithm.
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Equation 2.12 defines a single convolution layer. A Graph Convolutional Network (GCN)
is taken as a stack of convolution layers. In this way, a 2-layered GCN can be represented as

Y = σ2

(
Â σ1

(
ÂXΘ

(1))
Θ
(2)
)
, (2.13)

where: σ1,σ2 are the activation functions of the first and the second layer, respectively; and
Θ(1) ∈ RF×H ,Θ(2) ∈ RH×C are the matrices of learnable parameters of each layer. As in Multi-
Layer Perceptron (MLP), the sizes of the input (F) and output (C) are defined by the problem,
while the hidden dimension (H) remains as a hyperparameter.

In order to validate each step in their approximation scheme, Kipf and Welling (2016a)
analyze the accuracy of each propagation model given by the intermediate steps in their simplifi-
cations, as can be seen in the first column of Table 1. The propagation models described in Table 1
are the ones defined by the respective equations, in particular, the sub-indices of Θ are the ones
presented by θ ′

k in Equations 2.7, and 2.9 with the only difference that while θk is a vector, Θk is
a matrix of parameters. The authors apply the different propagation models in three different
real-world datasets: Citeseer, Cora, and Pubmed (SEN et al., 2008). We give more details about
these datasets in Section 3.3. They consider a two-layered GCN with H = 16 hidden units and
activation functions σ1(x) = ReLU(x) = max(0,x) and σ2(xi) = softmax(xi) = exi/∑ j ex j .

Table 1 – Comparison between different propagation models (KIPF; WELLING, 2016a). The convolution
layer defined after the renormalization trick outperforms the other propagation models tested.

Description Propagation Model Citeseer Cora Pubmed

Chebyshev filter (Eq. 2.7, K=3) ∑
3
k=0 Tk(L̃)XΘk 69.8 79.5 74.4

Chebyshev filter (Eq. 2.7, K=2) ∑
2
k=0 Tk(L̃)XΘk 69.6 81.2 73.8

First order model (Eq. 2.9) XΘ0 +D−1/2AD−1/2XΘ1 69.3 79.2 77.4

Single parameter (Eq. 2.10) (I +D−1/2AD−1/2)XΘ 68.3 80.0 77.5

Renormalization trick (Eq. 2.11) D̃−1/2ÃD̃−1/2XΘ 70.3 81.5 79.0

First-order term only D−1/2AD−1/2XΘ 68.7 80.5 77.8

Multi-Layer Perceptron XΘ 46.5 55.1 71.4
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Table 1 shows that the approximations do not impact substantially the accuracy, being
the model with renormalization the one with the better result. Also, Table 1 shows that the MLP
model did not achieve comparable results, meaning that the proposed GCN is using the graph
structure topology to enhance the predictions.

Kipf and Welling (2016a) also studied the impact of the GCN depth. They train networks
with 1 to 10 layers, where the GCN layer could be standard (Equation 2.12) or a variant with
residual connection (HE et al., 2016), letting the model access information from the previous
layer’s inputs:

Y (l+1) = σl
(
ÂY (l)

Θ
(l))+Y (l) . (2.14)

Figure 3 shows the results they obtained in this experiment. It can be seen that when the
model has two layers, it achieves the best test results (or very close to best, in the Pubmed case),
regardless of having or not having the variant residual connection. Indeed, the oversmoothing
effect (LI; HAN; WU, 2018) is well-known to degrade GCN performance as it gets deeper, as
discussed in Section 1.2. That’s precisely why they used a two-layered network with no residual
connection to obtain the results in Table 1 (see Kipf and Welling (2016a) for more details).

In every experiment of Kipf and Welling (2016a) – and other works (JIN et al., 2020;
ZHAO et al., 2019; YAN; XIONG; LIN, 2018) –, trainable parameters are learned via Gradient
Descent variants. These training algorithms are iterative, being prone to take several steps to
converge to a meaningful solution. Thus, the proposal of a novel training technique that computes
network weights analytically (instead of iteratively) with low computational cost turns out an
interesting alternative.

Figure 3 – Case study of how the depth of GCN impacts its performance (KIPF; WELLING, 2016a). In
general, as the number of layers grows, the test performance of the GCN is degraded regardless
of whether residual connections are or are not employed.

(a) Cora (b) Citeseer (c) Pubmed
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2.3 Extreme Learning Machine (ELM)

In contrast to Gradient Descent variant methods, Extreme Leaning Machine (ELM) (HUANG;
ZHU; SIEW, 2006) is a non-iterative learning algorithm to train 2-layered fully connected net-
works (i.e., with exactly one hidden layer). Despite being fast, as weights are defined analytically,
this training method has been overshadowed in the last years by the increasing interest in Deep
Learning (DL), which considers networks with many layers.

Consider a fully connected network with one hidden layer and one output layer, defined
by

Y = σ
(
XΘ

(1))
Θ
(2) , (2.15)

where: X ∈ RN×F is the input matrix with N samples and F features; Θ(1) ∈ RF×H is the hidden
layer weights; Θ(2) ∈ RH×C is the output layer weights; and σ is the hidden layer non-linear
activation function. Note that the output layer has no bias and its activation is the identity function.
Moreover, bias in the hidden layer can be emulated by adding a column of ones in the feature
matrix X . Consider also T ∈ RN×C a matrix of desired targets.

The key idea of ELM (HUANG; ZHU; SIEW, 2006) is that even if Θ(1) is randomly
settled (and kept unchanged), Θ(2) can still be analytically computed so as to minimize the
error between the predicted Y and the targets T . Precisely, suppose Θ(1) a F ×H matrix with
entries drawn from a probability distribution ψ and consider Yh = σ(XΘ(1)) the (random) N×H

non-linear mapping of X resulting from the hidden layer. Since the output layer is linear, i.e.,

Y = YhΘ
(2) , (2.16)

we can naively ask under which conditions Yh (a random mapping) is an invertible matrix, such
that Θ(2) can be computed as Θ(2) := Y−1

h T , letting Equation 2.16 become Y = T , i.e., the
network output matches perfectly the target labels.

A necessary condition for the matrix to be invertible is that it is a square matrix (i.e. the
number of rows equals the number of columns). Therefore, since Yh ∈ RN×H , the number of
hidden neurons must be selected as the number of data samples (H = N). An interesting result
proved by Huang, Zhu and Siew (2006) is that if this condition holds, then Yh is an invertible
matrix with probability one, thus Θ(2) := Y−1

h T gives a network with null training error, as
follows by Theorem 2.1.
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Theorem 2.1. (ELM – case H=N) (HUANG; ZHU; SIEW, 2006):

Let σ : R→R be an infinitely differentiable activation function in any interval. Consider a single
hidden layer fully connected network with N hidden neurons and an input matrix X ∈RN×F with
distinct rows, associated with a target matrix T ∈ RN×C. If hidden weights Θ(1) are randomly
sampled according to any continuous probability distribution ψ , then the hidden mapping Yh is,
with probability one, invertible, and thus there exists Θ(2) such that ∥YhΘ(2)−T∥= 0. Such Θ(2)

is defined as Θ(2) := Y−1
h T .

Theorem 2.1 states that in certain conditions one can train the output layer of a fully
connected network analytically given a random hidden layer weights matrix and obtain a network
free of error. Also, note that the random weights should be sampled according to any continuous
probability distribution ψ , which includes – but is not limited to – the commonly used uniform
distribution (in an arbitrary interval) and Gaussian distribution (with arbitrary mean and standard
deviation). Moreover, the error-free property is applied to the data that is presented to the network
in the training step, that is, ELM finds weights such that the error is null at the training subset of
the database. Algorithm 2.1 shows a step-to-step to train the network in this context.

Despite being fast and efficient, this particular case of ELM that considers H = N has a
number of drawbacks. First, the number of samples in a dataset is typically large, which means
that the network should be configured with a hidden dimension much larger than commonly
chosen. Second, a null error in the training subset is often undesired since it means the network
is overfitting the data. Therefore, Theorem 2.1 actually shows an upper bound in the number of
necessary hidden units and also guarantees maximum learning if that condition is satisfied.

In this context, Huang, Zhu and Siew (2006) also shows that one can upper bound
the training error by properly tunning the number of units H in the hidden layer, as stated in
Theorem 2.2. In this case, the inverse matrix Y−1

h must be replaced by the Moore–Penrose
pseudo-inverse Y †

h (BANERJEE, 1973).

Algorithm 2.1 – Extreme Leaning Machine – case H = N
Input: X , T , σ , ψ

Output: Θ(1), Θ(2)

→ Θ(1) ∼ ψ

→ Yh = σ(XΘ(1))

→ Θ(2) = Y−1
h T
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Algorithm 2.2 – Extreme Leaning Machine
Input: X , T , σ , ψ

Output: Θ(1), Θ(2)

→ Θ(1) ∼ ψ

→ Yh = σ(XΘ(1))

→ Θ(2) = Y †
h T

Theorem 2.2. (ELM) (HUANG; ZHU; SIEW, 2006):

Let σ : R → R be an infinitely differentiable activation function in any interval and ε > 0
arbitrary. Then, there exists H ⩽ N such that given a single hidden layer fully connected network
with H hidden neurons and an input matrix X ∈RN×F with distinct rows, associated with a target
matrix T ∈ RN×C, if hidden weights Θ(1) are randomly sampled according to any continuous
probability distribution ψ , there exists, with probability one, Θ(2) such that ∥YhΘ(2)−T∥< ε .
Such Θ(2) is defined as Θ(2) := Y †

h T .

We first note that Theorem 2.2 is a generalization of Theorem 2.1, since in the special
case that H = N, we have Yh a square matrix and hence its pseudo-inverse Y †

h matches its inverse
Y−1

h , as discussed in Appendix A. Moreover, Θ(2) as given by ELM Theorem has the property of
being the weight matrix with minimum Frobenius norm such that the approximation error is also
as small as possible (see Appendix A).

Algorithm 2.2 shows how to obtain the weights of the network. Note that Algorithm 2.2
is precisely Algorithm 2.1 changing only the inverse Y−1

h with the pseudo-inverse Y †
h operation

in the last instruction. Besides, observe again that in the particular case that H = N, we have
Y †

h = Y−1
h , being Algorithm 2.1 a special case of Algorithm 2.2.

Algorithm 2.3 – Regularized Extreme Leaning Machine
Input: X , T , σ , ψ , γ

Output: Θ(1), Θ(2)

→ Θ(1) ∼ ψ

→ Yh = σ(XΘ(1))

→ Θ(2) =
(

1
γ

I +Y T
h Yh

)†
Y T

h T
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A variant of ELM is the so-called Regularized Extreme Learning Machine (RELM)
proposed by Deng, Zheng and Chen (2009). RELM relies on a formulation where the norm of
the weight matrix Θ(2) is penalized during optimization. With some algebraic manipulation, the
regularized weight matrix Θ(2) can be computed as the last instruction of Algorithm 2.3. Deng,
Zheng and Chen (2009) also shows that ELM is a special case of RELM when the hyperparameter
γ → ∞.
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CHAPTER

3
EXTREME LEARNING MACHINE TO GRAPH
CONVOLUTIONAL NETWORKS (ELM-GCN)

In this chapter, we introduce our first contribution: ELM-GCN, a novel training algorithm
for Graph Convolutional Networks (GCN). We first discuss the related works in Section 3.1 and
then we formulate the theoretical results of our technique in Section 3.2. Finally, in Section 3.3
we evaluate experimentally our methodology applied to both synthetic and real-world datasets.

3.1 Related Works

A main issue in the context of Graph Neural Networks is the time spent to train the
models, especially in problems involving large graphs. A number of different strategies have
been proposed to tackle this issue. Hamilton, Ying and Leskovec (2017), for instance, proposes
GraphSAGE, a training mechanism that relies on an aggregation function to sample the neighbor-
hood of nodes. Cluster-GCN (CHIANG et al., 2019) is a learning algorithm that applies graph
clusters to restrict the neighborhood search to a subgraph identified by a graph cluster algorithm.
GraphACT (ZENG; PRASANNA, 2020) builds upon CPU-FPGA heterogeneous systems to
boost the training process. L-GCN (YOU et al., 2020) is a layer-wise training algorithm for
GCN that learns the weight matrix in each layer in a sequential manner. The Simple Graph
Convolution (WU et al., 2019) method reduces the complexity of GCNs by removing nonlin-
earities, collapsing the result into a single linear transformation. A technique that has gained
great attention in recent years is the fastGCN proposed by Chen, Ma and Xiao (2018), which
interprets graph convolution as integral transforms of embedding functions under probability
measures, evaluating the integrals through the Monte Carlo method.

The methods discussed above rely on iterative gradient descent-based algorithms to up-
date the weights in each layer every epoch during the training. In contrast, the methods proposed
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in this Chapter compute the weights of GCNs analytically, exhibiting comparable performance
to other GCN training mechanisms while being more efficient in terms of computational times.

Graph Convolutional Extreme Learning Machine (GCELM) (ZHANG et al., 2020) is a
training methodology that closely relates to the proposed RELM-GCN. However, our approach,
RELM-GCN, differs from GCELM in four main aspects: first, RELM-GCN has a message-
passing mechanism in the second layer, which GCELM has not. This leads to the important
consequence that each vertex in our model gathers information from both 1- and 2-hop neighbors,
while GCELM only considers information from adjacent nodes. Second, Zhang et al. (2020)
conducts experiments only on non-graph machine learning datasets, i.e., they derive a graph
from correlations present on the data used in their experiments. Therefore, the graph structure
and the feature vectors associated with the nodes are closely correlated, making it hard to assess
whether the good reported results are a consequence of their training mechanism or due to the
bias they introduced when generating the graph. Third, we formulate and prove theorems to
establish theoretical guarantees to our approach and such theoretical results are not present in
GCELM. Lastly, we state a theoretical upper bound in the number of hidden units to guarantee
that a GCN trained with the proposed ELM-GCN algorithm results in controlled training error.

3.2 Theoretical Approach

On the one hand, ELM is an efficient learning algorithm to train a fully connected
network if its architecture has exactly 2 layers, as shown in Section 2.3. On the other hand,
GCN is a model that works on graphs that performs well with exactly 2 layers, as discussed in
Section 2.2. In the following, we show how to extend ELM to operate (train) on 2-layered GCNs
with a linear output activation function.

First, comparing Equations 2.13 and 2.15, one notes that the difference between the
considered architectures is only the graph convolutional filter Â in each layer and the output
activation σ2.Hence, we consider a 2-layered GCN with linear output activation σ2(x) = x,
resulting in the mapping

Y = Â σ
(
ÂXΘ

(1))
Θ
(2) , (3.1)

where: X ∈ RN×F is a F-dimensional graph signal associated with the N nodes of a graph G;
Θ(1) ∈ RF×H is the hidden layer weight matrix; Θ(2) ∈ RH×C is the output layer weight matrix;
and Â ∈ RN×N is the GCN graph convolution filter, which depends only on the graph structure,
as shown in Section 2.2. For convenience, we replicate the definitions of matrices Â, D̃ and Ã as
follows:
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Â = D̃−1/2ÃD̃−1/2 , (3.2)

D̃ = diag(∑
j

Ãi, j) , (3.3)

Ã = A+ I . (3.4)

Similar to classical ELM, we assume that Θ(1) is a matrix with entries randomly sampled
from any continuous probability distribution ψ and that Θ(1) is fixed during the whole training
process. We then compute the random mapping of the input graph signal Yh = σ(ÂXΘ(1)). Note
that the output of the GCN can now be written as Y = Â Yh Θ(2). First, consider we configured the
number of hidden units H to match the number of nodes N of the graph. Under this assumption,
we can prove Theorem 3.1 and guarantee that Yh is invertible with probability one. Moreover, the
output weight matrix Θ(2) can be analytically computed to ensure no training error. Algorithm 3.1
shows the computational steps.

Theorem 3.1. (ELM-GCN – case H=N):

Let σ : R→R be an infinitely differentiable activation function in any interval, G a graph with N

nodes, non-negative edge weights and invertible matrix Ã. Let X̂ = ÂX ∈ RN×C be a convolved
graph signal matrix with distinct rows and T ∈RN×F be the target labels. Then, if a single hidden
layer GCN with N hidden units has its hidden weights Θ(1) randomly sampled according to
any continuous probability distribution ψ , then the convolved hidden mapping (ÂYh) is, with
probability one, invertible and thus there exists Θ(2) such that ∥ÂYhΘ(2)−T∥= 0. Such Θ(2) is
defined as Θ(2) := (ÂYh)

−1T .

Proof. First, we can see the convolved graph signal matrix X̂ as the input matrix X of Theorem
2.1. Since their other hypothesis that rows of X̂ are distinct, σ is an infinitely differentiable
activation function and Θ(1) is randomly sampled from a continuous probability distribution are
also satisfied, we can conclude from Theorem 2.1 that σ(X̂Θ(1)) = σ(ÂXΘ(1)) =: Yh is invertible
with probability one.

Now note that since edge weights of G are non-negative, all elements of matrix Ã

(Equation 3.4) are non-negative. Thus, all diagonal elements of D̃ (Equation 3.3) are positive
and hence D̃ and D̃−1/2 must be invertible matrices. Then, since by hypothesis Ã is invertible,
Equation 3.2 shows that Â must also be an invertible matrix. Hence, with probability one, ÂYh is
invertible and defining Θ(2) := (ÂYh)

−1T we have ∥ÂYhΘ(2)−T∥= 0, concluding the proof of
the Theorem.
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Algorithm 3.1 – Extreme Leaning Machine to Graph Convolutional Network – case H = N
Input: Â, X , T , σ , ψ

Output: Θ(1), Θ(2)

→ Θ(1) ∼ ψ

→ Yh = σ(ÂXΘ(1))

→ Θ(2) = (ÂYh)
−1T

Analogously to what was discussed about Theorem 2.1, Theorem 3.1 ensure null training
error if the hidden dimension is set to match the number of graph nodes, one can analytically train
the output layer weights of a GCN given a random hidden layer weights matrix whose entries
can be drawn from any continuous probability distribution ψ . However, it is desirable to be able
to configure the number of hidden units smaller than the number of graph nodes N. This trade-off
implies that the training error is not guaranteed to be null, which also alleviates overfitting.
Moreover, Theorem 3.1 actually provides an upper bound in the number of hidden units to
guarantee zero training error. To the best of our knowledge, our published paper (GONÇALVES;
NONATO, 2022) is the first work to provide the maximum number of hidden units in a GCN to
ensure zero training error while stating an algorithm to find this model.

In what follows, we present Theorem 3.2 and Algorithm 3.2, which generalize both
Theorem 3.1 and Algorithm 3.1 allowing our learning scheme to be applied to any number of
hidden units.

Theorem 3.2. (ELM-GCN):

Let σ : R → R be an infinitely differentiable activation function in any interval, ε > 0 an
arbitrary scalar, G a graph with N nodes, non-negative edge weights and invertible matrix Ã. Let
X̂ = ÂX ∈ RN×C be a convolved graph signal matrix with distinct rows and T ∈ RN×F be the
target labels. Then, there exists H ⩽ N such that if a single hidden layer GCN with H hidden
units has its hidden weights Θ(1) randomly sampled according to any continuous probability
distribution ψ , then, with probability one, there is Θ(2) such that ∥ÂYhΘ(2)−T∥< ε . Such Θ(2)

is defined as Θ(2) := (ÂYh)
†T .

Proof. Following exactly the same proof as of Theorem 2.2 (HUANG; ZHU; SIEW, 2006), the
validity of the theorem is obvious, otherwise, one could simply choose H = N which makes
∥ÂYhΘ(2)−T∥< ε according to Theorem 3.1.



3.2. Theoretical Approach 49

Algorithm 3.2 – Extreme Learning Machine to Graph Convolutional Network
Input: Â, X , T , σ , ψ

Output: Θ(1), Θ(2)

→ Θ(1) ∼ ψ

→ Yh = σ(ÂXΘ(1))

→ Θ(2) = (ÂYh)
†T

Algorithm 3.2 is similar to Algorithm 3.1, but replacing the inverse (ÂYh)
−1 by the

pseudo-inverse (ÂYh)
† operator (Appendix A). Therefore, in the special case H = N, we have

(ÂYh)
† = (ÂYh)

−1 (see Appendix A), making Algorithm 3.2 to be reduced to Algorithm 3.1.

We have also adapted the RELM algorithm to the context of GCN, resulting in a new
expression to compute Θ(2), as shown in Algorithm 3.3. The regularized version of our algorithm
is called Regularized Extreme Learning Machine to Graph Convolutional Network (RELM-GCN)
and we now also prove that ELM-GCN is a special case of RELM-GCN when the hyperparameter
γ → ∞.

Theorem 3.3. If the hyperparameter γ in the last instruction of Algorithm 3.3 is such that γ → ∞,
then the RELM-GCN technique is the same as the ELM-GCN. In other words, ELM-GCN is a
special case of RELM-GCN.

Proof. When γ → ∞ we have 1
γ
I → 0. Thus the analytical assignment to Θ(2) by RELM-GCN

(last instruction of Algorithm 3.3) becomes:

Θ
(2) =

(
1
γ

I +(ÂYh)
T (ÂYh)

)†

(ÂYh)
T T =

(
(ÂYh)

T (ÂYh)

)†

(ÂYh)
T T

= (ÂYh)
†
(
(ÂYh)

T
)†

(ÂYh)
T T = (ÂYh)

†
(
(ÂYh)

†
)T

(ÂYh)
T T

= (ÂYh)
†
(
(ÂYh)(ÂYh)

†
)T

T = (ÂYh)
†(ÂYh)(ÂYh)

† T = (ÂYh)
† T

which is the assignment to Θ(2) given by ELM-GCN (last instruction of Algorithm 3.2).
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Algorithm 3.3 – Regularized Extreme Learning Machine to Graph Convolutional Network
Input: Â, X , T , σ , ψ , γ

Output: Θ(1), Θ(2)

→ Θ(1) ∼ ψ

→ Yh = σ(ÂXΘ(1))

→ Θ(2) =
(

1
γ

I +(ÂYh)
T (ÂYh)

)†
(ÂYh)

T T

3.3 Experiments

Syntetic Data 1. This first experiment relies on a simple but illustrative synthetic dataset that
allows us to assess whether the ELM-GCN and RELM-GCN algorithms behave as expected
when training a GCN.

Consider a graph G derived from a 30×30 regular grid, that is, nodes are placed in the
center of each grid cell and each node is connected by an edge to its left, right, top, and bottom
neighbors. Gaussian noise is added to the x and y coordinates of the nodes and the perturbed
coordinates are assigned as a two-dimensional feature vector to the nodes in G (see Figure 4a). A
binary label (0 or 1) is associated with each node depending on whether the node comes from the
left or right half of the grid, that is, the left half of the nodes are labeled as 0 and the right half as
1, as depicted in Figure 4a. Although this graph dataset gives rise to a simple classification task,
it is able to reveal whether the proposed algorithms behave as expected when training 2-layer
GCNs with different hidden layer configurations.

We divide the graph nodes randomly into training (80%), validation (10%), and test
(10%) subsets. A GCN is then trained using the transductive paradigm with both ELM-GCN
and RELM-GCN strategies keeping the subsets fixed, but varying the number of hidden units
H along every integer from 1 to 900, the last being the number of nodes N in the graph. For
RELM-GCN, we set the regularization parameter γ as {10−8, 10−7, ... , 108} for each H value.
Figure 5 and Figure 6 show the Mean Square Error (MSE) of ELM-GCN and RELM-GCN
in terms of the number of hidden units, respectively (in Figure 6, the MSE corresponds to the
smallest error for all γ in each H value).

ELM-GCN was trained with 900 hyperparameter configurations (H ∈ {1,2, ... 900}).
Similarly, RELM-GCN had more than 15,000 distinct setups (γ ∈ {10−8, 10−7, ... , 108} for
each H ∈ {1,2, ... 900}). Therefore, it would be intractable to employ this amount of trainings
in a reasonable time with a standard iterative learning algorithm, clearly showing the advantage
of the proposed analytical training solution.
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Figure 4 – Result obtained in the experiment with the first synthetic data. The GCN trained with both
ELM-GCN and RELM-GCN can reproduce the ground truth after thresholding.

(a) Ground Truth

(b) Result obtained with ELM-GCN (c) Result obtained with RELM-GCN

(d) Result obtained with ELM-GCN (thresholded) (e) Result obtained with RELM-GCN (thresholded)
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Figure 5 – Loss of GCN trained with ELM-GCN for different numbers of hidden units. This is a classic
behavior of learning algorithms: as the number of parameters grows, the training error decreases,
while the validation drops and then increases (indicating overfitting).

Figure 6 – Loss of GCN trained with RELM-GCN for different numbers of hidden units. In contrast
with Figure 5, the regularization mechanism is able to alleviate overfitting as the number of
parameters grows.

Moreover, notice in Figure 5 that the training error tends to decrease when the number
of hidden neurons H increases. Validation error, in contrast, drops quickly until a certain point,
when it starts to increase, indicating overfitting. Figure 6 shows that both validation and training
errors follow the same decreasing tendency for RELM-GCN, indicating that the regularization
mechanism minimizes overfitting. Those classical behaviors show that both ELM-GCN and
RELM-GCN perform as expected and are similar to other non-regularized and regularized
learning techniques.
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Finally, one can see in Figure 5 that the ELM-GCN training error vanishes when the
number of hidden units reaches 720 (which is the number of graph training nodes), corroborating
with Theorem 3.1.

By selecting the best hyperparameter combination as to minimize MSE during validation
(the chosen hyperparameters were H∗ = 200 for ELM-GCN and (H∗, γ∗) = (300,105) for
RELM-GCN), we obtain Figure 4b and Figure 4c. Moreover, the GCNs trained with both
proposed methods can predict the labels as expected, presenting errors only near the decision
boundary between the two classes, which is also a classic model behavior. Thresholding the
output of the network in Ythresh = 0.5 results in Figure 4d and Figure 4e, implying 100%
classification accuracy for this fairly simple synthetic experiment.

Figure 7 – Result obtained in the second synthetic dataset experiment with RELM-GCN and RELM.
RELM-GCN can explore the neighborhood aggregation mechanism present in the GCN to
make the predictions.

(a) Ground Truth

(b) Result of RELM-GCN (c) Result of classic RELM
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Synthetic Data 2. In the next experiment, we compare RELM-GCN against classic RELM
aiming to check if our method is able to capture graph topological information. We build the
synthetic dataset by first uniformly sampling N = 1000 random points of the square [−1,1]2 as
the graph nodes. Then we defined a complete graph G where each edge is associated to a weight
ωi, j = exp(−d(vi, v j)

2/σω), where d(vi, v j) is the euclidian distance between nodes vi and v j

and σω is a parameter defined as σω = 0.1. Edge weights are bigger for closer nodes than for
ones more distant in the square. Then, edges with weight less than a threshold τω = 0.85 are
removed and we associate to each node a random feature xi ∈ [0,1] extracted from the uniform
distribution. Finally, we define the target of each node to be the average between its feature and
the feature of its neighbors. Figure 7 depicts the graph and the random features represented by
this synthetic dataset. One can observe that the network must handle neighborhood information
to predict the targets correctly in this experiment.

We randomly partition the graph nodes into 80% / 10% / 10% respectively for the training
/ validation / test subsets. Subsequently, we employ both RELM-GCN and RELM learning
algorithms to train the respective models they were designed for, i.e., a Graph Convolutional
Network (using transductive paradigm) and a Fully Connected Network, respectively, keeping
the subsets constant for both strategies. Moreover, we vary the number of hidden units H from 1
to 50, while the regularization parameter γ ranges from 10−8 to 108 in powers of 10 for each
number of hidden units. Again, we could only such a large amount of different hyperparameters
configurations thanks to the fast training process of both ELM-derived mechanisms. Indeed, it
takes less than a second to train the model (in the experiments with real data below we show the
precise training times for bigger datasets).

Figure 8 – MSE of the models trained with RELM-GCN and RELM in the graph of Figure 7a. RELM-
GCN presents a loss lower than RELM for exploring the capacity of GCN to aggregate data
from node neighbors.
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Figure 8, interpreted like Figure 6, shows the result of this experiment to both RELM-
GCN and RELM training schemes. Clearly our proposed learning algorithm RELM-GCN is able
to exploit GCN’s capacity to deal with neighborhood data to enhance the model’s predictions.
Moreover, the best hyperparameters configurations are (H∗, γ∗) = (7,106) for RELM-GCN
and (H∗, γ∗) = (20,10−1) for RELM and we note a quick stabilization of both networks with
very few hidden units, due to the low complexity of the task. However, one can clearly see in
Figures 7b and 7c that RELM-GCN trained the model that correctly captures graph features in
contrast with RELM, which provides almost the same result for all nodes. Those figures depict
the outputs of the networks with their best hyperparameters configuration.

Real Data. Finally, in our last experiment, we assess the performance of ELM-GCN and RELM-
GCN when training GCNs on four well-known graph datasets: Cora, Citeseer, Pubmed, and
Reddit. The first three datasets are citation networks and the goal is to categorize documents,
whereas in the fourth dataset, the model should predict post categories from the Reddit commu-
nity, a social network. Cora, Citeseer, and Pubmed are available in <https://github.com/tkipf/gcn>
and the Reddit dataset can be obtained from <http://snap.stanford.edu/graphsage/>. Similarly to
Chen, Ma and Xiao (2018), for the citation networks we build the validation and test subsets as
in Kipf and Welling (2016a), employing the remaining nodes for training. In the case of Reddit,
we split the dataset as in Chen, Ma and Xiao (2018). Table 2 shows the dataset statistics and how
the splits have been done.

We compare GCNs (KIPF; WELLING, 2016a) trained with the proposed ELM-GCN /
RELM-GCN against the classical gradient descent-based method, which we call Backpropagation
(BP), and the fastGCN learning algorithm proposed by Chen, Ma and Xiao (2018). Baseline
implementations were downloaded from <https://github.com/tkipf/gcn> and <https://github.com/
matenure/FastGCN>, respectively.

The hyperparameters for BP and fastGCN are settled as proposed in the baseline imple-
mentation. Specifically, in the citation networks, BP (KIPF; WELLING, 2016a) is configured
with 16 hidden units, 5 · 10−4 L2 as regularization parameter, 0.01 as learning rate, dropout
equal to 0.5, 200 epochs and 10 patience iteration (i.e., optimization is early stopped if accuracy

Table 2 – Statistics and split of each dataset for the real data experiment.

Dataset Nodes Edges Features Classes Split (Train./Val./Test)
Cora 2,708 5,429 1,433 7 1,208 / 500 / 1,000

Citeseer 3,327 4,732 3,703 6 1,827 / 500 / 1,000
Pubmed 19,717 44,338 500 3 18,217 / 500 / 1,000
Reddit 232,965 11,606,919 602 41 153,932 / 23,699 / 55,334

https://github.com/tkipf/gcn
http://snap.stanford.edu/graphsage/
https://github.com/tkipf/gcn
https://github.com/matenure/FastGCN
https://github.com/matenure/FastGCN
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in the validation does not increase over 10 consecutive iterations). GCN is not trained with
BP for the Reddit dataset, as it runs out of memory for large graphs. For fastGCN (CHEN;
MA; XIAO, 2018), the number of hidden units is 16 for Cora and Pubmed and 128 for Reddit,
L2 regularization parameter is 5 ·10−4 for Cora and Pubmed and 1 ·10−4 for Reddit, learning
rate ranges in {0.01, 0.001, 0.0001}, no dropout is used and 200 epochs is employed for all
datasets, setting 10 patience iteration for Cora and Pubmed and 30 for Reddit. The sample size
is 400 for Cora and Reddit and 100 for Pubmed, batch size is 256 for Cora and Reddit and
1024 for Pubmed. We use importance sampling for fastGCN, since Chen, Ma and Xiao (2018)
report better accuracies with this configuration. Since Chen, Ma and Xiao (2018) do not conduct
experiments on the Citeseer dataset, we configured all hyperparameters for this dataset to be the
same as in Cora.

It is well known that classical ELM / RELM requires more hidden units when compared
to Backpropagation (HUANG; ZHU; SIEW, 2006). Therefore, for our techniques, we have run
experiments with the number of hidden units H ∈ {128, 256, 512, 750, 1000, 1250, 1500}. The
regularization parameter γ ranges in {10−8, 10−7, ... , 108} and no dropout was used. We select
hyperparameters that lead to the best accuracy during validation.

Table 3 – Accuracy (rate of corrected predictions) and training time (in seconds) with transductive
paradigm. The numbers of this table are pictured in Figure 9a and Figure 9c.

Dataset
Accuracy (%) Time (seconds)

BP fastGCN
ELM- RELM-

BP fastGCN
ELM- RELM-

GCN GCN GCN GCN
Cora 86.33 83.86 82.83 86.87 15.33 16.77 0.15 0.42

Citeseer 77.72 75.29 74.05 77.34 17.43 49.42 0.51 0.66
Pubmed 86.85 86.28 87.13 87.74 152.64 4.85 4.48 4.20
Reddit NA 93.83 91.94 91.96 NA 911.38 136.64 65.41

Table 4 – Accuracy (rate of corrected predictions) and training time (in seconds) with inductive paradigm.
The numbers of this table are pictured in Figure 9b and Figure 9d.

Dataset
Accuracy (%) Time (seconds)

BP fastGCN
ELM- RELM-

BP fastGCN
ELM- RELM-

GCN GCN GCN GCN
Cora 83.17 84.62 78.58 87.18 7.20 11.23 0.10 0.46

Citeseer 77.82 78.49 70.10 77.49 13.28 42.81 0.17 0.91
Pubmed 86.64 86.65 87.30 87.33 147.78 6.22 11.65 5.15
Reddit NA 93.36 91.02 92.50 NA 831.01 90.95 47.61
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For each learning configuration, we train the networks based on both transductive and
inductive paradigms, as proposed by Yang, Cohen and Salakhudinov (2016). In the transductive
paradigm, the whole graph is assumed to be known for the training step and the task is to predict
labels from the features associated with the nodes of the graph, training labels, and the graph
topology. In the inductive paradigm, the model learns from a subgraph made up of training nodes
only. After training, the full graph is presented to the network and the task becomes to predict
labels from the whole structure. For each dataset, training paradigm, and learning algorithm,
10 executions are performed. The results are shown in Tables 3 and 4 are the average of these
executions. We ran experiments in a single machine with 4-core 1.99GHz Intel Core i7 and 16G
RAM.

Figure 9 depicts graphically the content of Tables 3 and 4. From Figure 9 it is possible to
observe that GCN trained with the classical BP, fastGCN, ELM-GCN, and RELM-GCN present
similar performance in terms of accuracy for all datasets in both paradigms. However, regarding
training time, which is represented in the logarithm scale, both ELM-GCN and its regularized
version turn out to be at least one order of magnitude faster than BP and fastGCN in three out
of the four datasets (Cora, Citesser, and Reddit). In the Pubmed dataset, RELM-GCN is also
one order of magnitude faster than BP, while being 15% faster than fastGCN. In fact, the fastest
learning methods were ELM-GCN or RELM-GCN for every dataset in both training paradigms.
Therefore, we can see that our proposed schemes are competitive training alternatives for 2-layer
GCNs in terms of accuracy while presenting a considerable gain in training time.

Figure 9 – Accuracy (rate of corrected predictions) and training times (in seconds) for both transductive
and inductive paradigms. ELM-GCN and RELM-GCN are learning alternatives that maintain
accuracy but train much faster than the baseline algorithms.

(a) Accuracy (transductive) (b) Accuracy (inductive)

(c) Time (transductive) (d) Time (inductive)
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In the following, we further validate the results obtained in the experiments involving real
data. Specifically, Figures 10 and 11 show respectively the accuracy and training time boxplots
obtained among different executions that produced Figure 9. Moreover, we employ the Wilcoxon
Signed-Rank Test (DEMŠAR, 2006) which is a non-parametric hypothesis test that compares
two samples that are paired. Precisely, the test compares accuracy and training time produced by
either ELM-GCN or RELM-GCN against the ones resulting from the other two algorithms. First,
we consider the null hypothesis that one of our approaches and competing algorithms generate
results according to the same distribution. If the null hypothesis is rejected, we proceed to the
next step which considers another null hypothesis that ELM-GCN or its regularized version
performs worse (i.e. lower accuracy or higher training time) than the other learning techniques.
In all tests, we use a significance of 99.9%.

Regarding ELM-GCN, the Wilcoxon test rejected the hypothesis that this technique
produces output at least as accurate as BP or fastGCN. In terms of training time, the null
hypothesis that ELM-GCN comes from the same distribution as its competitors is rejected.
Moreover, the Wilcoxon test also rejects the hypothesis that ELM-GCN has a higher training
time than BP or fastGCN.

Comparing RELM-GCN with BP, the Wilcoxon test could not reject the null hypothesis
that both techniques produce the same accuracy. However, when RELM-GCN is compared
against fastGCN, we get an interesting outcome. The null hypothesis can not be rejected when
both learning algorithms are compared in the inductive paradigm, but the hypothesis is rejected

Figure 10 – Accuracy (rate of corrected predictions) boxplot obtained for different training iterations.
The Wilcoxon test concluded that RELM-GCN produces output at least as accurate as the
baselines.

(a) Cora (transductive) (b) Citeseer (transductive) (c) Pubmed (transductive) (d) Reddit (transductive)

(e) Cora (inductive) (f) Citeseer (inductive) (g) Pubmed (inductive) (h) Reddit (inductive)
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Figure 11 – Time (in seconds) boxplot obtained for different trainings. The Wilcoxon test rejected the
hypothesis that RELM-GCN is slower than the baselines.

(a) Cora (transductive) (b) Citeseer (transductive) (c) Pubmed (transductive) (d) Reddit (transductive)

(e) Cora (inductive) (f) Citeseer (inductive) (g) Pubmed (inductive) (h) Reddit (inductive)

in the transductive scenario. Moreover, the hypothesis that RELM-GCN is less accurate than
fastGCN in the same paradigm is rejected. Indeed, a careful analysis of Figure 9a shows
that RELM-GCN consistently outperforms fastGCN on the first 3 datasets while performing
comparably on Reddit.

Furthermore, the Wilcoxon test rejected the null hypothesis that RELM-GCN is as
fast as competing techniques, regardless of the algorithm and paradigm chosen to compare.
Moreover, the second step of the test showed that we should also reject the hypothesis that
RELM-GCN is slower than the other algorithms in any learning paradigm. Conclusions provided
by the Wilcoxon test are consistent with training times shown in Figure 9, since RELM-GCN
outperforms the competing algorithms in most datasets, being only comparable with fastGCN in
Pubmed.
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CHAPTER

4
GRAPH NEURAL NETWORK FOR VALUING

SOCCER PLAYERS (GNN-VSP)

One of the challenges in the Graph Machine Learning field is dealing with the task
of predicting time series associated with the elements of a dynamic graph. In this chapter we
consider the problem of forecasting shots to goal in a soccer match, which is modeled as a
pair (one for each team) of time-evolving graphs endowed with time-dependent node features.
We propose a Graph Neural Network architecture to handle temporal sequences of graph pairs.
Moreover, we employ an explainability algorithm to assess player importances based on the
proposed GNN. In Section 4.1 we first discuss related work, in Section 4.2 we describe the
dataset and the data engineering we developed aiming to build the pair of graph sequences. The
proposed GNN model is introduced in Section 4.3 and in Section 4.4 we describe how to derive
player’s importance. Finally, we analyze a number of different case studies and compare our
methodology with baselines in Section 4.5.

4.1 Related Works

Sports analytics is a field of growing interest, mainly due to the increasing amount of
data and financial resources involved in this market. In fact, in the last few years, many analytical
methods have been developed for different sports, such as American football (SABIN, 2021),
baseball (SUN; LIN; TSAI, 2023; ONO; DIETRICH; SILVA, 2018), basketball (BORNN et al.,
2017), ice hokey (LIU et al., 2020), water polo (ARGUDO et al., 2021), rugby (ZHANG; GAO;
XIANG, 2020) and soccer (SINGH, 2019; DECROOS et al., 2019; YAM, 2019; MACKAY,
2017). In order to better contextualize our approach, we focus the following related work
discussion on techniques designed specifically for analyzing soccer players and matches. A more
comprehensive overview can be found in recent sports analytics surveys (GHOSH et al., 2023;
SINGH, 2020).
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Extracting meaningful insights from soccer data is particularly challenging due to the
low-scoring nature of this sport and the complex interaction between the players. Pass networks
have been one of the main resources used to model the relationship between team members. A
pass network is a graph where nodes and edges correspond to players and passes, respectively.
Pass networks are built by fixing a time window and linking players (nodes) who have exchanged
passes within the time window interval. The time window can comprehend the entire match
time (KAWASAKI et al., 2019; AHMADI; NOORI; TEIMOURPOUR, 2020; MEDINA et al.,
2021) or it may be more granular, comprising intervals of 2- to 5-minutes to enable the analysis
of the dynamics of players over the match (CAO, 2023).

Building a pass network requires previously recorded data and recent works have relied
on either on-the-ball events or player-tracking records. The former describes the time, location,
and action type (e.g. passes, shots, dribbles) of players when in contact with the ball (SINGH,
2019; DECROOS et al., 2019; PAPPALARDO et al., 2019; LIU et al., 2022), i.e., only actions of
the players with the ball are recorded over time. The latter handles information about the position
of all the players and the ball during the whole match (SPEARMAN, 2018; FERNÁNDEZ;
BORNN; CERVONE, 2019; DICK; TAVAKOL; BREFELD, 2021), with no information about
the action accomplished by the player. The possibility of analyzing player actions and the
greater availability of data associated with leagues and clubs have leveraged the development of
on-the-ball methods.

Different tasks can be accomplished by exploiting a pass network built based on soccer
data, including the estimation of match results (MEDINA et al., 2021), finding a correlation
between match events (CAO, 2023), and mining subgraphs for tactical analysis (AHMADI;
NOORI; TEIMOURPOUR, 2020). Most of those analyses derive from conventional statistical
and graph-based measures applied on pass networks. However, recent works in different areas
have shown that GNNs tend to outperform such classical approaches (JIN et al., 2020; ZHANG
et al., 2022; YANG et al., 2023; JIANG et al., 2023).

The work by Anzer et al. (2022) is a good example of the use of GNN to analyze soccer
data, which relies on Graph Attention Networks (GAT) (VELIČKOVIĆ et al., 2017) to detect
tactical soccer patterns. Yılmaz and Öğüdücü (2022) propose a graph embedding technique
to learn soccer player features in order to build a recommendation mechanism for in-game
substitutions. Dick, Tavakol and Brefeld (2021) propose one of the few GNN-based approaches
for evaluating soccer players, making use, however, of player-tracking data.

In the context of on-the-ball events for deriving player’s importance, Pappalardo et

al. (2019) propose a linear model to learn the weight of each type of action (e.g. pass, shot,
dribble), scoring players according to the weighted average of his/her actions over the match.
Liu et al. (2022) introduce the Risk-sensitive Game Impact Metric (RiGIM), a measurement
mechanism that can be parameterized to weight offensive and defensive players. Other two well-
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established techniques that rely on on-the-ball events for scoring soccer players are Expected
Threat (xT) (SINGH, 2019) and Valuing Actions by Estimating Probabilities (VAEP) (DECROOS
et al., 2019). xT computes players’ scores from a Markov chain built from players’ actions,
while VAEP relies on feature vectors derived from the players’ actions and a predictive model
to estimate the ratings. Important to notice that none of the mentioned techniques consider the
collective action of the players in their evaluation, aggregating only individual actions. Not
considering the interaction between players can result in scoring an athlete who only receives
and passes the ball the same as another player who works with several teammates to set up
plays. Therefore, it is fundamental for assessing players’ performance that the interplay between
teammates is taken into account.

4.2 Dataset and Data Engineering

4.2.1 Wyscout Dataset

The dataset we make use is the on-the-ball publicly available Wyscout1 soccer data,
obtained from the socceraction2 python library. This dataset contains 1786 soccer matches from
5 different competitions (English, Spanish, French, German, and Italian 2017 - 2018 national
leagues). Each game is described as a sequence of events, which are actions (e.g. passes, shots,
dribbles) of players when in contact with the ball, as Figure 12 illustrates.

In this dataset, an average of 1200 player actions are registered for each match, totaling
more than 2 million actions for the entire database. Moreover, the actions are represented in
the SPADL (Soccer Player Action Description Language) format (DECROOS et al., 2019), i.e.
each action record contains information about: game ID, period ID (1st or 2nd half of the game),
action time, player ID, team ID, start and end (x,y) position, action type (e.g. pass, dribble, shot),
action result (success or fail), and bodypart (e.g feet, head).

4.2.2 Dynamic Graph Construction

The dynamic pass network is built by setting non-overlapping one-minute time windows
and associating a pair of graphs (one for each team) to each time window. The nodes of each
graph correspond to the players of the team and the edges represent passes between teammates
that took place within the time window. The edges are weighted according to the number of
passes, that is, edge weights are the number of passes between two players in the time window.
Therefore, each match gives rise to two dynamic pass networks with at least 90 graphs each (a

1 <https://wyscout.com/>
2 <https://socceraction.readthedocs.io/en/latest/index.html>

https://wyscout.com/
https://socceraction.readthedocs.io/en/latest/index.html


64 Chapter 4. Graph Neural Network for Valuing Soccer Players (GNN-VSP)

Figure 12 – A sequence of actions that led to a goal for Barcelona. Only actions of the players with the
ball are recorded over time.

Source: (DECROOS et al., 2019), modified by the author of this dissertation.

match usually takes longer than 90 minutes), resulting in a total of 167,781 pairs of graphs for
the whole dataset.

Each node (player) in the one-minute graph is associated with a 4-dimensional feature
vector containing: the (x,y) averaged position of the player in the corresponding minute, the ball
possession time of the player within the time window, and the number of times the player shot to
goal in the time window. To obtain the last feature we count the number of actions of type “shot”;
as for the player possession time, first we compute the time elapsed between all consecutive
actions, and then we aggregate those duration for every player. The location feature is trickier
to define since we only have access to on-the-ball event data. We proceed as follows: first, we
estimate player position by averaging the (x,y) data of every action done by that player in the
referred time step. In the absence of actions done by some player in some time step, we reassign
for them the same position as estimated in the previous time window, which is the most updated
location of that athlete we have access to. For the first minute of the game, if some player does
not take any action, we regard his position as the average location of all their actions from the
last game he played along the championship. Finally, for the first minute of the first game of the
competition, if some player did not take any action, then we randomly assign a position for him
by sampling from a uniform distribution supported in their team’s half of the pitch.
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From the Graph Neural Networks perspective, the proposed graph modeling scheme is
an interesting problem to tackle.First, the graph is dynamic at the edge level since the interplay
between players is likely to change over the game. Second, the graph nodes usually also change
along the soccer match due to substitutions or red cards (in which case also changes the number
of graph nodes). Third, the features associated with the nodes are also time-dependent, and
finally, the model entails concurrently handling two dynamic graphs, a practice not commonly
found in current modeling approaches.

4.3 Proposed GNN Architecture

The idea is to build a machine learning model that takes as input a pair of graphs in a
given time step and predicts the number of shots on goal one team will make more than the other
in the next time step. More specifically, let Γ(Z) = {G (Z)

1 , . . . ,G
(Z)
n } be a dynamic pass network

where G
(Z)

t is the graph in the time window t with node feature vectors from the team Z ∈ {A, B}.
In order to predict the difference ∆st+1 of the number of shots on goal between teams A and B in
the instant t +1, the model takes as input two sequences of graphs G

(Z)
t−T+1, . . . ,G

(Z)
t from ΓZ ,

Z ∈ {A, B}, where T ̸= 0 defines the number of graphs in the input sequence. Such a model can
mathematically be stated as

∆st+1 = f

((
G

(A)
t−∆t

)T−1

∆t=0
,
(
G

(B)
t−∆t

)T−1

∆t=0

)
, (4.1)

Figure 13 – The proposed Graph Neural Network architecture to handle dynamic graph pairs. The input
is a pair of graph sequences that represent the game dynamics for each team, and the output
is a prediction of the difference between shots to goals in the next minute.
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where each graph G
(Z)

t ∈ Γ(Z) is given by the pair G
(Z)

t = (G(Z)
t ,X (Z)

t ) where G(Z)
t is the graph

of team Z at time step t and X is the N ×F matrix encoding the F-dimensional feature vectors
associated with the N nodes of G(Z)

t .

In our context, the model f is a GNN whose architecture is depicted in Figure 13. The
proposed GNN has four sequential layers: Temporal Attention, Node Embedding, Graph Pooling,
and Difference, which we detail in the following.

Temporal Attention. The first layer aims to summarize the temporal sequence of T graphs

and feature vectors
(
G

(Z)
t−∆t

)T−1

∆t=0
into a single graph with feature vectors G (Z) = (G(Z),X (Z))

by learning a weighted aggregation induced by the learnable attention coefficients a∆t . First,
we show how the summarized graph G(Z) is built and then we proceed to the matrix of feature
vectors X (Z). The summarized graph G(Z) has the same nodes (soccer players) as vertices in the
last graph G(Z)

t of the input sequence. The edge weights of the summarized graph are given by
the attention mechanism applied to the sequence of edge weights after a so f tmax activation in
a∆t . Specifically, the edge weight e(i, j) in G(Z) is given by

e(i, j) =
T−1

∑
∆t=0

so f tmax(a∆t) e(i, j)
∆t , (4.2)

where so f tmax(a∆t) = exp(a∆t)/∑
T−1
∆t ′=0 exp(a∆t ′), and e(i, j)

∆t is the edge weight between nodes
i, j in graph G(Z)

t−∆t . Notice that if two nodes i, j are never connected in the graphs sequence,
then e(i, j)

∆t = 0 for every ∆t and thus e(i, j) = 0 in the summarized graph G(Z), i.e., there will be
no edge between nodes i and j.

Analogously, the summarized feature matrix X (Z) is a weighted aggregation given by the
same attention coefficients a∆t after a softmax activation function, i.e. the i-th dimension of the
feature vector associated to a node k is given by

x(k,i) =
T−1

∑
∆t=0

so f tmax(a∆t) x(k,i)
∆t . (4.3)

Alternatively, we can fix the attention coefficients a∆t = 1/T instead of learning them,
in which case the summarized graph and feature matrix are simply the arithmetic average of
the input temporal sequence. Moreover, we only apply the temporal attention coefficients to
time windows where they make sense, i.e. if some player is in the game for less than T time
steps (either at the first minutes of the match or after some substitution), we restrict the attention
mechanism for only the known periods for that player.

Node Embedding. Given the pair of summarized graphs and feature matrices as input, the node
embedding is accomplished by a sequence of graph convolution layers. The goal is to learn a



4.3. Proposed GNN Architecture 67

mapping of the vertices in the summarized graph G(Z) (players in the match) to a latent space.
We employ a 2-layered Graph Convolutional Network (GCN) (KIPF; WELLING, 2016a) with
input, hidden, and output dimensions F , F −1, F −2, respectively, i.e., we linearly decay the
dimension from F = 4 to 2 to generate compact latent representation, which, consequently,
facilitate to visualize the embeddings.

Graph Pooling. The third layer is a graph pooling layer that aggregates the feature vectors of
all nodes in a single number. Mathematically, if X (Z)

emb(n,h) is the hth dimension of the nth player
embedded representation of team Z, then the pooling operation results in

P(Z) = ∑
n,h

X (Z)
emb(n,h) , (4.4)

where n,h ranges over N,H, the total number of players and the latent space dimension (two-
dimensional in our context), respectively. This is a common operation for Graph Machine
Learning tasks when the target regards the whole graph instead of node- or edge-level predictions
(e.g. team shots to goal, instead of player shots to goal). Therefore, the layer output is a single
number for each team. As discussed in one of the provided case studies, the number resulting
from the pooling layer can be interpreted as the team’s offensive and defensive strength in the
given time step (see Section 4.5).

Difference. The previous layers apply the same computation for both teams since all the learned
attention coefficients and GCN weights are precisely the same. Moreover, the Graph Pooling
layer is a parameter-free operation. Therefore, the last layer makes the difference between the
graph pooling output values for each team, being this difference, the output of the model, which
is trained to match ∆st+1, the amount of shots team A will make more than team B in the next
time interval.

The proposed architecture has a number of interesting properties. First, it is robust to
changes in the number of graph nodes since no assumption is made in terms of keeping the
number of nodes fixed when defining the layers (i.e. the model output is still well-defined
even if a node vanishes in the graph sequence due to a red card). Moreover, the temporal
attention mechanism is applied only for time windows in which the node is presented in
the graph sequence and both node embedding and the graph pooling steps are able to be
applied for graphs of variable sizes. Second, the node embedding and graph pooling opera-
tions do not depend on the order in the teams A and B are presented to the network, i.e. both
f
(
(G

(A)
t−∆t)

T−1
∆t=0, (G

(B)
t−∆t)

T−1
∆t=0

)
and f

(
(G

(B)
t−∆t)

T−1
∆t=0, (G

(A)
t−∆t)

T−1
∆t=0

)
generates the same embeddings

X (Z)
emb and graph pooling P(Z) for the teams. Finally, an immediate consequence of the previous

observation is that f
(
(G

(A)
t−∆t)

T−1
∆t=0, (G

(B)
t−∆t)

T−1
∆t=0

)
=− f

(
(G

(B)
t−∆t)

T−1
∆t=0, (G

(A)
t−∆t)

T−1
∆t=0

)
. The content

of this mathematical identity is that if A is predicted to shoot to goal ∆s more than B, then B is
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predicted to shoot to goal −∆s more than A.For instance, in a Barcelona against Real Madrid
match, there is no natural ordering of the competing teams. Therefore, if a user provides the
Barcelona-Real Madrid dynamic graphs to the model and another user inputs the data in the
other ordering, then the model is guaranteed to output the opposite number to both users.

4.4 GNN-VSP: Assessing Player’s Performance

As discussed in Section 4.3, the proposed GNN architecture learns to predict, for each
time step, the number of shots on goal one team makes more than the other in the next time
window. The proposed architecture in Figure 13 shows that if the result of the graph pooling goes
up for one team, the number of shots to the goal also increases for that team with a decrease for the
opponent. Therefore, the pooling output encodes both the offensive and defensive performance
of each team.

In order to understand the contribution of each player to the team performance, we
employ GNNExplainer (YING et al., 2019) (see Appendix B), a graph explainability algorithm.
Specifically, let G

(Z)
t = (G(Z)

t ,X (Z)
t ) be the summarized graph G(Z)

t and the feature matrix X (Z)
t

resulting from the temporal attention layer for a fixed time step t. Let P(Z)
t be the “performance”

of team Z resulting from the graph pooling operation in the same instant t. GNNExplainer assigns
an importance I (p, i) for each feature i of player p in G

(Z)
t when predicting P(Z). Therefore,

the “relevance/importance” score of a player p at time t of the game can be computed by simply
aggregating I (p, i) over the features. In mathematical terms:

GNN-VSPt(p) = ∑
i

I (p, i) . (4.5)

We evaluate the relevance of each player over the entire competition by aggregating
his/her score as given in Equation 4.5 over every time step of all matches s/he played. To make
the comparison fair we normalize the aggregated scores per 90 minutes played, as typically done
in the literature (SINGH, 2019; DECROOS et al., 2019; ROY et al., 2020). Such a normaliza-
tion reduces the bias in favor of players who played longer throughout the championship. In
mathematical terms, the GNN-VSP worth of a player p is given by

GNN-VSP(p) =
90
T ∑

t
GNN-VSPt(p) , (4.6)

where T is the total time steps that player p played over the whole competition.
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We can analogously assess the importance of each feature by aggregating I (p, i) over
the players, i.e., the importance of a feature i is ∑p I (p, i).

Equation 4.6 normalizes the relevance of a player per 90 minutes. For example, if a player
p1 plays only for a few minutes, then the normalization factor 90/T contributes to increasing
the score of p1, but the summation in Equation 4.6 aggregates only for a few time windows. In
contrast, another player p2 that played for almost the whole competition has more time steps to
sum his scores, but also a larger value of T. Therefore, this normalization makes the comparison
among players fair.

4.5 Experiments and Comparisons

4.5.1 Experiment Setup

For the experiments, we trained the proposed GNN architecture by randomly splitting
the 167,781 samples into training / validation / test subsets by the proportion of 70% / 15% / 15%
respectively. We tried batch sample sizes of {64, 128, 256} and optimize the parameters em-
ploying Adam (KINGMA; BA, 2014) for 100 epochs, 5 maximum patience, learning rate in
{0.001, 0.01, 0.1} and MSE loss function. The GCN activation function is set as LeakyReLU(x)=

max(0,x)+α min(0,x) (α = 0.01) and we select the hyperparameter configuration that led to
the best performance in the validation subset.

It is not possible to use ELM-GCN introduced in Chapter 3 to train the proposed
architecture in this context. We remind the reader that ELM-GCN is a training mechanism
suitable for 2-layered GCNs employed in a single static graph with node feature vectors and
desired predictions at the node level. In the context of this Chapter, this approach is different
in several aspects. First, the model is not purely a 2-layered GCN, but a more sophisticated
architecture with also temporal attention mechanism, graph pooling, and difference layers.
Second, the graph is not static, nor is it a single graph. Instead, the input is a temporal sequence
of dynamic graphs. Third, the input in the context of this Chapter also comes in pairs, which
is not accounted for in the ELM-GCN. Finally, the target of the architecture of Figure 13 is a
single number for every pair of graph sequences, not matching the node-level prediction of the
ELM-GCN case.

Regarding the training of the explainability algorithm, GNNExplainer is applied to
generate attribute explanations for 300 epochs and 0.01 learning rate. This type of explanation
(attribute explanations) provides the importance I (p, i) for each feature i of each node (i.e.
player) p.
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Figure 14 – GNN architecture predictions for Real Madrid vs Barcelona in 23/Dec/2017 for the Spanish
championship. Real Madrid (in blue) had a red card for a player at minute 63 and the model
started predicting that Barcelona would shoot to goal considerably more.

4.5.2 GNN Qualitative Evaluation

In this Section, we provide a case study analyzing how the model captures the impact
of red cards on the teams’ performance. We also analyze feature importance in the prediction
process.

The Impact of Red Cards. We analyze the impact of red cards taking as a case study a match (see
Figure 14) between Real Madrid (in blue) and Barcelona (in red) on December 23, 2017, for the
Spanish championship. We used matplotsoccer3 python library for the soccer pitch visualization.
In this analysis, we trained the GNN model keeping the attention coefficients fixed at 1/T to
compute the graph sequence summarization. At minute 63 the GNN architecture predicts Real
Madrid’s offensive and defensive power drops suddenly, remaining below Barcelona for the
rest of the match. At 63 minutes of the match, Real Madrid’s player Dani Carvajal got a red
card, which impacted substantially Real Madrid’s performance. The proposed GNN model was
capable of capturing this game-changing event, predicting a difference in the number of shots
on goal much more favorable to Barcelona Analyzing the original data, we indeed see a game
change in favor of Barcelona, since before the red card both teams had shot to goal 7 times (and
the game score was Real Madrid 0 - 1 Barcelona); whereas after the expulsion, Barcelona team
shot 9 more times, against only 4 from Real Madrid (Barcelona converted 2 more of them into
goals and ending the game Real Madrid 0 - 3 Barcelona). In other words, even though red cards

3 <https://pypi.org/project/matplotsoccer/>

https://pypi.org/project/matplotsoccer/
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are not seen by the model, the change in the team behavior after the red card was captured by the
proposed GNN, shows its capability in representing the dynamics of the teams.

Feature Importance As discussed in Section 4.4, given a fixed time step of some game we can
assess the importance of feature i by aggregating over the players the importance I (p, i) given
by the explainability algorithm. We have computed the feature importances in each minute of
all matches over the five different competitions in the dataset. For this analysis, the attention
coefficients of the proposed GNN architecture were set as learnable parameters.

Figure 15 depicts the distribution of each feature’s importance for the whole dataset.
Note that all features present multi-modal distributions, due to the different temporal attention
coefficients learned by the model. From the distributions, one can clearly notice that players’
position and ball possession time are more relevant to forecast shots to goal than previous shoot-
ings. In fact, in most cases, previous shootings have received no importance by the explainability
algorithm. We believe this is a consequence of the sparsity of this feature.

Figure 15 – Feature importance distribution. Players’ positioning and possession time are more important
to predicting next-minute shots to goal than previous shootings.

(a) x position (b) y position

(c) Possession time (d) Shots to goal
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4.5.3 Players’ Performance Assessment

In this Section, we compare the proposed player scoring methodology GNN-VSP against
xT (SINGH, 2019) and VAEP (DECROOS et al., 2019), two well-known techniques for evaluat-
ing soccer players. We perform the comparisons in terms of: (1) the score distributions, (2) a
correlation between the scores provided by the three methods, and (3) a case study involving
awarded soccer players.

For the experiments, we configured the proposed GNN architecture with learneable
attention coefficients and we used xT and VAEP implementations from socceraction4. Moreover,
we considered the whole dataset for the experiments, i.e. all the 1786 soccer matches along the
five available competitions. We rate only athletes who played more than 360 minutes over the
season and we normalize the scores given by xT, VAEP, and GNN-VSP per 90 minutes of game
played.

xT (Expected Threat). This approach discretizes the soccer field using a M×N regular grid,
where each of the MN cells is called a zone. A score associated with threatening to shoot on
goal is assigned to each zone and players are ranked based on whether s/he move the ball to
higher-scored zones over the matches. In this context, the threatening of a zone z is derived
from the chance of a player scoring a goal by shooting from zone z, plus the threatening of the
zone z′ to which the player moves the ball from z. This recursive definition induces a stochastic
matrix that is built from the on-the-ball data, and the scores are given by the steady state of the
corresponding Markov chain, as

xT(z) = sz ·xG(z)+mz ·∑
z′

Tz→z′ ·xT(z′) , (4.7)

where: sz is probability of shooting to goal from zone z; xG(z) is the expected goals of zone z,
i.e. the probability that a shooting from zone z is converted into a goal; mz is the probability of
moving the ball from zone z; and Tz→z′ is the transitioning probability from zone z to zone z′.
For more details about the xT method, we refer to Singh (2019).

VAEP (Valuing Actions by Estimating Probabilities). VAEP employs machine learning
models to estimate the probability of a team score or conceding a goal given the three last
actions performed over a match. A set of features is derived from the three actions, including:
information about the actions themselves (location and type of the action, distance, and angle to
goal, etc.), the relation between actions (e.g. distance and time between consecutive actions), and
the overall context of the match (e.g. time duration of the match and score difference). Those

4 https://socceraction.readthedocs.io/en/latest/
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Figure 16 – Players rating distribution per 90 minutes for each valuing mechanism. The best players are
assessed by GNN-VSP only a fraction more than the average athlete, and GNN-VSP never
values players with negative numbers.

(a) xT (b) VAEP (c) GNN-VSP

features are fed into two different models to learn the score and concede probability within the
next actions. Thus, a match state (a sequence of three actions) is rated according to the difference
between scoring and conceding probabilities estimated by the models. An action is valued as
the difference between the match states before and after the action is made, and the value of a
player is the aggregation of his/her action values. Intuitively, the higher (lower) a player is scored,
the more his/her actions contributed to increase (decrease) the team’s probability of scoring
or decrease (increase) the team’s probability of conceding. A more detailed description can be
found in the paper by Decroos et al. (2019).

We used the default hyperparameters implemented in the socceraction Python library for
both xT and VAEP. Specifically, xT overlays a 16×12 grid in the pitch and VAEP employs an
XGBoost classifier. In order to train the models, VAEP generates features and labels based on
the last 3 and next 10 actions, respectively (i.e. the classifiers learn to estimate the probabilities
that a score or concede will happen in the next ten actions, given the features engineered by the
last three actions).

Score Distributions. Figure 16 depicts players’ score distribution derived from xT, VAEP, and
GNN-VSP. We first observe that the magnitude of the values resulting from xT and VAEP are
smaller than the ones provided by GNN-VSP. Moreover, in contrast to xT and VAEP, GNN-VSP
concentrates the players’ scores on the right of the histogram, meaning that, on average, the
players are highly scored, which is expected in competitions involving high-level players, as the
ones involved in the used dataset.
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Table 5 – Correlation between valuing mechanisms. GNN-VSP has a positive but weak correlation with
both xT and VAEP, thus it can be used along with techniques from literature to enhance
high-level insights.

xT VAEP GNN-VSP
(p90) (p90) (p90)

xT (p90) 1.00 0.42 0.15
VAEP (p90) 0.42 1.00 0.22

GNN-VSP (p90) 0.15 0.22 1.00

Moreover, xT and VAEP score players with negative values. Negative values are some-
what misleading, as they can lead to the conclusion those specific players are hindering the
team’s performance, which is difficult to agree on, as the hiring process in the European leagues
is very strict and competitive. GNN-VSP, in contrast, does not assign negative scores to players,
as the importance provided by the explanation method is always non-negative.

Correlation with xT and VAEP. Table 5 shows the correlations between the three pairs of
methods. Notice that all correlation values in Table 5 are positive, meaning that the three
techniques agree when scoring the players. Nonetheless, GNN-VSP has a weaker correlation
with both xT and VAEP, indicating that GNN-VSP is assessing players in a different manner,
which is expected, as it also takes into account the interaction between team members. This
suggests that the proposed approach is a useful tool to be employed along with xT or VAEP to
enhance the analytical process.

Best Soccer Players Annual Awards. The most prestigious prizes for male soccer players
are the Ballon d’Or (Golden Ball) 5 and The Best FIFA Men’s Player 6, hosted by the French
magazine France Football and FIFA 7, respectively. In 2017, the first, second, and third positions
of both prizes were held by Cristiano Ronaldo, Messi, and Neymar, respectively 8 9.

5 https://www.francefootball.fr/ballon-d-or/
6 https://www.fifa.com/fifaplus/en/the-best-fifa-football-awards
7 The Ballon d’Or and The Best FIFA Men’s Player happens yearly since 1956 and 1991, respectively.

However, from 1991 to 2009 FIFA’s award was formally known as FIFA World Player of the Year.
From 2010 to 2015 both prizes merged into the FIFA Ballon d’Or and from 2016 they are split into
The Best FIFA Men’s Player and Ballon d’Or.

8 Ballon d’Or: <https://www.francefootball.fr/news/Le-classement-complet-du-ballon-d-or-2017/
857283>

9 The Best FIFA Men’s Player: <https://web.archive.org/web/20171024095638/http://resources.fifa.com/
mm/document/the-best/general/02/91/68/84/fullresults-tbffa_award_rankingpresslist2017_neutral.
pdf>

https://www.francefootball.fr/news/Le-classement-complet-du-ballon-d-or-2017/857283
https://www.francefootball.fr/news/Le-classement-complet-du-ballon-d-or-2017/857283
https://web.archive.org/web/20171024095638/http://resources.fifa.com/mm/document/the-best/general/02/91/68/84/fullresults-tbffa_award_rankingpresslist2017_neutral.pdf
https://web.archive.org/web/20171024095638/http://resources.fifa.com/mm/document/the-best/general/02/91/68/84/fullresults-tbffa_award_rankingpresslist2017_neutral.pdf
https://web.archive.org/web/20171024095638/http://resources.fifa.com/mm/document/the-best/general/02/91/68/84/fullresults-tbffa_award_rankingpresslist2017_neutral.pdf
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Figure 17 – Players from the English, Spanish, French, German, and Italian championships were assessed
via a number of actions and ratings given by xT, VAEP, and GNN-VSP. Cristiano Ronaldo,
L. Messi, and Neymar are the top 3 players awarded respectively first, second, and third
positions at both the Ballon d’Or (Golden Ball) and The Best FIFA Men’s Player in 2017.
GNN-VSP is able to clearly distinguish them from other players.

(a) xT (b) VAEP (c) GNN-VSP

Figure 17 shows scatter plots of players with respect to their number of actions along the
championship and scores provided by xT, VAEP, and GNN-VSP. The three stars highlight the top
three players Cristiano Ronaldo (gold), Messi (silver), and Neymar (bronze), respectively. Notice
that GNN-VSP is clearly distinguishing the three best players from the remaining ones, giving
them higher scores, while the distinction given by xT and VAEP is not so evident, mainly to
Cristiano Ronaldo. In fact, Cristiano Ronaldo, the best 2017 player by both France Football and
FIFA, is ranked by xT, VAEP, and GNN-VSP in the 323th, 93th and 1st positions, respectively,
showing that the proposed GNN-VSP properly captured the performance of that player.
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CHAPTER

5
CONCLUSION AND FUTURE RESEARCH

LINES

In this dissertation, we presented the author’s contributions to the development of Graph
Neural Networks, a family of Machine Learning methods suitable to be employed in problems
that can be modeled as graphs endowed with data in its elements. More specifically, we proposed
two training algorithms (ELM-GCN / RELM-GCN) and GNN-VSP, a soccer valuing mechanism
based on a novel GNN model for dynamic graphs.

ELM-GCN and RELM-GCN are two analytical learning algorithms designed to train
2-layer Graph Convolutional Networks. The proposed extreme learning machine techniques,
which are extended for graph-structured domains, come with solid theoretical foundations,
providing an upper bound in the number of hidden units needed to reach a desired training
error. The experiments in Chapter 3 involving both synthetic and real graph datasets show that
RELM-GCN is able to reach an accuracy similar to competing methods, but reducing the training
time considerably. In fact, the proposed approach turned out to be at least one order of magnitude
faster in most of our experiments.

One of the limitations of ELM-GCN and its regularized version is that it is constrained to
2-layer GCNs. However, this architecture has been a popular choice in many recent works (KIPF;
WELLING, 2016a; KIPF; WELLING, 2016b; HAMILTON; YING; LESKOVEC, 2017; CHEN;
MA; XIAO, 2018; SHCHUR et al., 2018; ZHAO et al., 2019; JIN et al., 2020), mainly due to
the well-known oversmoothing effect (LI; HAN; WU, 2018), as discussed in Section 1.2. Thus
ELM-GCN and RELM-GCN turn out to be useful in many application scenarios.
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In Chapter 4, we focused on developing a GNN able to handle dynamic graphs, i.e.,
graphs in which its elements (nodes, edges, and feature vectors) change over time. As a result,
we proposed GNN-VSP, a GNN designed to predict goal shots and the importance of players.
The scoring mechanism is able to account for the athletes’ interplay and it models each match
as a pair of dynamic networks in which players are nodes and edges are passes. The proposed
GNN architecture predicts the next-minute difference of shots to goal between teams based on
time-evolving graphs, relying on an explainability technique to rate the importance of each node
(player) as to offensive and defensive actions.

The conducted experiments show that our GNN architecture is able to capture game-
changing events and that GNN-VSP is an effective tool for scoring and ranking soccer players. In
fact, in one of the case studies our scheme was the only valuing approach to distinguish the top
players, given by FIFA and France Football, from the remaining athletes playing in the European
leagues.

As future research lines, we highlight a number of possibilities:

ELM-GCN Related. Research papers focusing on other of the classical ELM are still boom-
ing (MARTÍNEZ-MARTÍNEZ et al., 2011; ZHANG; LUO, 2015; INABA et al., 2018; SILVA
et al., 2020). Generalizing the new achievements while proposing new ones for graph-structured
data is a research path we plan to follow. Moreover, since ELM-GCN and RELM-GCN are
methods designed for node-level predictions, we also plan to extend them to be employed in
other Graph Machine Learning tasks, like graph-level and link predictions.

GNN-VSP Related. We plan to employ our proposed model for dealing with dynamic graphs
in other graph-structured domains (KUMAR; ZHANG; LESKOVEC, 2019; KAZEMI et al.,
2020; CHEN et al., 2022), e.g. social networks and recommending systems that are changing
over time. The author has a large interest in this path because of its robustness in dealing with
real-world scenarios (e.g. understanding how blocking street access impacts the urban planning
flow dynamics).

Graph Embeddings. Some researches focus on generating embeddings for the data points
that are structured in a graph manner (JIN et al., 2016; KIPF; WELLING, 2016b; GROVER;
LESKOVEC, 2016; XU, 2021). Those approaches aim to find a low-dimensional representation
of the graph data while also preserving the maximum of the structural information. Therefore,
they can support a wide range of applications from enhancing insights from data visualization and
exploration to pre-processing the information to another downstream classic machine learning
algorithm.
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Explainability. Another interest of the author is to start contributing in the Machine Learn-
ing Explainability area (RIBEIRO; SINGH; GUESTRIN, 2016; LUNDBERG; LEE, 2017).
Those classes of techniques focus on opening the black box of Machine Learning models and
understanding why they are providing such outputs. The author believes this is a field of in-
creasing importance because while machine learning has been a popular approach to many
real-world problems, the models that are being deployed are also becoming progressively more
sophisticated.

Fairness in Machine Learning. Fairness in machine learning has emerged as a field that
investigates methods to prevent biases in data and inaccuracies in models that could result in
discriminatory treatment of individuals based on attributes such as race, gender, disabilities, and
sexual or political orientation (CHOULDECHOVA; ROTH, 2020; RUGGIERI et al., 2023). This
is an interesting domain of study because, at the same time it is beneficial to rely on machine
learning models to support practical tasks, it is also desirable to ensure that they make responsible
decisions based on ethics.

5.1 Publications and Submitted Papers

During the Ph.D. period, the author of this dissertation published a paper related to the
proposed ELM-GCN / RELM-GCN techniques described in Chapter 3 at the 11th Brazilian
Conference on Intelligent Systems (BRACIS 2022) entitled “Extreme Learning Machine to
Graph Convolutional Networks” (GONÇALVES; NONATO, 2022).

The paper related to the GNN proposed to handle dynamic graphs and players scoring
scheme described in Chapter 4 is called “GNN-VSP: A Graph Neural Network Model for Valuing
Soccer Players” and is submitted to the journal Expert Systems With Applications.

During the Ph.D. period, the author of this dissertation also collaborated in two more
works that resulted in papers as co-author. The first one is published at the 35th Conference
on Graphics, Patterns and Images (SIBGRAPI 2022) and is called “CityHub: A Library for
Urban Data Integration” (SALINAS et al., 2022). In this work, we introduce CityHub, a Python
library developed to integrate distinct urban data types in a shared spatial domain, namely
the graph obtained by the city streets. In our case studies, we make use of CityHub and a
proposed visualization tool to understand the underlying relationship among several urban
variables of different nature, like crime, socio-economic, infrastructure, and weather variables.
The second one, entitled “EXplainable Artificial Intelligence (XAI) – From Theory to Methods
and Applications”, is published in the journal IEEE Access (ORTIGOSSA; GONÇALVES;
NONATO, 2024). This work is a review that discusses the theoretical foundations of explainability
algorithms, supporting the identification of objectives, challenges, and future research lines
of XAI. We show state-of-the-art approaches such as LIME, SHAP, and other explainability
algorithms to Graph Neural Networks. Such papers are not described in this dissertation as being
a collaboration with members of the research group.
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APPENDIX

A
PSEUDO-INVERSE (MOORE-PENROSE

GENERALIZED INVERSE)

The pseudo-inverse of a matrix A ∈ RN×M is the generalization of its inverse operation
for non-invertible and even non-square matrices (BANERJEE, 1973; WATKINS, 2004). The
formal definition is as follows.

Definition A.1. (Pseudo-Inverse)

We say the pseudo-inverse of a matrix A ∈ RN×M is a matrix B ∈ RM×N such that:

i) ABA = A

ii) BAB = B

iii) (AB)T = AB

iv) (BA)T = BA

It is immediate that if A∈RN×N is invertible, then A−1 is a pseudo-inverse of A. Moreover,
it is the only pseudo-inverse of A, because of the following Theorem.

Theorem A.1. (Existence and Uniqueness of Pseudo-Inverse)

Let A be a N ×M real matrix. Then, the pseudo-inverse A† of A exists and is unique.

Obs:. A† can be analytically obtained as A† = lim
δ→0

(AT A+δ I)−1AT = lim
δ→0

AT (AAT +δ I)−1
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Note that A† can be computed by inverting a N ×N or a M ×M matrix, whichever is
computationally less expensive. We also observe that in the particular case that A is full-column
rank (which implies that AT A is invertible), then A† = (AT A)−1AT . Analogously, if A is full-row
rank (which implies that AAT is invertible), then A† = AT (AAT )−1.

The pseudo-inverse also plays an important role in the solution of general linear systems
AX = Y , which may not always have an exact solution. Given fixed A and Y , consider the
following optimization problem.

argmin
X

∥AX −Y∥ (A.1)

On the one hand, if there exists X that satisfies the linear system, then min
X

∥AX −Y∥= 0.

On the other hand, the system could be impossible, meaning min
X

∥AX −Y∥> 0. In any case,

we want to find which solutions X achieves minimal error min
X

∥AX −Y∥.

Definition A.2. (Least-Square Solution)

We say X∗ is a Least-Square Solution of the optimization problem A.1 if ∥AX∗−Y∥=min
X

∥AX−
Y∥.

In the case we have multiple Least-Square Solutions X∗ (e.g. an infinite solution linear
system) we could be interested in selecting the one with minimal norm.

Definition A.3. (Minimum Norm Least-Square Solution)

We say X∗
0 is the Minimum Norm Least-Square Solution of the optimization problem A.1 if X∗

0

is a Least-Square Solution of A.1 and ∥X∗
0 ∥⩽ ∥X∗∥, ∀X∗ Least-Square Solution of A.1.

Moreover, Theorem A.2 connects the definitions A.2, A.3 and the notion of pseudo-
inverses.

Theorem A.2. Let there exist a matrix B such that BY is the Minimum Norm Least-Square
Solution of A.1. Then, it is necessary and sufficient that B = A†.

That is, suppose we have the linear system AX =Y . Computing X∗
0 := A†Y is the (unique)

solution that approximates the output Y with minimum error (being null when the system admits
solution) and, among all possible solutions which best approximates Y , X∗

0 also has the property
of being the one with minimum norm.
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APPENDIX

B
GNNEXPLAINER

GNNExplainer (YING et al., 2019) is an instance-level graph explainability algorithm
that is versatile enough to be used for different graph Machine Learning tasks (e.g. node
classification, link prediction) and any message passing GNN model.

Let G = (V,E) be a graph being V,E respectively the sets of nodes and edges. Denote N

the number of graph nodes and X ∈RN×F the matrix of node feature vectors, being F the feature
space dimension. Suppose f : V → R a GNN that learned a mapping from each vertex to a real
number and that we want to explain the prediction ŷ = f (v) for some particular node v ∈V .

The key idea of the GNNExplainer approach is that the output ŷ is fully determined by a
local neighborhood of v that the GNN aggregates information throughout the message-passing
mechanism. For example, if f is a 2-layered GCN, then the 2-hop neighborhood of v is a subgraph
of G that contains all the required data to explain ŷ. Let Gc(v) be this local neighborhood (also
called the computation graph of v) and Xc(v) the feature vectors of the nodes in Gc(v).

Suppose we want to find a subgraph Gs ⊂ Gc(v) and a subset of features Xs given by
selecting a number of columns from Xc(v) that are sufficient to explain ŷ. We discuss further the
more general case in which real-valued importance masks in [0, 1] are associated with the graph
nodes and feature dimensions for generating the explanation. Ying et al. (2019) formalize this
notion by the following optimization problem:

max
Gs,Xs

MI
(
Y,(Gs,Xs)

)
= H(Y )−H

(
Y |G = Gs,X = Xs)

)
(B.1)

where MI is the mutual information, Y is a random variable denoting the output and H is the
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entropy.

Intuitively, the mutual information in Equation B.1 computes the change in the probability
of prediction ŷ for node v when the computation graph of this node and the feature dimensions are
limited to Gs and Xs respectively. In other words, consider that removing node u ∈ Gc(v) has little
impact on the prediction ŷ from node v. Thus, pruning u from Gc(v) generates a more compact
subgraph Gs for the explanation with little loss of information. In contrast, if the exclusion of
feature fi from Xc(v) strongly changes ŷ, then this dimension is a good counterfactual explanation
for the output of v and therefore must be kept in the explanation.

Since the term H(Y ) in Equation B.1 is constant for different Gs,Xs, maximizing
the mutual information MI

(
Y,(Gs,Xs)

)
is equivalent to minimizing the conditional entropy

H
(
Y |G = Gs,X = Xs)

)
. Hence, Equation B.1 is written as:

min
Gs,Xs

H
(
Y |G = Gs,X = Xs)

)
=−EY |Gs,Xs

[
logPf (Y |G = Gs,X = Xs)

]
(B.2)

The number of subgraphs and feature dimensions candidates grows exponentially, thus
Ying et al. (2019) assess Equation B.2 by learning an importance mask for the nodes and
features. More specifically, let Nc(v) be the number of nodes in Gc(v) the computation graph
of v, M ∈ RNc(v)×F be a matrix of learnable parameters and σ(x) = 1/1+e−x the sigmoid
function that maps that real numbers into the interval (0,1). Hence, we assign Gs = Gc(v) and
Xs = Xc(v)⊙σ(M), where ⊙ denotes the element-wise product and σ(M) is the matrix defined
by σ applied to each entry of M. Since an arbitrary element Mi, j of the mask is the importance
of the j-th feature dimension of node i, M encodes both the relevance of the nodes (rows) and
features (columns). The mask M is optimized via a gradient descent variant algorithm and the
optimization also includes a regularization term in the entries of M to encourage selection only
of the most important nodes and features.

Alternatively, if the user wants a subgraph and/or subset of the features for the explanation
instead of a real-valued score between 0 and 1, he/she can select the most relevant nodes and/or
features by hard thresholding the mask or by keeping its top-k values. Ying et al. (2019) also
proposes to include a constraint in the optimization scheme to upper bound the number of nodes
in the subgraph and/or the number of selected feature dimensions. Another alternative proposed
by the authors is to overlay a learnable mask in the adjacency matrix for deriving edge-level
importances. However, in the context of GNN-VSP discussed in Chapter 4, since we aim to
assess players (nodes) with real-valued scores, we keep the non-thresholding approach and do
not make use of masks in the graph edges.
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