• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2013.tde-18112013-143708
Documento
Autor
Nome completo
Ricardo Araújo Rios
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2013
Orientador
Banca examinadora
Mello, Rodrigo Fernandes de (Presidente)
Ponti Junior, Moacir Pereira
Silva, Ivan Nunes da
Soriano, Diogo Coutinho
Telles, Guilherme Pimentel
Título em inglês
Improving time series modeling by decomposing and analysing stochastic and deterministic influences
Palavras-chave em inglês
Additive noise
Decomposition
Empirical mode decomposition
Stochastic and deterministic influences
Time series analysis
Resumo em inglês
This thesis presents a study on time series analysis, which was conducted based on the following hypothesis: time series influenced by additive noise can be decomposed into stochastic and deterministic components in which individual models permit obtaining a hybrid one that improves accuracy. This hypothesis was confirmed in two steps. In the first one, we developed a formal analysis using the Nyquist-Shannon sampling theorem, proving Intrinsic Mode Functions (IMFs) extracted from the Empirical Mode Decomposition (EMD) method can be combined, according to their frequency intensities, to form stochastic and deterministic components. Considering this proof, we designed two approaches to decompose time series, which were evaluated in synthetic and real-world scenarios. Experimental results confirmed the importance of decomposing time series and individually modeling the deterministic and stochastic components, proving the second part of our hypothesis. Furthermore, we noticed the individual analysis of both components plays an important role in detecting patterns and extracting implicit information from time series. In addition to these approaches, this thesis also presents two new measurements. The first one is used to evaluate the accuracy of time series modeling in forecasting observations. This measurement was motivated by the fact that existing measurements only consider the perfect match between expected and predicted values. This new measurement overcomes this issue by also analyzing the global time series behavior. The second measurement presented important results to assess the influence of the deterministic and stochastic components on time series observations, supporting the decomposition process. Finally, this thesis also presents a Systematic Literature Review, which collected important information on related work, and two new methods to produce surrogate data, which permit investigating the presence of linear and nonlinear Gaussian processes in time series, irrespective of the influence of nonstationary behavior
Título em português
Modelagem de séries temporais por meio da decomposição e análise de influências estocásticas e determinísticas
Palavras-chave em português
Análise de séries temporais
Decomposição
Decomposição de modo empírico
Influências estocásticas e determinísticas
Ruído aditivo
Resumo em português
Esta tese apresenta um estudo sobre análise de séries temporais, a qual foi conduzida baseada na seguinte hipótese: séries temporais influenciadas por ruído aditivo podem ser decompostas em componentes estocásticos e determinísticos que ao serem modelados individualmente permitem obter um modelo híbrido de maior acurácia. Essa hipótese foi confirmada em duas etapas. Na primeira, desenvolveu-se uma análise formal usando o teorema de amostragem proposto por Nyquist-Shannon, provando que IMFs (Intrinsic Mode Functions) extraídas pelo método EMD (Empirical Mode Decomposition) podem ser combinadas de acordo com suas intensidades de frequência para formar os componentes estocásticos e determinísticos. Considerando essa prova, duas abordagens de decomposição de séries foram desenvolvidas e avaliadas em aplicações sintéticas e reais. Resultados experimentais confirmaram a importância de decompor séries temporais e modelar seus componentes estocásticos e determinísticos, provando a segunda parte da hipótese. Além disso, notou-se que a análise individual desses componentes possibilita detectar padrões e extrair importantes informações implícitas em séries temporais. Essa tese apresenta ainda duas novas medidas. A primeira é usada para avaliar a acurácia de modelos utilizados para predizer observações. A principal vantagem dessa medida em relação às existentes é a possibilidade de avaliar os valores individuais de predição e o comportamento global entre as observações preditas e experadas. A segunda medida permite avaliar a influência dos componentes estocásticos e determinísticos sobre as séries temporais. Finalmente, essa tese apresenta ainda resultados obtidos por meio de uma revisão sistemática da literatura, a qual coletou importantes trabalhos relacionados, e dois novos métodos para geração de dados substitutos, permitindo investigar a presença de processos Gaussianos lineares e não-lineares, independente da influência de comportamento não-estacionário
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
ricardorios.pdf (4.17 Mbytes)
Data de Publicação
2013-11-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.