• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2017.tde-17112017-135006
Document
Auteur
Nom complet
André dos Santos Gonzaga
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Cordeiro, Robson Leonardo Ferreira (Président)
Bueno, Renato
Moro, Mirella Moura
Traina Junior, Caetano
Titre en anglais
The Similarity-aware Relational Division Database Operator
Mots-clés en anglais
Comparison by similarity
Complex data
Databases
Division in the relational algebra
Resumé en anglais
In Relational Algebra, the operator Division (÷) is an intuitive tool used to write queries with the concept of for all, and thus, it is constantly required in real applications. However, as we demonstrate in this MSc work, the division does not support many of the needs common to modern applications, particularly those that involve complex data analysis, such as processing images, audio, genetic data, large graphs, fingerprints, and many other non-traditional data types. The main issue is the existence of intrinsic comparisons of attribute values in the operator, which, by definition, are always performed by identity (=), despite the fact that complex data must be compared by similarity. Recent works focus on supporting similarity comparison in relational operators, but no one treats the division. MSc work proposes the new Similarity-aware Division (÷) operator. Our novel operator is naturally well suited to answer queries with an idea of candidate elements and exigencies to be performed on complex data from real applications of high-impact. For example, it is potentially useful to support agriculture, genetic analyses, digital library search, and even to help controlling the quality of manufactured products and identifying new clients in industry. We validate our proposal by studying the first two of these applications.
Titre en portugais
Divisão Relacional por Similaridade em Banco de Dados
Mots-clés en portugais
Bases de Dados
Comparação por similaridade
Dados complexos
Divisão em álgebra relacional
Resumé en portugais
O operador de Divisão (÷) da Álgebra Relacional permite representar de forma simples consultas com o conceito de para todos, e por isso é requerido em diversas aplicações reais. Entretanto, evidencia-se neste trabalho de mestrado que a divisão não atende às necessidades de diversas aplicações atuais, principalmente quando estas analisam dados complexos, como imagens, áudio, textos longos, impressões digitais, entre outros. Analisando o problema verifica-se que a principal limitação é a existência de comparações de valores de atributos intrínsecas à Divisão Relacional, que, por definição, são efetuadas sempre por identidade (=), enquanto objetos complexos devem geralmente ser comparados por similaridade. Hoje, encontram-se na literatura propostas de operadores relacionais com suporte à similaridade de objetos complexos, entretanto, nenhuma trata a Divisão Relacional. Este trabalho de mestrado propõe investigar e estender o operador de Divisão da Álgebra Relacional para melhor adequá-lo às demandas de aplicações atuais, por meio de suporte a comparações de valores de atributos por similaridade. Mostra-se aqui que a Divisão por Similaridade é naturalmente adequada a responder consultas diversas com um conceito de elementos candidatos e exigências descrito na monografia, envolvendo dados complexos de aplicações reais de alto impacto, com potencial por exemplo, para apoiar a agricultura, análises de dados genéticos, buscas em bibliotecas digitais, e até mesmo para controlar a qualidade de produtos manufaturados e a identificação de novos clientes em indústrias. Para validar a proposta, propõe-se estudar as duas primeiras aplicações citadas.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-11-17
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.