
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Using Metamorphic Testing to Identify Authentication
Vulnerabilities in Android Mobile Applications

Misael Costa Júnior
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Misael Costa Júnior

Using Metamorphic Testing to Identify Authentication
Vulnerabilities in Android Mobile Applications

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Márcio Eduardo Delamaro

USP – São Carlos
August 2024

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

C95u
Costa Júnior, Misael
 Using Metamorphic Testing to Identify
Authentication Vulnerabilities in Android Mobile
Applications / Misael Costa Júnior; orientador
Márcio Eduardo Delamaro. -- São Carlos, 2024.
 123 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2024.

 1. CIÊNCIA DA COMPUTAÇÃO. 2. ENGENHARIA DE
SOFTWARE. 3. PROCESSO DE SOFTWARE. 4. QUALIDADE DE
SOFTWARE. 5. SEGURANÇA DE SOFTWARE. I. Eduardo
Delamaro, Márcio , orient. II. Título.

Misael Costa Júnior

Usando o Teste Metamórfico para Identificar
Vulnerabilidades de Autenticação em Aplicativos Android

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Márcio Eduardo Delamaro

USP – São Carlos
Agosto de 2024

This research is especially dedicated to my parents, Luiza Maria and Misael Costa,

and also, to my beautiful sisters, Dayanne Lises and Danielly Tamires.

This dedication is extended to my beloved family (Miriane, Zeus, Floquinha, and Lince),

who have always supported me during this journey.

ACKNOWLEDGEMENTS

Firstly, I express my gratitude to God for providing me with opportunities for growth
and safeguarding me throughout this journey.

My special acknowledgements to my parents, Luiza Maria and Misael Costa, for their
invaluable advice shared during this expedition and their sacrifices, dedication, and selflessness
of their time and personal projects so that I could reach my objectives and dreams. To my sisters,
Dayanne Lises and Danielly Tamires, who, despite challenging circumstances, always displayed
patience and understanding. Finally, to my family (Miriane, Zeus, Floquinha, and Lince), for
their unwavering support and understanding have been fundamental.

My gratitude to my advisor, Prof. Dr. Márcio Delamaro (ICMC-USP), for the invaluable
opportunities and trust throughout this journey, which commenced in 2015, with my Master’s
degree. His guidance, support, and significant contributions have played a crucial role in the
completion of this work. I appreciate not only his professional example, but also his patience
and ethical approach, which have been a constant source of inspiration to me.

My heartfelt appreciation to Prof. Dr. Domenico Amalfitano, from the University of
Naples Federico II, in Italy; his support has been essential in this journey and I am truly grateful
for his invaluable assistance and guidance.

To my friend Mauricio Guimarães, who honored me with his friendship and shared
his delightful experiences of Amor Fati, through which I have learned to accept and embrace
everything that happens in life, including challenging and painful experiences, instead of resisting
or resenting them. I extend my gratitude to my friends who accompanied me during this long
journey: Alfredo Guilherme, André Pessoa, Claudinei Junior, Diógenes Dias, Gustavo Prudencio,
João Choma, Joelson Santos, Jorge Cutigi, José Filomen, Lina Garcés, Ricardo Vilela, and Stevão
Andrade. Their friendship was essential and one of the great achievements I have gained.

To the professors of the State University of Piauí (UESPI), who provided me with
opportunities and made me believe in my potential. My special thanks to Prof. Dr. Bringel Filho,
an exemplary professional and friend, who I greatly esteem and admire.

This PhD work was partially financed by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

“He is called a free spirit who thinks differently from what, on the basis of his origin,

environment, his class and profession, or on the basis of the dominant views of the age, would

have been expected of him”

(Friedrich Nietzsche, Human, All Too Human: A Book for Free Spirits)

RESUMO

JÚNIOR, M. C. Usando o Teste Metamórfico para Identificar Vulnerabilidades de Auten-
ticação em Aplicativos Android. 2024. 123 p. Tese (Doutorado em Ciências – Ciências de
Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2024.

O amplo uso de aplicativos móveis, abrangendo atividades desde operações bancárias até tarefas
de escritório, intensificou a demanda por atividades de garantia de qualidade. No entanto, testes
de aplicativos móveis apresentam desafios distintos, como restrições de energia (ou seja, Desem-
penho), adaptação de interface (ou seja, Usabilidade) e privacidade de dados do usuário (ou seja,
Segurança) — exemplos de Requisitos Não Funcionais (RNFs). Segurança, um dos RNFs mais
críticos, é crucial para sistemas de software, especialmente em aplicativos móveis. A existência
de falhas de segurança (ou seja, vulnerabilidades) representam um risco substancial, podendo
resultar em acesso não autorizado ou ataques maliciosos. Testes de segurança tradicionais são
frequentemente dispendiosos e complexos, complicados ainda mais pelo “problema do oráculo”.
Em resposta, o Teste Metamórfico (TM) surgiu como uma abordagem estratégica para enfrentar
esses desafios. Utilizando Relacionamentos Metamórficos (RMs) derivados do System Under

Testing (SUT), o TM avalia falhas no sistema. Estudos recentes exploraram a eficácia do TM
em revelar falhas relacionadas a RNFs, incluindo Desempenho e Segurança, em domínios como
sistemas Web e aplicativos móveis. Esta pesquisa de doutorado introduz uma técnica inovadora
de TM direcionada a cinco vulnerabilidades relatadas pela OWASP em aplicativos móveis An-
droid, que afetaram principalmente os métodos de autenticação por nome de usuário e senha.
A técnica utiliza cinco RMs para avaliar a presença dessas vulnerabilidades, complementada
por um Ambiente de Teste de Vulnerabilidade Metamórfica que automatiza o processo de teste.
Este ambiente simplifica a geração e execução de casos de teste source de follow-up. Em um
experimento abrangente com 163 aplicativos Android comerciais, a técnica proposta identificou
159 vulnerabilidades, sendo que 108 aplicativos revelaram pelo menos uma vulnerabilidade.
Dentre os métodos usados para validar as vulnerabilidades encontradas, foram contatadas 37
empresas para relatar os problemas em seus aplicativos. Nove delas responderam diretamente
para validar as vulnerabilidades, e três solicitaram consultas online para corrigi-las. Notou-se
que, embora 26 empresas não tenham respondido, lançaram uma nova versão do app sem as
vulnerabilidades relatadas. Surpreendentemente, descobriu-se que a qualidade percebida pelo
usuário não está necessariamente relacionada à ausência de vulnerabilidades. Mesmo aplicativos
bem avaliados podem conter falhas de segurança.

Palavras-chave: Teste de Segurança, Teste Metamórfico, Teste de Vulnerabilidade, Teste de
Aplicativos Móveis, Teste Beaseado em GUI.

ABSTRACT

JÚNIOR, M. C. Using Metamorphic Testing to Identify Authentication Vulnerabilities in
Android Mobile Applications. 2024. 123 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2024.

The widespread use of mobile apps, spanning activities from banking to office tasks, has intensi-
fied demands for quality assurance activities. Nevertheless, mobile apps testing faces unique
challenges, such as power constraints (i.e., Performance), interface adaptation (i.e., Usability),
and user data privacy (i.e., Security) — examples of Non-Functional Requirements (NFRs).
Security, one of the most critical NFRs, is pivotal for software systems, especially in mobile
apps. The existence of security faults (i.e., vulnerabilities) poses a substantial risk, potentially
resulting in unauthorized access or malicious attacks. Traditional security testing is often costly
and intricate and further hampered by the “oracle problem.” In response, Metamorphic Testing
(MT) has emerged as a strategic approach to address those challenges. Adopting Metamorphic
Relationships (MRs) derived from the Application Under Testing (AUT), MT assesses faults
in applications. Recent studies have explored MT’s effectiveness in uncovering NFR-related
faults, including those in performance and security, across domains such as Web systems and
mobile apps. This PhD thesis introduces an innovative MT technique targeting six vulnerabilities
reported by OWASP in Android mobile apps, which have affected mainly username and pass-
word authentication methods. The technique employs five MRs to evaluate the existence of such
vulnerabilities, complemented by a Metamorphic Vulnerability Testing Environment automating
the testing process. The environment streamlines both generation and execution of source and
follow-up test cases. In an extensive experiment with 163 commercial Android applications, the
technique identified 159 vulnerabilities, with 108 apps revealing at least one of them. Towards
confirming the vulnerabilities identified, 37 companies were contacted for reporting those in
their apps, of which nine directly responded to ratifying them, with three even requesting online
consultations for addressing the issues. Although not responding to the reports, 26 companies
released new versions of their apps, addressing the reported vulnerabilities. The experiments
also revealed a surprising finding: contrarily to expectations, the user-perceived quality does not
necessarily correlate with the absence of vulnerabilities; indeed, even applications perceived by
users as high-quality are not immune to them.

Keywords: Security Testing, Metamorphic Testing, Vulnerability Testing, Mobile Apps Testing,
GUI Based Testing.

LIST OF FIGURES

Figure 1 – Example of FR and NFR specification. 35
Figure 2 – Example of a metamorphic testing application – Shortest path program. . . . 40
Figure 3 – Example of a metamorphic testing application – Academic Search Engines. 41

Figure 4 – Abstract Protocol Flow of user authorization and access to protected resources
defined by OAuth 2.0. 61

Figure 5 – Quality attributes reported in the primary studies. 68
Figure 6 – Quality attributes reported in the primary studies by year. 68
Figure 7 – Mobile platforms reported in primary studies. 70
Figure 8 – Testing strategies adopted in Security testing. 71
Figure 9 – Mapping of approaches for security testing. 73
Figure 10 – Types of supporting tools. 76
Figure 11 – Tool types addressed by security testing techniques. 76

Figure 12 – Metamorphic-based vulnerability testing technique proposed. 80
Figure 13 – Example of a source GUI-based test case scenario executed on a real Booking

application. 82
Figure 14 – Metamorphic Vulnerability Testing Environment architecture. 84
Figure 15 – Snapshot of the expected GUI (left), excerpt of the XML description of the

expected GUI (middle), and snapshot of a GUI different from the expected
one (right). 86

Figure 16 – Distribution of rated stars for the apps of the sample. 92
Figure 17 – Distribution of downloads of the apps of the sample. 92
Figure 18 – Clustering of the sample by vulnerability and user perceived quality of AUT. 94
Figure 19 – Distribution of applications per vulnerabilities and rated stars. 95
Figure 20 – Distribution of vulnerabilities per user perceived quality characteristics. . . 95

LIST OF TABLES

Table 1 – Goals of the Systematic Mapping. 66
Table 2 – Research Questions. 67
Table 3 – Proposed Metrics. 67
Table 4 – Motivations for addressing Security testing. 69

Table 5 – Design of the six test cases related to the Metamorphic Relationships defined. 83
Table 6 – Weaknesses related to vulnerabilities due to improper design and implementa-

tion of username and password authentication methods. 87
Table 7 – Definition of the six MRs introduced for each weakness listed in Table 6. . . 89
Table 8 – Weaknesses related to vulnerabilities due to improper design and implementa-

tion of username and password authentication methods. 91
Table 9 – Number of vulnerabilities detected by each MR for each app category. 94
Table 10 – Correlation coefficients . 96

LIST OF ABBREVIATIONS AND ACRONYMS

AG Authorization Grant

AndDev Android Device

APIs Application Programming Interfaces

APPs Applications

AR Authentication Request

ASEs Academic Search Engines

AT Access Token

Auth-Server Authorization Server

AVD Android Virtual Device

BNA Based on the Nature of the Application

BVA Boundary Value Analysis

CAI Coverage analyzers and instrumenters

CB Code-Based

CCFG Control-Flow Graph of Call-Backs

CFB Control Flow-Based

CFG Control Flow Graph

CPRs Cyber-physical systems

CR Capture/Replay

CSUR ACM Computing Surveys

DFB Data Flow-Based

DT Decision Tables

EG Error Guessing

EP Equivalence Partitioning

FB Fault-Based

FN False Negatives

FOSS Free Open-Source Software

FP False Positives

FRs Functional Requirements

FS Formal Specifications

FSM Finite State Machine

GPS Global Positioning System

GQM Goal–Question–Metric

GUI Graphical User Interface

HTTP-CC HTTP Connection Channel

HTTPS-CC HTTPS Connection Channel

IDB Input Domain-Based

JSS Journal of Systems & Software

MB Model-Based

MITM Man-in-the-Middle

ML Machine Learning

MT Metamorphic Testing

MUT Mutation Testing

MVC Multi-Valued Composite

NFRs Non-Functional Requirements

NTSSLDC No Trusted SSL/TLS Digital Certificate

OC Oracle/file comparators and assertion checking

OP Operational Profile

PR Protected Resources

PT Pairwise Testing

PV Performance Variation

q.a quality attribute

q.c quality characteristic

q.r quality requirement

QoS Quality of Service

RandT Random Testing

RE Reliability evaluation

REng Requirements Engineering

Res-Server Resource Server

RO Resource Owner

RQ Research Question

RT Regression Testing

SEIE Based on the Software Engineer’s Intuition and Experience

SIS Sign-In Screen

SLR Systematic Literature Review

SMS Systematic Mapping Study

SQuaRE Systems and software Quality Requirements and Evaluation

SSDC Self Signed Digital Certificate

SSL Secure Sockets Layer

SUT System Under Testing

SWEBOK Software Engineering Body Of Knowledge

T Tracers

TaaS Testing as a Service

TG Test Generators

TH Test Harnesses

TSL Transport Security Layer

TSSLDC Trusted SSL/TLS Digital Certificate

TTL Time-to-live

UB Usage-Based

UML Unified Modeling Language

UOH User Observation Heuristics

UPC User and Password Credentials

WM Workflow Models

ZIPT Zero-Integration Performance Testing

CONTENTS

1 INTRODUCTION . 27
1.1 Problem Statement . 28
1.2 Research Questions and Objectives 30
1.3 Contributions . 32
1.4 Thesis Outline . 32

2 STATE-OF-THE-ART . 33
2.1 Preliminary Remarks . 33
2.2 Non-Functional Requirements: Classification, Challenges, and Testing 34
2.2.1 Classification of Non-Functional Requirements 35
2.2.2 Problems Associated with Non-Functional Requirements 37
2.2.3 An Overview on Non-Functional Requirements Testing 38
2.3 Metamorphic Testing Approach . 39
2.3.1 Practical Guidelines for the implementation of Metamorphic Testing 40
2.3.2 Challenges for the use of Metamorphic Testing 42
2.3.3 Metamorphic Testing in the Context of Non-Functional Requirements 42
2.4 Mobile Application Testing: Concepts, Challenges, and Trends . . . 44
2.4.1 A Comprehensive Analysis of Mobile Applications Testing 46
2.4.2 Challenges Associated with Mobile Applications Testing 48
2.4.3 Non-Functional Testing in Mobile Applications 49
2.5 Final Remarks . 51

3 FUNDAMENTALS OF SECURITY TESTING 53
3.1 Preliminary Remarks . 53
3.2 A Guide to Security Requirements and Testing 54
3.2.1 Security Testing in Android Applications 56
3.3 Secure username and password authentication in Android applications 59
3.4 Final Remarks . 63

4 SECURITY DYNAMIC TESTING TECHNIQUES IN MOBILE AP-
PLICATIONS: FINDINGS FROM A SYSTEMATIC MAPPING
STUDY . 65

4.1 Preliminary Remarks . 65
4.2 Goals, Research Questions, and Metrics 66

4.3 Results . 67
4.3.1 NFR testing techniques for mobile apps 68
4.3.1.1 Distribution of NFRs addressed by primary studies 68
4.3.1.2 Mobile Platforms . 69
4.3.1.3 Security Testing Strategies . 70
4.3.1.4 Approaches for Security testing . 72
4.3.2 Tools for supporting NFR testing for mobile applications 74
4.3.2.1 Tool support to NFR testing of mobile apps 74
4.3.2.2 Testing tool licensing . 74
4.3.2.3 Types of NFR testing tools . 75
4.4 Discussion . 76
4.4.1 Security is one of the critical and relevant NFR 76
4.4.2 Security testing is not a simple and accessible task 77
4.4.3 Android is the most addressed and vulnerable mobile platform in

the context of security . 77
4.4.4 Some tools for security testing are not easily accessible 77
4.5 Final Remarks . 78

5 A GUI-BASED METAMORPHIC TESTING TECHNIQUE FOR DE-
TECTING AUTHENTICATION VULNERABILITIES IN ANDROID
MOBILE APPS . 79

5.1 Preliminary Remarks . 79
5.2 Metamorphic-based Vulnerability Testing Technique 80
5.2.1 Metamorphic Vulnerability Testing Environment 84
5.2.1.1 Architectural overview . 84
5.3 Metamorphic Relationships for Detecting Authentication Vulnerabil-

ities . 86
5.3.1 Vulnerabilities selection and weaknesses description 87
5.3.2 Definition of Metamorphic Relationships 88
5.3.2.1 Improper Certificate Validation . 88
5.3.2.2 Insufficient Session Expiration . 88
5.3.2.3 Session Fixation . 88
5.3.2.4 Missing Encryption of Sensitive Data . 90
5.3.2.5 Authentication Bypass . 90
5.4 Experimental Evaluation . 90
5.4.1 Object selection . 91
5.4.2 Experimental procedure . 92
5.4.3 Experimental results and answers to RQs 93
5.4.3.1 Answer to RQ1 . 94
5.4.3.2 Answer to RQ2 . 96

5.4.3.3 Answer to RQ3 . 96
5.5 Threats to Validity . 97
5.5.1 External validity . 97
5.5.2 Internal validity . 97
5.5.3 Conclusion validity . 98
5.5.4 Construct validity . 98
5.6 Final Remarks . 98

6 CONCLUSIONS . 101
6.1 Revisiting the Thesis Contribution . 102
6.2 Limitations and Future Work . 104

BIBLIOGRAPHY . 107

APPENDIX A SYSTEMATIC MAPPING PAPER 123

27

CHAPTER

1
INTRODUCTION

Mobile devices have significantly entered our daily lives, becoming an integral part
of a growing global market, and a staggering 7,516 billion smartphone users are expected by
2026 worldwide (O’DEA, 2020). Among mobile operating systems, Android stands out as the
most prevalent, powering 70% of devices, while iOS is found on 27.7% of them (LARICCHIA,
2022). Towards grasping the sheer ubiquity of mobile applications (apps) on Android devices,
let us consider more than 111.3 billion apps were downloaded in 2021 from Google Play Store,
the official app marketplace for Android OS (CECI, 2022). Such mobile apps have become
indispensable in our daily routines, spanning across entertainment (e.g., Netflix), gaming (e.g.,
Among Us), transportation (e.g., Uber), social media (e.g., Instagram, Facebook, Twitter, TikTok),
education (e.g., Duolingo), and e-commerce (e.g., Amazon, eBay, Zalando).

However, since the development of apps extends beyond entertainment to encompassing
safety-critical and time-sensitive domains, their quality has become paramount. Security is a
fundamental aspect, since mobile apps often track our movements, monitor our interests, and
increasingly control IoT-connected devices that shape our environment (SEQUEIROS et al.,
2020). Usability is equally crucial; an app’s success or failure depends on user satisfaction
and judgment (HENRY, 2021). Furthermore, mobile apps must operate efficiently, avoiding
excessive CPU, memory, and energy consumption (ALOTAIBI; CLAUSE; HALFOND, 2020)
while delivering robust performance in terms of throughput and response times. They must also
consistently meet user expectations across the myriad of devices and platforms in use by their
customer base (YU et al., 2021).

The aforementioned considerations underscore the importance of addressing Security,
Usability, and Performance, all of which falling under the purview of Non-Functional Require-
ments (NFRs). NFRs, also commonly referred to as quality requirements (q.r), provide criteria
for evaluations of a system’s performance rather than specify particular behaviors. In contrast,
Functional Requirements (FRs) define the functions of a system or its components. A func-
tion is essentially a specification of the behavior between outputs and inputs. In simpler terms,

28 Chapter 1. Introduction

NFRs focus on “how the system should perform” as opposed to “what the system should do”
(ECKHARDT; VOGELSANG; FERNÁNDEZ, 2016).

In the realm of security, the proliferation of available apps has been accompanied
by a surge in vulnerabilities (i.e., security faults) and ensuring security controls has become
more difficult (VILLAMIZAR et al., 2020). According to a 2020 report by Skybox Security
(SECURITY, 2020), vulnerabilities in mobile operating systems witnessed a 50 percent increase,
primarily driven by Android faults, coinciding with the convergence of home networks and
personal devices with corporate networks, owing to the mass transition toward remote workforces.
Such developments underscore the urgent need for organizations to enhance access controls and
gain comprehensive visibility into all entry and exit points within their network infrastructure
(SECURITY, 2020). In this scenario, mobile apps play a critical role in managing and sharing
users’ sensitive information, including family addresses, private contacts, phone numbers, emails,
messages, and credit card credentials. Protecting this wealth of data from malicious mobile
attacks is of paramount importance (MCAFEE, 2017).

Most malicious attacks take advantage of vulnerabilities in mobile apps, such as un-
secured sensitive data storage (OWASP, 2016a), unencrypted networking channels (OWASP,
2016b), and insecure authentication (OWASP, 2016c). A vulnerability is a special type of fault
related to security properties that can be exploited by an attacker (FELDERER et al., 2016) and
the main reason for security and privacy breaches in commercial software. Vulnerabilities are
very often caused by software faults made by developers in their projects, as pointed out by Xie,
Lipford and Chu (2011) from an analysis of bug tracking systems. Moreover, they can also occur
due to a lack of understanding and improperly specification of security requirements in software
development projects (VILLAMIZAR et al., 2020).

While on the one hand vulnerabilities are introduced mainly in function of a lack of
developers´ specific knowledge about software security issues (POTTER; MCGRAW, 2004;
ARKIN; STENDER; MCGRAW, 2005; XIE; LIPFORD; CHU, 2011; NAGAPPAN; SHIHAB,
2016; RIBEIRO; CRUZES; TRAVASSOS, 2018; VILLAMIZAR et al., 2020; JUNIOR et al.,
2022), on the other hand they are hardly detectable for different reasons such as (i) complexity
and inefficiency of the known testing techniques (RIBEIRO; CRUZES; TRAVASSOS, 2018;
JUNIOR et al., 2022), (ii) lack of testing of apps against real-world known vulnerabilities
(JUNIOR et al., 2022), and (iii) difficult definition and implementation of oracles in executable
test cases for assessing the absence of vulnerabilities (RIBEIRO; CRUZES; TRAVASSOS, 2018;
CHEN et al., 2016; JUNIOR et al., 2022).

1.1 Problem Statement

Authentication and authorization issues represent pervasive security vulnerabilities,
consistently ranking as the third highest concern in the OWASP Top 10 vulnerabilities (OWASP,

1.1. Problem Statement 29

2023b). In light of such a pressing concern, Metamorphic Testing (MT) technique was adopted
in this PhD research for the detection of vulnerabilities in Android mobile apps that have
affected mainly username and password authentication methods. MT supports the creation
of new test cases and is usually adopted as a valid alternative to alleviate the oracle problem
definition (CHEN; CHEUNG; YIU, 1998). Oracle Problem occurs when the correctness of
outputs generated from valid input domain data cannot be judged or its judgement is difficult
through practical means (WEYUKER, 1982; BARR et al., 2015). At its core, MT revolves
around the definition of a set of Metamorphic Relationships (MRs), which are relations derived
from properties to be upheld by the tested program (CHEN; CHEUNG; YIU, 1998; SEGURA et

al., 2016).

This research direction has been motivated by two primary factors and challenges. First,
username and password authentication methods are some of the most commonly adopted ones in
mobile apps (OWASP, 2023a) and new vulnerabilities in those methods are frequently identified
and reported by both users and developers. Notably, the Common Weakness Enumeration (CWE),
a list of software and hardware weaknesses, listed at least six types of vulnerabilities affecting
authentication methods among the Top 25 Most Dangerous Software Weaknesses in 20211.

Furthermore, the OWASP report on the “Top 10 Mobile Risks” underscored the signifi-
cance of risks related to username and password authentication methods2. In its 2023 version
updated by OWASP, risks associated with those methods have ascended to occupying the third
position, indicating their elevated prominence as critical security concerns in mobile apps
(OWASP, 2023b). Such developments have accentuated the imperative nature of investigating
vulnerabilities in those specific authentication methods regarding mobile app security.

Secondly, MT has been successfully applied in a variety of application domains, from web
services to embedded systems (CHAN; CHEUNG; LEUNG, 2005; CHAN et al., 2007; ZHOU
et al., 2007; MAYER; GUDERLEI, 2006; CHAN; CHEUNG; LEUNG, 2007; CHAN; HO; TSE,
2007; TSE; YAU, 2004; PULLUM; OZMEN, 2012; JIANG; XUXIAN, 2013; NAKAJIMA;
BUI, 2016; MURPHY; KAISER; HU, 2008). However, most of the analyzed papers focused
on the detection of functional faults, with notable applications in areas such as validation and
quality assessment, leaving the potential application of MT for detecting faults related to NFRs
largely unexplored (SEGURA et al., 2018).

From the study of Segura et al. (2018), which introduced a set of guidelines for the
application of MT for detecting faults related to NFRs (e.g., Performance), several subsequent
studies have adopted MT for such a purpose (AZIMIAN et al., 2019; JOHNSTON et al., 2019;
MAI et al., 2019; AYERDI et al., 2022; RAHMAN; IZURIETA, 2023; CORRADINI; PASQUA;
CECCATO, 2023). Azimian et al. (2019) employed it to identify known bugs and energy hotspots

1See vulnerabilities ranked at (11, 14, 18, 20) from CWE (2021)
2See Insecure Communication (M3), Insecure Authentication (M4), Insecure Authorization (M6) (OWASP,

2023b)

30 Chapter 1. Introduction

(i.e., performance issues) in Android apps. Their approach involved the design of MRs based
on known bugs and energy hotspots, which were then applied to Android apps for checking for
violations.

Johnston et al. (2019) applied the CWE framework to Adobe Experience Platform
Launch Tag Manager software specifically for identifying performance anomalies, creating test
pages that implemented Adobe tags, and comparing them to test pages using the tags through
Experience Platform Launch, thus anticipating functional equivalence while observing potential
differences in page-load performance.

Mai et al. (2019) designed an approach based on MT concepts to evaluate the security
of Web systems. They adopted the technique proposed by Huang et al. (2003), according to
which an intentionally invalid input (i.e., source input) and a valid one (i.e., follow-up input) are
generated for each MR. They first selected a set of known vulnerabilities that usually can occur
on Web systems, then designed a set of 22 system-agnostic MRs to detect them, and, finally,
automatically captured security properties from the Web system to check whether the MRs had
been violated or not.

Ayerdi et al. (2022) introduced an MR pattern called PV (Performance Variation) specifi-
cally designed to detect failures in Cyber-Physical Systems (CPS) that integrate software with
physical processes. PV simplifies the identification of performance MRs in CPS, providing a
valuable solution to the test oracle problem. The authors established MRs to assess banking
functions and successfully demonstrated their effectiveness. The approach involves capturing
the properties of banking functions, which are characteristics susceptible to compromise during
system vulnerabilities, and automating testing procedures using those MRs.

Corradini, Pasqua and Ceccato (2023) expanded upon Mai et al. (2019) earlier research
by proposing 76 system-agnostic MRs tailored for automating security testing in web systems.
Such MRs collectively address 39% of the OWASP security testing activities not automated by
existing state-of-the-art techniques.

To the best of our knowledge, this PhD research represents the first endeavor to employ
MT for the identification of vulnerabilities in Android apps. It has not only addressed the existing
lack in guidelines for such an application, but also advanced the use of MT in the critical domain
of mobile app security.

1.2 Research Questions and Objectives

Given the challenges outlined in the problem statement and, as discussed in Section
1.1, this PhD research addresses those challenges by proposing a novel testing technique based
on the principles of MT for primarily identifying vulnerabilities in Android mobile apps that
are associated with username and password authentication methods. Therefore, the following

1.2. Research Questions and Objectives 31

Research Question (RQ) and specific objectives have been formulated:

Research Question: Can the testing technique based on MT concepts enhance the

detection of vulnerabilities in Android mobile apps associated with username and password

authentication methods?

Specific Objectives: Towards achieving the overarching goal and effectively addressing
the RQ, the following specific objectives have been delineated:

• Investigation of the use of NFRs dynamic testing techniques in mobile apps: an extensive
Systematic Mapping Study (SMS) on the dynamic testing of NFRs in mobile apps was
conducted focusing on NFRs addressed, testing strategies adopted, mobile platforms
explored, and supporting tools. The findings are expected to provide a solid foundation
for upcoming proposals in this field, offering valuable insights into the current state of
dynamic NFRs testing in mobile apps and areas that require further investigations;

• Characterization of prevalent and known vulnerabilities in mobile apps: a comprehensive
investigation analyzed the prevalent, critical, and known vulnerabilities in mobile apps
and involved the extraction of vulnerabilities and security risks from prominent sources,
including OWASP (MUELLER; SCHLEIER; WILLEMSEN, 2019; OWASP, 2023b),
CWE (CWE, 2023a; CWE, 2021), and relevant scientific studies (AVANCINI; CECCATO,
2013a; LIU et al., 2018a; SHI; WANG; LAU, 2019a; OPASIAK; MAZURCZYK, 2019;
WANG et al., 2020a). It identified and selected prevalent, real-world vulnerabilities in
Android apps, providing a curated set of vulnerabilities to be used in the application of the
proposed testing technique within this PhD research;

• Elaboration of MRs for the identification of vulnerabilities in mobile apps: a strategy
was defined for crafting MRs and detecting vulnerabilities in mobile apps. It involved a
search for relevant scientific studies that offered MRs for identifying vulnerabilities in
other application domains, such as the web (MAI et al., 2019; CHALESHTARI et al.,
2023a). The study of Mai et al. (2019) served as the primary source for the development
of a testing approach rooted in MT concepts within the mobile app domain, facilitating the
creation of a set of MRs tailored for vulnerability identification specific to mobile apps
and enhancing the foundation for the proposed approach;

• Developing a tool-supported GUI-based MT vulnerability testing technique for Android

mobile apps: A tool-supported testing technique was developed to identify five of the
most prevalent and representative real-world vulnerabilities associated with username and
password authentication methods, as outlined by OWASP;

• Execution of a wide experiment: an experiment validated the vulnerability testing technique
based on MT concepts in commercial mobile apps. During the research process, many
previous studies proposing security testing techniques were validated with the use of a
limited number of open-source apps (MAI et al., 2019; RAHMAN; IZURIETA, 2023;
CHALESHTARI et al., 2023b; CHALESHTARI et al., 2023a). Such a limitation led

32 Chapter 1. Introduction

to the validation of the technique across a wide spectrum of commercial Android apps,
ensuring they are widely used and representative of the diverse landscape of mobile app
development. The technique aimed at a more comprehensive and robust assessment of the
proposed methodology’s effectiveness and practicality.

1.3 Contributions
The objectives described and the development of the proposal have led to the following

main contributions:

• a pioneering endeavor to harness MT for the identification of vulnerabilities in Android
mobile apps;

• a meticulous characterization of a spectrum of real-world vulnerabilities relevant within
the framework of user-perceived quality;

• a comprehensive and tool-supported GUI-based MT vulnerability testing technique tailored
for Android mobile apps;

• a wide-ranging experimentation with some of the most frequently used Android mobile
apps readily accessible via Google Play stores in both Brazil and Italy.

1.4 Thesis Outline
This document is structured as follows: Chapter 2 provides an extensive review of the

current state of NFRs, MT technique, and mobile apps testing, establishing the foundational
knowledge required for the comprehension of the subsequent chapters; Chapter 3 is devoted
to a comprehensive understanding of security testing, deepening the theoretical framework
surrounding vulnerabilities in username and password authentication methods towards a critical
security context that underpins the entire thesis; Chapter 4 provides an overview of an SMS and
the discussion of the results of 56 primary studies that clearly address NFRs dynamic testing
in mobile applications, with a special focus on NFRs testing in the domain of security testing
for mobile applications; Chapter 5 introduces the MT-based technique developed for detecting
vulnerabilities in username and password authentication methods, addressing both design and
implementation of the testing environment created for automating the approach and offering
insight into the experimental structure and in-depth discussions on the outcomes; finally, Chapter
6 provides the conclusions, findings, implications, and future research directions.

33

CHAPTER

2
STATE-OF-THE-ART

2.1 Preliminary Remarks

This chapter provides the theoretical background of the main topics addressed in this
thesis, namely Non-Functional Requirements (NFRs), Metamorphic Testing (MT) approach,
and Mobile Applications Testing. Some parts of the chapter were based on a paper published
at ACM Computing Surveys (CSUR) (JUNIOR et al., 2022) and on another paper published
at the Proceedings of the 13th International Conference on Software Testing, Validation and
Verification (ICST) (JUNIOR, 2020).

• JUNIOR, M. C., AMALFITANO, D., GARCES, L., FASOLINO, A. R., ANDRADE, S.
A., DELAMARO, M. (2022). Dynamic testing techniques of non-functional requirements
in mobile apps: A systematic mapping study. ACM Computing Surveys (CSUR), 54(10s),
1-38. Available: <https://doi.org/10.1145/3507903>;

• JUNIOR, M. C.. Automated verification of compliance of non-functional requirements
on mobile applications through metamorphic testing. In: Proceedings of the 13th Inter-
national Conference on Software Testing, Validation and Verification (ICST). IEEE,
2020. p. 421-423. Available: <https://doi.org/10.1109/ICST46399.2020.00053>.

The chapter is organized as follows: Section 2.2 presents the essential concepts and
characteristics of NFRs, along with the challenges associated with testing approaches applied to
them; Section 2.3 provides the core concepts of the MT approach and explores the challenges
of its application in the context of NFRs; Section 2.4 covers the fundamental concepts and
characteristics of mobile applications testing and discusses the challenges for the application of
software testing approaches to NFRs in the mobile applications domain; finally, Section 2.5 is
devoted to reflections on the contributions of the background to the understanding of the thesis.

https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053

34 Chapter 2. State-of-the-art

2.2 Non-Functional Requirements: Classification, Chal-
lenges, and Testing

Software requirements are often regarded as key indicators of both success and quality
of software (GLINZ, 2007). Requirements Engineering (REng) has been widely recognized as
one of the most crucial stages in the software development life cycle, playing a vital role in any
software development process (AHMAD et al., 2019). When neglected, it can lead to failures
and increase time and costs of such development (ECKHARDT; VOGELSANG; FERNÁNDEZ,
2016).

REng community classifies requirements into Functional and Non-Functional (FRs and
NFRs, respectively). The former defines the functions, i.e., specifications of the behavior between
outputs and inputs, of a system or its components, whereas NFRs, commonly referred to as q.r,
specify criteria for the judgement of the operation of a system, rather than specific behaviors. In
other words, FRs outline the requirements for a software system to address stakeholders’ needs
and NFRs determine the degree to which a product or system provides functions that meet those
needs when used under specified conditions (PRESSMAN, 2016; SOMMERVILLE, 2011).

The IEEE Standard Glossary of Software Engineering Terminology (COMMITTEE et

al., 1990) does not define term “Non-Functional Requirement” clearly, although it distinguishes
others such as design requirements, interface requirements, and performance requirements.
According to Glinz (2007) and Afreen, Khatoon and Sadiq (2016), NFRs can be seen as properties
or qualities to be exhibited by a product, encompassing attributes such as appearance, speed, and
accuracy. Additionally, they represent system properties that comprise quality functions (e.g.,
performance, usability, security, among others) (GLINZ, 2007; AFREEN; KHATOON; SADIQ,
2016).

Figure 1 shows an example of a login system for illustrating the difference between FRs
and NFRs. A login system is a fundamental component of software applications – users must
provide credentials (e.g., username and password) to access secure areas or personalized features
within the application. It authenticates users and grants appropriate access privileges based on
their credentials.

Below is the FR for this login system:

FR: User Authentication - The login system must allow users to enter their username
and password to authenticate their identity.

NFR is related to the system’s performance:

NFR: Performance - The login system should respond to user login requests within 3
seconds, providing a seamless and efficient user experience.

As illustrated in Figure 1, FRs specify the functionalities of the software system for

2.2. Non-Functional Requirements: Classification, Challenges, and Testing 35

Figure 1 – Example of FR and NFR specification.

Source: Elaborated by the author.

addressing stakeholders’ needs. In the example of the login system, FR must enable user
authentication through a username and a password. On the other hand, NFRs focus on the quality
attributes and constraints that define how well the software system performs its functions. In the
login system example, NFR pertains to performance, emphasizing the system’s responsiveness
and ability to handle user login requests within 3 seconds for an optimal user experience.

2.2.1 Classification of Non-Functional Requirements

NFRs are an essential aspect addressed in international standards within the software
and systems quality initiative (ADAMS, 2015). Both previous ISO/IEC Standard 9126 (ISO/IEC
1991) (ISO, 2001) and its replacement, ISO/IEC Std 25010 (ISO, 2011) titled “Systems and

software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE)

— System and software quality models” (ISO, 2011), encompass NFRs, their definitions, and
methodologies for measuring them as a fundamental component of any systems development
effort (ADAMS, 2015).

As described by Junior et al. (2022), ISO/IEC/IEEE 29119-1, titled "Software and

systems engineering-Software testing-Part 1: Concepts and definitions" (ISO, 2013), strictly
correlates NFRs with the quality characteristics (q.c.) of a software product. Such characteristics
are defined in SQuaRE, which proposes a model that categorizes software product quality prop-
erties into eight characteristics, namely, functional suitability, reliability, performance efficiency,
usability, security, compatibility, maintainability, and portability. ISO/IEC/IEEE 29119-1 clas-
sified requirements into two main categories, namely, FRs and NFRs. The former aligns with
the Functional Suitability q.c. outlined in ISO/IEC 25010, whereas NFRs are associated with
the remaining seven characteristics (also known as quality attributes, q.a) outlined in SQuaRE.

36 Chapter 2. State-of-the-art

SQuaRE (ISO, 2011) also defines a set of sub-characteristics for each q.c. , providing a more
detailed assessment of the several aspects that define the quality of a software product. In what
follows are the descriptions of the NFRs defined by ISO (2011):

• Performance efficiency: represents the software’s performance in terms of number of
resources it uses when running under specified conditions. It includes sub-characteristics
like Time Behavior, Resource Utilization, and Capacity;

• Compatibility: describes the software system’s ability to exchange information with other
software products, systems, or components and its performance while sharing the same
hardware or software environment with them. It encompasses sub-characteristics like
Coexistence and Interoperability;

• Usability: indicates the software system’s capacity to be used by specific users for achiev-
ing well-defined goals effectively, efficiently, and with satisfaction in a given context. It
includes sub-characteristics like Appropriateness recognizability, Learnability, Operability,
User Error Protection, User interface aesthetics, and Accessibility;

• Reliability: reports the software system’s ability to execute given functions under specified
conditions for a defined period. It involves sub-characteristics like Maturity, Availability,
Fault Tolerance, and Recoverability;

• Security: defines the software system’s capability to protect access to information and
data, preventing unauthorized access from individuals or other software systems based on
their types and levels of authorization. It includes sub-characteristics like Confidentiality,
Integrity, Non-repudiation, Accountability, and Authenticity;

• Maintainability: characterizes the software system’s ease of modification by maintainers
in an effective and efficient manner. Modifications may include corrections, improvements,
adaptations to changes in the environment, requirements, and functional specifications.
Installing updates or upgrades is also considered a form of maintenance. It involves sub-
characteristics like Modularity, Reusability, Analyzability, Modifiability, and Testability;

• Portability: expresses the effectiveness and efficiency with which a software system can
be transferred to new hardware, software, and operational or usage environments. It
encompasses sub-characteristics like Adaptability, Installability, and Replaceability.

ISO/IEC Std 25010 (ISO, 2011) replaced ISO/IEC 9126 model (ISO, 2001), which
was discontinued in 2013. Such classification models serve as a basis for evaluating software,
establishing a minimum set of quality criteria. Such classification models serve as a basis for
evaluations of software, establishing a minimum set of quality criteria. ISO/IEC 9126 had 6
indicators that branched out into 27 sub-characteristics, whereas ISO/IEC 25010 comprises 8
indicators and 31 sub-characteristics.

2.2. Non-Functional Requirements: Classification, Challenges, and Testing 37

2.2.2 Problems Associated with Non-Functional Requirements

Classification models for NFRs (ISO, 2001; ISO, 2011) are rarely taken into account
in the software development industry (CHUNG et al., 2012). Recent research has indicated
little attention has been devoted to NFRs; moreover, NFRs are often poorly understood and
not adequately considered during software development (CHUNG et al., 2012; MAIRIZA;
ZOWGHI; NURMULIANI, 2010). For instance, they are neither extracted with the same level
of detail as FRs, nor rigorously described in requirement documents (MAIRIZA; ZOWGHI;
NURMULIANI, 2010). The reasons for those neglects are (i) lack of support tools and (ii) rare
reporting of NFRs, even informally.

FRs can be elicited directly from the system users through software resource requests
(AHMAD et al., 2019), whereas NFRs can be extracted from user feedback (AHMAD et al.,
2019; BEYER et al., 2018; ZOU et al., 2017; ROSEN; SHIHAB, 2016). As an example, users
often report issues related to software quality features on social media platforms such as Stack

Overflow1 when they feel directly affected by different NFRs (e.g., usability, performance, and
security). The shared content contains statements about software development, tools, and product
qualities that can help software organizations improve their products (AHMAD et al., 2019;
GROEN et al., 2017; ZOU et al., 2017; ROSEN; SHIHAB, 2016).

In real software systems, NFRs are as important as FRs (ECKHARDT; VOGELSANG;
FERNÁNDEZ, 2016). The current competitive market demands software products that are
not only functionally adequate, where NFRs are considered critic (AMELLER et al., 2012).
Moreover, contemporary software systems consider NFRs essential properties to be ensured (e.g.,
energy efficiency and portability, which are critical features in mobile applications) (RASHID;
ARDITO; TORCHIANO, 2015).

Some studies have highlighted and discussed the importance of NFRs in the software
development industry (VARA et al., 2011; POORT et al., 2012; CARACCIOLO; LUNGU;
NIERSTRASZ, 2014; LÓPEZ et al., 2018). Vara et al. (2011) conducted an empirical study in
the form of a questionnaire-based survey for gathering insights on the significance of NFRs in
the industry. 31 professionals from 25 organizations identified the most important types of NFRs
for them and the rationale behind their decisions. The five most selected types were Usability,
Maintainability, Performance, Reliability, and Flexibility, and, conversely, those selected as most
important were Usability, Maintainability, Performance, and Reliability.

The results provided by Vara et al. (2011) were similar to those reported in Poort et

al. (2012) and Caracciolo, Lungu and Nierstrasz (2014), who analyzed and classified NFRs
commonly specified by industry professionals (software architects, developers, project man-
agers, among others). Poort et al. (2012) identified Usability, Performance, and Security as the
NFRs most commonly considered, whereas Caracciolo, Lungu and Nierstrasz (2014) reported

1https://stackoverflow.com/

38 Chapter 2. State-of-the-art

Performance, Reliability, and Compatibility as the most important in projects.

López et al. (2018) conducted a survey to assess how industry professionals handled
NFRs in projects and concluded (i) most companies collect data both automatically and manually,
(ii) NFRs are managed alongside FRs, (iii) functionality sometimes or often takes priority over
quality, and (iv) the most frequently reported critical NFRs in software projects are Reliability,
Performance, and Security.

2.2.3 An Overview on Non-Functional Requirements Testing

Although some authors have emphasized the importance of NFRs (GLINZ, 2007; BA-
JPAI; GORTHI, 2012), a limited number of software testing approaches have addressed them
(CARACCIOLO; LUNGU; NIERSTRASZ, 2014; RIBEIRO; TRAVASSOS, 2017; RIBEIRO;
CRUZES; TRAVASSOS, 2018). The lack of NFRs testing may be the cause of low-quality
software failing to meet user expectations, leading to project failure (RIBEIRO; TRAVASSOS,
2017). An adequate testing of most types of NFRs is challenging due to their nature and, when
expressed in non-measurable terms, becomes time-consuming or even impossible.

Caracciolo, Lungu and Nierstrasz (2014) highlighted the use of automated testing is not
common in the validation of NFRs – 59% of the study participants reported using non-automated
techniques. Automated techniques are commonly adopted for validating NFRs related to user
properties (response time, throughput, among others) and security (authorization, authentication,
and others). One of the reasons automated validation is not common may be the limited availabil-
ity of tools that meet the needs of some professionals. Poort et al. (2012) demonstrated industry
professionals identified obstacles that hinder an early verification of errors associated with NFRs
in projects, such as lack of NFR elicitation in the early stages of project development.

Ribeiro and Travassos (2017) conducted a systematic review for identifying NFRs and
software testing approaches that deal with testable NFRs and provided research opportunities and
a collection of reports on NFRs and software testing approaches. Approximately 224 NFRs were
identified, of which 87 were described, and 47 testing approaches were observed. Only eight
approaches were empirically evaluated. No testing approach was identified for 11 of the testable
NFRs. The results indicate the software testing approaches identified do not cover the most
frequent and testable NFRs and some testing approaches for NFRs are not frequently observed.
Furthermore, most testing approaches neither are evaluated through experiments, nor fully cover
the software testing phases (planning, design, implementation, execution, and analysis), making
their use risky.

Ribeiro, Cruzes and Travassos (2018) conducted a case study in three Brazilian organiza-
tions for characterizing verification practices for Security and Performance NFRs and claimed
most verification techniques used are ad-hoc, thus hampering the definition of a criterion for the
selection of test cases. As an example, the use of tools with no exact knowledge of the technique

2.3. Metamorphic Testing Approach 39

implemented creates uncertainty about their detection capability. Additionally, the number of
False Positive (FP) defects identified by security tools can be a problem.

The aforementioned authors claimed no written Performance NFRs could be used as
oracles in some cases; therefore, no verification activities were performed for assessing whether
the software had met its NFRs, but, rather, for evaluating the system’s capability. In some other
cases, verification activities were based on subjective or imprecise requirements, i.e., on users’
opinions about the system’s behavior. Among the challenges for verifying the Security and
Performance NFRs cited by Ribeiro, Cruzes and Travassos (2018) are (i) lack of training for
dealing with NFRs, (ii) lack of tools and supporting techniques, and (iii) lack of descriptions of
NFRs in software documents, or incorrect or incomplete descriptions.

2.3 Metamorphic Testing Approach

The mechanism that judges the correctness of an output or the expected behavior of a
particular program being run is known as "oracle" (HOFFMAN, 2001). Oracles verify whether
the results from a System Under Testing (SUT) with certain test data are correct. In the context
of automated testing, they are crucial for reducing testing costs and improving the quality of
software verification and validation (HOFFMAN, 2001).

“Oracle Problem”, a problem known to researchers and extensively investigated, arises
when the correctness of outputs generated from valid input domain data cannot be judged or its
judgement is difficult with the use of practical means (WEYUKER, 1982; BARR et al., 2015).

Chen, Cheung and Yiu (1998) introduced the concept of MT, an approach that has been
adopted as an alternative to alleviate the oracle problem. According to the authors, ”Metamorphic

testing is a technique conceived to alleviate the oracle problem”. Unlike conventional testing
methods, MT does not verify each specific output, but, rather, the relationships between inputs and
outputs from multiple executions of SUT (ZHOU; XIANG; CHEN, 2016). Such relationships
are known as MRs, which are relations derived from properties to be upheld by the tested
program (CHEN; CHEUNG; YIU, 1998; SEGURA et al., 2016). As claimed by the author,
those relationships are based on specific characteristics of the SUT and serve as the foundation
for effective testing. Therefore, during the MT implementation, some inputs of the program
(referred to as “source inputs”) are first generated as source test cases, and then an MR can be
used to generate new inputs (referred to “follow-up test cases”). Unlike the traditional methods
of checking the test result of each individual test case, MT verifies both source and follow-up
test cases, as well as their outputs in the corresponding MR (BARUS et al., 2016). Any violation
suggests SUT may have a defect.

40 Chapter 2. State-of-the-art

2.3.1 Practical Guidelines for the implementation of Metamorphic
Testing

Segura et al. (2016) illustrated the idea of MT through an example of SP(G, s, d), a
program that measures the shortest path between a source vertex s and a destination vertex d in a
graph G. An MR for this program is if the source and destination vertices are swapped, the size

of the shortest path would be equal to |SP(G, s, d)| = |SP(G, d, s)|.)|. Let us suppose a source
test (G, a, b) is selected by some test case generation method (e.g., random). According to this
MR, new follow-up test cases can be easily generated by swapping the source and destination
vertices (G, b, a). After executing the program with both test cases, their outputs can be checked
against the MR for confirming whether it has been satisfied or not, i.e., if the outputs are equal.
An MR violated means MT has failed and the program contains a defect. Depending on both
size and complexity of G, the a priori knowledge of |SP(G, s, d)| becomes difficult. Therefore,
even with no knowledge of the expected value for each test case, MR can reveal the existence of
defects in the program. Figure 2 illustrates the example.

Figure 2 – Example of a metamorphic testing application – Shortest path program.

Source: Adapted from Segura et al. (2016).

Another scenario that exemplifies the application of MT is provided through the use
of Academic Search Engines (ASEs) (ANDRADE et al., 2019). For instance, a user might
be interested in checking the availability of scientific studies on test oracles on IEEE Xplore2

platform. Therefore, the user can formulate a search string that includes terms “test oracle”

(Q1) and then choose to search in scientific studies that involve the use of test oracles in image

2<https://ieeexplore.ieee.org/>

https://ieeexplore.ieee.org/

2.3. Metamorphic Testing Approach 41

processing. In this case, the user can create a similar search string as “test oracle” AND “image

processing” (Q2). In the first search, a larger number of studies is expected to be returned by the
ASE, since the second search string is more restrictive, returning studies that contain both “test

oracle” and “image processing” terms (Q2 ≤ Q1). Figure 3 illustrates the example.

Figure 3 – Example of a metamorphic testing application – Academic Search Engines.

Source: Elaborated by the author.

Based on the aforementioned examples, Segura et al. (2016) provided a general MT
process for testing a program P implementing a function f and an example of its application
(SEGURA; ZHOU, 2018), which consists of the following four steps:

(i) identification of the properties of f and their representation by MRs;

(ii) generation or selection of a test suite, a.k.a. source test cases, I1, which can be defined by
a traditional testing technique such as random testing or model based;

(iii) use of MRs to generate a new test suite, I2, defined as follow–up test cases;

(iv) execution of I1 and I2 and checking of whether respective outputs O1 and O2 violate or
not MRs. A violated MR means P contains errors.

MT has been effectively applied in several application domains. Through an analysis of
studies of MT published between 1998 and 2015, Segura et al. (2016) identified 12 different
application domains, of which the most popular are web services and applications (16%),
followed by computer graphics (12%) and embedded systems (10%). Domains from other areas

42 Chapter 2. State-of-the-art

such as financial software, optimization programs, and encryption programs (21%) were also
identified. However, only 4% of the studies reported results in numerical programs, although this
seems to be the predominant domain used for illustrating MT concepts.

2.3.2 Challenges for the use of Metamorphic Testing

MT simplifies system evaluation, making it more practical for systems in which the
oracle problem occurs. Chen et al. (2018) described some advantages of applying MT, namely,
simple concept, straightforward implementation, ease of automation (given the availability of
MRs), and low cost and, although they are not unique, MT is one of the few techniques that
encompass all of them (CHEN et al., 2018).

Despite the advantages of MT, Chen et al. (2018) and Segura et al. (2016) pointed out
some challenges for advancing research on MT, of which the following stand out:

• Understanding of empirical studies for a unified understanding of MT: the increasing
number of real-world software that uses MT indicates the acceptance of the approach; how-
ever, the literature lacks a comprehensive evaluation of its overall effectiveness. Although
several experimental studies have adopted Mutation Testing (MUT) to assess the defect-
detection effectiveness of MT, most of them have focused on a specific application domain
and used a single measure (e.g., mutation-based metrics) for evaluating effectiveness;

• Systematic identification and selection of MRs: MRs are key to MT, alleviating the oracle
problem. Although many MRs have been identified for various application domains, most
of them were detected in an ad-hoc and non-systematic manner;

• Effective test case generation: MT effectiveness depends on the set of MRs and metamor-
phic inputs used, whereas follow-up test cases depend on source test cases. As observed by
Segura et al. (2016), 57% of source test cases in previous studies were generated randomly
and 34% were created from existing ones. Therefore, an investigation on the impact of
source test cases on the effectiveness of MRs is a field yet to be explored;

• Evaluation of the feasibility of using thresholds for avoiding False Positives (FP) and False
Negatives (FN): MRs may sometimes be violated with no indication of a real defect if MT
aims to evaluate NFRs, thus resulting in an FP. On the other hand, MRs may also produce
FNs, where the relationship is satisfied despite the program having a defect. Strategies for
assessing the truth of FPs and FNs, especially regarding non-functional MRs, are essential.

2.3.3 Metamorphic Testing in the Context of Non-Functional Re-
quirements

Several studies have reported a vast set of articles relating MT to its successful application
in various domains, from web-services to embedded systems (CHAN; CHEUNG; LEUNG, 2005;
CHAN; CHEUNG; LEUNG, 2007; CHAN; HO; TSE, 2007; CHAN et al., 2007; ZHOU et

2.3. Metamorphic Testing Approach 43

al., 2007; MAYER; GUDERLEI, 2006; TSE; YAU, 2004; PULLUM; OZMEN, 2012; JIANG;
XUXIAN, 2013; NAKAJIMA; BUI, 2016; MURPHY; KAISER; HU, 2008; SUN et al., 2023).
However, most of such articles focus on FR, with notable applications in areas such as validation
and quality assessment, leaving the potential application of MT for detecting issues related to
NFRs largely unexplored (SEGURA et al., 2018).

Segura et al. (2017) claimed most MRs are defined for deterministic programs in which
the relationship is either satisfied, or violated for certain inputs (e.g., merge([2, 3], [1, 5])
= merge([1, 5], [2, 3])). On the other hand, measuring non-functional properties such
as execution time, memory consumption, or energy usage is inherently non-deterministic. For
instance, the battery energy consumed by a mobile application can vary from one execution
to another due to device workload, communication issues, or automatic updates. In practice,
MRs can sometimes be violated with no indication of a performance defect, resulting in a false
positive (FP) (SEGURA et al., 2017).

Towards illustrating the use of MT as an effective approach for verifying compliance
with defects associated with Performance, let us consider the following example presented by
Segura et al. (2018): “some Chrome users report unexpected levels of memory consumption when

loading images of different sizes. It was expected that rendering large images would consume

more memory than rendering small images. However, due to issues with the garbage collector, if

a small image is loaded after a larger image, memory usage increases”. Inspired by this error,
the following MR could be defined:

M(loadImg(img1)) ≥ M(loadImg(img2))

where M represents the memory consumed and img2 is an image derived from img1 but with a
smaller size due to a cropping or reduction of its quality.

The application of MT for verifying compliance with NFRs is still an open research
topic. In one of the few attempts to use MT for that purpose, a framework was proposed to
test software modules to be deployed on wireless sensors regarding functional correctness and
energy efficiency (CHAN et al., 2007). The authors generated MRs using the idea adjacent
wireless sensors should behave similarly. In another study, Chen et al. (2016) applied MT for
cybersecurity testing for detecting security-related issues in software obfuscation systems.

Segura et al. (2018) established a proof of concept for the use of MT on Performance.
Examples of software and case studies of software product lines demonstrated the feasibility of
the technique in detecting performance errors. Al-tekreeti, Abdrabou and Naik (2019) proposed
a model-based test generation methodology to assess the impact of interactions between wireless
network quality and application configuration on the behavior of mobile network application
performance. However, they observed the performance model was computationally intensive for
one of the application groups used, which made the inversion problem solution costly. Therefore,
the authors used MT to mitigate the cost of test oracles.

44 Chapter 2. State-of-the-art

Mai et al. (2019) proposed an approach based on MT concepts to evaluate the security of
Web systems. They adopted the technique designed by Huang et al. (2003) according to which
for each MR, an intentionally invalid input (i.e., source input) and a valid input (i.e., follow-up

input) are generated. In this sense, they authors first selected a set of known vulnerabilities that
usually can occur on Web systems, designed a set of 22 system-agnostic MRs to detect these
vulnerabilities, and finally automatically captured security properties from the Web system to
check whether the MRs had been violated or not.

Rahman and Izurieta (2023) significantly extended Mai et al. (2019) by introducing a
substantial expansion of the MRs catalog. They meticulously developed 54 additional system-
agnostic MRs, thereby amplifying the original collection from 22 to a comprehensive total of 76.
To showcase the practical efficacy of the expanded catalog, they employed automated testing
procedures within two well-known web systems, namely, Jenkins and Joomla. Remarkably, the
augmented approach demonstrated its keen ability to detect a substantial 85% of vulnerabilities
present within those systems.

Chaleshtari et al. (2023a) employed MT to evaluate banking software functionalities
based on their inherent properties. They devised a comprehensive set of 11 MRs meticu-
lously categorized into three primary groups aligned with fundamental banking operations,
namely, Deposit, Withdrawal, and Transfer. MRs capture the essential properties of banking
functions—specifically the characteristics that become compromised when the system faces
potential risks.

The aforementioned studies demonstrate the significant interest of the community in using
MR concepts as an effective approach to uncover performance issues, hence, those associated
with NFRs.

2.4 Mobile Application Testing: Concepts, Challenges,
and Trends

A mobile application is defined as software developed for the current generation of
mobile devices known as smartphones (MUCCINI; FRANCESCO; ESPOSITO, 2012). Muccini,
Francesco and Esposito (2012) defined a mobile application as mobile software (i.e., applications
that run on electronic devices) that, in addition to user input, is also context-sensitive, i.e., it
adapts and reacts to the context in which it is executed performing physical environment detection
and context-triggered actions, for instance. Amalfitano et al. (2013) defined it as self-contained
software designed for a mobile device and that performs specific tasks for mobile users.

Mobile applications have gained great popularity in recent years and mobile devices have
powerfully entered our daily life in a growing worldwide market where 7,516 billion smartphone
users are expected in 2026 (O’DEA, 2020). Regarding mobile operating systems, Android is the

2.4. Mobile Application Testing: Concepts, Challenges, and Trends 45

most diffused one, since it is installed on 70% of the devices and 27.7% of them are equipped
with iOS (LARICCHIA, 2022). Towards an idea of the diffusion of mobile applications (a.k.a.
apps) installed on Android devices, let us consider over 111.3 billion apps were downloaded
in 2021 from Google Play Store, the official apps market for Android operating system (CECI,
2022).

In general, mobile applications can be classified into three categories, namely, native apps,
web-based apps, and hybrid mobile apps. As claimed by Kirubakaran and Karthikeyani (2013),
native mobile apps are implemented and executed on mobile devices with limited resources and
driven by user inputs. In contrast, Web applications are hosted on a server and users access them
over the Internet through a web browser installed on their mobile device (AMALFITANO et

al., 2013). Finally, hybrid mobile apps use native codes for specific platforms for providing a
client to the user and access device functionalities; however, their main logic is written as a web
application and loaded dynamically at runtime (COPPOLA; MORISIO; TORCHIANO, 2019).

Due to the popularity of mobile devices and applications, software testing and quality
assurance activities have become fundamental in this application domain (NAGAPPAN; SHI-
HAB, 2016) and application developers and companies make significant efforts to providing
high-quality apps and maintaining a competitive edge (NAGAPPAN; SHIHAB, 2016). As dis-
cussed by Wasserman (2010), mobile applications are not free from defects and new approaches
from SE are required for testing them.

Software testing for mobile applications refers to the various types of testing applied
to different types of applications (native, web, and hybrid) that run on mobile platforms using
well-defined software testing methods and tools. The aim is to ensure quality in functions,
behaviors, performance, and service quality, as well as in attributes such as mobility, usability,
interoperability, connectivity, security, and privacy (GAO et al., 2014). Recent research on mobile
application testing has aimed at solutions to technical platform-related issues. Neto et al. (2016)
identified the following main fields on which mobile application testing has concentrated:

• Functional and Behavioral Testing: validates service functions, Application Programming
Interfaces (APIs), external behaviors of systems, UIs and their gestures, location-based
functions, user profiles, system data, and user data;

• Structural Testing: traverses the different possible execution paths of a code and ensures
quality of the application under test. Items that can be monitored during program execution
with the application of the testing technique generally check and validate performance
characteristics;

• Quality of Service (QoS) Requirements Validation: evaluates data load, performance,
reliability/availability/privacy, scalability, and system data throughput;

• Usability Testing: evaluates content and alerts on user interface, user operation flows, and
scenarios, media, and support for gesture-based interactions;

46 Chapter 2. State-of-the-art

• Compatibility and Connectivity Testing: evaluates application compatibility with different
web browsers, platforms, and connectivity with communication networks.

2.4.1 A Comprehensive Analysis of Mobile Applications Testing

Janicki, Katara; and Pääkkönen (2012) conducted a pioneering survey in the field of
software testing for mobile applications. It was a semi-supervised and group-administered survey
involving 49 mobile software engineers towards the identification of expectations and challenges
associated with automatic test generation and execution. It also detected obstacles faced due
to the introduction of automatic test tools in the industry and explored the use of metrics and
reports for persuading companies to adopt that technology.

Starov et al. (2015), Sahinoglu, Incki and Aktas (2015), and Porras, López and Coronas
(2015) made significant contributions in the field of mobile application testing. Starov et al.

(2015) provided an overview of the key challenges in mobile application testing, discussing cloud
testing issues and exploring cloud services and testing-as-a-service resources that might enhance
mobile application testing, covering several types of mobile testing features. Sahinoglu, Incki
and Aktas (2015) focused on mobile application testing, relating it to different test levels (e.g.,
system, acceptance, unit, component, and integration) and q.c’s (e.g., compatibility, concurrency,
conformance, performance, security, and usability) while describing the way various issues on
the validation of those apps were addressed.

Porras, López and Coronas (2015) analyzed 83 primary studies, providing an extensive
overview of automated testing approaches for mobile applications, testing techniques, and
empirical assessments. They also investigated the main challenges related to the automated
testing of mobile applications. Among the main approaches identified were model-based testing,
capture/replay, model-learning testing, systematic testing, fuzz testing, random testing, and
scripted based testing. Notably, they observed a growing number of proposals for automated
mobile app testing by 2015.

One year later, Zein, Salleh and Grundy (2016) conducted a systematic mapping study,
organizing and categorizing evidence gathered from 79 primary studies. The study revealed
essential requirements for mobile software development, such as early elicitation of test re-
quirements during the development process, research on real-world development environments,
definition of testing techniques for ensuring application lifecycle compliance, focus on mobile
service testing, and development of benchmarking studies for security and usability testing.
Kaur and Kaur (2018) conducted the first secondary study for identifying and understanding
techniques that estimate testing efforts in mobile applications. They summarized several charac-
teristics that distinguished mobile software/applications from traditional software (e.g., desktop
or web-based).

Secondary studies in mobile application testing have gained significant attention over

2.4. Mobile Application Testing: Concepts, Challenges, and Trends 47

the past two years (TRAMONTANA et al., 2019; ALMEIDA; MACHADO; ANDRADE,
2019; YA’U et al., 2019; AL-AHMAD et al., 2019; KONG et al., 2019; LUO et al., 2020).
Luo et al. (2020) provided an overview of simulation methods, including data-driven and
model-based techniques, for testing mobile context-aware applications. The study discussed the
implementation and deployment of each method by testing tool developers and mobile application
testers. In their systematic mapping study, Almeida, Machado and Andrade (2019) identified
and discussed the state-of-the-art of tools that automate the testing of Android context-aware
applications. By surveying 68 primary studies, they found 80 tools, of which only a few were
oriented towards testing context-aware characteristics in Android apps. The study highlighted a
lack of tools supporting automatic generation or execution of test cases in high-level contexts
and asynchronous context variations.

Regarding cloud domain, the mapping conducted by Ya’u et al. (2019) surveyed 23
primary studies for identifying testing approaches used in mobile applications. The authors
found diverse methods for testing GUI (Graphical User Interface), compatibility, functionality,
and security characteristics; however, only a were supported by automated testing tools. The
study also revealed a lack of portability among mobile platforms and limited exploration of TaaS
(Testing as a Service).

Two recent studies (TRAMONTANA et al., 2019; KONG et al., 2019) investigated
automatic testing for mobile applications. From an analysis of 131 primary studies, Tramontana
et al. (2019) examined automatic testing tools based on supported testing activities, characteristics
of the techniques presented, and evaluation methodologies adopted to validate them. Kong et al.

(2019) offered an overview on existing Android testing approaches analyzing 103 primary studies
and focusing on the identification of testing approaches, test concerns, and levels addressed by
such approaches, and on the way they were built and validated. Based on the findings, the authors
proposed a taxonomy of android app testing, considering testing objectives (e.g., NFRs), test
targets (e.g., parts of the App to be tested), test levels (e.g., integration, system, and unit), and test
techniques, such as methods (e.g., model-based and search-based ones), testing environments
(e.g., emulator and real device), and testing types (e.g., white, black, or gray boxes).

More recently, Junior et al. (2022) conducted a comprehensive study on testing techniques
for mobile applications, focusing on a broad set of NFRs, including performance, security,
usability, portability, reliability, and compatibility, among others. The study considered various
mobile platforms, such as Android, iOS, Blackberry, LG, and Windows Phone, and analyzed the
involvement of both academic community and industry in such an important research field. It
also characterized the existing techniques and tools for NFRs testing in mobile applications and
identified future trends in the field.

48 Chapter 2. State-of-the-art

2.4.2 Challenges Associated with Mobile Applications Testing

Despite the importance of applying software testing activities to mobile applications,
mobile applications impose some additional requirements less commonly found in traditional
software applications (NETO et al., 2016). Interaction with other applications, connectivity,
diverse input methods, context sensitivity, heterogeneity of hardware configurations and soft-
ware platforms, security, user interface, and energy consumption limitations are some of those
peculiarities. Most of such characteristics, defined as NFRs, can be subject to testing, since they
are fundamental aspects of a mobile application (NETO et al., 2016).

Several studies have emphasized the challenges and limitations frequently encountered
in the testing activities for mobile applications (JOORABCHI; MESBAH; KRUCHTEN, 2013;
VASQUEZ; MORAN; POSHYVANYK, 2017; VASQUEZ et al., 2017; CRUZ; ABREU; LO,
2019). Joorabchi, Mesbah and Kruchten (2013) conducted a survey for understanding the
main challenges faced by developers during the development of applications for different
mobile devices and observed support for automated testing was very limited for native mobile
applications. Moreover, the available tools and emulators did not support essential features for
mobile testing, such as mobility, location services, sensors, or different gestures and inputs.
Regarding methods that tested native mobile applications, the authors reported 64% of the
participants tested a mobile application manually, 31% adopted a hybrid approach (combining
manual and automated testing), and only 3% applied fully automated testing. Additionally, 80%
indicated developers tested their own applications, 53% had dedicated testing teams, and 27%
relied on testers still in training.

Vasquez, Moran and Poshyvanyk (2017) assessed the current state and challenges in
mobile application testing. Despite the abundance of techniques and tools available for automated
testing, manual testing continued to be commonly used due to factors such as personal prefer-
ences, organizational constraints, and lack of essential functionalities in tools. Other reasons that
hindered the adoption of automated testing in mobile applications included (i) diversity of com-
mon input scenarios in mobile applications (GPS locations, orientation changes, gestures, among
others), (ii) time and budget constraints related to mobile applications testing practices, and (iii)
lack of specific test oracles for mobile applications. The results of the study were similar to those
of Vasquez et al. (2017), who evaluated the understanding of developing mobile applications
testing activities in Android projects through a survey. The authors identified the participants’
preference for automated testing, highlighting some of their reasons, namely, (i) changes in
requirements, (ii) lack of time for test decisions and process, (iii) size of mobile applications, (iv)
lack of knowledge about automated testing tools and techniques, (v) learning curve and usability
of available automated testing tools, and (vi) cost of maintenance of automated testing artifacts.

Cruz, Abreu and Lo (2019) investigated the understanding and the challenges faced by
mobile applications developers regarding software testing. Data were collected from multiple

2.4. Mobile Application Testing: Concepts, Challenges, and Trends 49

sources, such as F-droid3, Github4, and Google Play Store5 and the authors observed most
published mobile applications were not covered by automated testing. Developers relied on
manual testing to ensure a proper functioning of their applications – such testing is known to be
less reliable and increase technical debt. On the other hand, a comparison of the use of automated
testing year by year showed a significant increase among new applications. Furthermore, there
is a statistically significant and substantial relationship between use of automated testing and
number of minor code issues that appear in a project.

According to the aforementioned studies, despite the large number of techniques and
tools for automated testing in mobile applications, developers and testers continue to test their
applications manually due to (i) lack of understanding and support for automated testing, (ii)
limited project time and budget, (iii) specific characteristics of mobile devices, among other
reasons. An interesting detail observed by Vasquez, Moran and Poshyvanyk (2017) is the lack
of specific test oracles for mobile applications. Therefore, current tools and practices heavily
rely on developers and testers to manually verify expected outcomes and manually code oracles
using assertions or exceptions when automation APIs are employed.

2.4.3 Non-Functional Testing in Mobile Applications

Kirubakaran and Karthikeyani (2013) and Muccini, Francesco and Esposito (2012)
highlighted the following peculiarities of mobile applications that make the testing activity
challenging: limited energy, memory, and bandwidth, rapid changes in context and connectivity
type, constant interruptions caused by system and communication events, need for adaptation in
input interface for a wide range of different devices, limited time-to-market, and high multitasking
and communication with other applications. Most of such peculiarities are related to NFRs.

Maia and Rocha (2019) conducted an SMS to identify the most referenced NFRs in the
field of mobile applications. They considered the characteristics and sub-characteristics reported
in ISO 25010 (ISO, 2011) and identified NFRs not described in it. The four most commonly
referenced NFRs were Usability, Performance Efficiency, Functional Suitability, and Reliabil-
ity, whereas among the sub-characteristics, the most frequently cited were Appropriateness
Recognisability, User interface aesthetics, and Accessibility for Usability, Confidentiality for
Security, Functional correctness for Functional Suitability, and Fault tolerance for Reliability.
The most frequently referenced q.c’s of NFRs not described in ISO/IEC 25010 (ISO, 2011) were
Information Quality, Data Persistence, and Sense of Community.

Based on the results reported by Maia and Rocha (2019), Maia, Gonçalves and Rocha
(2019) conducted a survey to identify the NFRs most relevant for mobile applications. The authors
asked the participants to select their favorite application category and answer questions about

3<https://f-droid.org/>
4<https://github.com/>
5<https://play.google.com/>

https://f-droid.org/
https://github.com/
https://play.google.com/

50 Chapter 2. State-of-the-art

NFRs, considering only the specific selected app category. According to 500 valid responses,
the authors concluded the most commonly used app category was messaging apps, for which
the participants selected Confidentiality and Functional correctness as the most relevant NFRs.
In a more general analysis, the most pertinent sub-characteristics were Functional Correctness,
Utility, Confidentiality, Interface Visibility, Navigation, and Information Quality.

Although some studies have defined software testing techniques to assess security
(OPASIAK; MAZURCZYK, 2019), energy consumption (JABBARVAND; MALEK, 2017),
and usability (KLUTH; KREMPELS; SAMSEL, 2014) in mobile applications, some limitations
hinder a more comprehensive, effective, and practical approach - for instance, automated testing
in this context. Therefore, when developers and the industry adopt automated testing techniques
in mobile devices, costs and efforts involved in the production of the applications increase
(JOORABCHI; MESBAH; KRUCHTEN, 2013; KOCHHAR et al., 2015).

Nagappan and Shihab (2016) explored current and future research trends across various
stages of the software development life cycle in the context of mobile applications. Regarding
NFRs, they emphasized challenges and future directions for testing approaches focused on
security and performance. (i.e., Performance). Regarding energy efficiency (i.e., Performance),
they discussed the lack of accurate estimations of energy usage. Furthermore, they suggested
future research should identify practical ways to optimize energy usage in applications and
develop approaches to be adapted to mobile platforms other than Android. As for security in
mobile applications, they reported the challenge of static software analysis, in which most
approaches encounter a high rate of FPs, and a lack of data for statically distinguishing secure
codes from insecure ones. Finally, they outlined some promising areas for future research in
security, including advances in the state-of-the-art of static analysis and gaining of insights into
the reasons for developers to write vulnerable codes in mobile applications.

Typically, NFR descriptions in software projects can be derived from requirements
documents and social media platforms. Towards a deeper understanding of the nature of NFRs
in mobile applications, Wang, Liang and Lu (2018) conducted an exploratory study by analyzing
user reviews. The database comprised 1278 sentences randomly collected from 4000 sentences
from iBook (iOS) and WhatsApp (Android) applications (2000 sentences from each app). As
a result, users reported quality issues mostly related to Reliability NFR (45.9%), followed by
Usability NFR (33.7%). Quality issues on Performance Efficiency NFR (9.5%), Portability NFR
(9.3%), and Security NFR (1.6%) were also reported. The proportions indicate a need for greater
attention to NFRs in the development of mobile applications.

More recently, Junior et al. (2022) performed an SMS towards a broad discussion on
NFRs dynamic testing in mobile applications. It focused on addressed NFRs, adopted testing
strategies, explored mobile platforms, and supporting tools, identifying (i) security, performance,
and usability testing of mobile applications were of most interest to the software engineering
community, (ii) Android was the mostly adopted mobile platform, and (ii) most proposed

2.5. Final Remarks 51

techniques were tool-supported.

2.5 Final Remarks

This chapter has addressed crucial concepts and insights necessary for a comprehen-
sive understanding of this thesis. As discussed, recent research has highlighted an inadequate
attention devoted to NFRs, i.e., a deficiency that frequently leads to an oversight of those
pivotal aspects during the software development process (CHUNG et al., 2012; MAIRIZA;
ZOWGHI; NURMULIANI, 2010). Unlike FRs, which can be directly derived from system
users, NFRs often require insights from user feedback, rendering their evaluation more intricate
and dynamic efforts (AHMAD et al., 2019). Despite the significance of NFRs, the software
testing methodologies developed to address them remain limited (RIBEIRO; TRAVASSOS,
2017; RIBEIRO; CRUZES; TRAVASSOS, 2018) and NFRs testing is far from straightforward
and often plagued by the "oracle problem", which is particularly prevalent in this context. The
scarcity of testing approaches for NFRs remains an ongoing challenge, potentially leading to the
development of subpar software and project failures (CARACCIOLO; LUNGU; NIERSTRASZ,
2014; RIBEIRO; TRAVASSOS, 2017; RIBEIRO; CRUZES; TRAVASSOS, 2018).

MT has emerged as a promising alternative testing approach to mitigating the “Oracle
Problem”, since it has been successfully applied in various domains (CHAN; CHEUNG; LEUNG,
2005; CHAN; CHEUNG; LEUNG, 2007; CHAN; HO; TSE, 2007; CHAN et al., 2007; ZHOU
et al., 2007; MAYER; GUDERLEI, 2006; TSE; YAU, 2004; PULLUM; OZMEN, 2012; JIANG;
XUXIAN, 2013; NAKAJIMA; BUI, 2016; MURPHY; KAISER; HU, 2008). Yet, the potential
of MT to address NFRs issues remains largely untapped (SEGURA et al., 2018). Notably, recent
studies conducted by Chan et al. (2007), Al-tekreeti, Abdrabou and Naik (2019), and Mai et

al. (2019) have embarked on exploring the integration of MT in NFRs testing and applied the
MT approach to assess diverse aspects, such as energy efficiency in wireless sensors (CHAN;
CHEUNG; LEUNG, 2007), security concerns in software obfuscation systems (CHEN et al.,
2016), performance issues of wireless networks in mobile network applications (AL-AHMAD et

al., 2019), and security vulnerabilities in Web Systems (MAI et al., 2019; CHALESHTARI et

al., 2023a).

In a final analysis, this chapter has provided profound insights into the realm of mobile
applications, their testing approaches, and the intricate landscape of NFRs testing. Since mobile
applications inherently demand additional requirements not commonly found in traditional
software (e.g., heightened security measures, energy efficiency considerations, hardware-software
heterogeneity, and refined user interfaces) (NETO et al., 2016), NFRs have emerged as common
in those applications and performance, Security, and Usability have significantly appeared
as the most critical NFRs (NAGAPPAN; SHIHAB, 2016; MAIA; ROCHA, 2019; MAIA;
GONÇALVES; ROCHA, 2019; JUNIOR et al., 2022).

52 Chapter 2. State-of-the-art

The chapter has laid the foundation for a comprehensive exploration of NFRs and their
testing challenges, setting the stage for further investigations into strategies and approaches
towards ensuring both quality and reliability of mobile applications.

53

CHAPTER

3
FUNDAMENTALS OF SECURITY TESTING

3.1 Preliminary Remarks

Security requirement represents one of the most critical and widely considered NFRs in
software systems (POORT et al., 2012; LÓPEZ et al., 2018; CARACCIOLO; LUNGU; NIER-
STRASZ, 2014; RIBEIRO; CRUZES; TRAVASSOS, 2018), being fundamental in contemporary
software ones (BAJPAI; GORTHI, 2012). However, as emphasized by Ribeiro, Cruzes and
Travassos (2018), most security verification techniques employed are often ad-hoc. In the realm
of mobile apps, such applications frequently require access to security and privacy-sensitive
features on mobile devices, such as security settings and personal data. Consequently, vulner-
abilities, i.e., security faults, can jeopardize the application’s quality and lead to unwarranted
attacks or unauthorized access (MCAFEE, 2017). Despite the existence of various security
testing approaches (OPASIAK; MAZURCZYK, 2019), security testing in mobile apps remains
predominantly a manual, costly, and intricate process (RIBEIRO; CRUZES; TRAVASSOS,
2018).

This chapter provides a comprehensive understanding of security requirements and
testing, describing the background to such requirements, covering key concepts, and exploring
the challenges associated with those critical NFRs. Concepts of testing techniques commonly
employed in security are elucidated through descriptions and discussions and a theoretical
foundation is offered for a prevalent, significant, and selected class of vulnerabilities, specifically,
authentication and authorization in Android apps.

The discussions presented are based on the following paper, submitted to the Journal of
Systems & Software (JSS) (JUNIOR et al., 2023):

• JUNIOR, M. C., AMALFITANO, D., VISONE, B., FASOLINO, A. R., DELAMARO,
M.. A Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

54 Chapter 3. Fundamentals of Security Testing

Android Mobile Apps. Submitted to the Journal of Systems & Software (JSS), 2023. p.
1-28

The chapter is structured as follows: Section 3.2 explores security requirements and
testing; Section 3.2.1 delves into the key concepts of security testing tailored specifically to
Android apps; Section 3.3 describes username and password authentication, one of the most
prevalent authentication methods in Android apps, and covers the common security threats
associated with it; finally, Section 3.4 reports the contributions of the foundational knowledge
presented to the understanding of the overarching thesis.

3.2 A Guide to Security Requirements and Testing

According to the System and Software quality models defined in the ISO/IEC 25000

SQUARE series (ISO, 2011), security requirement, a.k.a. “security characteristic”, represents
the degree to which a software product or a software system protects information and data

so that users or other systems have access to data appropriate to their types and levels of

authorization. As defined by ISO (2011), security characteristic can be further broken down
into more specific attributes, often referred to as “quality sub-characteristics”, which include
aspects such as confidentiality, integrity, non-repudiation, responsibility, and authenticity and
illustrate the various facets through which a security characteristic manifests itself within a
software system.

As elucidated by Felderer et al. (2016), security characteristics are presented in two
fundamental forms, namely, positive requirements and negative requirements. The former entail
an explicit definition of the anticipated security functionalities of a security mechanism. For in-
stance, a positive requirement concerning the security property of authorization can be phrased as
“User accounts are disabled after three unsuccessful login attempts.” On the other hand, negative
requirements specify the actions to be avoided by the application. For a same security property,
a negative requirement can be formulated as “The application should not be compromised or
misused for unauthorized financial transactions by a malicious user.” The positive and functional
perspective on security requirements aligns with software quality standard ISO/IEC 9126 (ISO,
2001), which classifies security as a functional quality characteristic. In contrast, the negative,
non-functional perspective is endorsed by ISO/IEC 25010 (ISO, 2011).

Most modern software systems encompass functions related to financial transactions
and management of personal data (RIBEIRO; CRUZES; TRAVASSOS, 2018), which often
demand a high degree of assurance, leading to a growing interest in unauthorized access and
potential attacks (MCAFEE, 2017). Furthermore, security aspects permeate several layers of
an application, including network, operating system, and application layer. Each layer presents
its distinct set of security threats and corresponding security requirements. For instance, the
network layer is susceptible to threats such as denial-of-service attacks or network intrusions,

3.2. A Guide to Security Requirements and Testing 55

where an attacker inundates the target with numerous packet requests, overloading it so that
it cannot respond to any request. At the operating system level, a diverse range of malware
poses significant threats. Lastly, at the application level, threats often revolve around the proper
verification of authenticated sessions, which is typical of Android apps, so that unauthorized
users can potentially gain access to the application’s private functionalities.

Security testing has emerged as a process that evaluates whether the software’s features
align with the expected security criteria, as highlighted by Felderer et al. (2016). In simpler
terms, security testing verifies and validates the software system’s requirements concerning

security aspects, including but not limited to confidentiality, integrity, availability, authentication,

authorization, and non-repudiation (FELDERER et al., 2016). As claimed by Tian-yang, Yin-
Sheng and You-yuan (2010), the literature offers two primary approaches to security testing,
namely, security functional testing and security vulnerability testing. The former validates the
correct implementation of specified security requirements, encompassing both security properties
and mechanisms. In contrast, security vulnerability testing uncovers unintended vulnerabilities
within the software under examination - vulnerabilities represent errors in a system’s design,
implementation, operation, or management (TIAN-YANG; YIN-SHENG; YOU-YUAN, 2010;
POTTER; MCGRAW, 2004). Those vulnerabilities are typically exploited by attackers who aim
to execute improper actions in the system (e.g., collection of sensitive user data).

Security vulnerability testing serves as a proactive measure for identifying vulnerabilities
and preventing their exploitation by malicious individuals (POTTER; MCGRAW, 2004). They
can usually be approached from two distinct perspectives, namely, (i) Simulation of Attacks or
Penetration Testing and (ii) Risk-Based Testing and Vulnerability Identification, described in
what follows.

• Simulation of Attacks or Penetration Testing: security experts or testers deliberately
simulate real-world attacks or perform penetration testing towards compromising the
security of a system. They might intentionally overload a system with excessive traffic
or requests for assessing the way it responds under stress. The objective is to identify
vulnerabilities and weaknesses that might disrupt the system’s availability;

• Risk-Based Testing and Vulnerability Identification: identify risks in a system and
generate tests that uncover vulnerabilities associated with those risks. Testers perform an
initial risk assessment to detect critical areas of an application or system and subsequently
design tests specifically for evaluations of those high-risk areas. As an example, if an
application handles sensitive financial data, the risk-based approach prioritizes the testing
of authentication and encryption mechanisms.

The two perspectives provide comprehensive approaches to security vulnerability testing,
i.e., one actively seeks vulnerabilities through simulated attacks, whereas the other proactively
identifies risks and tailors tests that assess vulnerabilities associated with those risks. Regarding

56 Chapter 3. Fundamentals of Security Testing

security testing techniques, Felderer et al. (2016) highlighted the four testing techniques com-
monly used in the security context, namely, (i) Model-Based Security Testing, (ii) Code-Based
Testing and Static Analysis, (iii) Penetration Testing and Dynamic Analysis, and (iv) Security
Regression Testing, described in what follows.

• Model-Based Security Testing (MBST): a Model-Based Testing (MBT) approach that
validates software system requirements related to security properties. It combines security
properties like confidentiality, integrity, availability, authentication, authorization, and
non-repudiation with a model of the SUT and identifies whether the specified or intended
security features hold;

• Code-Based Testing and Static Analysis: : involve a detailed analysis of the application’s
source code and fall under the category of white-box security testing techniques, i.e., they
require no executable SUT, and, rather, examine the application’s source code to identify
vulnerabilities. Such techniques can be particularly valuable when applied in the early
stages of software development, detecting vulnerabilities prior to deployment. Code review
can be conducted through manual inspection or automated processes. Automated code
reviews are commonly referred to as Static Code Analysis (SCA) or Static Application
Security Testing (SAST) and rely on specialized tools that automatically analyze a software
component’s program code (such as an application or library) for identifying and reporting
potential security issues, including vulnerabilities;

• Penetration Testing and Dynamic Analysis: in contrast to Code-Based Testing and Static
Analysis techniques, Penetration Testing and Dynamic Analysis belong to the black-box
security testing techniques category. They require no access to the source code or other
development artifacts of the SUT and, instead, are executed while the SUT is running.
During a penetration test, an application or system is evaluated from an external perspective
through simulations of conditions similar to those of a real attack by a malicious third
party;

• Security Regression Testing: a fusion of regression and security testing and appropriately
called security regression testing, its primary objective is to guarantee alterations made
to a system do not compromise its security. Consequently, it is of paramount importance
and the interest in its application has been steadily growing. In essence, regression testing
techniques ensure modifications made to existing software do not lead to unintended
consequences to its unaltered and modified portions, assuring the altered components
continue to function as expected.

3.2.1 Security Testing in Android Applications

Numerous testing techniques for security testing in Android apps have emerged and can
be broadly categorized into three primary classes, namely, (i) static testing, in which testing
approaches scrutinize software development artifacts (e.g., requirements, design, or code) without

3.2. A Guide to Security Requirements and Testing 57

executing them, (ii) dynamic testing, which, according to Felderer et al. (2016), assess apps by
observing their execution during runtime, and (iii) hybrid testing, which represents a fusion of
static analysis and dynamic testing methods (FELDERER et al., 2016).

Static testing techniques have been used mainly for the detection of sensitive data leaks
(ARZT et al., 2014; ZHANG; TIAN; DUAN, 2021), Inter-Component Communication (ICC)
vulnerabilities (OCTEAU et al., 2013; OCTEAU et al., 2015; BAGHERI et al., 2021; WANG;
YANG; MA, 2023), permission misuse (JIANG; XUXIAN, 2013; LI et al., 2014), and code
verification (PAYET; SPOTO, 2012; LORTZ et al., 2014). Arzt et al. (2014) proposed FlowDroid,
an approach that performs static taint analysis on Android apps with a context-, flow-, field-,
object-sensitive and lifecycle-aware analysis. Similiarly, Zhang, Tian and Duan (2021) designed
a static taint analysis tool, called FastDroid, that supports efficient taint analyses of apps on a
large scale, maintaining high precision and recall.

Payet and Spoto (2012) developed a tool called Julia, which performs a code verification
through formal analyses of the Android app. Octeau et al. (2013) presented Epicc, a static
analysis technique for identifying ICC vulnerabilities in Android apps, addressing the need for
scalable and accurate ICC discovery. Lortz et al. (2014) proposed a tool called Cassandra, which
checks if an Android app complies with its privacy requirements.

Octeau et al. (2015) introduced the concept of Multi-Valued Composite (MVC) constant
propagation, addressing the need for inferring all possible values of complex objects in a program,
considering correlations between fields. The authors presented a COAL solver, a generic solver
that infers MVC values in an interprocedural, flow and context-sensitive manner.

Bagheri et al. (2021) designed FLAIR, a technique that efficiently analyzes Android apps
for ICC vulnerabilities in response to incremental system changes. It replaces the standard Alloy
relational logic analyzer, used by COVERT as a backend analysis engine, with its new formal
analyzer that automatically adapts to incremental system modifications, ensuring the continued
expressiveness and analyzability of the initial framework. Wang, Yang and Ma (2023) introduced
IAFDroid, a comprehensive analysis framework that merges static and taint analysis techniques
to achieve a heightened level of accuracy in identifying collusion attacks within Android apps.

Dynamic testing techniques have been mainly used for the detection of memory leaks
(SHAHRIAR; NORTH; MAWANGI, 2014a; LIANG et al., 2018a) and ICC vulnerabilities
(SALVA; ZAFIMIHARISOA, 2015a). Liang et al. (2018a) proposed an analysis system called
AppLance, which runs the app through its UI (User Interface), logs the execution data, and finally
analyzes them to identify memory leaks. Similarly, Shahriar, North and Mawangi (2014a) pde-
signed an approach that runs the app using a fuzz testing method based on known memory leaks
vulnerabilities for finding them on Android apps. Salva and Zafimiharisoa (2015a) introduced
APSET, a tool that takes an ICC vulnerabilities scenarios set, formally expressed with models,
generates test cases from the models, and finally checks if the app has ICC vulnerabilities.

58 Chapter 3. Fundamentals of Security Testing

Hybrid testing techniques have been largely applied on Android apps for detection
of vulnerabilities associated with SSL/TSL (KNORR; ASPINALL, 2015a; LIU et al., 2018a;
WANG et al., 2020a), Single Sign-On (SSO) (SHI; WANG; LAU, 2019b), ICC (ROMDHANA
et al., 2023), Inter-Application Communication (IAC) (AVANCINI; CECCATO, 2013a; GUO
et al., 2014a; HAY; TRIPP; PISTOIA, 2015a; ALHANAHNAH et al., 2020), sensitive data
leaks (RUMEE; LIU, 2015; KENG et al., 2016a), WebView (HASSANSHAHI et al., 2015),
and assessments in general (MAHMOOD et al., 2012; YEH et al., 2014). Similarly, Liu et al.

(2018a) and Wang et al. (2020a) designed an approach that first performs a static analysis for
identifying the vulnerable code, generates an ACG (Activity Control Graph) to trace a path
between main and the vulnerable activities, and finally runs the potentially vulnerable activity
for detecting SSL/TSL vulnerabilities on Android apps. Knorr and Aspinall (2015a) proposed an
approach that performs a static analysis for identifying SSL/TSL vulnerabilities and then the
Android apps is executed for confirming the existence of vulnerabilities. Shi, Wang and Lau
(2019b) first generated Finite State Machines (FSMs) from the app code and then designed test
inputs from the models for detecting SSO vulnerabilities.

Towards addressing ICC vulnerabilities, Romdhana et al. (2023) developed RONIN, an
approach based on deep reinforcement learning for dynamically generating exploits for ICC
vulnerabilities in Android apps. By manipulating Intent parameters through a sequence of actions
guided by positive, neutral, or negative feedback, RONIN learns to build Intents that expose
specific vulnerabilities.

In the realm of IAC vulnerabilities detection, Guo et al. (2014a) proposed a compositional
approach that integrates static and dynamic automated testing techniques to detect vulnerabilities
arising from inter-component messaging. The method begins with a static analysis to obtain
initial detection results and parameter information, followed by dynamic testing to automatically
generate attack cases and simulate attack behaviors. Hay, Tripp and Pistoia (2015a) presented a
comprehensive testing algorithm for IAC vulnerabilities, identifying eight vulnerability types
and proposing solutions for automated discovery challenges such as path coverage and cus-
tom data fields. The approach, called IntentDroid system, leverages lightweight platform-level
instrumentation to recovering IAC-relevant behaviors.

Avancini and Ceccato (2013a) introduced a testing approach for mobile software, focus-
ing on thoroughly testing routines that validate input values from IAC messages. The method
suggests automatic test case generation to identify discrepancies between the intended behavior
declared by an application and the actual functionalities implemented in its code. Alhanahnah
et al. (2020) developed DINA, a hybrid analysis approach that identifies and counteracts such
attacks, addressing such a challenge by appending reflection and Dynamic Class Loading (DCL)
invocations to control-flow graphs and performing incremental dynamic analyses to detect misuse
of those features. The authors evaluate DINA’s effectiveness in identifying hidden IAC behaviors
in real-world apps, demonstrating its potential to enhance security vetting on a large scale.

3.3. Secure username and password authentication in Android applications 59

In the quest to uncover data leaks, Rumee and Liu (2015) designed DroidTest, a method
that tests Android apps before their release on the market. Unlike traditional methods that require
access to the program’s source code, DroidTest is a server-side black-box testing approach that
focuses solely on the input and output of the application under test. The testing process involves
generating correlated test inputs from existing test cases, whose only difference lies in the input
containing sensitive information. By observing variations in the output among correlated test
cases, the system identifies potential data leakage. Keng et al. (2016a) introduce MAMBA,
a testing system that identifies privacy issues in Android apps through path searches of user
events within Control Flow Graphs (CFGs) derived from static analyses of app bytecode. It then
constructs test cases consisting of user events for directing the app’s activity transitions swiftly
from the initial activity to specific target activities of interest. The process efficiently uncovers
potential accesses to privacy-sensitive data within the apps.

Hassanshahi et al. (2015) described an investigation into a type of attack known as
“Web-to-Application Injection” (W2AI) targeting Android apps and addressed a relatively
unexplored class of attacks, wherein a malicious attacker can exploit vulnerabilities in apps
through a malicious website accessed on an Android browser, i.e., WebViews. An automated
scanner, called W2AIScanner, identifies and confirms such vulnerabilities. The findings revealed
a significant number of vulnerabilities in Android apps, underscoring the need for increased
attention and security measures by developers.

Regarding vulnerability assessments by hybrid testing techniques, Mahmood et al. (2012)
proposed a framework for automated security testing of Android apps on the cloud. It employes
numerous heuristics and software analysis techniques to intelligently guide the generation of
test cases for boosting the likelihood of discovering vulnerabilities. Yeh et al. (2014) introduced
CRAXDroid, a pioneering method that identifies impersonation attacks in mobile apps and lever-
ages dynamic code analyses for extracting user interfaces from mobile applications, subsequently
scrutinizing the extracted screenshots to flag instances of impersonation.

In spite of a number of testing techniques for security previously describe in this section,
they have the following limitations: (i) static testing techniques often report vulnerabilities that
may not exist (false positive), (ii) most dynamic and hybrid testing techniques use an exploratory
testing technique, i.e., tests are dynamically designed, executed, or modified, and (iii) techniques
do not address known and frequent vulnerabilities, such as those reported by CWE and OWASP.

3.3 Secure username and password authentication in An-
droid applications

This section delves into the security woes plaguing username and password authentication
in Android apps. Ranked third in the OWASP Top 10 (OWASP, 2023b), such vulnerabilities
pose a critical threat. Their omnipresence in mobile apps (OWASP, 2023a) makes them ripe

60 Chapter 3. Fundamentals of Security Testing

targets for attack, and reports of exploitation are frequent and alarming. The seriousness is
further underscored by the six distinct authentication flaws listed in the CWE1. Recognizing this
ongoing risk, OWASP’s 2023 update highlights the need for urgent investigations and mitigation
of those vulnerabilities to securing mobile apps (OWASP, 2023b).

Android apps frequently handle information that requires secure communications with
a remote service - typically a backend server - to safely deliver those data. Therefore, apps
must integrate authentication services that safeguard both their own integrity and that of users
(BIANCHI et al., 2017; MA et al., 2019). Such services encompass authentication and autho-
rization characteristics, of which the former confirms the validity of a transmission, message, or
sender, or provides a means to verify an individual’s authorization to access specific categories
of information. On the other hand, authorization grants access privileges to a user, program, or
process (BIANCHI et al., 2017).

Authentication methods are integral components of applications, guaranteeing only
authorized individuals can access protected resources, which not only enhances security, but
also grants better control over user interactions (BIANCHI et al., 2017; MA et al., 2019). For
instance, let us consider an entertainment app like Netflix, which offers a catalog of movies
and TV shows. The app tailors both content and quality based on the user’s subscription type
employing an authentication schema in which users input their credentials, thus granting them
access to their personalized profiles and the app’s content while maintaining security and user
control.

Mobile apps commonly employ one method or a combination of authentication ones,
as reported by Bianchi et al. (2017), according to whom Android apps frequently adopt the
following authentication methods: (i) username and password authentication, (ii) third-party

authentication services, (iii) text messages (SMS), and (iv) device information. The former stands
as the most traditional approach for user authentication; the authenticating app directly prompts
the user to provide their login credentials, which are transmitted to the app’s backend server,
where they are rigorously assessed for accuracy. After a successful verification, the server issues
a token to the app, which functions as a shared secret string, simplifying authentication for all
subsequent interactions between the client and the server.

Third-party authentication services empower users to log in an app using their credentials
from platforms such as Google or Facebook. The approach streamlines the authentication process,
significantly enhancing user convenience. Once authentication has been completed, the app
receives a token and includes it with its requests to the backend, which can then use it to
request additional user information from the third- party service, enabling the creation of a more
comprehensive user profile (BIANCHI et al., 2017). In contrast, Authentication services by Text

messages (SMS) enables apps to use SMS-based authentication, in which a one-time code is sent
to the user’s mobile number. The user must enter it to complete the authentication process. Finally,

1See vulnerabilities ranked at (11, 14, 18, 20) (CWE, 2021)

3.3. Secure username and password authentication in Android applications 61

authentication services based on device information enable apps to employ device-related data
for authentication, which might involve verifying the device’s unique identifiers or characteristics
for granting access.

De-facto industry standard authorization protocol OAuth 2.0 (OAUTH, 2012) was de-
signed to enable a website, or, in general, an application to access Protected Resources (PR) on
behalf of a user. It defines the Abstract Protocol Flow (OAUTH, 2012) describing the flow of
interactions client apps, such as web applications, desktop applications, mobile apps, and living
room devices should follow to access a user´s PRs.

Figure 4 shows the protocol to be implemented by a client mobile app (a.k.a. client app)
installed on an Android Device (AndDev) for accessing the user’s PR. The client app first sends
an Authentication Request (AR) to the user, a.k.a. Resource Owner (RO) , who replies with an
Authorization Grant (AG) . Among the four AG types defined by OAuth 2.0, User and Password
Credentials (UPC) are the ones most commonly implemented by developers (MA et al., 2019).
Towards gathering the UPC, client apps usually render a Sign-In Screen (SIS) , like the one in
Figure 4, where the user inserts the username and the password before tapping on the SIGN IN

button. The client then sends the AG to an Authorization Server (Auth-Server) , which validates
(or not) the UPC. If it is valid, the AR is accepted and Auth-Server replies to the client by sending
an Access Token (AT) . The client dispatches the AT to the Resource Server (Res-Server) , which
validates (or not) it. If it is valid, Res-Server sends the PR to the client.

Sign In

User Name:

domenico

Password:

SIGN IN

Forgot Password?

New User

SIGN UP

Secure APP Authorization Request

Authorization Grant

Authorization Grant

Access Token

Access Token

Protected Resource

Authorization Server

Resource Server

Service API

User

(Resource Owner)

Figure 4 – Abstract Protocol Flow of user authorization and access to protected resources defined by
OAuth 2.0.

Source: Adapted from Junior et al. (2023).

Netflix is an example of an app using OAuth authorization protocol. A registered user that
wishes to use the well-known video-streaming Netflix services must preliminary be authorized

62 Chapter 3. Fundamentals of Security Testing

by entering their credentials (i.e., mail/username and password) in the sign-in screen of the app.
If the correct credentials have been sent, the Netflix catalog along with the user’s preferences are
downloaded from the server so that the user can access all services available.

OWASP has defined specific guidelines reported in both OWASP Mobile Application
Security Testing Guide (MUELLER; SCHLEIER; WILLEMSEN, 2019) and OWASP Web
Security Testing Guide (SAAD; MITCHELL, 2019) for verifying whether the users´ credentials
and protected resources have not been intercepted and modified by malicious attackers. The
guidelines are summarized in what follows:

(i) Verification of the SSL certificate: when a communication is established between a client
and its Auth-Server, the connection must be secure and safeguard any sensitive data of
the client’s traffic. Therefore, OWASP suggests verifying the use of Secure Sockets Layer
(SSL) or Transport Security Layer (TSL) cryptography protocols for ensuring confidential-
ity, integrity, and authenticity of the data exchanged over a secure computer network (WEI;
WOLF, 2017). Basically, the protocols exploit encryption algorithms to scramble the data
for preventing transmission against Man-in-the-Middle (MITM) attacks (WANG et al.,
2020b), in which malicious attackers can capture, view, and modify the network traffic
between the app and the server. Towards achieving this security level, the trustness of the
SSL/TSL digital certificates should be checked, according to OWASP. SSL/TSL certificate
is a type of public-key that binds the ownership details of the APIs exposed by a server to a
cryptography key for ensuring a trusted SSL/TSL encryption. Without a trusted SSL/TSL
issued by a legitimate third-party Certificate Authority (CA)2, the network traffic cannot be
encrypted and becomes vulnerable to MITM attacks. OWASP suggests verifying the use
of a Trusted SSL/TLS Digital Certificate (TSSLDC) for encrypting the communication
between the client and the server, thus limiting that risk;

(ii) Transmission of sensitive data over encrypted channels: OWASP recommends checking
the use of HTTPS Connection Channel (HTTPS-CC) , instead of an HTTP Connection
Channel (HTTP-CC) for the implementation of an encrypted communication between the
client app and the server, thus limiting further MITM attacks;

(iii) Proper management of the Access Token’s lifetime: the lifetime of the AT should be
properly handled towards avoiding an attacker stealing an authenticated session, the user’s
account, and their personal data (MUELLER; SCHLEIER; WILLEMSEN, 2019). OWASP
suggests checking whether two measures that mitigate this security aspect have been
implemented. Its recommendations include verification of whether the AT is destroyed
after the user has signed out from the app and whether a new one is generated when the
user signs in again. Additionally, the expiration time parameter of the AT should not be too
long towards further improvements in the security of the app. For instance, high-risk apps
(e.g., bank apps) usually define short-lived session tokens (from 2 to 5 minutes), whereas

2An entity that issues digital certificates

3.4. Final Remarks 63

low-risk apps (e.g., education) usually define long-lived session tokens (from 15 to 30
minutes). Access tokens are objects that have an expiration time, a.k.a. Time-to-live (TTL),
which is the maximum time interval within which an AT is valid. Before the end of the
TTL, i.e., before the AT expires, the client should refresh the AT by asking Auth-Server
for a new one;

(iv) Proper verification of authenticated session: OWASP recommends verifying whether
the app limits access to functionalities and screens - collecting sensible data - only to
authenticated and authorized users. If this is not guaranteed, the app is vulnerable to
Authentication Bypass, in which a malicious attacker can access, read, and modify personal
user’s data. Moreover, the guidelines suggest checking whether Res-Server verifies if the
user is authenticated and authorized every time it requests for PR.

Guidelines not met indicate the applications contain weaknesses that might result in
vulnerabilities related to user authentication that can potentially be exploited by malicious
attackers.

3.4 Final Remarks
This chapter provided a comprehensive overview of key concepts pertaining to security

requirements, with a particular emphasis on security testing. Additionally, it elucidated the
principles of testing techniques commonly applied in the domain of security, offering detailed
descriptions and insightful discussions, and also established a theoretical groundwork for a
crucial and specifically chosen category of authentication and authorization vulnerabilities in
Android apps.

As described in the chapter, security requirement is one of the most critical and widely
considered NFRs in software systems (POORT et al., 2012; LÓPEZ et al., 2018; CARACCI-
OLO; LUNGU; NIERSTRASZ, 2014; RIBEIRO; CRUZES; TRAVASSOS, 2018). However,
like most NFRs, security requirement and especially security testing are typically overlooked
in the software development process (NAGAPPAN; SHIHAB, 2016; RIBEIRO; CRUZES;
TRAVASSOS, 2018; JUNIOR et al., 2022), thus increasing faults of security, commonly defined
as vulnerabilities, and making software systems vulnerable to cyber attacks.

65

CHAPTER

4
SECURITY DYNAMIC TESTING

TECHNIQUES IN MOBILE APPLICATIONS:
FINDINGS FROM A SYSTEMATIC MAPPING

STUDY

4.1 Preliminary Remarks

Several secondary investigations in the field of mobile application testing have offered
comprehensive and structured analyses of the diverse contributions in such an expansive research
domain and have predominantly focused on specific aspects, such as exploration of automated
testing methodologies (PORRAS; LÓPEZ; CORONAS, 2015; ALMEIDA; MACHADO; AN-
DRADE, 2019), automated functional testing for mobile applications (TRAMONTANA et al.,
2019; KONG et al., 2019), and meticulous examinations of testing approaches concerning
mobile context-aware applications (LUO et al., 2020). Other secondary studies have investigated
mobile application testing techniques in general (ZEIN; SALLEH; GRUNDY, 2016) (ZEIN;
SALLEH; GRUNDY, 2016). While those reviews often touch upon challenges and contemporary
resolutions related to NFRs testing for mobile devices and applications, they have tended to
overlook a comprehensive survey of the cutting-edge advancements within this specific domain,
as discussed in Section 2.4.1.

This chapter provides an overview of an SMS and a discussion on the results of 56
primary studies that clearly addressed NFRs dynamic testing in mobile applications. Towards
discussions focused on the key objective of this PhD work, only the results and discussions
directly related to security testing in mobile applications are described. The full content of the
article published as a result of the SMS is provided in Appendix A, where readers can delve
deeper into the details of the study and its outcomes.

66
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

An SMS is a branch of a Systematic Literature Review (SLR), wherein a broader
review of primary studies is conducted for identifying evidence and gaps towards guiding future
systematic reviews and detecting areas that require further primary studies (KITCHENHAM,
2004; PETERSEN; VAKKALANKA; KUZNIARZ, 2015).

The main goal of the SMS conducted was to promote a broad discussion on the NFRs
dynamic testing in mobile applications that focus on addressed NFRs, adopted testing strategies,
explored mobile platforms, and supporting tools. To the best of our knowledge, this is the first
secondary study specific for NFRs dynamic testing in the mobile applications context. The
discussions presented were based on the following paper published at the ACM Computing
Surveys (CSUR) (JUNIOR et al., 2022):

• JUNIOR, M. C., AMALFITANO, D., GARCES, L., FASOLINO, A. R., ANDRADE, S.
A., DELAMARO, M. (2022). Dynamic testing techniques of non-functional requirements
in mobile apps: A systematic mapping study. ACM Computing Surveys (CSUR), 54(10s),
1-38. Available: <https://doi.org/10.1145/3507903>.

The chapter is organized as follows: Section 4.2 details the goals, Research Questions
(RQ), and metrics and Section 4.3 provides the results and the main discussions on security
testing in mobile applications.

4.2 Goals, Research Questions, and Metrics

The SMS aimed to identify, evaluate, and collect available and relevant studies on
dynamic NFR testing techniques in mobile applications. The Goal–Question–Metric (GQM)
approach (CALDIERA; ROMBACH, 1994) designed the research and the main goal was refined
into three research goals, as shown in Table 1. A set of RQs and the rationale indicating the
expected answers were also defined for each goal (see Table 2). The RQs were specified in a
generic form towards obtaining, over time, topics already explored and research trends to be
investigated, as suggested by Petersen, Vakkalanka and Kuzniarz (2015). Table 3 shows the
metrics planned towards answering each RQ and the related data to be extracted from the primary
studies.

Table 1 – Goals of the Systematic Mapping.

Goal ID Goal Rationale
G1 Characterize the studies proposing techniques for testing

NFRs in mobile apps
This SM aims to characterize research in the area of NFR
testing techniques for mobile apps.

G2 Describe the techniques from the literature that test NFR
in mobile apps.

This SM aims to characterize the NFR testing techniques
for mobile apps.

G3 Analyze the tool support of NFR testing techniques for
mobile apps.

This SM aims to characterize tools from the literature
that support the execution of NFR testing techniques for
mobile apps.

Source: Adapted from Junior et al. (2022).

https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903

4.3. Results 67

Table 2 – Research Questions.

Goal ID RQ ID Research Question By answering this RQ, the researcher will find out

G1

RQ11 What is the number of articles published per year? the efforts devoted by the research community over the
years for consolidating this research area

RQ12 What is the articles count by venue type? the venues in which studies relevant to this research area
have been published.

RQ13 What is the articles count by collaboration type? the collaboration type between academia and industry
regarding proposals of techniques for testing NFRs for
mobile apps.

RQ14 What are the most influential articles? the most relevant publications in this research area.
RQ15 What is the articles count by country? the leading countries in this research area.

G2

RQ21 What are the quality characteristics addressed for testing
NFRs in mobile apps?

the quality characteristics that have received more interest
(or are more critical) to be tested in mobile apps.

RQ22 What mobile platforms are tackled by NFR testing? the tendency of proposals of testing techniques based on
specific mobile platforms.

RQ23 What testing strategies are adopted for NFRs testing? the tendency for use of specific strategies for testing NFRs
for mobile apps.

RQ24 What testing approaches are used to test NFRs in mobile
apps?

the direction of the testing approaches adopted for NFRs
in mobile apps.

G3 RQ31 How many of the identified NFRs testing techniques are
Tool-supported?

the percentage of tool-supported NFRs testing techniques
for mobile apps.

RQ32 What are the adoption levels (in %) of "Proprietary", "Free-
ware", "Free and Open" tools?

the software licenses of the tools that support NFR testing
in mobile apps1.

RQ33 What tool types are used to support the execution of NFR
testing techniques for mobile apps?

the tendencies of the tool types that support NFRs testing
techniques for mobile apps.

Source: Adapted from Junior et al. (2022).

Table 3 – Proposed Metrics.

RQ ID Metric Extracted Data
RQ11 Count the number of papers grouped by year Publication year.
RQ12 Count the number of papers grouped by Venue Publication venue ∈ {Workshop, Symposium, Conference,

Journal}.
RQ13 Count the number of papers grouped by Collaboration

Type.
Collaboration type ∈ {Academic, Industrial, Crosscut-
ting}.

RQ14 Report the first 10 papers with more citations. Number of citations
RQ15 Count the number of papers grouped by country First author’s affiliation country.
RQ21 Count the number of papers grouped by quality character-

istics
Quality characteristics under test.

RQ22 Count the number of papers grouped by mobile platform. Mobile platforms tackled.
RQ23 Count the number of papers grouped by testing approach Testing approaches adopted.
RQ24 Count the number of papers grouped by testing strategy Testing strategy adopted.
RQ31 Count the number of papers grouped by "tool-supported

technique" and "no tool-supported technique"
The testing technique is tool-supported or not.

RQ32 Count the number of tools grouped by license Extract the license of each tool identified from RQ31.
RQ33 Count the number of tools grouped by type Derive the type of each tool extracted from RQ31.

Source: Adapted from Junior et al. (2022).

The SMS was motivated by the lack of requirements essential for a comprehensive
understanding of the current advancements in platform-independent dynamic testing techniques
specifically tailored for mobile applications, with an emphasis on NFRs as opposed to only FRs.
The SMS was structured in accordance with the guidelines outlined by Petersen, Vakkalanka
and Kuzniarz (2015) and the protocol was established through extensive deliberations among
all participating researchers. The following section provides the main results related to security
testing in mobile applications.

4.3 Results

As previously described, this section details the findings from the SMS conducted by
Junior et al. (2022), providing a succinct and comprehensive perspective that harmonizes directly

68
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

with the core theme of this thesis, namely, security testing in mobile applications. Table 13 in
Appendix A shows all primary studies selected from the SMS.

4.3.1 NFR testing techniques for mobile apps

This sub-section addresses the distribution of the primary studies regarding NFR and year
(Subsection 4.3.1.1), mobile platform types covered in the studies (Subsection 4.3.1.2), security
testing strategies (Subsection 4.3.1.3), and testing approaches (Subsection 4.3.1.4) aligned with
distinct security. More comprehensive and specific outcomes on other types of NFRs can be
found in Appendix A.

4.3.1.1 Distribution of NFRs addressed by primary studies

Figures 5 and 6 show the collection of NFRs identified in primary studies, which
encompass performance, security, usability, portability, reliability, and compatibility, along with
their distribution across different years.

Figure 5 – Quality attributes reported in the pri-
mary studies.

Figure 6 – Quality attributes reported in the pri-
mary studies by year.

Source: Adapted from Junior et al. (2022).

According to Figure 5, performance (35.7%, 20/56), security (30.3%, 17/56), and
usability (25.0%, 14/56) are the most frequently explored NFRs, followed by Portability (10.7%,
6/56). In contrast, Compatibility and Reliability were addressed in only 1.8%(1/56) of the
selected studies. As depicted in Figure 6, primary studies focused on security testing, primary
studies began in 2013 and performance testing studies followed suit in 2014, with both domains
experiencing continuous annual contributions. The only exception was 2017, during which no
primary study on security testing was published.

An additional analysis on the primary studies under consideration aimed at understanding
the motivations for researchers focusing on specific NFRs. Table 4 provides the reported reasons
and corresponding references for security, which is the focus of this thesis. Among the most

4.3. Results 69

prevalent motivations is a recurring theme, namely, developers often neglect security during

mobile app implementation, which, therefore, requires specialized techniques and tools for

this NFR. The statement underscores the critical importance of robust security measures in
the design and development of mobile applications. As collectively highlighted in the primary
studies, addressing security concerns is pivotal to safeguarding user data, maintaining user trust,
and preventing potentially severe consequences of security vulnerabilities. Therefore, targeted
approaches and strategies are required for enhancing security testing in mobile apps.

Table 4 – Motivations for addressing Security testing.

NFR Motivation References

Security

Developers do not have proper knowledge about security; consequently, they are
not careful with this NFR

(AMIN et al., 2019), (RASTOGI; CHEN;
ENCK, 2013), (SHI; WANG; LAU, 2019a),
(GUO et al., 2014b), (LIU et al., 2018b),
(BHATNAGAR; MALIK; BUTAKOV, 2018),
(SALVA; ZAFIMIHARISOA, 2015b), (YU-
SOP et al., 2016), (HAY; TRIPP; PISTOIA,
2015b), (KENG et al., 2016b), (KNORR; AS-
PINALL, 2015b), (AVANCINI; CECCATO,
2013b), (LEE; VERWER, 2018), (WANG
et al., 2020b), (LIANG et al., 2018b),
(SHAHRIAR; NORTH; MAWANGI, 2014b),
(YANG et al., 2014)

Security testing is not a simple task and should be investigated (AVANCINI; CECCATO, 2013b), (LEE; VER-
WER, 2018), (LIANG et al., 2018b)

Programmers developing mobile apps that communicate with a server usually do
not follow security guidelines to implement SSL/TLS protocols

(SHI; WANG; LAU, 2019a), (LIU et al.,
2018b), (WANG et al., 2020b)

Security testing is neglected with respect to other NFRs; therefore, automated
tools must detect vulnerabilities

(GUO et al., 2014b)

Apps are not tested against known vulnerabilities (BHATNAGAR; MALIK; BUTAKOV, 2018)
The usage of third-party apps and frameworks may introduce vulnerabilities (SALVA; ZAFIMIHARISOA, 2015b)

Source: Adapted from Junior et al. (2022).

4.3.1.2 Mobile Platforms

Figure 7 shows the distribution of mobile platforms across primary studies. Android
takes the lead, being the focal point in 91.1%(51/56) of the selected studies, followed by iOS,
with 4.4%(2/56) representation. A mere 1.8%(1/56) accounts for other platforms, such as
Windows Phone, Blackberry, and LG, each one featured in only one study. Two studies adopted
an independent testing platform, presenting a distinct approach.

Notably, five studies introduced testing techniques for hybrid mobile applications that
amalgamate native and web application elements and are crafted by frameworks like React Na-
tive2 or Flutter3, facilitating code use across several platforms. The prominence of Android can
be attributed to its global prevalence and open-source nature. Its extensive developer community
supplies both versioning and issue tracking repositories for applications, providing researchers
with convenient access to a plethora of open-source, real-world mobile applications. The envi-
ronment is conducive for comprehensive analyses of experimental results while representing a
typical mobile application usage.

2<https://reactnative.dev/>
3<https://flutter.dev/>

https://reactnative.dev/
https://flutter.dev/

70
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

Figure 7 – Mobile platforms reported in primary studies.

Source: Adapted from Junior et al. (2022).

Interestingly, all selected primary studies that addressed security testing focused ex-
clusively on Android mobile platform, which can be attributed to its widespread usage and
open-source nature, thus enabling a more comprehensive access to the application source code
and facilitating in-depth security analyses.

4.3.1.3 Security Testing Strategies

Junior et al. (2022) identified the testing strategies employed for Security testing in the
examined papers. The distribution of those strategies is illustrated in Figure 8. The hybrid strategy
stands out as the predominant approach, accounting for 64.7%(11/17) of cases. Conversely,
white box (WB) and black box (BB) were equally represented, accounting for 17.6%(3/17) of
cases. For a comprehensive overview of the testing strategies adopted in each study, please refer
to Table 12 in Appendix A.

White Box Strategies. Figure 8 shows the exclusive use of WB strategies for security testing
(3/7) and the following two distinctive ones can be identified within this category:

WB1: Strategy involving generation of test cases from application models. Several model types
are considered, encompassing Finite State Machine (FSM), which models the overall app
behavior (SALVA; ZAFIMIHARISOA, 2015b) and amalgamations of use cases and user
interface models (YUSOP et al., 2016).

WB2: Strategy involving injection of mutants into the source code of the tested application. The
nature of the mutants implementing intents that can potentially introduce vulnerabilities is
employed for security testing (AVANCINI; CECCATO, 2013b).

4.3. Results 71

Figure 8 – Testing strategies adopted in Security testing.

Source: Adapted from Junior et al. (2022).

Hybrid Strategies. The bar chart in Figure 8 highlights H strategies have emerged in security
testing (11/17) and the following two hybrid ones are identified:

H1: Strategy involving generation of test cases from inferred models. The strategy leverages
artifacts and models inferred through app reverse engineering. Specifically, it uses FSM
(SHI; WANG; LAU, 2019a; LEE; VERWER, 2018), as well as Control Flow Graph (CFG)
models of two types, namely, Control-Flow Graph of Call-Backs (CCFG) (KENG et al.,
2016b).

H2: Strategy based on app exploration and code scanning. The strategy amalgamates two
pivotal phases, namely, app dynamic exploration and code scanning. In the former, the app
undergoes real-time testing through UI (User Interface) exploration (LIU et al., 2018b;
BHATNAGAR; MALIK; BUTAKOV, 2018), targeted API and intent invocation (AMIN
et al., 2019), execution of tests emulating attacks (GUO et al., 2014b), or tests tailored
to unearth known errors (KNORR; ASPINALL, 2015b). Exploration can be guided by
models like CFGs (HAY; TRIPP; PISTOIA, 2015b), or even by source code insights
(WANG et al., 2020b; YANG et al., 2014). In the latter phase, the app’s code is scrutinized
to unveil potential quality issues.

Black Box Strategies. Figure 8 displays a pervasive use of BB strategies in security testing (3/7).
An analysis of testing methodologies revealed five distinct BB strategies:

BB1: Strategy founded on app exploration, which involves dynamic app exploration through the

72
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

user interface, where the app is tested in real-time to uncover vulnerabilities(RASTOGI;
CHEN; ENCK, 2013; WANG et al., 2020b; SHAHRIAR; NORTH; MAWANGI, 2014b).

4.3.1.4 Approaches for Security testing

According to the Software Engineering Body Of Knowledge (SWEBOK) classification
(BOURQUE; FAIRLEY; SOCIETY, 2014), testing approaches can be (i) Based on the Software
Engineer’s Intuition and Experience (SEIE), (ii) Input Domain-Based (IDB), (iii) Code-Based
(CB), (iv) Fault-Based (FB), (v) Usage-Based (UB), (vi) Model-Based (MB), and (vii) Based
on the Nature of the Application (BNA). SEIE refers to approaches in which tests are generated
according to both skills and knowledge of the software engineer involved in the test process.
It comprises two sub-categories, namely, Ad Hoc (AH) and Exploratory Testing (ET). IDB

category encompasses approaches in which tests are generated only by taking into account the
properties of the inputs of the software SUT. It is specialized in the following four sub-categories:
Equivalence Partitioning (EP), Pairwise Testing (PT), Boundary Value Analysis (BVA), and
Random Testing (RandT). CB category is comprised of testing approaches in which tests are
generated by taking into account the properties of the code implementing the SUT. The category
is specialized in two sub-categories, namely, Control Flow-Based (CFB) and Data Flow-Based

(DFB).

FB includes testing approaches in which tests are generated for revealing specific types
of faults, usually defined through a fault model. It is further specialized in two sub-categories,
namely, Error Guessing (EG) and MUT. UB characterizes testing approaches that generate tests
that resemble the behavior of the human user of the SUT as much as possible. It comprises two
sub-categories, namely, Operational Profile (OP), and User Observation Heuristics (UOH). MB

describes testing approaches that exploit models for deriving tests. A model is an abstract – a
formal one in some cases - representative of the SUT. Model-based approaches can be further
specified according to the models used to represent the SUT. Therefore, model-based testing
approaches include the following four sub-categories: Decision Tables (DT), FSM, Formal

Specifications (FS), and Workflow Models (WM). Finally, BNA encompasses testing techniques
through which tests are designed and execution is based only on the specific nature of the SUT
(e.g, object-oriented software, component-based software, concurrent programs, and others).

Testing approaches for security testing

As shown in Figure 9, 7/17 techniques rely on a single approach. Three MB approaches
generate tests from FSM (SHI; WANG; LAU, 2019a; SALVA; ZAFIMIHARISOA, 2015b) or
WM (e.g., UML (Unified Modeling Language) use case and user interface models) (YUSOP et

al., 2016). The two FB approaches belong to EG and MUT subcategories. The former requests
the app through tests simulating known attacks (GUO et al., 2014b), whereas the latter injects
source code specific vulnerability mutants into the app (AVANCINI; CECCATO, 2013b). CB

approach of subcategory CFB generates test cases from CFG (KENG et al., 2016b), whereas

4.3. Results 73

SEIE, classified as ET, tests the app on the fly while UI is explored searching for vulnerabilities
(RASTOGI; CHEN; ENCK, 2013).

S

UB

MB
FSM

WM

S9, S19

FB

EG S16

CB

SEIE ET S4

CFB + ET S3, S17, S18, S25

S20

MT S31

EG + ET S47, S52, S53

ET + OP S48

EG + FSM S33

CFB + EG S30

CFB S28

Figure 9 – Mapping of approaches for security testing.

Source: Adapted from Junior et al. (2022).

Five different combinations of two approaches were presented in 10/17 primary studies.
FB was combined with SEIE in EG + ET subcategory approaches that explore the app for
triggering specific vulnerabilities (WANG et al., 2020b; SHAHRIAR; NORTH; MAWANGI,
2014b; YANG et al., 2014). SEIE and CB are used jointly as CFB + ET. The approaches
belonging to this subcategory find vulnerability by both exploring the app on the fly and scanning
the source code (AMIN et al., 2019; LIU et al., 2018b; BHATNAGAR; MALIK; BUTAKOV,
2018; HAY; TRIPP; PISTOIA, 2015b). SEIE was also combined with UB as ET + OP, which
explores the app on the fly for tracing log files that are analyzed so that vulnerabilities can be
found (LIANG et al., 2018b). The integration of FB and CB in CFG + EG tests the app using
both test cases designed for finding known errors and code scanning (KNORR; ASPINALL,
2015b). Finally, the combination of FB and MB as EG + FSM generates test cases that cover
paths of the FSM modeling the app behavior that may reveal potential vulnerabilities (LEE;
VERWER, 2018).

74
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

4.3.2 Tools for supporting NFR testing for mobile applications

This sub-section examines tool-supported NFR testing techniques, encompassing their
categorization by tool support (Subsection 4.3.2.1), licensing model governing the associated
software (Subsection 4.3.2.2), and the specific functionality they offer for each quality char-
acteristic testing, as classified by SWEBOK (Subsection 4.3.2.3). All discussions provide a
continuous correlation drawn between the findings regarding security testing.

4.3.2.1 Tool support to NFR testing of mobile apps

69.6% (39/56) of the selected studies incorporated or used a tool, whereas the remaining
30.4% (17/56) did not clarify whether the technique presented had tool support. The studies
that introduced or leveraged a tool are listed in Table 14 in Appendix A, which includes the tool
name (if provided), its type based on the SWEBOK classification adopted, and its accessible
URL (if applicable). Notably, 13/39 studies outlined a tool without explicitly naming it. No tool
was shared or employed across multiple studies.

76.4%(13/17) of the selected primary studies that addressed security testing provided a
support tool. The emphasis on the use of support tools underscores the growing recognition of
the complexity and critical nature of security testing in the context of mobile applications.

4.3.2.2 Testing tool licensing

The distribution of licenses of the tools offered by the authors showed diverse patterns.
69%(27/39) were disseminated with no designated license, 23.0%(9/39) embraced Free Open-
Source Software (FOSS) license, 2.6% (1/39) adopted Freeware license, and 5.2% (2/39) were
categorized as Proprietary software. Notably, the Proprietary tools in the selection encompassed
IntentDroid, developed by IBM, and ZIPT (Zero-Integration Performance Testing), a collabora-
tion between the University of Illinois and Google. Tools operating under a Proprietary license
were primarily introduced through primary studies conducted either wholly, or partially by the
Industry, whose involvement seemed to impact the accessibility of the tools. In contrast, tools
with FOSS and Freeware licenses were typically associated with primary studies developed
exclusively by Academic institutions, making their executable files or code readily available for
public access.

Interestingly, regarding security testing, 61% of the techniques supported by tools lack
accessible sources for the use of the tools, whereas 30.7% adopt FOSS license - only one
technique falls under the category of Proprietary software. Such a distribution underlines the
increasing demand for open-source solutions within the security testing domain, and most
practitioners have recognized the benefits of collaboration and transparency in the critical aspect
of mobile application development.

4.3. Results 75

4.3.2.3 Types of NFR testing tools

The tools documented in the literature for facilitating testing procedures for NFRs
have been categorized according to their functionalities, which aligns with the classification
framework proposed by SWEBOK (BOURQUE; FAIRLEY; SOCIETY, 2014). A testing tool can
fall within one or more of the following categories: Test harnesses (TH), Test generators (TG),
Capture/replay (CR), Oracle/file comparators and assertion checking (OC), Coverage analyzers
and instrumenters (CAI), Tracers (T), Regression testing (RT), and Reliability evaluation (RE).

TH encompasses tools that establish elaborate controlled environments using drivers and
stubs. Such environments enable tests to be generated and executed on-the-fly or to be stored,
planned, and subsequently executed. Additionally, those tools can record the outcomes of test
executions. TG belongs to a category that offers sophisticated features for automated test case
generation, whereas CR tools are designed to capture user interactions with the tested application
frequently through its user interface. The interactions are then stored in a shared repository,
promoting their collective replay or the replay of selected subsets. OC tools enable the definition
and execution of intricate oracles for automatically identifying failures in the tested application
during runtime. CAI involves tools that generate test cases through the analysis of source code.
The category includes tools that insert probes into the source code, as well as those that perform
source code analysis and reverse engineering. T offers functionalities for logging execution data
such as paths, energy consumption, memory usage, and network traffic in text files. RT tools
automatically select and execute only the necessary test cases following code changes. Lastly, RE
tools provide graphical user interfaces to support test engineers in complex statistical analyses of
reliability-related metrics.

Figure 10 illustrates the distribution of tool types employed in the selected primary
studies. Table 14 in Appendix A leads to the emergence of a comprehensive understanding, i.e.,
30 of the tools extending their support to multiple NFRs. The bar chart reveals TH tools are the
most frequently employed ones across NFRs testing techniques, OC, TG, CAI, and CR tools.
Interestingly, they are the least employed type in the context of NFRs testing techniques, which
might be attributed to their specific nature and applicability to certain testing scenarios. The
distribution highlights the prevalence of TH tools, indicating their versatile utility in tackling
various NFRs testing challenges.

Figure 11 depicts the number of studies that incorporated specific tool types for Security
testing, highlighting the various features and their combinations. A paper ID, wherein the tool
was introduced, is attributed to each type or combination. Tools employed for security purposes
must encompass TH, TG, CAI, and OC features, which demand a comprehensive test harness for
exploring the application and identifying vulnerabilities and the capacity to generate security tests
based on models. Additionally, the tools should offer the capability to scrutinize or instrument
codes that guide app navigation or identify known vulnerabilities.

76
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

Figure 10 – Types of supporting tools.

Source: Adapted from Junior et al. (2022).

Figure 11 – Tool types addressed by security testing techniques.

Source: Adapted from Junior et al. (2022).

4.4 Discussion

This section summarizes and discusses the main findings on security testing on mobile
applications reported by Junior et al. (2022).

4.4.1 Security is one of the critical and relevant NFR

Security retains its status as one of the utmost critical NFRs in mobile applications. Such
a significance is reflected in the distribution of NFRs in Figure 5, where security occupies the

4.4. Discussion 77

second position among the NFRs most frequently tackled in the primary studies selected from the
SMS conducted by (JUNIOR et al., 2022). The heightened focus on security is justified by the
ever-increasing vulnerabilities associated with mobile applications, emphasizing the imperative
need to prioritize robust security testing practices.

4.4.2 Security testing is not a simple and accessible task

As highlighted in Table 4, the motivations underlying the choice for addressing security
testing in mobile applications are quite intriguing. Notably, a significant driver is the deficiency
in a proper knowledge about security practices. Furthermore, several studies have characterized
security testing as an intricate endeavor, offering insights into the reasons behind the often
observed lack of robust security testing in mobile application projects and highlighting the
complexity of security testing and the need for specialized techniques that effectively address
that critical NFR.

A noteworthy observation has arisen from one of the motivations provided in Table 4,
specifically highlighting "Apps are not tested against known vulnerabilities", which is a critical
gap in the security testing of mobile applications. With the proliferation of new vulnerabilities
and threats in the digital realm, failures to assess applications against known vulnerabilities
introduce significant risk, requiring such a concern be comprehensively addressed through robust
security testing practices.

4.4.3 Android is the most addressed and vulnerable mobile platform
in the context of security

As elucidated in Section 4.3.1.2, Android has been the most studied mobile platform in
mobile applications and particularly accentuated in the context of security testing. The rationale
behind it can be attributed to its widespread usage, status as an open-source platform, and pivotal
role in the contemporary mobile app landscape. As shown in Figure 7, Android prevails as a
prime target for security exploration, reflecting its both prominence and potential vulnerabilities.

4.4.4 Some tools for security testing are not easily accessible

Section 4.3.2.1 furnishes insight into the availability of tool types employed in NFRs
testing techniques. Within the scope of security testing, an intriguing trend becomes evident.
76.4%(13/17) of the studies dedicated to security testing integrated the use of supporting tools.
However, a more detailed examination revealed only 38.4%(5/13) of those studies, including
those of (AMIN et al., 2019; SHI; WANG; LAU, 2019a; SALVA; ZAFIMIHARISOA, 2015b;
HAY; TRIPP; PISTOIA, 2015b; LEE; VERWER, 2018), made those support tools accessible and
available for security testing purposes, thus highlighting the varying degrees of tool accessibility

78
Chapter 4. Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic

Mapping Study

in the specific domain of security testing, which may lead to implications for the replication and
expansion of those studies.

4.5 Final Remarks
This chapter elucidated the outcomes of the SMS conducted by Junior et al. (2022),

focusing on the dynamic testing techniques pertaining to NFRs in the context of mobile applica-
tions. The authors conducted a meticulously structured SMS that encompassed various facets
of the aforementioned techniques, as well as prominent aspects such as the predominant NFRs
targeted in mobile applications, the most extensively explored mobile platform, prevalent testing
strategies and approaches, and availability and classification of tool types used in that domain.

79

CHAPTER

5
A GUI-BASED METAMORPHIC TESTING

TECHNIQUE FOR DETECTING
AUTHENTICATION VULNERABILITIES IN

ANDROID MOBILE APPS

5.1 Preliminary Remarks

This chapter provides a GUI-Based MT technique for the detection of weaknesses that
may cause real vulnerabilities affecting username and password authentication methods in An-
droid mobile apps due to an improper implementation of username and password authentication
methods, i.e., disregarding the guidelines suggested by OAuth 2.0 (OAUTH, 2012). It also
describes a Metamorphic Vulnerability Testing Environment that supports the execution of the
proposed technique and discusses the results from an experiment in which the technique tested
163 popular Android apps extracted from Brazilian Google Play1 and Italian Google Play2. To
the best of our knowledge, this is the first study that exploits MT for finding vulnerabilities in
Android mobile apps.

The discussions presented were based on a paper submitted to the Journal of Systems &
Software (JSS) (JUNIOR et al., 2023):

• JUNIOR, M. C., AMALFITANO, D., VISONE, B., FASOLINO, A. R., DELAMARO, M..
A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities
in Android Mobile Apps. Submitted to the Journal of Systems & Software (JSS), 2024.
p. 1-28.

1<https://play.google.com/store/apps?hl=pt_BR>
2<https://play.google.com/store/apps?hl=it_IT>

https://play.google.com/store/apps?hl=pt_BR
https://play.google.com/store/apps?hl=it_IT

80
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

The chapter is structured as follows: Section 5.2 details the MT technique for the
detection of selected vulnerabilities and outlines the testing environment created for automating
it; Section 5.3 addresses the process that defined MRs designed to identify vulnerabilities related
to username and password authentication methods; Section 5.4 describes an experiment that
validated the MT technique in real-world Android apps; finally, Section 5.6 is devoted to a
comprehensive discussion of the chapter, with a particular focus on the experiment’s outcomes.

5.2 Metamorphic-based Vulnerability Testing Technique
This section describes the proposed metamorphic-based security vulnerability testing

technique displayed in Figure 12. The process relies on the execution of three consecutive steps,
namely, “App exploration”, “Follow-up test cases generation”, and “Follow-up test cases
execution”. The figure also shows, for each step, the input required, the output artifacts produced,
and the tool that supports its execution. In what follows is a detailed description of each step.

1. App
exploration

2. Follow-up
test cases
generation

metamorphic relationships
definitions

3. Follow-up
test cases
execution

Test execution reports

Metamorphic Vulnerability
Testing Environment

follow-up executable
test cases

source GUI Based test case

Legend

Tool Usage

Artifact Production

Artifact Read

Manual Step

Automatic Step

Figure 12 – Metamorphic-based vulnerability testing technique proposed.

Source: Adapted from Junior et al. (2023).

1. App Exploration: the GUI of the Application Under Test (AUT) is manually explored
by the tester. The sequences of user events, along with the descriptions of Graphical
User Interface (GUI) resulting from the execution of such events, are stored in a source

GUI-based test case. GUIs are described in terms of their composing widgets, which are
characterized by the values assumed by their attributes (AMALFITANO et al., 2018).
The tester must perform the scenario represented in Figure 13, showing a real exploration
in Booking application so that a source GUI-based test case can be implemented and
used for testing the absence of the vulnerabilities considered. According to the figure, the

5.2. Metamorphic-based Vulnerability Testing Technique 81

requested scenario relies on the execution of the four steps described below along with
their rationale:

• DEVICE SET UP PRECONDITIONS - APPLICATION UNDER TESTING (AUT) LAUNCH:
Android Device (AndDev), where the test technique is deployed, is configured by 1)
installing a Trusted SSL/TLS Digital Certificate (TSSLDC) on it and 2) redirecting
the communication with both Authorization Server (Auth-Server) and Resource
Server (Res-Server) through a controlled proxy. Lastly, AUT is launched for being
manually explored.

• USER AUTHENTICATION: Resource Owner (RO) authenticates using its User and
Password Credentials (UPC) on the Sign-In Screen (SIS) provided by AUT. At the
end of the step, a Welcome GUI is rendered on AndDev.
Rationale: this step supports both MR1 and MR4, and, according to them, RO
is expected to fail to sign in the application if AndDev does not have a TSSLDC
installed, or if UPCs are not transmitted over an HTTPS Connection Channel (HTTPS-
CC).

• ACCESS TO PROTECTED RESOURCES (PRS): RO navigates the user interfaces of
AUT to reach its PR.
Rationale: this step aids MR2 and MR5. According to MR2, Access Token (AT) is
supposed to be periodically updated, whereas, for MR5, the user cannot reach PRs
without being authenticated.

• USER SIGN OUT - USER AUTHENTICATION: RO first signs out from the AUT and
then authenticates again.
Rationale: this step supports MR3, since AT is expected to be destroyed after the
user has signed out and a new one is expected to be generated when the user signs in
again.

2. Follow-up test cases generation: the MRs listed in Section 5.3.2 are automatically applied
to the source GUI-based test cases produced in the previous step and a set of six follow-up

executable test cases are generated. As addressed in the next section, this step produces six
follow-up executable test cases even if five MRs are defined. Two test cases are produced
for MR1 for checking whether the authentication is refused only when either No Trusted
SSL/TLS Digital Certificate (NTSSLDC) , or Self Signed Digital Certificate (SSDC)
are installed on the device. The Follow-up test cases are actually GUI-based tests that
rely on the execution of all or a subset of the steps recorded during the App Exploration
Exploration - if needed, the preconditions of the device are modified. Table 5 describes the
test cases designed for each MR regarding their preconditions, replayed steps, and oracles
to check if the test either passes, or fails.

A detailed description of the Follow-up test cases is summarized in what follows.

82
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

USER AUTHENTICATIONDEVICE SET UP
PRECONDITIONS
- AAUT LAUNCH

A
Tap on "A" Type "email"

A
Tap on "A"

A

Type
"password" Tap on "A"

ACCESS TO PROTECTED RESOURCES

...

User
Event

User
Event

...
A

A
A

A
Tap on "A" Tap on "A" Tap on "A"

Type
"password" Tap on "A"

USER SIGN-OUT - USER AUTHENTICATION

User
Event

User
Event

User
Event

User
Event

Figure 13 – Example of a source GUI-based test case scenario executed on a real Booking application.

Source: Adapted from Junior et al. (2023).

FUTC1: designed to support the execution of MR1. USER AUTHENTICATION step is replayed
on AndDev where, as preconditions, only NTSSLDC is installed. After the execution
of the step, the resulting GUI is described and the description is compared with the
one of the user interface obtained in the App Exploration step. The test case checks
if the two descriptions are different, since the authentication of the user is expected
to be refused in this case.

FUTC2: proposed as an alternative way to apply MR1 w.r.t. TC1, this test case is the same as
FUTC1 except that, as preconditions, only SSDC are installed.

FUTC3: introduced in relation to MR2, this test case relies on the same preconditions of the
App exploration step. It replies to the same user actions for USER AUTHENTICATION

and Access Token (AT1) is collected. A one-hour navigation of GUI, which can also
be random, is then performed and, at the end, Access Token (AT2) is collected. The
two ATs are expected to be different so that the absence of the vulnerability can be
checked assessing whether their IDs are not the same.

5.2. Metamorphic-based Vulnerability Testing Technique 83

Table 5 – Design of the six test cases related to the Metamorphic Relationships defined.

MR Test
Case

Preconditions Test Steps Test Oracle

MR1
TC1 Only NTSSLDCs

are installed on
AndDev

REPLAY[USER AU-
THENTICATION (CORRECT

UPC)]

The resulting GUI is not the
one collected in the App ex-
ploration step, i.e., authenti-
cation must be refused

TC2 Only SSDCs are in-
stalled on AndDev

REPLAY[USER AU-
THENTICATION (CORRECT

UPC)]

The resulting GUI is not the
one collected in the App ex-
ploration step, i.e., authenti-
cation must be refused

MR2 TC3 Same precondi-
tions used in the
App exploration
step

REPLAY[USER AU-
THENTICATION (CORRECT

UPC)] - Collect AT1 -
60 MINUTES OF RANDOM

EXPLORATION - Collect
AT2

AT1.Id ̸= AT2.Id

MR3 TC4 Same precondi-
tions used in the
App exploration
step

REPLAY[USER AU-
THENTICATION (COR-
RECT UPC)] - RE-
PLAY[ACCESS TO PR]
- REPLAY[USER SIGN

OUT] - Collect AT1
- REPLAY[USER AU-
THENTICATION (CORRECT

UPC)] - Collect AT2

AT1.Id ̸= AT2.Id

MR4 TC5 mitmproxy is
configured to
redirecting the
network traffic
over an HTTP-CC

REPLAY[USER AU-
THENTICATION (CORRECT

UPC)]

The resulting GUI is not the
one collected in the App ex-
ploration step, i.e., authenti-
cation must be refused

MR5 TC6 Same precondi-
tions used in the
App exploration
step

REPLAY[USER AU-
THENTICATION (IN-
CORRECT UPC)] - RE-
PLAY[ACCESS TO PRS]

The resulting GUIs are not
the ones collected in the App
exploration step, i.e., PR
are not reachable through the
graphical user interface.

Source: Adapted from Junior et al. (2023).

FUTC4: implemented to perform MR3, this test case exploits the same preconditions adopted
in the App exploration step and replies to all events collected in it. Two ATs,
AT1 and AT2, must be collected after USER SIGN OUT and the subsequent USER

AUTHENTICATION steps, respectively. As in the previous test case, the two ATs are
expected to be different for the assessment of the absence of vulnerability.

FUTC5: introduced for executing MR4, it behaves similarly to FUTC1 and FUTC2, differing
only from the point of view of preconditions, since the network traffic is redirected
over an HTTP-CC.

FUTC6: proposed for applying MR5, it first replays USER AUTHENTICATION with incorrect
credentials. ACCESS TO PR step is then executed for checking whether access to
PRs has been denied, as expected.

3. Follow-up test cases execution: the follow-up test cases produced in the previous step are

84
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

automatically executed on AndDev.

5.2.1 Metamorphic Vulnerability Testing Environment

This section details the implementation of Metamorphic Vulnerability Testing Environ-

ment, designed for supporting the execution of GUI-Based MT technique.

5.2.1.1 Architectural overview

Figure 14 shows an architectural diagram of the testing environment regarding its basic
components. One of the components is AndDev, which can be either Real, or a Virtual Device,
and where AUT is preliminary installed and the preconditions are set.

Android Device

Real Device Virtual Device

getevent uiautomator
Burp Suite

mitmproxy

Metamorphic Vulnerability Testing Environment

Capture

<<install certificate>>

Replay

sendevent

Tester

<<perform test
scenario>>

Authorization
Server

Resource
Server

<<Authentication &
Resources Access>>

<<Authentication &
Resources Access>>

Network
Controller

follow-up
generator

<<use>>

Figure 14 – Metamorphic Vulnerability Testing Environment architecture.

Source: Adapted from Junior et al. (2023).

The tester manually interacts with GUI’s device to execute the test scenario shown in
Figure 13 and, concomitantly, the Capture component captures all actions executed by the
tester. More precisely, it exploits the combination of getevent (ANDROID, 2023a) and the
uiautomator (ANDROID, 2023b) tools provided by Android. getevent captures the user
events triggered by the tester and saves, at kernel level, those performed during the AUT explo-
ration., while uiautomator is exploited to obtain a dump XML file describing the composing

5.2. Metamorphic-based Vulnerability Testing Technique 85

widgets of GUI. Getevent provides a live dump stream of kernel-level input events, which
contains information on the input events, such as timestamps, device names, event types, and
screen coordinates.

The Capture component produces a single source GUI-based test case implemented in
JUnit (GAMMA; BECK, 2017). The follow-up generator generates, from the aforementioned
test case, a JUnit test-suite comprised of six follow-up test cases implementing the testing logic
previously described. More precisely, the component performs the following changes to the
source GUI-based test case:

1. modification to the initial preconditions by removing all certificates and installing only
NTSSLDC on the device;

2. modification to the initial preconditions by removing all certificates and installing only
SSDC on the device;

3. translation of the sequences of user events captured during the App Exploration step
towards a format that can be executed on the device through sendevent, whose command
does not enable setting the timing between consecutive sent events. Therefore, an ad-hoc
solution was developed for replaying the kernel-level events with proper timing. The
solution aims to avoid a too quick replay of high-level events and their faithful replay
(AMALFITANO et al., 2019);

4. addition of user interface oracles to the test cases by translating the descriptions of the user
interfaces during the app exploration into assertions that can be automatically evaluated;

5. insertion of time delays necessary for i) the execution of FUTC3 and FUTC4 and ii) the
guarantee of a correct replay of user events; and

6. addition of specific commands for collecting Access Tokens’ descriptions.

The Android Device also performs follow-up test cases using the Replay component
and exploiting sendevent for executing the events on the GUI of AUT. Replay also employs
uiautomator to obtain the description of the current GUI, in XML format, and evaluate the
oracles to check whether the GUI encountered is the expected one. Figure 15 shows an example
for the booking app, with the snapshot of GUI indicating the user authentication has been refused
(left image). This is an example of expected GUI for MR1 and MR4, in which the obtained
GUI is expected to be different from the one obtained during the app exploration, when the
user successfully authenticates (rightmost image). The middle of the figure shows an excerpt
of the XML description related to GUI on the left and that also highlights the portion of code
rendering the widgets of the user interface communicating “Something went wrong” during user
authentication. If the application is vulnerable, according to MR1 and MR4, the user successfully

86
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

authenticates and GUI is equal to the one obtained during the app exploration. Since the two
GUIs would have the same XML description, the oracle would be able to identify the weakness.

Figure 15 – Snapshot of the expected GUI (left), excerpt of the XML description of the expected GUI
(middle), and snapshot of a GUI different from the expected one (right).

The combination of getevent, sendevent, and uiatomator tools was used by the
authors for implementing a Capture and Replay testing approach for Android apps (AMALFI-
TANO et al., 2019). The ability to capture and execute events at the kernel level enables the
adoption of the proposed metamorphic technique even for Android applications for which the
source code is not available.

The Network Controller component has been introduced towards a full control of the
network used by AndDev for communicating with both authentication and resource servers of
AUT. It exploits the features provided by two free tools, namely, Burp Suite (PORTSWIGGER,
2016) and mitmproxy (CORTESI et al., 2010), and provides the following features:

• generation of digital certificates: it generates and installs either NTSSLDC, or TSSLDC
on the device;

• redirection of the network traffic over a controlled network: it acts as a proxy between
AUT and both Auth-Server and Res-Server and enables selecting the connection channel
for the data exchange, i.e., HTTP-CC rather than HTTPS-CC and vice-versa;

• network traffic monitoring: it monitors and analyzes the network traffic; more precisely, it
intercepts and analyzes AT.

5.3 Metamorphic Relationships for Detecting Authentica-
tion Vulnerabilities

This section outlines the process that defined the MRs for detecting vulnerabilities
associated with username and password authentication methods. It relied on the execution of two

5.3. Metamorphic Relationships for Detecting Authentication Vulnerabilities 87

steps, namely, Vulnerabilities selection and weaknesses description and MRs definition described
in what follows.

5.3.1 Vulnerabilities selection and weaknesses description

This step focused on two categories of real-world vulnerabilities reported in OWASP,
namely, M3: Insecure Communication (OWASP, 2016b) and M4: Insecure Authentication

(OWASP, 2016c). Since OWASP also traces each vulnerability to a list of weaknesses de-
scribed in CWE, the weaknesses associated with the two vulnerability categories considered
were manually analyzed. Among them, those that may be introduced if the guidelines defined
by OAuth 2.0 (OAUTH, 2012) and reported in Section 3.3 for the implementation of a secure
Abstract Protocol Flow are not properly followed by the developers were chosen.

Table 6 summarizes the weaknesses selected. CWE ID, CWE Name, a textual description,
and the OWASP vulnerability category are listed for each weakness.

Table 6 – Weaknesses related to vulnerabilities due to improper design and implementation of username
and password authentication methods.

CWE ID CWE Name Description OWASP Category
CWE-
295
(CWE,
2023c)

Improper Certifi-
cate Validation

A mobile app is potentially vulnerable
if the Authentication Server accepts
the user authentication request even if
communication with the client is not
established over an SSL/TSL secure
channel.

M3: Insecure
Communication
(OWASP, 2016b)

CWE-
613
(CWE,
2023f)

Insufficient Ses-
sion Expiration

A mobile app is potentially vulnerable
if the AT is not refreshed or destroyed
after a long user´s inactivity time.

M3: Insecure
Communication
(OWASP, 2016b)

CWE-
384
(CWE,
2023e)

Session Fixation A mobile app is potentially vulnerable
if the AT is not destroyed after the user
has signed out.

M3: Insecure
Communication
(OWASP, 2016b)

CWE-
311
(CWE,
2023d)

Missing Encryp-
tion of Sensitive
Data

A mobile app is potentially vulnerable
if the Authentication Server accepts
the user authentication request even
if communication with the client is
not established through an HTTPS-CC
protocol.

M3: Insecure
Communication
(OWASP, 2016b)

CWE-
288
(CWE,
2023b)

Authentication
Bypass Using an
Alternate Path or
Channel

A mobile app is potentially vulnerable
if it does not limit access to function-
alities and screens, collecting sensible
data for only authenticated and autho-
rized users.

M4: Insecure
Authentication
(OWASP, 2016c)

Source: Adapted from Junior et al. (2023).

88
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

5.3.2 Definition of Metamorphic Relationships

One or more MRs were manually defined for each weakness shown in Table 6. They
were specified according to the template proposed by Segura et al. (2017) and described in the
following subsections. The template is based on the structure of MRs from the literature and
inspired by related and widely adopted templates in various fields of software engineering. It is
intentionally simple and flexible to fostering adoption by the MT community and specifies the
data to be included in the description of an MR using a natural language, a formal language, or a
combination of both. The template is a combination of placeholders and linguistic formulas used
to describe an MR. Table 7 shows the ID (MR ID) and the formalization (MR Formalization) of
the MR defined for each weakness reported in Table 6.

5.3.2.1 Improper Certificate Validation

MR1, listed in Table 7, was defined for CWE-295 Improper Certificate Validation

weakness. More precisely, Auth(AndDev,UPC,AUT,certi f icate) is the authentication function
triggered when RO authenticates through the SIS provided by the AUT installed on an AndDev
equipped with a digital certificate. The function returns the expected screen (GUI) after the
correct authentication of RO. MR checks whether AR has been refused by the Authentication
Server when AndDev exploits either a No Trusted SSL/TLS Digital Certificate (NTSSLDC), or a
Self Signed Digital Certificate (SSDC) for encrypting communication between client and server.
Indeed, Auth function is expected to return a different GUI different from the one obtained from
a successful authentication in the two scenarios

5.3.2.2 Insufficient Session Expiration

MR2, listed in Table 7, was defined for CWE-613 Insuflcient Session Expiration weakness.
Such a Metamorphic Relationship relies on the AT property that must be refreshed by Auth-
Server after a long time, e.g., one hour. More specifically, the property imposes the identifier of
the AT evaluated at time t1 must be different from the one collected at time t1+∆ with ∆ ≥ 60
minutes.

5.3.2.3 Session Fixation

MR3, related to Session Fixation weakness, is reported in Table 7. It exploits the property
that a new AT must be generated by the Authorization Server when the user signs out from AUT
and then signs in again through Sign-In Screen. It also requires the identifier of the AT collected
before the user signs out be different than the one evaluated after the subsequent sign-in of the
user.

5.3. Metamorphic Relationships for Detecting Authentication Vulnerabilities 89

Table 7 – Definition of the six MRs introduced for each weakness listed in Table 6.

CWE ID MR ID MR Formalization
CWE-295
(CWE,
2023c)

MR1 IN THE DOMAIN OF Android applications

THE FOLLOWING METAMORPHIC RELATION SHOULD HOLD
MR1
IF
Snv = Auth(AndDev,UPC,AUT,T SSLDC)
AND
Sv = Auth(AndDev,UPC,AUT,NT SSLDC) OR Sv =
Auth(AndDev,UPC,AUT,SSDC)
THEN Snv ̸= Sv

CWE-613
(CWE,
2023f)

MR2 IN THE DOMAIN OF Android Applications
ASSUMING THAT the ro has authenticated at time t0
THE FOLLOWING METAMORPHIC RELATION SHOULD HOLD
MR2
IF
the RO interacts with the AUT GUI up to time t1 > t0 AND the RO
does not interact with the AUT GUI for a long time interval ∆ after t1
(such as ∆ > 60 minutes).
THEN IdAT (t1+∆) ̸= IdAT (t1).

CWE-384
(CWE,
2023e)

MR3 IN THE DOMAIN OF Android applications
ASSUMING THAT the RO has authenticated at time t0
THE FOLLOWING METAMORPHIC RELATION SHOULD HOLD
MR3
IF
the RP at time t2 = t1+δ (with δ ≈ 1 sec) performs the sign-out and
sign-in through the SIS of the AUT
THEN IdAT (t2) ̸= IdAT (t1).

CWE-311
(CWE,
2023d)

MR4 IN THE DOMAIN OF Android applications
THE FOLLOWING METAMORPHIC RELATION(S) SHOULD HOLD
MR4
IF
Snv = Auth(AndDev,UPC,AUT,HT T PS)
AND
Sv = Auth(AndDev,UPC,AUT,HT T P)
THEN Snv ̸= Sv

CWE-288
(CWE,
2023b)

MR5 IN THE DOMAIN OF Android applications
ASSUMING THAT S1, . . . , Sn is the set of AUT screens for accessing
to the PR
THE FOLLOWING METAMORPHIC RELATION SHOULD HOLD
MR5
IF
the RO is not authenticated,
THEN a not authenticated user can not access to the PR though S1,
. . . , Sn.

Source: Adapted from Junior et al. (2023).

90
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

5.3.2.4 Missing Encryption of Sensitive Data

Regarding CWE-311 Missing Encryption of Sensitive Data weakness, MR4, shown in
Table 7, was defined. The property behind it requires Auth-Server refuse AR if AndDev does
not exploit an HTTPS-CC for transferring UPC from AUT to Auth-Server. Similarly to MR1,
Auth(AndDev,UPC,AUT,channel) function was defined returning the expected screen (GUI)
after the authentication of the RO through the Sign-In Screen of AUT when a channel is used to
encrypt the UPC.

5.3.2.5 Authentication Bypass

Regarding CWE-288 Authentication Bypass weakness, MR5, listed in Table 7, has been
proposed. The property on which MR was built requires AUT must not permit unauthenticated
users to reach screens showing PR or providing features for modifying them.

5.4 Experimental Evaluation

This section describes the experiment conducted towards (1) understanding whether the
proposed MT technique can reveal vulnerabilities in real Android mobile apps, (2) characterizing
the diffusion of such vulnerabilities, and (3) understanding whether Android applications with
higher user perceived quality are less vulnerable.

According to the GQM approach (CRUZES et al., 2007), the following 3 research
questions and their rationale were defined towards reaching those goals:

RQ1 Is the testing technique able to detect vulnerabilities related to the username and password
authentication methods in real Android apps?
Rationale: this RQ aims to evaluate whether the proposed MT technique is suitable for
detecting new vulnerabilities known, a priori, by the developers, in real mobile apps
available in the official Google market store.

RQ2 How do different MRs compare regarding their ability to detect vulnerabilities?
Rationale: supposing the answer is yes, the question has two fold aims. On the one hand, it
aims to understand the ability of each MR to detect real vulnerabilities. On the other hand,
it might provide an overview of the most common user authentication vulnerabilities.

RQ3 How do vulnerabilities in Android apps vary with the user-perceived quality of the apps?
Rationale: This question aims to understand whether, as expected, Android applications
with better user-perceived quality have fewer vulnerabilities.

The metrics reported in Table 8 were adopted so that the proposed questions could be
answered.

5.4. Experimental Evaluation 91

Table 8 – Weaknesses related to vulnerabilities due to improper design and implementation of username
and password authentication methods.

Metric ID Description
Metric1 Number of detected vulnerabilities per app; the metric is used to answer RQ1

and RQ3.
Metric2 Number of detected vulnerabilities by each MR per app; the metric is used to

answer RQ2.
Metric3 Number of user downloads per app; the metric is used in combination with

Metric4 to evaluate the user perceived quality for answering RQ3.
Metric4 Number of stars rated by users per app; the metric is used in combination

with Metric3 to evaluate the user perceived quality for answering RQ3.
Source: Adapted from Junior et al. (2023).

5.4.1 Object selection

The inclusion (IC) and exclusion (EC) criteria summarized in what follows were defined
for the construction of the sample of objects of the experiment, i.e., AUT, from the most down-
loaded real Android apps exploiting user and password authentication methods. Open-source
applications downloaded from F-Droid were not used, since the interest was in understanding
errors in the code that caused vulnerabilities. The sample can be considered significant, since the
approach was experimented with the most downloaded real apps.

IC1 AUT can be freely downloaded from the official Brazilian or Italian Google Play Stores.

IC2 AUT belongs to one of the following three apps categories: Food & Drink, Shopping, and
Travel & Local. The categories were chosen because their apps usually adopt a user and
password authentication method for allowing access to the user’s PR.

IC3 AUT is one of the top 100 downloaded apps in its category, which enabled the construction
of a sample with the most popular Android apps.

EC1 AUT fails during either registration, or sign-in process, i.e., authentication could not be
completed due to a failure in the selected Android app.

EC2 AUT does not adopt a user and password authentication method.

EC3 AUT digital certificate could not be changed and, therefore, MR1 was applied.

EC4 AT could not be identified and analyzed after authentication; therefore, MR2 and MR3

were applied.

EC5 The network traffic could not be redirected over an HTTP-CC, as required for the evaluation
of MR4.

92
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

The manual application of IC and EC returned 163 apps, of which 57 belong to Food

& Drink, 65 are in the Shopping category, and 41 are Travel & Local apps. Figures 16 and 17
graphically show the characteristics of the sample in two box plots that display the distributions
of the rated stars (Figure 16) and the number of downloads (Figure 17), respectively. According
to the graphs, more than half of the sample’s apps were rated with more than 4.3 stars (users can
rate the quality of an app from zero to five stars) and have more than 1.000.000 of downloads.
Three levels of user perceived quality, namely, High, Medium, and Low were defined for an
Android app. An application has a High user perceived quality if its rating is greater than or
equal to 4.3 stars and its number of downloads is greater than or equal to 1.000.000. Conversely,
an Android app is classified as Low user perceived quality if its rating is lower than 4.3 stars
and it has been downloaded less than 1.000.000 times. In the other cases, an app is clustered as
Medium user perceived quality. According to this definition, 46 apps were classified as Low, 46
were categorized as Medium, and 71 were classified as High perceived quality.

Figure 16 – Distribution of rated stars for the
apps of the sample.

Figure 17 – Distribution of downloads of the
apps of the sample.

Source: Adapted from Junior et al. (2022).

5.4.2 Experimental procedure

The experimental procedure followed the steps executed for each app of the sample
described below.

• Registration of new user: a new user account is generated for testing the AUT.

• Manual AAUT exploration: AUT was manually explored following the scenario reported
in Figure 13 for producing a Source GUI-based test case. The step was performed on an
Android Virtual Device (AVD), equipped with Android Q (vers. 10), which was one of the
newest and most diffused versions of Android at the time of the experiment.

5.4. Experimental Evaluation 93

• Follow-up test cases generation and execution: the Source GUI-based test case was
automatically translated in a test suite of Follow-up executable test cases launched on the
same AVD used in the previous step for avoiding failure due to different characteristics
of the user interface. This choice did not influence the results, since the vulnerabilities
considered do not rely on the hardware characteristics of the mobile device, and, in
particular, of the device screen characteristics. Details of the found vulnerabilities were
stored in the Test execution report.

• Vulnerabilities validation: the vulnerabilities detected were manually validated by experts
in security. Additionally, 50 companies were randomly selected owning to a vulnerable
application. 13 of them were discarded, since they either provided no contact informa-
tion, or provided invalid data (e.g., email, online form, Twitter account). The remaining
37 companies were contacted and 9 responded to the message confirming the reported
vulnerabilities. Three of them asked our group for a consult for more information on
the vulnerabilities reported and the way to fix them. Although most of the 37 companies
did not reply to our message, 26 updated their app and fixed the vulnerabilities reported.
Towards mitigating additional threats to validity, the same tests were applied on previous
Android versions like Android 6.0 (Marshmallow), Android 7.0 (Nougat), which were
among the most used in Brazil in 2020, and Android 9.0 (Pie). All vulnerabilities found
in Android 10 were also detected in those versions. Since this is the first study for the
detection of authentication vulnerabilities in Android mobile apps, there is no baseline
for comparisons of the effectiveness of the approach. However, evidence on its ability to
detect vulnerabilities not known by developers is a valid demonstration of its effectiveness.

5.4.3 Experimental results and answers to RQs

Table 9 shows the number of vulnerabilities detected and validated by each MR for each
app category and Figure 18 displays a clustering of our app sample in six groups based on the app
vulnerability and the three levels of user-perceived quality. Each cluster indicates number of apps
contained and corresponding percentage. An application is clustered as vulnerable if it exposes
at least one vulnerability. The bubble charts in Figures 19 and 20 show two detailed views of the
clusters in Figure 18. More precisely, each bubble in Figure 19 reports the number of applications
that have a given number of rated stars (x- axis) for which the number of vulnerabilities on
the y-axis was found; analogously, Figure 20 shows the distribution of the applications on the
basis of their downloads (x-axis) and number of vulnerabilities (y-axis). Towards mitigating
security risks to the implicated applications, the comprehensive roster of vulnerable apps has
been omitted; nevertheless, the full list is available upon request, securely stored in a private
folder3.

3<https://docs.google.com/spreadsheets/d/1ITgACBUII1HX1vapGj32TJksjNr2iX1xYyNiA9z1Ulw/edit?
usp=sharing>

https://docs.google.com/spreadsheets/d/1ITgACBUII1HX1vapGj32TJksjNr2iX1xYyNiA9z1Ulw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ITgACBUII1HX1vapGj32TJksjNr2iX1xYyNiA9z1Ulw/edit?usp=sharing

94
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

Table 9 – Number of vulnerabilities detected by each MR for each app category.

Apps Category MR1 MR2 MR3 MR4 MR5 Total
Food & Drink 8 42 9 8 1 68
Shopping 4 43 13 4 0 64
Travel & Local 3 19 3 2 0 27

Total 15 104 25 14 1 159
Source: Adapted from Junior et al. (2023).

Figure 18 – Clustering of the sample by vulnerability and user perceived quality of AUT.

Source: Adapted from Junior et al. (2023).

5.4.3.1 Answer to RQ1

According to Table 9, the testing approach was able to detect 159 vulnerabilities in the
apps and at least one was related to each MR. Figure 18 shows 66.3% (108/163) of apps exposed
at least one vulnerability and Figure 20 displays 71 out of the 108 apps exposed one vulnerability,
31 presented two, 4 revealed 4, and the last 2 apps exposed 4 and 5 vulnerabilities, respectively.
Therefore, the following answer can be derived for RQ1:

RQ1 Answer: the proposed metamorphic-based testing technique is able to detect
previously unknown vulnerabilities related to username and password authentication
methods in real Android apps.

5.4. Experimental Evaluation 95

Figure 19 – Distribution of applications per vulnerabilities and rated stars.

Source: Adapted from Junior et al. (2023).

Figure 20 – Distribution of vulnerabilities per user perceived quality characteristics.

Source: Adapted from Junior et al. (2023).

96
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

5.4.3.2 Answer to RQ2

According to Table 9, most of vulnerabilities were detected by MR2 (104/159), followed
by MR3 (25/159), indicating the weaknesses related to an improper handling of AT are the
most widespread among those considered in this study. Fourteen vulnerabilities were detected
by MR3, showing some apps still share sensible data over an insecure HTTP channel. MR1

detected 15/159 vulnerabilities regarding weaknesses on an incorrect use of digital certificates.
Indeed, the results showed apps in the sample enable authentication and access to protected data
also by devices with no trusted certificates. One vulnerability alone being found by MR5 was
already very dangerous, since one application enabled unauthenticated users to read private chats.
Therefore, the answer to RQ2 is:

RQ2 Answer: some MRs are able to find more vulnerabilities than others, which
suggests some security weaknesses are much more widespread in mobile apps than
others.

5.4.3.3 Answer to RQ3

Figures 18, 19, and 20 provide, respectively, graphical representations of possible corre-
lations between the vulnerabilities of the apps in the sample against user-perceived quality, rated
stars, and number of downloads. Since the plots show no evidence of correlations, a statistical
analysis was conducted for confirming that observation. Three correlation parameters, namely,
Pearson, Spearman, and Kendall coefficients, were evaluated between different couples of vari-
ables towards the detection of presence or absence of correlations. Table 10 shows the correlation
coefficients were evaluated between number of downloads, rated stars, and user perceived quality
w.r.t. number of vulnerabilities and exposure, i.e., if the application is vulnerable or not. All
coefficients are very low, thus evidencing no correlations among the variables. Such observations
led to the following answer to RQ3:

Table 10 – Correlation coefficients

Pearson Coefficient
Downloads Stars User perceived quality

Vulnerabilities -0.201 -0.113 -0.247
Is vulnerable -0.225 -0.151 -0.183

Spearman Coefficient
Downloads Stars User perceived quality

Vulnerabilities -0.27 -0.13 -0.243
Is vulnerable -0.225 -0.13 -0.193

Kendall Coefficient
Downloads Stars User perceived quality

Vulnerabilities -0.221 -0.107 0.215
Is vulnerable -0.191 -0.114 -0.183

Source: Adapted from Junior et al. (2023).

5.5. Threats to Validity 97

RQ3 Answer: applications with higher perceived quality, more downloads, or better
ratings are not expected to show fewer vulnerabilities or no vulnerability.

5.5 Threats to Validity

The technique was evaluated with more than 150 objects; however, some threats to
validity must be highlighted. This subsection discusses those to external, internal, conclusion,
and construct validity.

5.5.1 External validity

A threat that may affect the external validity of this study is the way the objects of the
experiment were sampled. Applications were downloaded only from the Brazilian and Italian
official markets of Google Play and belong to only three categories. In an attempt to mitigate
the threat, a sample of more than 150 apps diversified from the point of view of category and
user-perceived quality was downloaded. However, the result may not be valid for other types
of applications. The experiment aimed to show some vulnerability might be exposed with
the use of our approach and not that it will always occur. Towards further mitigating it, the
experimentation might be improved by extending the sample of tested apps and considering
applications downloaded by other international markets and belonging to additional categories.

Another threat that may influence the generality of the results is, at first, a single version
of Android was used in the experiment. Android 10.0, which is the newest and most worldwide
diffused version, was exploited. Towards mitigating this threat, the same tests were applied on
the previous version of Android as an additional confirmation of the results. The same testing
technique can be used on different devices equipped with a different version of Android for
further mitigating the threat.

Another threat considered may have stemmed from the selection of free applications
rather than open-source or paid ones. Since the chosen applications are representative of real-
world apps due to their millions of users, the threat can be further mitigated by the inclusion of
open-source and paid applications in the experiment.

5.5.2 Internal validity

The technique can find vulnerabilities where the authentication method is self-implemented
by the application, i.e., does not consider other authentication methods like i) those provided
by third-party services such as Google or Facebook, ii) the so-called self pinned certificate,
according to which the app is distributed along with its trusted digital certificate, and iii) two or
three-step authentication methods. As a consequence, other types of vulnerabilities, apart from
the ones found in this study, may be present in the analyzed sample of apps. Towards mitigating
this threat, a modification in the testing technique would be required by 1) introducing further

98
Chapter 5. A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in

Android Mobile Apps

MRs that take into account those authentication methods and 2) extending the Metamorphic
Vulnerability Testing Environment for enabling their execution.

5.5.3 Conclusion validity

A threat that may affect the conclusion validity of this study is related to metric introduced
for the evaluation of the user-perceived quality. It is based on the assumption such quality
increases with the number of downloads and rated stars. Although meaningful due to its objective
and measurable value of quality, the metric does not explicitly consider users’ opinions about the
app quality. The threat can be mitigated by introducing real subjects in the experiment, i.e., by
involving real users to evaluate, or confirm, the user-perceived quality of the sampled apps.

5.5.4 Construct validity

The quality metrics of apps, such as the number of downloads and star ratings, have a very
limited relationship with authentication and an even smaller one with authentication security. As
a consequence, as shown in Table 10, no statistical significance was identified in the relationship
between these app quality metrics. To mitigate this threat, various statistical tests were conducted
to explore potential correlations from different angles. This comprehensive approach aimed to
ensure that any subtle relationships between the quality metrics and authentication security were
not overlooked.

5.6 Final Remarks

This chapter has presented a metamorphic-based testing technique for the identification
of vulnerabilities in Android applications arising from flawed implementations of username and
password authentication methods, particularly those that diverge from the OAuth 2.0 guidelines
(OAUTH, 2012). Drawing inspiration from a prior study that introduced MT for uncovering
vulnerabilities in web systems (MAI et al., 2019), a tool-supported testing technique has been
introduced. It focused on uncovering five of the most prevalent and emblematic real-world
vulnerabilities associated with username and password authentication methods, as per the
OWASP’s classification.

A set of six MRs was devised and a dedicated Metamorphic Vulnerability Testing
Environment was developed for facilitating their evaluation. Subsequently, a comprehensive
experiment was conducted involving 163 real-world Android apps with a widespread usage in
both Brazilian and Italian markets. The results were compelling, revealing 159 hitherto unknown
vulnerabilities that had eluded the attention of developers. Surprisingly, 108 of the tested apps
exhibited at least one vulnerability, underscoring the effectiveness of the metamorphic-based
vulnerability testing technique.

5.6. Final Remarks 99

The experiment yielded noteworthy insights. While it reaffirmed the expected correlation
between higher user-perceived quality and lower vulnerability, it also presented an unexpected
finding: even applications perceived as high-quality by users were not immune to vulnerabilities.
This finding underscores the continuing need for robust security testing in the mobile app
landscape.

101

CHAPTER

6
CONCLUSIONS

Mobile apps have been widely adopted in recent years, thus requiring new approaches
in software engineering to ensure their quality. Common issues such as excessive power con-
sumption, unexpected user interface behavior, and susceptibility to attacks during insecure server
connections are intricately tied to NFRs and foundational aspects of mobile apps (ALOTAIBI;
CLAUSE; HALFOND, 2020; YU et al., 2021). In response, numerous studies have aimed at
characterizing testing techniques specifically tailored for mobile apps.

MT, initially proposed as a testing technique to address the oracle problem, has been
extensively employed for detecting flaws related to NFRs. Following the guidelines presented
by Segura et al. (2018), which introduced a set of principles for applying MT to uncover
faults related to NFRs (e.g., performance issues), subsequent studies have leveraged MT for
detecting NFR-related flaws (AZIMIAN et al., 2019; JOHNSTON et al., 2019; MAI et al., 2019;
AYERDI et al., 2022; RAHMAN; IZURIETA, 2023; CORRADINI; PASQUA; CECCATO,
2023). However, none of those studies have specifically offered a security testing technique that
uses MT concepts to identify vulnerabilities in mobile apps.

Motivated by this gap, this PhD research involved two primary steps. Initially, compre-
hensive discussions ensued various aspects related to dynamic testing of NFRs in mobile apps,
providing an overview of existing test techniques towards meeting different NFRs, as established
by the quality standard from ISO (2011). The test techniques identified were characterized,
focusing on collaboration between academia and industry, testing approaches and strategies,
predominant mobile app types and platforms addressed, and tool support. Additionally, a broad
discussion was held within the testing community on the main trends and research opportunities
in this domain. The results were published in CSUR (JUNIOR et al., 2022).

Inspired by a previous study that applied MT to discover vulnerabilities in web appli-
cations (MAI et al., 2019; CHALESHTARI et al., 2023b), a tool-supported testing technique
was developed specifically for finding five of the most diffused and representative real world

102 Chapter 6. Conclusions

vulnerabilities related to username and password authentication methods, according to OWASP.
More precisely, MRs were designed and a Metamorphic Vulnerability Testing Environment
was implemented for checking them. The technique was applied in an experiment for testing
163 real-world Android applications massively used from both Brazilian and Italian markets.
159 vulnerabilities unknown to developers were detected and 108 of the AUTs showed at least
one vulnerability, demonstrating the effectiveness of the technique. Additionally, the correlation
analysis provided evidence that, contrarily to expectations, it cannot be asserted applications
with higher perceived quality, or more downloads, or even better rated have fewer vulnerabilities
or are free from being vulnerable. A paper reporting such findings has been submitted to JSS
(JUNIOR et al., 2023).

6.1 Revisiting the Thesis Contribution

The general contribution of this PhD research is the definition of a security testing
technique based on MT concepts for the detection of vulnerabilities in username and password
authentication methods in Android applications. The specific contributions are summarized in
what follows.

• Dynamic testing techniques of NFRs in mobile applications: an SMS conducted inves-
tigated dynamic testing techniques for NFRs for detecting faults in mobile applications.
The present study followed the guidelines proposed by Petersen, Vakkalanka and Kuzniarz
(2015). The SMS results provide an insightful overview of such techniques according to
the quality standards set established by ISO (2011). Their characterization included dis-
cussions on several key aspects, namely, (1) collaboration between academia and industry,
(2) testing approaches and strategies, (3) types of mobile applications and platforms most
commonly addressed, and (4) tool support. Furthermore, a comprehensive discussion was
held within the testing community on the primary trends and research opportunities in
the domain. All artifacts generated during the SMS are publicly available and intended to
serve as a valuable resource for the testing community, assisting researchers in exploring
opportunities, identifying gaps, and envisioning future research directions (JUNIOR et al.,
2022). The SMS findings are provided in Section 4;

• Characterization of representative real-world vulnerabilities in Android mobile appli-
cations: towards the detection of genuine and illustrative vulnerabilities in Android mobile
applications, an exhaustive manual analysis of vulnerabilities listed in three categories of
OWASP (MUELLER; SCHLEIER; WILLEMSEN, 2019), including the Top Ten 2016

Insecure Communication, Insecure Communication (M3), Insecure Authentication (M4),
and Insecure Authorization (M6) (OWASP, 2023b) was conducted. The five vulnerabilities
identified can potentially appear if the guidelines outlined in Section 3.3 are not followed
by developers. Weaknesses extensively documented in the community-driven CWE list

6.1. Revisiting the Thesis Contribution 103

(CWE, 2023a) and associated with those five vulnerabilities were also deeply examined. A
focus was placed on vulnerabilities related to an improper and insecure implementation of
the Abstract Protocol Flow defined by OAuth 2.0. Their detailed descriptions are provided
in Section 5.3;

• Tool-supported MT-based vulnerability testing technique for Android mobile appli-
cations: inspired by a previous study that introduced MT to find vulnerabilities in web
applications (MAI et al., 2019; CHALESHTARI et al., 2023b), a tool-supported testing
technique was formulated towards identifying five of the most prevalent and representative
real-world vulnerabilities associated with username and password authentication methods,
accoring to OWASP guidelines (OWASP, 2023b). Five MRs were designed and a dedicated
Metamorphic Vulnerability Testing Environment was implemented for their evaluation.
Section 5.2 provides a comprehensive exploration of the technique;

• A wide experimentation on the most used Android mobile applications freely available
on Brazilian and Italian Google Play: a comprehensive experiment involving 163 popular
Android applications of which 112 were sourced from Brazilian Google Play1 and the
remaining 51 were obtained from Italian Google Play2 was conducted. The applications
spanned three categories, namely, Food & Drink (57 out of 163), Shopping (65 out of
163), and Travel & Local (41 out of 163). According to the findings, 66.3% (108 out of
163) were affected by at least one vulnerability. Interestingly, the experiment revealed
applications perceived as higher-quality ones by users tend to be less vulnerable and those
with a high perceived quality are not immune to vulnerabilities. For a more in-depth
exploration of the experiment and its results, please refer to Section 5.4;

• Dissemination of scientific results related to the research field of this PhD research:

– Submitted Article: JUNIOR, M. C., AMALFITANO, D., VISONE, B., FASOLINO,
A. R., DELAMARO, M.. A Metamorphic Testing Technique for Detecting Au-
thentication Vulnerabilities in Android Mobile Apps. Submitted to the Journal of
Systems & Software (JSS), 2023. p. 1-28;

– Published Article: JUNIOR, M. C., AMALFITANO, D., GARCES, L., FASOLINO,
A. R., ANDRADE, S. A., DELAMARO, M.. Dynamic testing techniques of non-
functional requirements in mobile apps: A systematic mapping study. ACM Comput-
ing Surveys (CSUR), 54(10s), 2022. p. 1-38. Available: <https://doi.org/10.1145/350
7903>;

– Published Article: JUNIOR, M. C.. Automated verification of compliance of non-
functional requirements on mobile applications through metamorphic testing. In:
Proceedings of the 13th International Conference on Software Testing, Validation
and Verification (ICST) - Doctoral Symposium. IEEE, 2020. p. 421-423. Available:
<https://doi.org/10.1109/ICST46399.2020.00053>.

• Dissemination of scientific results related to other research fields:

https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053
https://doi.org/10.1109/ICST46399.2020.00053

104 Chapter 6. Conclusions

– Published Article: ANDRADE, S. A., SANTOS, I., JUNIOR, C. B., JUNIOR, M.
C., DE SOUZA, S. R., DELAMARO, M. E.. On applying metamorphic testing:
an empirical study on academic search engines. Proceedings of the 4th Interna-
tional Workshop on Metamorphic Testing (MET). IEEE, 2019. p. 9-16. Available:
<https://doi.org/10.1109/MET.2019.00010>;

– Published Article: ANDRADE, S. A., SANTOS, I., JUNIOR, C. B., JUNIOR, M. C.,
MARCIEL, A. C., ABDALLA, G, DELAMARO, M. E.. Analyzing the effectiveness
of One-Op Mutation against the minimal set of mutants. Proceedings of the 5th

Brazilian Symposium on Systematic and Automated Software Testing (SAST).
ACM Press, 2019. p. 22-31. Available: <https://doi.org/10.1145/3356317.3356321>.

6.2 Limitations and Future Work

The limitations of this PhD research are related to primary aspects, namely, (i) targeted
vulnerability class and (ii) number of elaborated MRs. Concerning the former, the study delib-
erately concentrated on vulnerabilities associated with username and password authentication
methods in Android applications due to their classification as one of the most critical and preva-
lent issues in mobile applications since 2016, according to OWASP (2023b). Moreover, CWE
(2023a) reported at least six types of vulnerabilities affecting username and password authen-
tication methods, ranking among the Top 25 Most Dangerous Software Weaknesses in 20211.
Consequently, the selection of this vulnerability class was driven by its criticality, prevalence,
and real-world manifestation in mobile applications.

Unlike studies such as those of Mai et al. (2019) and Chaleshtari et al. (2023b), which
addressed a broad spectrum of vulnerabilities in Web systems, this PhD research refined a singular
vulnerability class within Android applications, recognized as one of its primary limitations.

Concerning number of elaborated MRs, the research concentrated on a set of five primary
vulnerabilities related to authentication and authorization methods in Android applications (see
Table 6). Interestingly, the vulnerability associated with Certificate Improper was further detailed
into two distinct vulnerabilities, namely, absence of a certificate and presence of a self-signed
one, thus leading to five MRs addressed. However, five out of such MRs proposed in this PhD
research were also considered by Mai et al. (2019) and Chaleshtari et al. (2023b), despite their
focus on Web systems. In essence, the MRs proposed by them were adapted to the application
domain of Android applications.

Whereas the set of elaborated MRs aligns with those of Mai et al. (2019) and Chaleshtari
et al. (2023b), the strategy for their application in the respective domain differs, also being
considered one of the main limitations of this research.

1Refer to the vulnerabilities ranked at (11, 14, 18, 20) in CWE (2021).

https://doi.org/10.1109/MET.2019.00010
https://doi.org/10.1109/MET.2019.00010
https://doi.org/10.1109/MET.2019.00010
https://doi.org/10.1109/MET.2019.00010
https://doi.org/10.1109/MET.2019.00010
https://doi.org/10.1145/3356317.3356321
https://doi.org/10.1145/3356317.3356321
https://doi.org/10.1145/3356317.3356321
https://doi.org/10.1145/3356317.3356321
https://doi.org/10.1145/3356317.3356321

6.2. Limitations and Future Work 105

As part of future work, the applicability of the approach will be broadened through a
diversification of the sample of objects (i) sourced from other official markets and (ii) span-
ning additional categories. The approach is expected to be adopted for the detection of other
vulnerabilities in Android mobile apps. A more pragmatic future direction involves extending
the implementation of MRs to encompassing other authentication methods, including (i) those
provided by third-party services such as Google or Facebook, (ii) self-pinned certificate — i.e.,
a certificate distributed with the app, and (iii) two or three-step authentication methods. The
integration of Machine Learning (ML) techniques can also be explored for enhancing both
efficiency and accuracy of vulnerability detection and the development of automated tools for
streamlining the testing process.

107

BIBLIOGRAPHY

ADAMS, K. Non-functional Requirements in Systems Analysis and Design. Cham: Springer,
2015. 264 p. ISBN 978-3-319-18343-5. Citation on page 35.

AFREEN, N.; KHATOON, A.; SADIQ, M. A taxonomy of software’s non-functional require-
ments. In: Proceedings of the 2th International conference on computer and communication
technologies. USA: Springer, 2016. v. 379, n. 1, p. 47–53. Citation on page 34.

AHMAD, A.; FENG, C.; LI, K.; ASIM, S. M.; SUN, T. Toward empirically investigating
non-functional requirements of ios developers on stack overflow. IEEE Access, v. 7, n. 1, p.
61145–61169, 2019. Citations on pages 34, 37, and 51.

AL-AHMAD, A. S.; KAHTAN, H.; HUJAINAH, F.; JALAB, H. A. Systematic literature review
on penetration testing for mobile cloud computing applications. IEEE Access, v. 7, n. 1, p.
173524–173540, 2019. Citations on pages 47 and 51.

AL-TEKREETI, M.; ABDRABOU, A.; NAIK, K. An end-user-centric test generation methodol-
ogy for performance evaluation of mobile networked applications. Software Testing, Verifica-
tion and Reliability, v. 29, n. 6-7, 2019. Citations on pages 43 and 51.

ALHANAHNAH, M.; YAN, Q.; BAGHERI, H.; ZHOU, H.; TSUTANO, Y.; SRISA-AN, W.;
LUO, X. Dina: Detecting hidden android inter-app communication in dynamic loaded code.
IEEE Transactions on Information Forensics and Security, IEEE, v. 15, n. 1, p. 2782–2797,
2020. Citation on page 58.

ALMEIDA, D. R.; MACHADO, P. D.; ANDRADE, W. L. Testing tools for android context-
aware applications: a systematic mapping. Journal of the Brazilian Computer Society, v. 25,
n. 12, p. 1–22, 2019. Citations on pages 47 and 65.

ALOTAIBI, A.; CLAUSE, J.; HALFOND, W. G. Mobile app energy consumption: A study of
known energy issues in mobile applications and their classification schemes – summary plan.
In: Proceedings of the International Conference on Software Maintenance and Evolution
(ICSME). New York, NY, USA: IEEE, 2020. p. 854–854. Citations on pages 27 and 101.

AMALFITANO, D.; FASOLINO, A. R.; TRAMONTANA, P.; ROBBINS, B. Testing android
mobile applications: Challenges, strategies, and approaches. In: MEMON, A. (Ed.). Advances
in Computers. [S.l.]: Elsevier, 2013, (Advances in Computers, 1). p. 1–52. Citations on pages
44 and 45.

AMALFITANO, D.; RICCIO, V.; AMATUCCI, N.; SIMONE, V. D.; FASOLINO, A. R. Com-
bining automated gui exploration of android apps with capture and replay through machine
learning. Information and Software Technology, v. 105, p. 95–116, 2019. ISSN 0950-5849.
Available: <https://www.sciencedirect.com/science/article/pii/S0950584918301708>. Citations
on pages 85 and 86.

AMALFITANO, D.; RICCIO, V.; PAIVA, A. C. R.; FASOLINO, A. R. Why does the orientation
change mess up my android application? from gui failures to code faults. Software Testing,

https://www.sciencedirect.com/science/article/pii/S0950584918301708

108 Bibliography

Verification and Reliability, v. 28, n. 1, p. e1654, 2018. E1654 stvr.1654. Available: <https:
//onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1654>. Citation on page 80.

AMELLER, D.; AYALA, C.; CABOT, J.; FRANCH, X. How do software architects consider
non-functional requirements: An exploratory study. In: Proceedings of the 20th International
Requirements Engineering Conference (RE). Chicago, IL, USA: IEEE, 2012. p. 41–50.
Citation on page 37.

AMIN, A.; ELDESSOUKI, A.; MAGDY, M. T.; ABDEEN, N.; HINDY, H.; HEGAZY, I.
Androshield: Automated android applications vulnerability detection, a hybrid static and dynamic
analysis approach. Information, Multidisciplinary Digital Publishing Institute, v. 10, n. 10,
p. 326, 2019. Citations on pages 69, 71, 73, and 77.

ANDRADE, S. A.; SANTOS, I.; JUNIOR, C. B.; JUNIOR, M. C.; SOUZA, S. R. S.; DE-
LAMARO, M. E. On applying metamorphic testing: An empirical study on academic search
engines. In: Proceedings of the 4th International Workshop on Metamorphic Testing (MET).
Montreal, QC, Canada: IEEE, 2019. p. 9–16. Citation on page 40.

ANDROID. The getevent tool. 2023. <https://source.android.com/docs/core/interaction/input/
getevent>. [Online; accessed 19-December-2023]. Citation on page 84.

. uiautomator. 2023. <https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/
uiautomator/index.html>. [Online; accessed 19-December-2023]. Citation on page 84.

ARKIN, B.; STENDER, S.; MCGRAW, G. Software penetration testing. IEEE Security &
Privacy, IEEE, v. 3, n. 1, p. 84–87, 2005. Citation on page 28.

ARZT, S.; RASTHOFER, S.; FRITZ, C.; BODDEN, E.; BARTEL, A.; KLEIN, J.; TRAON,
Y. L.; OCTEAU, D.; MCDANIEL, P. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices, ACM, v. 49, n. 6, p.
259–269, 2014. Citation on page 57.

AVANCINI, A.; CECCATO, M. Security testing of the communication among android applica-
tions. In: IEEE. Proceedings of the 8th International Workshop on Automation of Software
Test (AST). San Francisco, CA, USA, 2013. p. 57–63. Citations on pages 31 and 58.

. Security testing of the communication among android applications. In: Proceedings of the
8th International Workshop on Automation of Software Test (AST). New York, NY, USA:
IEEE, 2013. p. 57–63. Citations on pages 69, 70, and 72.

AYERDI, J.; VALLE, P.; SEGURA, S.; ARRIETA, A.; SAGARDUI, G.; ARRATIBEL, M.
Performance-driven metamorphic testing of cyber-physical systems. Transactions on Reliability,
IEEE, 2022. Citations on pages 29, 30, and 101.

AZIMIAN, F.; FAGHIH, F.; KARGAHI, M.; MIRDEHGHAN, S. M. Energy metamorphic
testing for android applications. In: Proceedings of the 30th International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). Istanbul, Turkey: IEEE,
2019. p. 1–6. Citations on pages 29 and 101.

BAGHERI, H.; WANG, J.; AERTS, J.; GHORBANI, N.; MALEK, S. Flair: efficient analysis of
android inter-component vulnerabilities in response to incremental changes. Empirical Software
Engineering, Springer, v. 26, p. 1–37, 2021. Citation on page 57.

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1654
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1654
https://source.android.com/docs/core/interaction/input/getevent
https://source.android.com/docs/core/interaction/input/getevent
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/uiautomator/index.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/uiautomator/index.html

Bibliography 109

BAJPAI, V.; GORTHI, R. P. On non-functional requirements: A survey. In: Proceedings of the
Students Conference on Electrical, Electronics and Computer Science (SCEECS). Bhopal,
India: IEEE, 2012. p. 1–4. Citations on pages 38 and 53.

BARR, E.; HARMAN, M.; MCMINN, P.; SHAHBAZ, M.; YOO, S. The oracle problem in
software testing: A survey. IEEE Transactions on Software Engineering, p. 507–525, 2015.
Citations on pages 29 and 39.

BARUS, A. C.; CHEN, T. Y.; KUO, F.; LIU, H.; SCHMIDT, H. W. The impact of source test
case selection on the effectiveness of metamorphic testing. In: Proceedings of the International
Workshop on Metamorphic Testing (MET). Austin, TX, USA: IEEE, 2016. p. 5–11. Citation
on page 39.

BEYER, S.; MACHO, C.; PINZGER, M.; PENTA, M. D. Automatically classifying posts into
question categories on stack overflow. In: Proceedings of the 26th Conference on Program
Comprehension. Gothenburg, Sweden: IEEE, 2018. p. 211–221. Citation on page 37.

BHATNAGAR, S.; MALIK, Y.; BUTAKOV, S. Analysing data security requirements of android
mobile banking application. In: Proceedings of the International Conference on Intelligent,
Secure, and Dependable Systems in Distributed and Cloud Environments (ISDDC). Cham:
Springer, 2018. p. 30–37. Citations on pages 69, 71, and 73.

BIANCHI, A.; GUSTAFSON, E.; FRATANTONIO, Y.; KRUEGEL, C.; VIGNA, G. Exploitation
and mitigation of authentication schemes based on device-public information. In: Proceedings
of the 33rd Annual Computer Security Applications Conference. Orlando, FL, USA: ACM,
2017. p. 16–27. Citation on page 60.

BOURQUE, P.; FAIRLEY, R. E.; SOCIETY, I. C. Guide to the Software Engineering Body
of Knowledge (SWEBOK(R)): Version 3.0. 3rd. ed. Washington, DC, USA: IEEE Computer
Society Press, 2014. ISBN 0769551661. Citations on pages 72 and 75.

CALDIERA, V. R. B. G.; ROMBACH, H. D. The goal question metric approach. Encyclopedia
of software engineering, John Wiley & Sons, v. 1, n. 1, p. 528–532, 1994. Citation on page 66.

CARACCIOLO, A.; LUNGU, M. F.; NIERSTRASZ, O. How do software architects specify and
validate quality requirements? In: European Conference on Software Architecture. Vienna,
Austria: Springer, 2014. p. 374–389. Citations on pages 37, 38, 51, 53, and 63.

CECI, L. Annual number of app downloads from the Google Play Store. 2022. <https:
//www.statista.com/statistics/734332/google-play-app-installs-per-year/>. [Online; accessed
18-December-2022]. Citations on pages 27 and 45.

CHALESHTARI, N. B.; PASTORE, F.; GOKNIL, A.; BRIAND, L. C. Metamorphic testing for
web system security. IEEE Transactions on Software Engineering, IEEE, 2023. Citations on
pages 31, 44, and 51.

. Metamorphic testing for web system security. IEEE Transactions on Software Engi-
neering (TSE), IEEE, 2023. Citations on pages 31, 101, 103, and 104.

CHAN, W.; CHEN, T. Y.; CHEUNG, S. C.; TSE, T.; ZHANG, Z. Towards the testing of power-
aware software applications for wireless sensor networks. In: Proceedings of the International
Conference on Reliable Software Technologies. Geneva, Switzerland: Springer-Verlag, 2007.
p. 84–99. Citations on pages 29, 42, 43, and 51.

https://www.statista.com/statistics/734332/google-play-app-installs-per-year/
https://www.statista.com/statistics/734332/google-play-app-installs-per-year/

110 Bibliography

CHAN, W.; CHEUNG, S. C.; LEUNG, K. R. Towards a metamorphic testing methodology for
service-oriented software applications. In: Proceedings of the 5th International Conference on
Quality Software (QSIC). Melbourne, VIC, Australia: IEEE, 2005. p. 470–476. Citations on
pages 29, 42, 43, and 51.

CHAN, W.; HO, J. C.; TSE, T. Piping classification to metamorphic testing: An empirical study
towards better effectiveness for the identification of failures in mesh simplification programs.
In: Proceedings of the 31st Annual International Computer Software and Applications
Conference (COMPSAC). Beijing, China: IEEE, 2007. p. 397–404. Citations on pages 29, 42,
43, and 51.

CHAN, W. K.; CHEUNG, S. C.; LEUNG, K. R. A metamorphic testing approach for online
testing of service-oriented software applications. International Journal of Web Services
Research (IJWSR), p. 61–81, 2007. Citations on pages 29, 42, 43, and 51.

CHEN, T. Y.; CHEUNG, S. C.; YIU, S. M. Metamorphic testing: a new approach for
generating next test cases. [S.l.], 1998. Citations on pages 29 and 39.

CHEN, T. Y.; KUO, F.-C.; LIU, H.; POON, P.-L.; TOWEY, D.; TSE, T. H.; ZHOU, Z. Q.
Metamorphic testing: A review of challenges and opportunities. ACM Computing Surveys
(CSUR), p. 000:1–000:27, 2018. Citation on page 42.

CHEN, T. Y.; KUO, F.-C.; MA, W.; SUSILO, W.; TOWEY, D.; VOAS, J.; ZHOU, Z. Q.
Metamorphic testing for cybersecurity. Computer, p. 48–55, 2016. Citations on pages 28, 43,
and 51.

CHUNG, L.; NIXON, B. A.; YU, E.; MYLOPOULOS, J. Non-functional requirements in
software engineering. [S.l.]: Springer Science & Business Media, 2012. Citations on pages 37
and 51.

COMMITTEE, I. S. C. et al. Ieee standard glossary of software engineering terminology (ieee
std 610.12-1990). CA: IEEE Computer Society, 1990. Citation on page 34.

COPPOLA, R.; MORISIO, M.; TORCHIANO, M. Mobile gui testing fragility: A study on
open-source android applications. IEEE Transactions on Reliability, p. 67–90, 2019. Citation
on page 45.

CORRADINI, D.; PASQUA, M.; CECCATO, M. Automated black-box testing of mass assign-
ment vulnerabilities in restful apis. In: Proceedings of the 45th International Conference on
Software Engineering (ICSE). Melbourne, Australia: IEEE, 2023. Citations on pages 29, 30,
and 101.

CORTESI, A.; HILS, M.; KRIECHBAUMER, T.; CONTRIBUTORS. mitmproxy: A free and
open source interactive HTTPS proxy. 2010. [Version 10.1]. Available: <https://mitmproxy.
org/>. Citation on page 86.

CRUZ, L.; ABREU, R.; LO, D. To the attention of mobile software developers: guess what, test
your app! Empirical Software Engineering, p. 1–31, 2019. Citation on page 48.

CRUZES, D.; MENDONCA, M.; BASILI, V.; SHULL, F.; JINO, M. Extracting information
from experimental software engineering papers. In: Proceedings of the 26th International
Conference of the Chilean Society of Computer Science (SCCC). Iquique, Chile: IEEE, 2007.
p. 105–114. Citation on page 90.

https://mitmproxy.org/
https://mitmproxy.org/

Bibliography 111

CWE. CWE Top 25 Most Dangerous Software Weaknesses. 2021. <https://cwe.mitre.org/
top25/archive/2021/2021_cwe_top25.html>. [Online; accessed 03-October-2023]. Citations on
pages 29, 31, 60, and 104.

. Common Weakness Enumeration. 2023. <https://cwe.mitre.org/>. [Online; accessed
03-October-2023]. Citations on pages 31, 103, and 104.

. CWE-288: Authentication Bypass Using an Alternate Path or Channel. 2023. <https:
//cwe.mitre.org/data/definitions/288.html>. [Online; accessed 25-December-2023]. Citations on
pages 87 and 89.

. CWE-295: Improper Certificate Validation. 2023. <https://cwe.mitre.org/data/
definitions/295.html>. [Online; accessed 25-December-2023]. Citations on pages 87 and 89.

. CWE-311: Missing Encryption of Sensitive Data. 2023. <https://cwe.mitre.org/data/
definitions/311.html>. [Online; accessed 25-December-2023]. Citations on pages 87 and 89.

. CWE-384: Session Fixation. 2023. <https://cwe.mitre.org/data/definitions/384.html>.
[Online; accessed 25-December-2023]. Citations on pages 87 and 89.

. CWE-613: Insufficient Session Expiration. 2023. <https://cwe.mitre.org/data/definitions/
613.html>. [Online; accessed 25-December-2023]. Citations on pages 87 and 89.

ECKHARDT, J.; VOGELSANG, A.; FERNÁNDEZ, D. M. Are "non-functional" requirements
really non-functional? an investigation of non-functional requirements in practice. In: Proceed-
ings of the 38th International Conference on Software Engineering (ICSE). Austin, TX,
USA: IEEE, 2016. p. 832–842. Citations on pages 28, 34, and 37.

FELDERER, M.; BÜCHLER, M.; JOHNS, M.; BRUCKER, A. D.; BREU, R.; PRETSCHNER,
A. Security testing: A survey. In: Advances in Computers. [S.l.]: Elsevier, 2016. v. 101, p. 1–51.
Citations on pages 28, 54, 55, 56, and 57.

GAMMA, E.; BECK, K. JUnit. 2017. [Online; accessed 06-February-2024]. Available: <https:
//junit.org/>. Citation on page 85.

GAO, J.; BAI, X.; TSAI, W.-T.; UEHARA, T. Mobile application testing: a tutorial. Computer,
p. 46–55, 2014. Citation on page 45.

GLINZ, M. On non-functional requirements. In: Proceedings of the 15th International Re-
quirements Engineering Conference. Delhi, India: IEEE, 2007. p. 21–26. Citations on pages
34 and 38.

GROEN, E. C.; KOPCZYŃSKA, S.; HAUER, M. P.; KRAFFT, T. D.; DOERR, J. Users—the
hidden software product quality experts?: A study on how app users report quality aspects
in online reviews. In: Proceedings of the 25th International Requirements Engineering
Conference (RE). Lisbon, Portugal: IEEE, 2017. p. 80–89. Citation on page 37.

GUO, C.; XU, J.; YANG, H.; ZENG, Y.; XING, S. An automated testing approach for inter-
application security in android. In: Proceedings of the 9th international workshop on automa-
tion of software test. Hyderabad, India: ACM, 2014. p. 8–14. Citation on page 58.

. An automated testing approach for inter-application security in android. In: Proceedings
of the 9th International Workshop on Automation of Software Test (AST). New York, NY,
USA: ACM, 2014. p. 8–14. Citations on pages 69, 71, and 72.

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/288.html
https://cwe.mitre.org/data/definitions/288.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/295.html
https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/384.html
https://cwe.mitre.org/data/definitions/613.html
https://cwe.mitre.org/data/definitions/613.html
https://junit.org/
https://junit.org/

112 Bibliography

HASSANSHAHI, B.; JIA, Y.; YAP, R. H.; SAXENA, P.; LIANG, Z. Web-to-application injection
attacks on android: Characterization and detection. In: Proceedings of the 20th European
Symposium on Research in Computer Security. Vienna, Austria: Springer, 2015. p. 577–598.
Citations on pages 58 and 59.

HAY, R.; TRIPP, O.; PISTOIA, M. Dynamic detection of inter-application communication
vulnerabilities in android. In: Proceedings of the International Symposium on Software
Testing and Analysis. Baltimore, MD, USA: ACM, 2015. p. 118–128. Citation on page 58.

. Dynamic detection of inter-application communication vulnerabilities in android. In:
Proceedings of the International Symposium on Software Testing and Analysis (ISSTA).
New York, NY, USA: ACM, 2015. p. 118–128. Citations on pages 69, 71, 73, and 77.

HENRY, G. Matt lacey on mobile app usability. IEEE Softw., v. 38, n. 2, p. 134–136, 2021.
Available: <https://doi.org/10.1109/MS.2020.3042424>. Citation on page 27.

HOFFMAN, D. Using oracles in test automation. Proceedings of the 19th Annual Pacific
Northwest Software Quality Conference (PNSQC), p. 90–117, 2001. Citation on page 39.

HUANG, Y.-W.; HUANG, S.-K.; LIN, T.-P.; TSAI, C.-H. Web application security assessment by
fault injection and behavior monitoring. In: Proceedings of the 12th International Conference
on World Wide Web. Budapest, Hungary: ACM, 2003. p. 148–159. Citations on pages 30
and 44.

ISO. ISO/IEC 9126-1, Software engineering — Product quality. Geneva, Switzerland: ISO,
2001. Citations on pages 35, 36, 37, and 54.

ISO. ISO/IEC 25010:2011, Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models.
Geneva, Switzerland: ISO, 2011. Citations on pages 35, 36, 37, 49, 54, 101, and 102.

ISO. ISO/IEC/IEEE 29119-1: Software and systems engineering-Software testing-Part 1:
Concepts and definitions. [S.l.]: International Organization for Standardization Geneva, 2013.
Citation on page 35.

JABBARVAND, R.; MALEK, S. Advancing energy testing of mobile applications. In: Proceed-
ings of the 39th International Conference on Software Engineering Companion (ICSE-C).
Buenos Aires, Argentina: IEEE, 2017. p. 491–492. Citation on page 50.

JANICKI, M.; KATARA;, M.; PääKKöNEN, T. Obstacles and opportunities in deploying model-
based gui testing of mobile software: A survey. SOFTWARE TESTING, VERIFICATION
AND RELIABILITY, v. 22(5), p. 313–341, Aug. 2012. Citation on page 46.

JIANG, Y. Z. X.; XUXIAN, Z. Detecting passive content leaks and pollution in android appli-
cations. In: Proceedings of the 20th Network and Distributed System Security Symposium
(NDSS). San Diego, California: [s.n.], 2013. Citations on pages 29, 42, 43, 51, and 57.

JOHNSTON, O.; JARMAN, D.; BERRY, J.; ZHOU, Z. Q.; CHEN, T. Y. Metamorphic relations
for detection of performance anomalies. In: Proceedings of the 4th International Workshop
on Metamorphic Testing (MET). Montreal, QC, Canada: IEEE, 2019. p. 63–69. Citations on
pages 29, 30, and 101.

https://doi.org/10.1109/MS.2020.3042424

Bibliography 113

JOORABCHI, M. E.; MESBAH, A.; KRUCHTEN, P. Real challenges in mobile app develop-
ment. In: Proceedings of the International Symposium on Empirical Software Engineering
and Measurement (ESEM). Baltimore, MD, USA: IEEE, 2013. p. 15–24. Citations on pages
48 and 50.

JUNIOR, M. C. Automated verification of compliance of non-functional requirements on mobile
applications through metamorphic testing. In: Proceedings of the 13th International Confer-
ence on Software Testing, Validation and Verification (ICST). Porto, Portugal: IEEE, 2020. p.
421–423. Citation on page 33.

JUNIOR, M. C.; AMALFITANO, D.; GARCES, L.; FASOLINO, A. R.; ANDRADE, S. A.;
DELAMARO, M. Dynamic testing techniques of non-functional requirements in mobile apps:
A systematic mapping study. ACM Computing Surveys (CSUR), ACM New York, NY, v. 54,
n. 10s, p. 1–38, 2022. Citations on pages 28, 33, 35, 47, 50, 51, 63, 66, 67, 68, 69, 70, 71, 73,
76, 77, 78, 92, 101, 102, and 123.

JUNIOR, M. C.; AMALFITANO, D.; VISONE, B.; FASOLINO, A. R.; DELAMARO, M. A
metamorphic testing technique for detecting authentication vulnerabilities in android mobile
apps. Journal of Systems & Software (JSS), p. 1–24, 2023. Citations on pages 53, 61, 79, 80,
82, 83, 84, 87, 89, 91, 94, 95, 96, and 102.

KAUR, A.; KAUR, K. Systematic literature review of mobile application development and
testing effort estimation. Journal of King Saud University - Computer and Information
Sciences, v. 1, n. 1, p. 1–22, 2018. ISSN 1319-1578. Citation on page 46.

KENG, J. C. J.; JIANG, L.; WEE, T. K.; BALAN, R. K. Graph-aided directed testing of android
applications for checking runtime privacy behaviours. In: Proceedings of the 11th International
Workshop on Automation of Software Test. Austin, TX, USA: IEEE, 2016. p. 57–63. Citations
on pages 58 and 59.

. Graph-aided directed testing of android applications for checking runtime privacy be-
haviours. In: Proceedings of the 11th International Workshop on Automation of Software
Test ((AST)). New York, NY, USA: ACM, 2016. p. 57–63. Citations on pages 69, 71, and 72.

KIRUBAKARAN, B.; KARTHIKEYANI, V. Mobile application testing – challenges and solution
approach through automation. In: Proceedings of the International Conference on Pattern
Recognition, Informatics and Mobile Engineering. Salem, India: IEEE, 2013. p. 79–84.
Citations on pages 45 and 49.

KITCHENHAM, B. Procedures for performing systematic reviews. Keele University, v. 33,
n. 2004, p. 1–26, 2004. Citation on page 66.

KLUTH, W.; KREMPELS, K.-H.; SAMSEL, C. Automated usability testing for mobile ap-
plications. In: Proceedings of the Web Information Systems and Technologies (WEBIST).
Setúbal, Portugal: SciTePress, 2014. p. 149–156. Citation on page 50.

KNORR, K.; ASPINALL, D. Security testing for android mhealth apps. In: Proceedings of the
8th International Conference on Software Testing, Verification and Validation Workshops
(ICSTW). Graz, Austria: IEEE, 2015. p. 1–8. Citation on page 58.

. Security testing for android mhealth apps. In: Proceedings of the 8th International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). New
York, NY, USA: IEEE, 2015. p. 1–8. Citations on pages 69, 71, and 73.

114 Bibliography

KOCHHAR, P. S.; THUNG, F.; NAGAPPAN, N.; ZIMMERMANN, T.; LO, D. Understanding
the test automation culture of app developers. In: Proceedings of the 8th International Confer-
ence on Software Testing, Verification and Validation (ICST). Graz, Austria: IEEE, 2015. p.
1–10. Citation on page 50.

KONG, P.; LI, L.; GAO, J.; LIU, K.; BISSYANDé, T. F.; KLEIN, J. Automated testing of android
apps: A systematic literature review. IEEE Transactions on Reliability, v. 68, n. 1, p. 45–66,
2019. Citations on pages 47 and 65.

LARICCHIA, F. Mobile operating systems’ market share
worldwide. 2022. <https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/>. [Online; accessed
18-December-2022]. Citations on pages 27 and 45.

LEE, W. van der; VERWER, S. Vulnerability detection on mobile applications using state
machine inference. In: Proceedings of the European Symposium on Security and Privacy
Workshops (EuroS&PW). New York, NY, USA: IEEE, 2018. p. 1–10. Citations on pages 69,
71, 73, and 77.

LI, L.; BARTEL, A.; KLEIN, J.; TRAON, Y. L. Automatically exploiting potential component
leaks in android applications. In: Proceedings of the 13th International Conference on Trust,
Security and Privacy in Computing and Communications. Beijing, China: IEEE, 2014. p.
388–397. Citation on page 57.

LIANG, H.; WANG, Y.; YANG, T.; YU, Y. Applance: A lightweight approach to detect privacy
leak for packed applications. In: Proceedings of the Nordic Conference on Secure IT Systems.
Oslo, Norway: Springer, 2018. p. 54–70. Citation on page 57.

. Applance: A lightweight approach to detect privacy leak for packed applications. In:
Proceedings of the Nordic Conference on Secure IT Systems. Cham: Springer, 2018. p. 54–70.
Citations on pages 69 and 73.

LIU, Y.; ZUO, C.; ZHANG, Z.; GUO, S.; XU, X. An automatically vetting mechanism for ssl
error-handling vulnerability in android hybrid web apps. World Wide Web, Springer, v. 21, n. 1,
p. 127–150, 2018. Citations on pages 31 and 58.

. An automatically vetting mechanism for ssl error-handling vulnerability in android hybrid
web apps. World Wide Web, Springer, v. 21, p. 127–150, 2018. Citations on pages 69, 71,
and 73.

LÓPEZ, L.; PARTANEN, J.; RODRÍGUEZ, P.; MARTÍNEZ-FERNÁNDEZ, S. How practi-
tioners manage quality requirements in rapid software development: A survey. In: Proceedings
of the 1st International Workshop on Quality Requirements in Agile Projects (QuaRAP).
Banff, AB, Canada: IEEE, 2018. p. 14–17. Citations on pages 37, 38, 53, and 63.

LORTZ, S.; MANTEL, H.; STAROSTIN, A.; BÄHR, T.; SCHNEIDER, D.; WEBER, A. Cas-
sandra: Towards a certifying app store for android. In: Proceedings of the 4th Workshop on
Security and Privacy in Smartphones & Mobile Devices. Scottsdale, Arizona, USA: ACM,
2014. p. 93–104. Citation on page 57.

LUO, C.; GONCALVES, J.; VELLOSO, E.; KOSTAKOS, V. A survey of context simulation for
testing mobile context-aware applications. ACM Comput. Surv., Association for Computing

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

Bibliography 115

Machinery, New York, NY, USA, v. 53, n. 1, Feb. 2020. ISSN 0360-0300. Available: <https:
//doi.org/10.1145/3372788>. Citations on pages 47 and 65.

MA, S.; BERTINO, E.; NEPAL, S.; LI, J.; OSTRY, D.; DENG, R. H.; JHA, S. Finding flaws from
password authentication code in android apps. In: Proceedings of the European Symposium
on Research in Computer Security. Luxembourg, Luxembourg: Springer, 2019. p. 619–637.
Citations on pages 60 and 61.

MAHMOOD, R.; ESFAHANI, N.; KACEM, T.; MIRZAEI, N.; MALEK, S.; STAVROU, A.
A whitebox approach for automated security testing of android applications on the cloud. In:
Proceedings of the 7th International Workshop on Automation of Software Test (AST).
Zurich, Switzerland: IEEE, 2012. p. 22–28. Citations on pages 58 and 59.

MAI, P. X.; PASTORE, F.; GOKNIL, A.; BRIAND, L. Metamorphic security testing for web
systems. arXiv preprint arXiv:1912.05278, 2019. Citations on pages 29, 30, 31, 44, 51, 98,
101, 103, and 104.

MAIA, V.; GONÇALVES, T. G.; ROCHA, A. R. C. da. Quality characteristics of mobile
applications: A survey in brazilian context. In: Proceedings of the 18th Brazilian Symposium
on Software Quality. Fortaleza, Brazil: ACM, 2019. p. 109–118. Citations on pages 49 and 51.

MAIA, V.; ROCHA, A. R. C. da. A Systematic Literature Mapping for Identifying Quality
Characteristics in Mobile Applications. [S.l.], 2019. Available: <https://maia.mobi/arq/tech_
report_mapping.pdf>. Citations on pages 49 and 51.

MAIRIZA, D.; ZOWGHI, D.; NURMULIANI, N. An investigation into the notion of non-
functional requirements. In: Proceedings of the 2010 ACM Symposium on Applied Comput-
ing. Sierre, Switzerland: ACM, 2010. p. 311–317. Citations on pages 37 and 51.

MAYER, J.; GUDERLEI, R. On random testing of image processing applications. In: Proceed-
ings of the 6th International Conference on Quality Software (QSIC). Beijing, China: IEEE,
2006. p. 85–92. Citations on pages 29, 42, 43, and 51.

MCAFEE, L. Mcafee labs 2018 threats predictions. Mission College Boulevard, 2017. Citations
on pages 28, 53, and 54.

MUCCINI, H.; FRANCESCO, A. D.; ESPOSITO, P. Software testing of mobile applications:
Challenges and future research directions. In: Proceedings of the 7th International Workshop
on Automation of Software Test. Zurich, Switzerland: IEEE, 2012. p. 29–35. Citations on
pages 44 and 49.

MUELLER, B.; SCHLEIER, S.; WILLEMSEN, J. Mobile Security Testing Guide (MSTG).
[S.l.]: OWASP, 2019. Citations on pages 31, 62, and 102.

MURPHY, C.; KAISER, G. E.; HU, L. Properties of machine learning applications for use in
metamorphic testing. 2008. Citations on pages 29, 42, 43, and 51.

NAGAPPAN, M.; SHIHAB, E. Future trends in software engineering research for mobile apps.
In: Proceedings of the 23rd on Software Analysis, Evolution, and Reengineering (SANER).
Osaka, Japan: IEEE, 2016. p. 21–32. Citations on pages 28, 45, 50, 51, and 63.

NAKAJIMA, S.; BUI, H. N. Dataset coverage for testing machine learning computer programs.
In: Proceedings of the Asia-Pacific Software Engineering Conference (APSEC). Hamilton,
New Zealand: IEEE, 2016. p. 297–304. Citations on pages 29, 42, 43, and 51.

https://doi.org/10.1145/3372788
https://doi.org/10.1145/3372788
https://maia.mobi/arq/tech_report_mapping.pdf
https://maia.mobi/arq/tech_report_mapping.pdf

116 Bibliography

NETO, A. C. D.; SANTOS, J. S.; REIS, R. A. C.; LOBãO, L. M. A.; COLLINS, E. F. Capítulo
10 – teste em dispositivos móveis. In: Introdução ao Teste de Software. 2. ed. Rio de Janeiro:
Campus, 2016. p. 297–329. Citations on pages 45, 48, and 51.

OAUTH. OAuth 2.0. 2012. <https://oauth.net/2/>. Online; accessed 10-December-2023. Cita-
tions on pages 61, 79, 87, and 98.

OCTEAU, D.; LUCHAUP, D.; DERING, M.; JHA, S.; MCDANIEL, P. Composite constant
propagation: Application to android inter-component communication analysis. In: Proceedings
of the 37th IEEE International Conference on Software Engineering. Florence, Italy: IEEE,
2015. v. 1, p. 77–88. Citation on page 57.

OCTEAU, D.; MCDANIEL, P.; JHA, S.; BARTEL, A.; BODDEN, E.; KLEIN, J.; TRAON, Y. L.
Effective inter-component communication mapping in android: An essential step towards holistic
security analysis. In: Proceedings of the 22nd {USENIX} Security Symposium ({USENIX}
Security). Washington, D.C.: USENIX Association, 2013. p. 543–558. Citation on page 57.

O’DEA, S. Smartphone users worldwide 2016-2021. 2020. <https://www.statista.com/
statistics/330695/number-of-smartphone-users-worldwide/>. [Online; accessed 10-January-
2020]. Citations on pages 27 and 44.

OPASIAK, K.; MAZURCZYK, W. (in) secure android debugging: Security analysis and lessons
learned. Computers & Security, v. 82, p. 80–98, 2019. Citations on pages 31, 50, and 53.

OWASP. M2: Insecure Data Storage. 2016. <https://owasp.org/www-project-mobile-top-10/
2016-risks/m2-insecure-data-storage>. [Online; accessed 18-December-2023]. Citation on page
28.

. M3: Insecure Communication. 2016. <https://owasp.org/www-project-mobile-top-10/
2016-risks/m3-insecure-communication>. [Online; accessed 18-December-2023]. Citations on
pages 28 and 87.

. M4: Insecure Authentication. 2016. <https://owasp.org/www-project-mobile-top-10/
2016-risks/m4-insecure-authentication>. [Online; accessed 18-December-2023]. Citations on
pages 28 and 87.

. Mobile App Authentication Architectures – OWASP MASTG. 2023. <https:
//mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/
0x04e-testing-authentication-and-session-management>. Online; accessed 17-March-2024.
Citations on pages 29 and 59.

. OWASP Mobile Top 10. 2023. <https://owasp.org/www-project-mobile-top-10/>. [On-
line; accessed 02-November-2023]. Citations on pages 29, 31, 59, 60, 102, 103, and 104.

PAYET, É.; SPOTO, F. Static analysis of android programs. Information and Software Tech-
nology, Elsevier, v. 54, n. 11, p. 1192–1201, 2012. Citation on page 57.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software Technology,
Butterworth-Heinemann, v. 64, n. C, p. 1–18, 2015. Citations on pages 66, 67, and 102.

https://oauth.net/2/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage
https://owasp.org/www-project-mobile-top-10/2016-risks/m2-insecure-data-storage
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://owasp.org/www-project-mobile-top-10/2016-risks/m3-insecure-communication
https://owasp.org/www-project-mobile-top-10/2016-risks/m4-insecure-authentication
https://owasp.org/www-project-mobile-top-10/2016-risks/m4-insecure-authentication
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04e-testing-authentication-and-session-management
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04e-testing-authentication-and-session-management
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04e-testing-authentication-and-session-management
https://owasp.org/www-project-mobile-top-10/

Bibliography 117

POORT, E. R.; MARTENS, N.; WEERD, I. V. D.; VLIET, H. V. How architects see non-
functional requirements: beware of modifiability. In: Proceedings of the International Working
Conference on Requirements Engineering: Foundation for Software Quality. Berlin, Hei-
delberg: Springer, 2012. p. 37–51. Citations on pages 37, 38, 53, and 63.

PORRAS, A. M.; LÓPEZ, C. U. Q.; CORONAS, M. J. Automated testing of mobile applications:
A systematic map and review. In: Proceedings of the 28th Ibero-American Conference on
Software Engineering (CIBSE). Lima, Peru: URP,SPC,UCSP, 2015. p. 1–14. Citations on
pages 46 and 65.

PORTSWIGGER. Burp Suite. 2016. <https://portswigger.net/burp>. [Online; accessed 19-
December-2023]. Citation on page 86.

POTTER, B.; MCGRAW, G. Software security testing. IEEE Security & Privacy, IEEE, v. 2,
n. 5, p. 81–85, 2004. Citations on pages 28 and 55.

PRESSMAN, R. Software Engineering: A Practitioner’s Approach. 9. ed. USA: McGraw-Hill,
Inc., 2016. ISBN 0073375977. Citation on page 34.

PULLUM, L. L.; OZMEN, O. Early results from metamorphic testing of epidemiological models.
In: Proceedings of the International Conference on BioMedical Computing (BioMedCom).
Washington, DC, USA: IEEE, 2012. p. 62–67. Citations on pages 29, 42, 43, and 51.

RAHMAN, K.; IZURIETA, C. An approach to testing banking software using metamorphic
relations. In: Proceedings of the 24th International Conference on Information Reuse and
Integration for Data Science (IRI). Bellevue, WA, USA: IEEE, 2023. p. 173–178. Citations
on pages 29, 31, 44, and 101.

RASHID, M.; ARDITO, L.; TORCHIANO, M. Energy consumption analysis of algorithms
implementations. In: Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM). Beijing, China: IEEE, 2015. p. 1–4. Citation on
page 37.

RASTOGI, V.; CHEN, Y.; ENCK, W. Appsplayground: automatic security analysis of smart-
phone applications. In: Proceedings of the 3rd Conference on Data and Application Security
and Privacy (CODASPY). San Antonio, Texas, USA: ACM, 2013. p. 209–220. Citations on
pages 69, 72, and 73.

RIBEIRO, V. V.; CRUZES, D. S.; TRAVASSOS, G. H. A perception of the practice of software
security and performance verification. In: Proceedings of the 25th Australasian Software
Engineering Conference (ASWEC). Adelaide, SA, Australia: IEEE, 2018. p. 71–80. Citations
on pages 28, 38, 39, 51, 53, 54, and 63.

RIBEIRO, V. V.; TRAVASSOS, G. H. Testing non-functional requirements: Lacking of tech-
nologies or researching opportunities? In: Proceedings of the 15th Brazilian Symposium on
Software Quality. Porto Alegre, RS, Brasil: SBC, 2017. p. 226–240. Citations on pages 38
and 51.

ROMDHANA, A.; MERLO, A.; CECCATO, M.; TONELLA, P. Assessing the security of
inter-app communications in android through reinforcement learning. Computers & Security,
Elsevier, v. 131, p. 103311, 2023. Citation on page 58.

https://portswigger.net/burp

118 Bibliography

ROSEN, C.; SHIHAB, E. What are mobile developers asking about? a large scale study using
stack overflow. Empirical Software Engineering, p. 1192–1223, 2016. Citation on page 37.

RUMEE, S. T. A.; LIU, D. Droidtest: Testing android applications for leakage of private informa-
tion. In: Proceedings of the 16th International Conference on Security (ISC). USA: Springer,
2015. p. 341–353. Citations on pages 58 and 59.

SAAD, E.; MITCHELL, R. Web Security Testing Guide (WSTG). [S.l.]: OWASP, 2019.
Citation on page 62.

SAHINOGLU, M.; INCKI, K.; AKTAS, M. S. Mobile application verification: A systematic map-
ping study. In: Proceedings of the International Computational Science and Its Applications
(ICCSA). Cham: Springer, 2015. p. 147–163. Citation on page 46.

SALVA, S.; ZAFIMIHARISOA, S. R. Apset, an android application security testing tool for
detecting intent-based vulnerabilities. International Journal on Software Tools for Technology
Transfer, Springer, v. 17, n. 2, p. 201–221, 2015. Citation on page 57.

. Apset, an android application security testing tool for detecting intent-based vulnerabilities.
International Journal on Software Tools for Technology Transfer, Springer, v. 17, n. 2, p.
201–221, 2015. Citations on pages 69, 70, 72, and 77.

SECURITY, S. Vulnerability and Threat Trends Mid-Year Report 2020. 2020. <https://www.
skyboxsecurity.com/resources/report/vulnerability-threat-trends-mid-year-report-2020/>. [On-
line; accessed 03-October-2023]. Citation on page 28.

SEGURA, S.; CASTILLA, J. T.; TORO, A. D.; CORTÉS, A. R. Performance metamorphic
testing: A proof of concept. Information and Software Technology, 2018. Citations on pages
29, 43, 51, and 101.

SEGURA, S.; DURÁN, A.; TROYA, J.; CORTÉS, A. R. A template-based approach to describing
metamorphic relations. In: Proceedings of the 2nd International Workshop on Metamorphic
Testing (MET). Buenos Aires, Argentina: IEEE, 2017. p. 3–9. Citation on page 88.

SEGURA, S.; FRASER, G.; SANCHEZ, A. B.; RUIZ-CORTÉS, A. A survey on metamorphic
testing. IEEE Transactions on software engineering, p. 805–824, 2016. Citations on pages
29, 39, 40, 41, and 42.

SEGURA, S.; TROYA, J.; DURÁN, A.; RUIZ-CORTÉS, A. Performance metamorphic testing:
motivation and challenges. In: Proceedings of the 39th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results Track (ICSE-NIER). Buenos
Aires, Argentina: IEEE, 2017. p. 7–10. Citation on page 43.

SEGURA, S.; ZHOU, Z. Q. Metamorphic testing 20 years later: A hands-on introduction. In:
Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings. Gothenburg, Sweden: IEEE, 2018. p. 538–539. Citation on page 41.

SEQUEIROS, J. B. F.; CHIMUCO, F. T.; SAMAILA, M. G.; FREIRE, M. M.; INÁCIO, P. R. M.
Attack and system modeling applied to iot, cloud, and mobile ecosystems: Embedding security
by design. ACM Computing Surveys (CSUR), Association for Computing Machinery, v. 53,
n. 2, p. 25:1–25:32, 2020. Citation on page 27.

https://www.skyboxsecurity.com/resources/report/vulnerability-threat-trends-mid-year-report-2020/
https://www.skyboxsecurity.com/resources/report/vulnerability-threat-trends-mid-year-report-2020/

Bibliography 119

SHAHRIAR, H.; NORTH, S.; MAWANGI, E. Testing of memory leak in android applications. In:
Proceedings of the 15th International Symposium on High-Assurance Systems Engineering.
Miami Beach, FL, USA: IEEE, 2014. p. 176–183. Citation on page 57.

. Testing of memory leak in android applications. In: Proceedings of the 15th International
Symposium on High-Assurance Systems Engineering. New York, NY, USA: IEEE, 2014. p.
176–183. Citations on pages 69, 72, and 73.

SHI, S.; WANG, X.; LAU, W. C. Mossot: An automated blackbox tester for single sign-on
vulnerabilities in mobile applications. In: Proceedings of the Asia Conference on Computer
and Communications Security (ASIACCS). New York, NY, USA: ACM, 2019. p. 269–282.
Citations on pages 31, 69, 71, 72, and 77.

. Mossot: An automated blackbox tester for single sign-on vulnerabilities in mobile applica-
tions. In: Proceedings of the Asia Conference on Computer and Communications Security.
Auckland, New Zealand: ACM, 2019. p. 269–282. Citation on page 58.

SOMMERVILLE, I. Software Engineering. 9th. ed. USA: Addison-Wesley Publishing Com-
pany, 2011. ISBN 0137035152. Citation on page 34.

STAROV, O.; VILKOMIR, S.; GORBENKO, A.; KHARCHENKO, V. Testing-as-a-Service for
Mobile Applications: State-of-the-Art Survey. Cham: Springer, 2015. Citation on page 46.

SUN, C.-A.; DAI, H.; GENG, N.; LIU, H.; CHEN, T. Y.; WU, P.; CAI, Y.; WANG, J. An
interleaving guided metamorphic testing approach for concurrent programs. ACM Transactions
on Software Engineering and Methodology, ACM New York, NY, v. 33, n. 1, p. 1–21, 2023.
Citations on pages 42 and 43.

TIAN-YANG, G.; YIN-SHENG, S.; YOU-YUAN, F. Research on software security testing.
World Academy of science, engineering and Technology, Citeseer, v. 70, p. 647–651, 2010.
Citation on page 55.

TRAMONTANA, P.; AMALFITANO, D.; AMATUCCI, N.; FASOLINO, A. R. Automated
functional testing of mobile applications: a systematic mapping study. Software Quality Journal,
v. 27, n. 1, p. 149–201, 2019. Citations on pages 47 and 65.

TSE, T.; YAU, S. S. Testing context-sensitive middleware-based software applications. In: Pro-
ceedings of the 28th Annual International Computer Software and Applications Conference,
2004. COMPSAC 2004. Hong Kong, China: IEEE, 2004. p. 458–466. Citations on pages 29,
42, 43, and 51.

VARA, J. L. D. L.; WNUK, K.; BERNTSSON-SVENSSON, R.; SÁNCHEZ, J.; REGNELL,
B. An empirical study on the importance of quality requirements in industry. In: Proceedings
of the Software Engineering and Knowledge Engineering (SEKE). Miami Beach, Florida,
USA: ACM, 2011. p. 438–443. Citation on page 37.

VASQUEZ, M. L.; BERNAL-CÁRDENAS, C.; MORAN, K.; POSHYVANYK, D. How do
developers test android applications? In: Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME). Shanghai, China: IEEE, 2017. Citation on
page 48.

120 Bibliography

VASQUEZ, M. L.; MORAN, K.; POSHYVANYK, D. Continuous, evolutionary and large-scale:
A new perspective for automated mobile app testing. In: Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). Shanghai, China: IEEE, 2017.
Citations on pages 48 and 49.

VILLAMIZAR, H.; KALINOWSKI, M.; GARCIA, A.; MENDEZ, D. An efficient approach
for reviewing security-related aspects in agile requirements specifications of web applications.
Requirements Engineering, Springer, v. 25, n. 4, p. 439–468, 2020. Citation on page 28.

WANG, B.; YANG, C.; MA, J. Iafdroid: Demystifying collusion attacks in android ecosystem
via precise inter-app analysis. IEEE Transactions on Information Forensics and Security,
IEEE, 2023. Citation on page 57.

WANG, T.; LIANG, P.; LU, M. What aspects do non-functional requirements in app user reviews
describe? an exploratory and comparative study. In: Proceedings of the 25th Asia-Pacific
Software Engineering Conference (APSEC). Nara, Japan: IEEE, 2018. p. 494–503. Citation
on page 50.

WANG, Y.; XU, G.; LIU, X.; MAO, W.; SI, C.; PEDRYCZ, W.; WANG, W. Identifying vulnera-
bilities of ssl/tls certificate verification in android apps with static and dynamic analysis. Journal
of Systems and Software, Elsevier, v. 167, p. 110609, 2020. Citations on pages 31 and 58.

. Identifying vulnerabilities of ssl/tls certificate verification in android apps with static
and dynamic analysis. Journal of Systems and Software, Elsevier, v. 167, p. 110609, 2020.
Citations on pages 62, 69, 71, 72, and 73.

WASSERMAN, T. Software engineering issues for mobile application development. In: Pro-
ceedings of the FSE/SDP workshop on Future of software engineering research. Santa Fe,
New Mexico, USA: ACM, 2010. p. 397–400. Citation on page 45.

WEI, X.; WOLF, M. A survey on https implementation by android apps: issues and countermea-
sures. Applied Computing and Informatics, Elsevier, v. 13, n. 2, p. 101–117, 2017. Citation
on page 62.

WEYUKER, E. J. On testing non-testable programs. The Computer Journal, p. 465–470, 1982.
Citations on pages 29 and 39.

XIE, J.; LIPFORD, H. R.; CHU, B. Why do programmers make security errors? In: Proceed-
ings of the Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
Pittsburgh, PA, USA: IEEE, 2011. p. 161–164. Citation on page 28.

YANG, K.; ZHUGE, J.; WANG, Y.; ZHOU, L.; DUAN, H. Intentfuzzer: detecting capability
leaks of android applications. In: Proceedings of the 9th Symposium on Information, computer
and communications security. New York, NY, USA: ACM, 2014. p. 531–536. Citations on
pages 69, 71, and 73.

YA’U, B. I.; SALLEH, N.; NORDIN, A.; IDRIS, N. B.; ABAS, H.; ALWAN, A. A. A system-
atic mapping study on cloud-based mobile application testing. Journal of Information and
Communication Technology, v. 18, n. 4, p. 485–527, 2019. Citation on page 47.

YEH, C. C.; LU, H. L.; CHEN, C. Y.; KHOR, K. K.; HUANG, S. K. Craxdroid: Automatic
android system testing by selective symbolic execution. In: Proceedings of the 8th International
Conference on Software Security and Reliability-Companion. San Francisco, CA, USA:
IEEE, 2014. p. 140–148. Citations on pages 58 and 59.

Bibliography 121

YU, S.; FANG, C.; YUN, Y.; FENG, Y. Layout and image recognition driving cross-platform
automated mobile testing. In: Proceedings of the IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). New York, NY, USA: IEEE, 2021. p. 1561–1571. Citations
on pages 27 and 101.

YUSOP, N.; KAMALRUDIN, M.; SIDEK, S.; GRUNDY, J. Automated support to capture and
validate security requirements for mobile apps. In: Proceedings of the Asia Pacific Require-
ments Engineering Conference (APSEC). Singapore: Springer, 2016. p. 97–112. Citations on
pages 69, 70, and 72.

ZEIN, S.; SALLEH, N.; GRUNDY, J. A systematic mapping study of mobile application testing
techniques. Journal of Systems and Software, Elsevier Science Inc., USA, v. 117, n. C, p.
334–356, Jul. 2016. ISSN 0164-1212. Available: <https://doi.org/10.1016/j.jss.2016.03.065>.
Citations on pages 46 and 65.

ZHANG, J.; TIAN, C.; DUAN, Z. An efficient approach for taint analysis of android applications.
Computers & Security, Elsevier, v. 104, p. 102161, 2021. Citation on page 57.

ZHOU, Z. Q.; TSE, T.; KUO, F.; CHEN, T. Automated functional testing of web search engines
in the absence of an oracle. Department of Computer Science, The University of Hong Kong,
Tech. Rep. TR-2007-06, 2007. Citations on pages 29, 42, 43, and 51.

ZHOU, Z. Q.; XIANG, S.; CHEN, T. Y. Metamorphic testing for software quality assessment:
A study of search engines. IEEE Transactions on Software Engineering, p. 264–284, 2016.
Citation on page 39.

ZOU, J.; XU, L.; YANG, M.; ZHANG, X.; YANG, D. Towards comprehending the non-
functional requirements through developers’ eyes: An exploration of stack overflow using
topic analysis. Information and Software Technology, p. 19–32, 2017. Citation on page 37.

https://doi.org/10.1016/j.jss.2016.03.065

123

APPENDIX

A
SYSTEMATIC MAPPING PAPER

This Appendix includes the published article titled Dynamic testing techniques of non-

functional requirements in mobile apps: A systematic mapping study, which provides a detailed
description of the systematic mapping process, methodology, and findings as part of this PhD
research. The article has been submitted, accepted, and published at the ACM Computing Surveys
(CSUR) (JUNIOR et al., 2022). Readers are encouraged to refer to the article for more detailed
information on the systematic mapping and its results.

• JUNIOR, M. C., AMALFITANO, D., GARCES, L., FASOLINO, A. R., ANDRADE, S.
A., DELAMARO, M. (2022). Dynamic testing techniques of non-functional requirements
in mobile apps: A systematic mapping study. ACM Computing Surveys (CSUR), 54(10s),
1-38. Available: <https://doi.org/10.1145/3507903>.

https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903
https://doi.org/10.1145/3507903

1

Dynamic Testing Techniques of Non-Functional
Requirements in Mobile Apps: A Systematic Mapping Study

MISAEL C. JÚNIOR, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
ICMC-USP, Brazil
DOMENICO AMALFITANO, Department of Electrical Engineering and Information Technology, Uni-
versity of Naples Federico II, DIETI-UNINA, Italy
LINA GARCÉS, Instituto de Matemática e Computação, Universidade Federal de Itajubá, IMC-UNIFEI,
Brazil
ANNA RITA FASOLINO, Department of Electrical Engineering and Information Technology, University
of Naples Federico II, DIETI-UNINA, Italy
STEVÃO A. ANDRADE and MÁRCIO DELAMARO, Instituto de Ciências Matemáticas e de Com-
putação, Universidade de São Paulo, ICMC-USP, Brazil

Context: The mobile app market is continually growing offering solutions to almost all aspects of people’s
lives, e.g., healthcare, business, entertainment, as well as the stakeholders’ demand for apps that are more
secure, portable, easy to use, among other Non-Functional Requirements (NFRs). Therefore, manufacturers
should guarantee that their mobile apps achieve high-quality levels. A good strategy is to include software
testing and quality assurance activities during the whole life cycle of such solutions.
Problem: Systematically warranting NFRs is not an easy task for any software product. Software engineers
must take important decisions before adopting testing techniques and automation tools to support such
endeavors.
Proposal: To provide to the software engineers with a broad overview of existing dynamic techniques and
automation tools for testing mobile apps regarding NFRs.
Methods:We planned and conducted a Systematic Mapping Study (SMS) following well-established guidelines
for executing secondary studies in software engineering.
Results:We found 56 primary studies and characterized their contributions based on testing strategies, testing
approaches, explored mobile platforms, and the proposed tools.
Conclusions: The characterization allowed us to identify and discuss important trends and opportunities
that can benefit both academics and practitioners.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering →
Extra-functional properties.

Authors’ addresses: Misael C. Júnior, misaeljr@usp.br, Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, ICMC-USP, Av. Trab. São Carlense, 400 - Centro., São Carlos, SP, Brazil, 13566-590; Domenico Amalfitano,
domenico.amalfitano@unina.it, Department of Electrical Engineering and Information Technology, University of Naples
Federico II, DIETI-UNINA, Via Claudio 21, Napoli, Campania, Italy, 80125; Lina Garcés, lina@unifei.edu.br, Instituto de
Matemática e Computação, Universidade Federal de Itajubá, IMC-UNIFEI, Av. B P S, 1303 - Pinheirinho, Itajubá, MG, Brazil,
37500-903; Anna Rita Fasolino, fasolino@unina.it, Department of Electrical Engineering and Information Technology,
University of Naples Federico II, DIETI-UNINA, Via Claudio 21, Napoli, Campania, Italy, 80125; Stevão A. Andrade,
stevao@usp.br; Márcio Delamaro, delamaro@icmc.usp.br, Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, ICMC-USP, Av. Trab. São Carlense, 400 - Centro., São Carlos, SP, Brazil, 13566-590.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2021/1-ART1 $15.00
https://doi.org/10.1145/3507903

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:2 Junior and Amalfitano, et al.

Additional Key Words and Phrases: Software testing, dynamic testing techniques, mobile apps, non-functional
requirements, systematic mapping

ACM Reference Format:
Misael C. Júnior, Domenico Amalfitano, Lina Garcés, Anna Rita Fasolino, Stevão A. Andrade, and Márcio
Delamaro. 2021. Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic
Mapping Study. ACM Comput. Surv. 1, 1, Article 1 (January 2021), 37 pages. https://doi.org/10.1145/3507903

1 INTRODUCTION
The mobile device market is constantly growing. In 2020, there were 3.5 billion smartphone users
Worldwide [66]. Two of the most used mobile operating systems are: Google Android and Apple
iOS, which have 84.8% and 15.2% of market users, respectively [17]. The diffusion of mobile devices
is strictly related to an ever-increasing number of mobile apps that are of common use by helping
users in various daily activities, from recreational and entertainment, such as playing Among
Us, watching Netflix series, or chatting with Instagram friends, to the most critical ones such as
paying for bills using bank accounts or controlling a home device. To have a better idea of the wide
diffusion of mobile apps available for users, more than 13.8 million mobile apps are available on
Google Play Store and the iOS App Store and more than 2.6 million publishers have distributed
their apps on these online stores.
As more and more apps are being developed not only for entertainment purposes, but also to

target safety and time critical domains, the quality of these apps has become crucial. Mobile apps
need to be secure, as they commonly track our movements, follow our interests, and increasingly
control our world, via IoT connected devices [73]. Usability is another key quality characteristic
(q.c.) for a mobile app as users of an application, and their judgment, ultimately decide on its success
or failure [30]. Mobile apps have to be efficient, be able to prevent excessive CPU, memory and
energy consumption [5]. They should offer high performance in terms of throughput levels and
response times. Another highly required q.c. of mobile apps is the capability to behave as expected
across the combination of mobile devices and platforms their customers are using [87].
Testing is the most commonly used approach to assure the quality of software applications.

Mobile app testing has attracted the interest of the software engineering community over the last
decade and many methods, techniques and tools for testing both functional and non-functional
requirements of mobile apps have been proposed in the literature. Non-functional requirement
(NFR) testing stands out compared to functional testing, as for each specific q.c. different strategies
need to be used for test generation, different techniques and infrastructures to execute tests and to
assess their results, and different types of tools to support the testing process execution.
Several secondary studies in mobile app testing have recently tried to provide a systematic

overview and analysis of the different contributions emerged in this wide field of research. This
literature has mainly focused on specific concerns, such as automated testing techniques [4, 62],
automated functional testing of mobile apps [48, 80], or testing of mobile context-aware applications
[59]. Other secondary studies have investigated mobile app testing techniques in general [89].
Although the specific challenges and current solutions for NFR testing of mobile devices and
applications are often mentioned in these reviews, little attention has been paid to providing an
overview of the state of the art in this specific field, as shown in Section 3. At the best of our
knowledge this is the first secondary study that is specific for non-functional requirements testing
in the mobile apps context.

To fill this gap, we decided to perform a Systematic Mapping Study (SMS) that concentrates on
the testing techniques that are specific to NFRs. The main goal of our SMS is to provide a broad
discussion on the NFRs dynamic testing in mobile apps that focuses on addressed q.c. (s), adopted
testing strategies, explored mobile platforms, and supporting tools.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:3

We provide various discussions from 56 selected studies that clearly address NFRs testing in
mobile apps. As a result, our SMS provides the following contributions:

1 an overview of the NFR testing techniques applied to mobile apps
2 a broad characterization of NFR testing techniques based on the addressed q.c. (s), the adopted
testing approaches and strategies

3 a wide discussion on the explored mobile platforms and the tools supporting the NFR testing
techniques

4 a discussion on the future research trends and opportunities in this field of research
It should be consistent with the content of the paper: This study is organized as follows. Section

2 introduces the theoretical background used in this mapping. Section 3 describes the related work
and shows how our study contributes to the state of the art in mobile app testing. Section 4 shows
in detail how this mapping was planned and executed. Section 5, 6, and 7 relate the results and
discussions we obtained by answering, respectively, G1, G2, and G3. Section 8 provides our findings
for each research goal and open research challenges that we identified. Section 9 discusses the main
threats to validity of the study and the actions taken to mitigate them. Finally, the conclusions are
drawn in Section 10.

2 BACKGROUND
In the following sections, the main concepts and term definitions we adopted in this systematic
mapping are presented.

2.1 Description and Classification of Non-Functional Requirements
Differently from Functional Requirements (FRs) that specify what a software system has to do to
solve stakeholders’ needs, NFRs define the degree to which a product or system provides functions
that meet these needs when it is used under specified conditions [68, 77]. NFRs define in detail
constraints to the software system related to the organization, context, environment, government,
market, and levels of quality (e.g., security, performance, or reliability) [68, 77]. An example of an
NFR is the General Data Protection Regulations (GDPR) imposed by governments on any software
system that operates in a specific region. Non-functional requirements have been addressed in
international standards as part of the software and systems quality initiative, Adams [2]. Both the
earlier ISO/IEC Standard 9126 (ISO/IEC 1991) [31] and its replacement ISO/IEC Std 25010 (ISO/IEC
2011) titled "Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models" [32], include NFRs, definitions, and how
tomeasure them as part of a systems endeavor Adams [2]. The ISO/IEC/IEEE 29119-1 called "Software
and systems engineering-Software testing-Part 1: Concepts and definitions" [33] strictly relates the
NFRs to the quality characteristics of a software product. These software quality characteristics
are the ones defined in the SQuaRE that proposes a model that categorizes software product
quality properties into eight characteristics, namely, functional suitability, reliability, performance
efficiency, usability, security, compatibility, maintainability and portability. The ISO/IEC/IEEE
29119-1 classifies the requirements into two main categories, i.e. FRs and NFRs. FRs are aligned
to the Functional Suitability quality characteristic outlined in ISO/IEC 25010, whereas the NFRs
are linked to the remaining seven quality characteristics (a.k.a. quality attributes, q.a) outlined in
SQuaRE. Henceforth, we will use the terms non-functional requirement and quality characteristic
(q.c.) without distinctions in this paper. The SQuaRE [32] also defines for each q.c. a set of Sub-
characteristics representing in more detail the different ways in which the quality of the software
product can be assessed. In the following section, we report a brief description of the quality
characteristics defined in SQuaRE [32]:

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Junior and Amalfitano, et al.

• The Performance efficiency q.c. represents the performance related to the number of resources
exploited by the software when it runs under stated conditions

• The Compatibility q.c. describes the degree to which a software system can exchange in-
formation with other software products, software systems or software components. This
characteristic also expresses the degree to which a software system performs its required
functions, while sharing the same hardware or software environment with other software
products, software systems or software components

• The Usability q.c. indicates the degree to which a software system can be used by specific
users to achieve well defined goals with effectiveness, efficiency and satisfaction in a given
context of use

• The Reliability q.c. reports the degree to which a software system executes given functions
in specified conditions for a given time period

• The Security q.c. defines the degree to which a software system protects the access to
information and data to persons or other software systems that have not the appropriate
degree of data access according to their types and levels of authorization

• The Maintainability q.c. characterizes the degree of to which a software system can be
modified by maintainers effectively and efficiently. Examples of modifications are corrections,
improvements or adaptation of the software to changes in environment, requirements, and
functional specifications. The installation of updates or upgrades is considered as a kind of
maintenance

• The Portability q.c. expresses the degree of effectiveness and efficiency with which a software
system can be transferred toward new hardware, software, operational or usage environment

2.2 Description and Classification of Test Techniques
Testing is a systematic process for revealing the presence of faults in software. This activity is
of utmost importance for developing high-quality software systems by assessing its functional
and non-functional requirements [22, 68, 77]. As defined in ISO/IEC/IEEE 29119-1-2013, the main
purpose of test design techniques is to help testers find defects in test items as effectively and
efficiently as possible. The ISO/IEC/IEEE 29119-1-2013 also classifies the testing techniques in
static testing and dynamic testing. Static testing is typically exploited to identify apparent defects
("issues") in documentary test items or anomalies in source code. It includes various activities,
such as static code analysis, cross document traceability analysis and reviews. On the other hand,
dynamic testing aims to find defects by forcing failures of executable test items. The main goal of
dynamic testing is to derive test cases that have to be executed on a running test item. Our interest
lies only in dynamic testing techniques from now on in this paper and we will use the terms testing
technique and dynamic testing technique without any distinctions. In practice, testers usually apply
one or more test techniques to derive test cases and procedures with the main goal of achieving a
given test completion criteria, typically described in terms of test coverage measures [27], and so,
to detect as many failures as possible [14]. Figure 1 shows the two classifications we adopted in
this paper to describe the testing techniques. Each testing technique can be characterized by the
strategy and the approach it adopts.

According to Myers et al. [64] the testing techniques can be classified on the basis of the adopted
testing strategy, i.e., white box, black box, or hybrid. The testing techniques, based on white box (also
called glass box) strategies, derive the tests by exploiting information about how the software has
been designed or coded. On the other hand, the testing techniques relying on black box strategies
(also known as data-driven or input/output-driven) strategies, generating test cases by considering
the input/output behavior of the software under testing. In this approach, test data are derived
solely from the specifications of the program under testing, i.e., without taking advantage of the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:5

knowledge of its internal structure. Testing techniques combiningwhite box and black box strategies
are defined as hybrid.

Test Technique

Strategy Approach

White box Black box Hybrid

Based on software
engineer’s intuition

and experience

Input Domain-Based
Techniques

Code-Based
Techniques

Fault-Based
Techniques

Usage-Based
Techniques

Model-Based
Testing Techniques

Techniques Based
on the Nature of the

Application

Fig. 1. Testing Techniques Classification, according to [14] and [64].

The other classification takes into account the testing approach used by the testing technique.
The Software Engineering Body Of Knowledge (SWEBOK) [14] classifies the testing techniques
in seven categories of approaches and a testing technique can belong to one or more approaches.
Moreover, each category may be further specialized in sub categories of approaches. In the following
section, we provide a brief description of the testing techniques and their sub categories as defined
in [14]:

• The Based on the Software Engineer’s Intuition and Experience (SEIE) category refers to ap-
proaches where tests are generated based on the skills and the knowledge of the software
engineer involved in the test process. It comprises two sub-categories, i.e., Ad Hoc (AH) and
Exploratory Testing (ET). The former refers to testing techniques where the tests are obtained
only by relying on the expertise that the software engineer has about the software system
under testing or in similar software systems. The latter indicates testing techniques where
the tests are not preliminary defined in a test plan, but, rather they are dynamically designed,
executed, or modified

• The Input Domain Based (IDB) category indicates approaches where tests are generated only
by taking into account the properties of the inputs of the software system under testing. It is
specialized in the following four sub-categories: Equivalence Partitioning (EP), Pairwise Testing
(PT), Boundary Value Analysis (BVA), and Random Testing (RT). In Equivalence Partitioning, the
input domain is preliminary partitioned into a collection of equivalency classes. Afterward, a
set of tests is derived from each equivalency class. The Pairwise Testing refers to specific
combinatorial approaches where the tests are derived by combining values of interest for
every pair of a set of input variables. Boundary-Value Analysis denotes approaches where
tests are derived by choosing values near the boundaries of the variables input domain.
Random Testing represents approaches generating tests purely at random

• The Code Based (CB) category reports on testing approaches where tests are generated by
taking into account the properties of code implementing the software system under testing.
This category is specialized in two sub-categories, i.e., Control Flow Based (CFB), and Data
Flow Based (DFB). The former refers to approaches generating tests aimed at covering all
statements, blocks of statements, or specified combinations of statements in the source code
of the software system under testing. The latter represents approaches that produce tests

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Junior and Amalfitano, et al.

aiming at execution for each variable in each segment of the control flow path, from the
definition of that variable until its use

• The Fault-Based (FB) category denotes testing approaches where tests are generated for
revealing specific types of faults, usually defined through a fault model. It is further specialized
in two sub-categories that are Error Guessing (EG) and Mutation Testing (MT). In Error
Guessing, the tests are designed relying on the history of the faults in previous projects or
based on the software engineer’s expertise in anticipating the most plausible faults in the
software system under testing. Mutation Testing refers to testing techniques where tests are
executed on both the original program and on all its mutants, i.e., modified versions of the
original program where changes, resembling common mistakes made by programmers, have
been introduced

• The Usage-Based (UB) category characterizes to testing approaches aimed to generate tests
that resemble asmuch as possible the behavior of the human user of the software system under
testing. It comprises two sub-categories, i.e., Operational Profile (OP), and User Observation
Heuristics (UOH). In the Operational Profile, the tests are derived by taking into account
the operational profiles of the users. These approaches usually need a test environment
reproducing as closely as possible the operational environment and the user profiles for
emulating specific usages and criticality of the functions provided by the system under testing.
The User Observation Heuristics class refers to testing approaches where tests are derived by
taking into account usability principles

• The Model-Based (MB) category describes testing approaches exploiting models to derive the
tests. A model is an abstract, formal in some cases, representative of the software system
under testing. Model-based approaches can be further specified based on the models used
to represent the system under testing. Hence, model-based testing approaches include the
following four sub-categories: Decision Tables (DT), Finite-State Machines (FSM), Formal
Specifications (FS), and Workflow Models (WM)

• The Based on the Nature of the Application (BNA) category specifies testing techniques
where the tests are designed and execution is based only on the specific nature of the
software system under testing, such as object-oriented software, component-based software,
concurrent programs, etc

2.3 Software Testing Tools
Testing processes require the executing a large number of labor-intensive, time-consuming and
error-prone activities. To support software engineers in executing these tasks usually sophisticated
tools are adopted [14]. These tools are distributed according to different licenses. Free and Open-
Source Software (FOSS) tools are licensed to be freely used, copied, and changed by anyone. Moreover,
the source code is available. Proprietary software tools are usually paid and are distributed under
restrictive copyright licensing. The source code is usually unavailable to users. Freeware tools can
be freely used by anyone, but the source code is not available.
We adopted the classification proposed by Bourque et al. [14] to characterize the testing tools

based on the functionality they provide to the practitioners. Based on this classification, a testing
tool can belong to one or more of the following categories:

• The Test harnesses (drivers, stubs) (TH) category refers to tools providing a complex controlled
environment, made by driver and stubs, where tests can be generated and executed on the
fly, or stored, planned, and executed. These tools are also able to log the results of the test
executions

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:7

• The Test generators (TG) category indicates tools providing complex features for automatic
test case generation

• The Capture/replay (CR) category describes tools able to record the interactions the user has
with the application under test (usually with the user interface). Capture/replay tools also
store the recorded interactions in a common shared repository and enables them all to be
replayed or a selected subset of them

• The Oracle/file comparators and assertion checking (OC) category refers to tools that provide
features for defining and executing complex oracles automatically. Oracles are used to check
the presence of failure in the tested application, at run-time

• The Coverage analyzers and instrumenters (CAI) category specifies tools that are able to
generate test cases by source code analysis. In this category, tools able to insert probes in the
source code and the tools performing source code analysis and reverse engineering are also
included

• The Tracers (T) category characterizes tools providing features for logging, in text files,
execution data, such as: execution paths, energy consumption, memory occupancy, network
traffic, etc

• The Regression testing (RT) category denotes tools that, in response to a code change, are able
to select and execute automatically only the test cases needed to test the modified code

• The Reliability evaluation (RE) category expresses tools that provide rich graphical user
interfaces to support the test engineers to perform complex statistical analysis of reliability-
related measures

3 RELATEDWORK
One of the first surveys in the research area of software testing for mobile applications was reported
in 2012 by Janicki et al. [37]. The authors conducted a semi-supervised and group-administered
survey with 49 mobile software engineers. They identified the expectations and challenges related
to automatic test generation and execution, some obstacles of introducing automatic test tools in
industry, and metrics and reports to help convince companies to try the technology.

In 2015, Janicki’s workwas preceded by three other literature reviews [62, 71, 78]. Starov et al. [78]
provides an introduction to themain challenges inmobile app testing. They discussed some issues for
cloud testing and investigated cloud services and testing-as-a-service resources that could improve
mobile app testing, covering different types of mobile testing features. Furthermore, Sahinoglu
et al. [71] focused on mobile app testing, relating it with test levels (e.g., system, acceptance, unit,
component, integration) and q.c. (s) (i.e., compatibility, concurrent, conformance, performance,
security, usability), and presented how different issues for validating those apps are addressed.
Méndez Porras et al. [62] surveyed 83 primary studies. The authors provided an overview on
automated testing approaches for mobile applications, testing techniques, and empirical assessment.
They also investigated the major challenges in automated testing of mobile applications. As a result,
they identified the following as main approaches, model-based testing, capture/replay, model-
learning testing, systematic testing, fuzz testing, random testing and scripted based testing. By
2015, they observed an increase in proposals for automated mobile app testing.

One year later, Zein et al. [89] published a systematic mapping study that categorized and struc-
tured evidence obtained from 79 primary studies. The authors identified important needs while
developing mobile software, such as eliciting test requirements early on in the development process,
conducting research in real-world development environments, specifying testing techniques aimed
at lifecycle compliance of applications and mobile service testing, as well as performing benchmark-
ing studies for security and usability testing. In 2018, Kaur and Kaur [40] was the first secondary
study aiming to identify and understand techniques to estimate testing effort in mobile applications.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Junior and Amalfitano, et al.

Additionally, they summarize some characteristics that make mobile software/applications different
from traditional software (e.g., desktop or web).

Secondary studies in mobile app testing have been predominant over the last two years [3, 4, 48,
59, 80, 86]. Luo et al. [59] aimed to give an overview of the simulation methods, i.e., data-driven
and model-based, for testing mobile context-aware applications. This study also discusses how
each method can be implemented and deployed by testing tool developers and mobile application
testers. The systematic mapping conducted by Almeida et al. [4] identified and discussed the state
of the art on tools that allow the automation of testing Android context-aware applications. The
authors surveyed 68 primary studies and identified which of the 80 tools found are oriented to
test context-aware characteristics in Android context-aware apps. As a result, they reported a lack
of tools for these apps supporting neither the automatic generation or execution of test cases in
high-level contexts, nor the asynchronous context variations. For the cloud domain, the mapping
study executed by Ya’u et al. [86] surveyed 23 primary studies to identify how testing is conducted in
mobile applications in this domain. The authors found diverse approaches to test GUI, compatibility,
functionality, and security characteristics. However, few of these approaches are supported by
automated testing tools. They also found that approaches lack portability among mobile platforms,
as well as the lack of exploring TaaS (testing as a service).

Two recent studies [48, 80] investigated automatic testing for mobile applications. Tramontana
et al. [80] analyzed 131 primary studies. This study investigated automatic testing tools based
on the supported testing activities, the characteristics of the techniques they present, and the
evaluation methodologies adopted to validate them. Kong et al. [48] offered an overview on existing
Android testing approaches. They analyzed 103 primary studies. Their investigation was focused
on identifying testing approaches, the test concerns and levels addressed by such approaches, and
how they have been built and validated. Based on their findings, the authors proposed a taxonomy
of android app testing, considering test objectives (e.g., non-functional requirements), test targets
(i.e., parts of the App to be tested), test levels (e.g., integration, system, unit), and test techniques,
such as methods (e.g., model-based, search-based), testing environments (e.g., emulator, real device),
and testing types (e.g., white, black, or gray boxes).
Our systematic mapping contributes to the state of the art in the following ways: (i) offering

a more complete overview than related work; (ii) focusing on existing testing techniques that
deal with a broader set of q.c. (s), e.g., performance, security, usability, portability, reliability,
and compatibility, and other q.c.; (iii) considering different mobile platforms, i.e., Android, iOS,
Blackberry, LG, and Windows Phone; (iv) analyzing the involvement of the academic community
and industry in this important topic; (v) characterizing the techniques and tools for NFRs testing in
mobile applications; and (vi) identifying future trends.

4 SYSTEMATIC MAPPING PROCESS
The SMS was motivated by the lack and necessity of having an overview on the state of the art on
platform-independent dynamic testing techniques for mobile apps focused on NFRs (and not only
FRs).

The mapping study was designed following the guidelines proposed by Petersen et al. [67]. The
protocol was defined through extensive discussions between all researchers involved in this study.
In the remaining of this section, the SMS protocol is presented, detailing goals, research questions,
search strategy, inclusion and exclusion criteria, strategies for data extraction and data synthesis,
and the selection process.

4.1 Goals, ResearchQuestions, and Metrics
s

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:9

The main goal of this SMS is to identify, evaluate and collect available and relevant research
about dynamic NFR testing techniques on mobile applications. To design our research, we used
the Goal–Question–Metric (GQM) approach [16]. By doing so, we refined the main goal into three
research goals as listed in Table 1. For each goal we also defined a set of RQs and the rationale
indicating what is expected from the answer (Table 2). The RQs were specified in a generic form to
obtain, over time, topics already explored and research trends to be investigated, as suggested in
Petersen et al. [67]. Table 3 presents the metrics planned to answer each RQ and the related data to
be extracted from the primary studies.

Table 1. Goals of the Systematic Mapping.

Goal ID Goal Rationale
G1 To characterize the studies proposing techniques for testing

NFRs in mobile apps
This provided to characterize the research works in the area
of NFR testing techniques for mobile apps.

G2 To describe the techniques proposed in the literature for test-
ing NFR in mobile apps.

This intended to characterize the NFR testing techniques for
mobile apps.

G3 To analyze the tool support of NFR testing techniques for
mobile apps.

The aim is to characterize the tools proposed in the literature
to support the execution of NFR testing techniques for mobile
apps.

Table 2. Proposed ResearchQuestions.

Goal ID RQ ID Research Question By answering this RQ, the researcher will find out

G1

𝑅𝑄11 What is the articles count per year? what efforts to consolidate this research area have been in-
vested by the research community over the years.

𝑅𝑄12 What is the article count by venue type? the venues in which relevant studies for this research area
have been published.

𝑅𝑄13 What is the article count by collaboration type? the collaboration type between academia and industry in
proposing techniques to test NFRs for mobile apps.

𝑅𝑄14 Which are the most influential articles? the most relevant publications in this research area.
𝑅𝑄15 Which is the article count by country? which countries are leading this research area.

G2

𝑅𝑄21 Which are the quality characteristics addressed for testing
NFRs in mobile apps?

the quality characteristics that have received more interest (or
are more critical) to be tested in mobile apps.

𝑅𝑄22 Which are the mobile platforms tackled by NFR testing? the tendency of proposing testing techniques based on specific
mobile platforms.

𝑅𝑄23 Which are the testing strategies adopted for NFRs testing? the tendency of using specific strategies to test NFRs formobile
apps.

𝑅𝑄24 Which are the testing approaches used to test NFRs in mobile
apps?

the direction of the testing approaches adopted to test NFRs
in mobile apps.

G3 𝑅𝑄31 How many of the identified NFRs testing techniques are tool
supported?

which percentage of the existing NFRs testing techniques for
mobile apps are tool supported.

𝑅𝑄32 What are the adoption levels (in %) of "Proprietary", "Freeware",
"Free and Open" tools?

the software licenses of the tools used to support the execution
of NFR testing in mobile apps1.

𝑅𝑄33 Which are the tool types used to support the execution of NFR
testing techniques for mobile apps?

the tendencies of the tool types used to support the execution
of NFRs testing techniques for mobile apps.

4.2 Search Strategy
To perform a systematic selection of relevant primary studies for our research, we specified a search
strategy by considering the guidelines proposed by Kitchenham and Charters [45] as described in
the following section.

4.2.1 Construction of the Search String. To systematically identify the terms of the search string,
we adopted the PICOC (Population, Intervention, Comparison, Outcome, and Context) criteria as
suggested in [67], and described as follows:

• Population refers to the terms related to the main object being investigated, i.e., mobile
applications. We observed that a wide number of papers are focused on apps implemented
for a specific mobile operating system such as Android or iOS

• Intervention indicates the terms that are related to approaches or tools involving the population

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Junior and Amalfitano, et al.

Table 3. Proposed Metrics.

RQ ID Metric Extracted Data
𝑅𝑄11 Count the number of papers grouped by year The publication year
𝑅𝑄12 Count the number of papers grouped by Venue The publication venue ∈ {Workshop, Symposium, Conference,

Journal}
𝑅𝑄13 Count the number of papers grouped by Collaboration Type. The collaboration type ∈ {Academic, Industrial, Crosscutting}
𝑅𝑄14 Report the first 10 papers having more citations. The citations count
𝑅𝑄15 Count the number of papers grouped by country The first author affiliation country
𝑅𝑄21 Count the number of papers grouped by quality characteristics The quality characteristics under test.
𝑅𝑄22 Count the number of papers grouped by mobile platform. The tackled mobile platforms.
𝑅𝑄23 Count the number of papers grouped by testing approach The adopted testing approaches.
𝑅𝑄24 Count the number of papers grouped by testing strategy The adopted testing strategy
𝑅𝑄31 Count the number of papers grouped by "tool supported tech-

nique" and "no tool supported technique"
The testing technique is tool supported or not

𝑅𝑄32 Count the number of tools grouped by license For each tool extracted to answer 𝑅𝑄31, extract its license
𝑅𝑄33 Count the number of tools grouped by type For each tool extracted to answer 𝑅𝑄31, derive its type

• Comparison refers to the software engineering methodology/tool/technology/procedure with
which the intervention should be compared. A comparison has not been made in our research
as it is a more adequate for systematic literature reviews

• Outcome relates to factors of importance to practitioners’ concerns, i.e., the q.c. presented in
Section 2. Preliminary initial searches showed that performance efficiency testing techniques
have been published in the literature as energy consumption or energy bug detection testing
approaches. This justifies the additional term, i.e., Energy, we added to the q.c. proposed by
the ISO/IEC 25010 International Standard

• Context refers to terms related to the testing approaches involving the considered population
The RQs were broken down into facets and a list of synonyms, abbreviations, and alternative

spellings for each term of the PICOC was defined by Kitchenham and Charters [45]. Additional
terms were obtained by considering subject headings used in journals and scientific data bases. The
main terms and the synonyms we inferred for the PICOC components are shown in Table 4.

Table 4. PICOC main terms and their synonyms.

View point Main terms Synonym
Population Mobile App Mobile software, Mobile system, Android, iOS
Intervention Approach Technique, Method, Strategy, Activity, Methodology, Tool, Framework
Comparison N.A. N.A.

Outcome Non Functional Requirement Quality Attribute, Performance, Energy, Compatibility, Usability,
Reliability, Security, Maintainability, Portability

Context Test Testing, Verification, Validation

Moreover, the search string was validated by considering a test set of seven control studies
[21, 34, 46, 50, 72, 75, 91] previously identified by one of the authors. The test set was defined before
we started to define the search string. Therefore, the quality of the search string was evaluated by
verifying whether the control studies were returned by applying the string to the Scopus search
engine. The final search string we defined is the following.

Search String:
(“Mobile app” OR “Mobile software” OR “Mobile system” OR “Android” OR “iOS”) AND (“Approach” OR

“Technique” OR “Method” OR “Strategy” OR “Activity” OR “Methodology” OR “Tool” OR “Framework”) AND
(“Non Functional Requirement” OR “Quality Attribute” OR “Performance” OR “Energy” OR “Compatibility” OR
“Usability” OR “Reliability” OR “Security” OR “Maintainability” OR “Portability”) AND (“Test” OR “Testing” OR

“Validation” OR “Verification”)

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:11

4.2.2 Selection of the Information Sources. Table 5 shows the four scientific databases (selected as
our search scope) to retrieve potentially relevant studies in computer science, as defined by Dyba
et al. [23]. As each database has its own search interface, we needed to adapt the search string.
Adaptations are fully described in Junior et al. [39].

Table 5. List of Electronic Databases.

Search Engine Link
ACM Digital Library http://dl.acm.org/
IEEE Xplore http://ieeexplore.ieee.org/
Web of Science https://www.webofknowledge.com/
Scopus http://www.scopus.com/

4.3 Inclusion and Exclusion Criteria
In this section, we describe the exclusion and inclusion criteria used to filter the primary studies
retrieved from the selected electronic databases. To be excluded from our SMS, a paper has to
satisfy at least one of the twelve Exclusion Criteria (EC) listed below:

• (EC-1): studies that are duplicates
• (EC-2): studies that are not written in English
• (EC-3); studies reporting a summary, a conference call, a patent, or lecture notes
• (EC-4): studies that are in an initial stage, typically presenting an abstract, a summary of
future steps, poster, panel, or conference short paper (i.e., paper having less than 6 pages)

• (EC-5): studies that cannot be downloaded
• (EC-6): studies that do not belong to the Computer Science research domain, such as, biology,
finance, and digital forensics

• (EC-7): studies that are a preliminary or reduced version of a more extended work published
by the same main author

• (EC-8): studies that do not clearly propose and describe a dynamic testing technique, accord-
ing to the definition we pointed out in Section 2.2

• (EC-9): studies that do not present an evaluation of the proposed testing technique, such as:
case study, controlled experiment, proof of concept, empirical study, etc

• (EC-10): studies that present a comparison of testing techniques proposed by other authors;
• (EC-11): studies that do not explicitly point out the q.c. or sub-characteristics under testing
• (EC-12): studies that do not have mobile apps as objects of their research

Four Inclusion Criteria (IC) were used to add studies to our sample. To be accepted in our SMS,
the study must accomplish all the following IC:

• (IC-1): the study clearly describes and details the proposed testing technique for finding
defects related to NFR in mobile apps

• (IC-2): the study clearly describes and details the methods performed to evaluate the proposed
testing technique

• (IC-3): the study explicitly points out the q.c. (s) or sub-characteristic(s) under testing
• (IC-4): the study focuses on mobile app testing

4.4 Quality Assessment
For the aim of our mapping study, the quality assessment stage was not executed to avoid imposing
high requirements on the primary studies, allowing us to obtain a broad overview of the topic area
[44, 67].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Junior and Amalfitano, et al.

4.5 Selecting primary studies
To select primary studies, we planned and followed the two-stage process shown in Figure 2, which
is detailed as follows.

4.5.1 First Stage. It was executed to retrieve an initial set of primary studies relevant to our
mapping. This stage was conducted from March 2020 to July 2020 by four authors who accumulated
experience on mobile testing, NFR testing, and empirical studies. As shown in the Figure 2, this
stage relies on the execution of the following five consecutive activities:
(1) Database searches: in this step, one researcher adapted and executed the search string in the

four electronic databases. The search was filtered by title, abstract, and keywords. No time
limits were considered in the search. As a result of this step, we retrieved a total of 8182
primary studies.

(2) Removal of duplicates: One author aggregated all the retrieved studies in a unique bibtex file.
We used the JabRef tool to identify and remove duplicated studies. As a result, 2487 studies
were excluded and 5695 studies proceeded to the first selection step.

(3) First selection (title,abstract and keywords): The title, abstract, keywords and, when necessary,
conclusion sections of all primary studies were read by at least two researchers. They applied
the inclusion and exclusion criteria for each study, excluding 4922 studies. Moreover, 773
studies, which included some of our criteria labeled as a “doubt” study, were read in full in
the second selection step.

(4) Second selection (full text): Two researchers read the full text of all 773 primary studies
applying again the inclusion and exclusion criteria. As a result, 517 studies were excluded, 35
studies were included. 221 studies were labeled as a "Doubt" study as no consensus between
both researchers was achieved for those studies.

(5) Solving “doubt” primary studies: The 221 "doubt" studies were analyzed by a third senior
researcher, who decided to include 10 studies and exclude 211 studies.

As a result of the first stage, a total of 45 primary studies were included.

4.5.2 Second Stage. This refers to a snowballing process that was conducted in April 2021 and,
therefore, most of the analyzed studies were published in 2020. As shown in Figure 2 this stage
relies on the execution of five consecutive activities, four of them are actually the same activities
followed in the first stage:
(1) Primary studies retrieval by backward and forward snowballing: in this automatic step, 1903

primary studies were retrieved by applying backward and forward snowballing to the 45
papers selected in the first stage. More specifically, for each one of the 45 papers, in backward
snowballing, all the studies it referenced were gathered, whereas, in forward snowballing,
we collected from Google Scholar all the works citing it

(2) Removal of duplicates: duplicates primary studies were automatically removed from the set
of 1903 papers obtained in the previous step and 1650 documents were filtered out

(3) First selection (title,abstract and keywords): 423 papers from the 1650 were included for full
reading in the second selection. The remaining 1227 studies were excluded by the reviewers

(4) Second selection (full text): among the 423 primary studies included in the previous step,
401 studies were labeled as "No" and excluded. 9 primary studies were labeled as "Yes" and
added to the final set. The remaining 13 papers were labeled as "doubt" and transferred to
the following step

(5) Solving “doubt” primary studies: among the 13 doubt papers, 3 were added to the set of the 12
papers selected by snowballing

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:13

Primary studies retrieval
by search string Included studies = 8182

Removal of duplicates Included studies = 5695
-2487

First selection (title,
abstract and keywords) Included studies = 773

-4922

Second selection (full
text)

Included studies = 35
Doubt studies = 221

-517

Solving "doubt" primary

studies Included studies = 45

+10

Primary studies retrieval
by backward and forward

snowballing

Included studies = 1903

Removal of duplicates Included studies = 1650
-253

First selection (title,
abstract and keywords) Included studies = 423

Second selection (full
text)

Included studies = 9
Doubt studies = 13

Solving "doubt" primary

studies Included studies = 12

-1227

-401

+3

Merge and removal of

oldest versions Included studies = 56

-1

Second stageFirst stage

Fig. 2. Primary studies selection process.

(6) Merge and removal of oldest versions: the 45 papers retrieved in the first stage were merged to
the 12 studies obtained by snowballing to build the final set of 56. We removed one of the
studies found in the first stage as its updated and extended version was selected in the second
stage through snowballing. Table 12, in Appendix A, shows the list of the 56 selected papers

4.5.3 Details on First and Second selection steps execution. In both steps, the IC and EC were applied
following the process shown in Figure 3. The selection process was executed by two reviewers who
worked independently. Each reviewer labeled each primary study as:

• "Yes", if the reviewer considered the paper to be included according to all IC
• "No", if the reviewer considered the paper to be excluded according to any EC
• "Doubt", if the reviewer was not able to include or exclude the paper

After, the results were merged. Studies labeled as "Yes" by both reviewers were added to the set
of Included primary studies. Papers labeled as "No" by both reviewers were considered as Excluded.
All the remaining papers were considered as "Doubt". In the First selection step both Included and
Doubt papers passed to the Second step to be analyzed by full text reading. At the end of the Second
selection step Included and Doubt primary studies were not merged together. Doubt papers were
discussed and resolved by the two reviewers and a third one.

4.6 Data extraction
To extract data from the identified primary studies, we developed the extraction form shown in
Table 6. Each data extraction field has a data item and one or more values depending on the research
question it is related to. The extraction was performed by the first author and reviewed by the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Junior and Amalfitano, et al.

Input primary
studies

Pa
pe

rs
 s

el
ec

tio
n

by
 re

vi
ew

er
 1

Primary studies
labeled as "Yes"

Primary studies
labeled as "No"

Primary studies
labeled as "Doubt"

Pa
pe

rs
 s

el
ec

tio
n

by
 re

vi
ew

er
 2

Primary studies
labeled as "Yes"

Primary studies
labeled as "No"

Primary studies
labeled as "Doubt"

merge

Included primary
studies

Excluded primary
studies

Doubt primary
studies

Fig. 3. First and Second selection processes applying Inclusion and Exclusion Criteria.

second one who tracked back the information in the extraction form to the statements in each paper
and checked their correctness. Having another author check the extraction is common practice to
reduce the bias as suggested by Petersen et al. [67]. To facilitate this step, we created an on-line
free google form2 to guide the researchers in collecting evidence from primary studies about (1)
publication details (e.g., authors, year, title, source, abstract) and (2) context descriptions (e.g., NFRs,
technologies, involved industry, empirical settings).

Table 6. Data Extraction Form.

ID Field Description RQ
Publication details

1 Title Title of the primary study —
2 Abstract Abstract of the primary study —
3 Keywords Keywords of the primary study —
4 Authors Authors of the primary study —
5 Source Name of the search engine source where the primary study was returned —
6 Year Publication year of the primary study RQ1
7 Venue Name of publication where the primary study was published RQ1
8 Country Country of affiliation of the first author of the study RQ1
9 Citation Number of citations of the primary study RQ1
10 First Author Name of the first author of the primary study RQ1
11 Collaboration Collaboration type (e.g., Academy, Industry, and Crosscutting) of the primary study RQ1
12 Company Company name involved in the primary study RQ1

Context Descriptions
13 Software Quality Standard Software Quality Standards (9126, 25010) referenced by the primary study RQ2
14 Quality attribute List of quality attributes analyzed in the study defined according ISO/IEC 25010 RQ2
15 Reasons to address the quality attribute Reasons raised by the authors to address the quality attribute. RQ2
16 Technique description A brief description of Non-functional testing approach proposed in the study RQ2
17 Mobile platform List of mobile platforms cited in the study (e.g., Android, iOS, etc.) RQ2
18 Testing strategy Testing strategy reported in the study according to the SWEBOK RQ2
19 Testing approach List of testing approaches reported in the study from according to the SWEBOK RQ2
20 Tool name Name of the used tool RQ2
21 Tool URL URL to download the tool RQ2
22 Tool License Licenses of the supporting tools, i.e., FOSS, Freeware, or Proprietary RQ3
23 Tool Type List of tool types from those proposed in the SWEBOK RQ3

Additional Information
24 BibTeX reference Unique reference for the primary study —
25 Researcher(s) Researcher(s) who extracted the data from the study —

2https://docs.google.com/spreadsheets/d/1dAEnYkfzgXlpFI8TuYPp8tjsYVu3aAkrJBU_ppOXkHA/edit?usp=sharing

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:15

5 G1: PRIMARY STUDIES ON NFR TESTING OF MOBILE APPS
In this section, we discuss the distribution of primary studies on NFR testing over time (Subsection
5.1), the distribution of the primary studies by the publication venue type (Subsection 5.2), the
distribution of companies involved in NFR testing of mobile apps (Subsection 5.3), the list of the
most cited studies in the addressed research topic (Subsection 5.4), and the list of the countries
leading in this research topic (Subsection 5.5).

5.1 𝑅𝑄11 Studies over time
Figure 4 shows the distribution of publication years of the 56 primary studies we selected. The
list of selected works is reported in Table 12 showing the ID, title, reference, year of publication,
publication venue, and the NFRs for each study addressed in the study. Figure 4 shows the growing
interest of the community in this research area starting from 2009 when the first primary study
was published. Moreover, we can observe that the topic is quite new with approximately 13 years
of contributions, whereby the 58.9%(33/56) of primary studies were published during the last four
years, as shown in Table 7. The growing interest of the community matches the raising number of
smartphones sold from 20073.

Fig. 4. Distribution of publications by year.

Table 7. Number of studies grouped
by 4 years.

4-year interval #
2009 – 2012 3
2013 – 2016 20
2017 – 2020 33

Total 56

5.2 𝑅𝑄12 Publication venues
Figure 4 also renders the distribution of the primary studies by the publication venue type. As the
figure shows, 44.7% (25/56) of the studies were published in conferences, 28.6% (16/56) in journals,
16.0% (9/56) in symposiums, and 10.7% (6/56) in workshops. We can observe a growing trend of
works published in journals, showing that the quality of the works has reached a sufficient quality.
These works were published in a wide range of computer science venues. Moreover, the venues
that published more studies are the top ones, with very high rank and impact factor, i.e., IEEE
Access among the journals, ICSE for the conferences, ISSTA for the symposiums, and AST among
the workshops. Table 15 shows the full list of venues where selected papers have been published.

5.3 𝑅𝑄13 Industry-Academy collaboration
We found that 85.7% (48/56) of the primary studies were fully developed in academia, 3.6% (2/56)
were fully conducted in industry, and 10.7% (6/56) resulted from collaborations between the aca-
demic community and industry. Table 8 reports the eight primary studies with industry involvement,
3https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Junior and Amalfitano, et al.

listing the companies and its respective countries. The results show that there is not either a lead-
ing country or an industry that has been more involved than others. Although we found a low
percentage of studies (i.e., 14.3%) reporting companies involved in NFRs testing for mobile apps, it
seems that this gap started to be slightly filled in the last 6 years by studies involving companies.

Table 8. Companies involved in NFR testing of mobile apps.

ID Year Company Collaboration Country
S31 [9] 2013 Fondazione Bruno Kessler Industry Italy
S23 [91] 2015 Fujitsu Laboratories Crosscutting China
S25 [29] 2015 IBM Industry Israel
S55 [26] 2015 Nokia Technology Institute Crosscutting Brazil
S34 [21] 2017 Google Inc Crosscutting United States
S37 [1] 2018 Technologie Sanstream Crosscutting Canada
S1 [50] 2019 Red Ant Technology Crosscutting Malaysia

S47 [84] 2020 National Computer Network Emergency Response Technical
Team/Coordination Center of China (CNCERT/CC) Crosscutting China

5.4 𝑅𝑄14 Most cited studies
We identified the most relevant studies in the addressed research topic. Google Scholar4 was used
to evaluate the number of citations for each primary study. Table 9 shows the 10 most cited papers
ranked based on the number of the citations evaluated in July 2021.

Table 9. Top 10 papers ranked on Google Scholar citations.

ID Year Venue type Venue Number of citations
S4 [70] 2013 Conference Conference on Data and Application Security and Privacy 442
S53 [85] 2014 Symposium Symposium on Information, Computer and Communications Security 86
S35 [52] 2012 Conference Conference on Advances in Mobile Computing & Multimedia 74
S25 [29] 2015 Symposium International Symposium on Software Testing and Analysis 71
S42 [43] 2009 Conference Conference on Secure Software Integration and Reliability Improvement 55
S24 [83] 2015 Conference International Conference on Software Testing, Verification and Validation 51
S15 [35] 2015 Symposium Symposium on the Foundations of Software Engineering 50
S41 [19] 2016 Conference Working Conference on Mining Software Repositories 46
S38 [60] 2013 Journal Mobile Networks and Applications 42
S26 [10] 2017 Journal IEEE Transactions on Software Engineering 42

5.5 𝑅𝑄15 Contributions at Worldwide
Figure 5 reports a map chart showing how the main researchers on NFR testing techniques for
mobile apps are spread all over the world. A country is colored in blue if there is at least one study
having the main author affiliated with either a university or a company placed there. Table 10 shows
the countries that have more than one study. As the data show, China, United States, and Canada
have led the research area with 21.4%(12/56), 19.6%(11/56), and 7.1%(4/56) of contributions,
respectively.

4https://scholar.google.com

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:17

Fig. 5. Map chart of the countries.

Table 10. Number of
publications by country.

Country #
China 12
USA 11

Canada 4
Brazil 4

Singapore 3
Italy 3

Republic of Korea 3
Germany 3
Malaysia 2
Others 11

6 G2: NFR TESTING TECHNIQUES FOR MOBILE APPS
In this section, we discuss the distribution of primary studies per q.c. and per year (Subsection 6.1),
the types of mobile platform considered in the studies (Subsection 6.2), the NFR testing strategies
(Subsection 6.3) and the NFR testing approaches (Subsection 6.4) that have been proposed per
quality characteristic.

6.1 𝑅𝑄21 Distribution of quality characteristics addressed by primary studies
Figures 6 and 7 show the set of q.c. found in primary studies, namely, performance, security,
usability, portability, reliability, and compatibility, and their distribution over the years.

Fig. 6. Quality attributes reported in the primary
studies.

Fig. 7. Quality attributes reported in the primary
studies by year.

Distribution of q.c. (s): From Figure 6, we observe that Performance (35.7%, 20/56), Security (30.3%,
17/56), and Usability (25.0%, 14/56) are the most addressed q.c. (s), followed by Portability (10.7%,
6/56). Finally, Compatibility and Reliability q.c. (s) were addressed in 1.8% (1/56) of the selected
studies.
We performed an extra analysis of considered primary studies to understand the motivations

that led the researchers to address the testing of specific q.c.. Table 11 shows, for each q.c., the
reported reasons and the references to the primary studies where they were declared. Related to
the most common motivations, we note that for performance efficiency q.c., there is a need to test if
the apps negatively impact battery/power consumption. Furthermore, there is a lack of support tools

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Junior and Amalfitano, et al.

Table 11. Motivations for addressing a specific NFR testing.

NFR Motivation References

PE

The need to test how apps impact battery/power consumption [34], [35], [65], [83], [10], [1], [92], [19], [43], [76],
[53]

Performance bugs are very difficult to be detected and reproduced [57], [24], [51]
Performance testing is a very time-consuming task [43]
Lack of tools or methodologies for performance testing [34], [35], [83], [1], [36]
The need to detect memory leaks [6]
Poor performance apps negatively impact the user experience [6], [51], [90]
App performance may vary different mobile platforms [81], [76]
Developers do not have proper knowledge about performance, therefore they are not
careful with this q.c

[81], [6], [21], [19]

S

Developers do not have proper knowledge about security, therefore they are not careful
with this q.c

[7], [70], [75], [28], [58], [12], [72], [88], [29], [41],
[47], [9], [82], [84], [54], [74], [85]

Security testing is not a simple task and it is worth being investigated [9], [82], [54]
Programmers developing mobile apps that communicate with a server usually do not
follow security guidelines to implement SSL/TLS protocols

[75], [58], [84]

Security testing is neglected with respect to other q.c.(s), hence there is a need for
automated tools to detect vulnerabilities

[28]

Apps are not tested against known vulnerabilities [12]
The usage of third-party apps and frameworks may introduce vulnerabilities [72]

U

Usability may impact on the success of the mobile apps in the market [79], [61], [49], [52], [25]
App usability should be tested in devices that have different display characteristics [49], [46], [20], [13]
Usability testing usually requires extra cost, specific expertise, and time [38], [79], [18], [52], [25], [26]
Developers do not have proper knowledge about usability, therefore they are not careful
with this q.c

[38], [26]

P

Mobile apps have to work correctly in mobile devices and platforms with very different
characteristics.

[50], [42], [91], [56], [15]

Portability testing is a very time-consuming task [91]
Existing solutions are not applicable in portability testing [50]
Lack of solutions to support UI portability [42]

C Huge diversity of mobile devices and platforms where mobile apps should work prop-
erly

[50]

R Need to assess the correct behavior of large-scale mobile systems that have plenty of
users and handling many business operations and transactions

[69]

for testing this q.c. All the primary studies addressing the security testing claimed that developers
do not care about security when they implement mobile apps, as a consequence specific techniques
and tools are needed for this q.c.. Regarding the usability q.c. the most common motivations are
related to the proposal of cost-effective techniques since usability testing usually requires extra costs,
specific expertise, and time. Moreover the usability q.c. has to be properly tested since it may impact
on the success of the mobile apps on the market. As for the portability q.c., all the authors addressed
this topic as techniques and tools are needed to assess that mobile apps work correctly when they
are deployed on devices and platforms having very different characteristics.

Distribution of the q.c. (s) over the years: As Figure 7 shows, the NFR testing topic was addressed
for the first time in 2009 in Kim et al. [43] by presenting a performance testing technique. In 2012,
the Usability started becoming interesting for the community. Hereafter, each year, except for the
2015, at least one study about Usability testing has been proposed. Primary studies on security
testing, from 2013 and on performance testing, since 2014, have been continuously published each
year. Only in 2017, no primary studies about security were published. The first primary study
on portability testing appeared in 2015 and the next one in 2016, 4 works about this topic were
published in 2019. The only two primary studies on reliability and compatibility testing have been
respectively published in 2017 and 2019.

6.2 𝑅𝑄22 Mobile Platforms
Figure 8 shows the distribution of the mobile platforms considered in the primary studies. As
reported in the figure, Android has been the most exploited platform as it was considered in 91.1%

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:19

(51/56) of the selected works, followed by iOS, 4.4% (2/56). The other platforms, i.e. Windows
Phone, Blackberry and LG were taken into account just in one study, 1.8%. Two works did not
consider a specific mobile platform. They presented an independent testing platform. It is worth
pointing out that 5 of the considered studies presented a testing technique for hybrid mobile apps,
which are apps combining elements of both native and web apps. They can be developed using
frameworks, such as React Native5 or Flutter6. The widespread use of Android as a case study can
be justified by the fact that it is the most widespread mobile platform worldwide and it is also open
source. Moreover, Android has a huge community of developers that provide both the versioning
and issue tracking repositories for the applications they implement. As a consequence, researchers
have easy access to a great number of applications that are at the same time open source (facilitating
in-depth analyses of the experimental results) and representative of real daily usage mobile apps.

Fig. 8. Mobile platforms reported in primary stud-
ies.

Fig. 9. Testing strategies reported in the primary
studies.

6.3 𝑅𝑄23 NFR Testing Strategies.
Figure 9 shows the distribution of strategies adopted for NFR testing. As shown in the figure, 60.7%
(34/56) of the selected primary studies exploited a black box strategy, 12.5% (7/56) introduced a
white box strategy, and 26.8% (15/56) adopted a hybrid strategy.

Figure 10 shows the quantity of studies reporting a given strategy for each specific q.c.. As we can
see, the black box strategy is the most used one and has been applied for all q.c. found in this SMS.
Both hybrid and white box strategies have been utilized only for testing security or performance
q.c.. Table 13 reports the testing strategy adopted by each work.
White box strategies. Figure 10 shows that white box strategies have been adopted only for
performance efficiency (3/7) and for security (4/7) testing. We inferred two types of white box
strategy.
WB1: Strategy generating test cases from app models. Different types of models have been consid-

ered, including Finite state machines (FSMs) modeling the behavior of the entire app [72],
combinations of use cases and user interface models [88], FSMs modeling UI behavior [24],
models or metamodels capable of characterizing performance aspect [76, 81].

WB2: Strategy injecting mutants into the source code of the tested app. What varies is the kind of
injected mutant. Energy mutants are exploited to test the performance [35], whereas mutants

5https://reactnative.dev/
6https://flutter.dev/, that allow to create code once and use it across various platforms.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Junior and Amalfitano, et al.

Fig. 10. Testing strategies adopted in NFR testing.

implementing intents that may introduce potential vulnerabilities are used in security testing
[9].

Hybrid strategies. The bubble chart shown in Figure 10 shows that techniques exploiting a hybrid
strategy have been presented only for testing the security (11/15) and the performance efficiency
(4/15). We inferred two types of hybrid strategies.
H1: Strategy generating test cases from inferred models The strategy exploits artifacts and models

inferred by app reverse engineering. Finite State Machines (FSM) [34, 75, 82, 90] and Control
Flow Graph (CFG) models of two types, i.e., Control-Flow Graph of Call-Backs (CCFG) [41]
and Window Transition Graph (WTG) [55] are exploited by this type of strategy.

H2: Strategy based on app exploration and code scanning. The strategy combines two steps of
app dynamic exploration and code scanning. In the former step, the app is tested on the fly
by exploring its UI [12, 58], launching specific APIs and intents [7], or executing tests that
simulate attacks [28] or tests designed to find known errors [47]. The exploration can be also
be driven by models such as Event Flow Graph(EFG) [10], or CFGs [29] or by source code
knowledge [84, 85]. In the second step, the code of the app under test is scanned for finding
quality issues.

Black box strategies. As Figure 10 shows, black box strategies have been used for testing all
the quality characteristics of mobile apps. The usability, compatibility, portability, and reliability
quality characteristics are tested only by techniques exploiting this strategy. From the analysis of
the testing techniques we inferred five types of black box strategies.
BB1: Strategy based on the analysis of recorded user interactions. The user is free to use the app or

to execute specific scenarios. Meanwhile specific logs are collected, saved, and then analyzed.
This is the main strategy used for usability testing, and is proposed in 13 of the 14 studies
addressing this q.c. [11, 13, 18, 20, 25, 26, 38, 46, 49, 52, 60, 61, 79]. The analysis of energy and
memory usage logs are also used in performance efficiency testing [1, 43].

BB2: Strategy based on app exploration. The application is explored through the UI and tested on
the fly to find vulnerabilities [70, 74, 84], performance or energy inefficiencies [51, 57], or
portability issues [15, 51].

BB3: Strategy based on ML. Machine learning is used to find energy inefficiencies [19, 36, 92].
BB4: Strategy based on execution of predefined sequences of user events. Tests are made by sequences

of user events used to request the UI of the apps. Test cases are executed on multiple devices

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:21

to test the portability [42, 50, 56, 91] and the compatibility [50] of the apps. Sequences of
events resembling specific usage scenarios are executed while the performances and energy
consumption of the apps are monitored to test their performance efficiency [6, 21, 53, 83].

BB5: Strategy based on input partitioning. The test input parameters are partitioned in two equiva-
lence classes, i.e. fixed parameters, parameters that can be set by the hardware components,
and parameters that can be set by the user. Based on this classification, the test cases are
designed and implemented in performance efficiency testing [65].

Fig. 11. Testing approaches reported in primary
studies.

Fig. 12. Relationship between testing approaches
and quality attributes.

6.4 𝑅𝑄24 Approaches for NFR testing
According to the SWEBOK classification of testing approaches reported in Subsection 2.2, we found
that NFR testing has been addressed by all the proposed categories of approaches, except one,
the Based on the Nature of the Application (BNA) category. Figure 11 shows the distribution of the
testing approaches in the analyzed primary studies. The Usage Based (UB) approach was the most
used one as it was presented in 42.8% (24/56) of the analyzed papers, followed by Fault Based (FB)
28.6% (16/56), Based on Software Engineer’s Intuition and Experience (SEIE) 26.8% (15/56), Model
Based (MB) 21.4% (12/56), Code Based (CB) 14.3% (8/56), and Input Domain Based (IDB) 1.8% (1/56).
The bubble chart in Figure 12 indicates how many times a given approach has been applied for
testing a specific q.c.. Moreover, Table 13 points out the subcategory it adopts for each testing
approach. In the following section, we discuss in more detail the characteristics of the proposed
testing techniques and present a mapping for each q.c. that intends to provide an overview of
the SWEBOK categories of adopted approaches and the respective subcategories. Moreover, the
mapping indicates the studies that presented approaches belonging to each specific subcategory.

6.4.1 Testing approaches for performance efficiency testing. Performance testing is defined as a type
of testing conducted to evaluate the degree towhich a test item accomplishes its designated functions
within given constraints of time and other resources [33]. Twenty different performance testing
techniques emerged from our study that adopt the approaches summarized by the mapping shown
in Figure 13. This Figure reports both single approaches and combinations of two approaches,
which are represented by two incoming red edges entering a connector node. The most used
approaches are UB andMB, which have been each presented in 4 studies. All the UB approaches are
of OP subcategory and execute test cases comprising sequences of user events to generate log files
reporting performance and consumption of the apps [6, 21, 43, 83]. MB approaches generate test
cases either from FSM describing the app behavior [24, 34] or FS able to characterize performance

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Junior and Amalfitano, et al.

aspects [76, 81]. The other approaches either belong to the ET subcategory of SEIE, which test
the app performance by exploring the UI on the fly [51], or are of MT subcategory of FB injecting
energy mutants into the app source code [35]. Eventually, a CFB approach of CB category has been
proposed to generate test cases starting from the CCFG [55], and an EP approach of category IDB
has been presented where the test input parameters are partitioned in equivalence classes based on
the consumption they may cause [65].

We also found eight testing techniques that exploit five combinations of two different approaches.
MB and FB have been used together in two ways, i.e., EG + FS and EG + FSM. The former one is used
to implement a machine learning testing technique [19, 36, 92] where tests are generated from a
mathematical formal specification of an objective function aimed at guessing energy consumption.
The second combination generates test cases to cover specific paths of an FSM modeling the app
behavior. The approach covers paths that may expose potential memory leaks. FB has also been
combined with UB and SEIE in EG + OP and EG + ET approaches, respectively. The former one
requests the app using tests made by user events sequences covering specific usage scenarios.
Tests are executed logs and are traced and stored. These logs are automatically analyzed to guess
inefficiency errors [1, 53]. The latter approach explores the app to discover known inefficiencies
[57]. SEIE was used with CB as CFB + ET that tests the app while the UI is explored. The exploration
is driven by the EFG model of the app under test [10].

PE

UB OP S6, S24, S34, S42

MB
FSM

FS

S11, S12

S2, S49

FB MT S15

CB CFB S45

IDB EP S22

SEIE ET S43

EG + FS

EG + FSM S46

S39, S41, S54

EG + OP S37, S50

EG + ET

CFB + ET

S10

S26

Fig. 13. Mapping of approaches for performance effi-
ciency testing.

S

UB

MB
FSM

WM

S9, S19

FB

EG S16

CB

SEIE ET S4

CFB + ET S3, S17, S18, S25

S20

MT S31

EG + ET S47, S52, S53

ET + OP S48

EG + FSM S33

CFB + EG S30

CFB S28

Fig. 14. Mapping of approaches for security testing.

6.4.2 Testing approaches for security testing. This type of testing is conducted to evaluate the
degree to which a test item, and associated data and information, are protected so that unauthorized
persons or systems cannot use, read, or modify them, and authorized persons or systems are not
denied access to them [33]. As the Figure 14 shows, 7/17 techniques rely on a single approach.
Three MB approaches generate tests from FSM [72, 75] or WM, such as UML use case and user
interface models [88]. The two FB approaches belong to the EG and MT subcategories. The former
requests the app by tests simulating known attacks [28], the latter injects into the app source code
specific vulnerability mutants [9]. The CB approach of subcategory CFB generates the test cases
starting from the CFG [41], whereas the SEIE, classified as ET, tests the app on the fly while the UI
is explored searching for vulnerabilities [70].
Five different combinations of two approaches have been presented in 10/17 primary studies.

FB was combined with the SEIE in EG + ET subcategory approaches that explore the app with the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:23

main aim of triggering specific vulnerabilities [74, 84, 85]. SEIE and CB have been used jointly as
CFB + ET. The approaches belonging to this subcategory find vulnerability both by exploring the
app on the fly and by scanning the source code [7, 12, 29, 58]. SEIE was also combined with UB as
ET + OP that explores the app on the fly for tracing log files that are analyzed to find vulnerabilities
[54]. The integration of FB and CB in CFG + EG tests the app both using test cases designed for
finding known errors and code scanning [47]. Finally, the combination of FB and MB as EG + FSM
generates test cases covering paths of the FSM modeling the app behavior that may reveal potential
vulnerabilities [82].

6.4.3 Testing approaches for usability testing. This type of testing is conducted to evaluate the
extent to which a product can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use (see ISO 9241-11). As Figure 15 shows, all
the 14 techniques proposed to test this q.c. rely on UB. 13 of them are based on a single UB approach.
Among these latter approaches, 11 belong to the UOH subcategory, leaving the users free to use
the app under testing through the UI and the interactions are logged and analyzed to find usability
issues [13, 18, 20, 26, 38, 46, 49, 52, 60, 61, 79]. Two approaches are instead classified as OP, where
the users are asked to execute tasks covering specific requirements and the interactions are logged
and analyzed to find usability issues [21, 25]. UB was also combined with FB in the EG + UOH
approach, where the users have to request the application under testing with specific sequences of
events that may cause potential usability errors.

U

UB

OP S5, S7, S13, S14, S21, S27,
S29, S32, S35, S38, S55

FB EG + UOH S36

UOH S34, S40

Fig. 15. Mapping of approaches for usability testing.

P

UB

OP

ET + OP S56

UOH S7

S23, S51

SEIE

AH

UOH S43

S1

Fig. 16. Mapping of approaches for portability testing.

6.4.4 Testing approaches for portability testing. This type of testing is conducted to evaluate the ease
with which a test item can be transferred from one hardware or software environment to another,
including the level of modification needed for it to be executed in various types of environment
[33]. As Figure 16 shows, among the 6 approaches used to test this q.c., 3 are classified as UB, 2 as
SEIE, and 1 as combination of UB and SEIE. Among the three UB approaches, 2 belong to the OP
subcategory and rely on the execution of test cases, made by sequences of user events, on multiple
devices [56, 91]. The other UB is classified as UOH and is based on the analysis of record user
interactions performed on multiple devices [79]. As for the two SEIE approaches, one belongs to
AH since it executes test cases, generated ad-hoc, on multiple devices [50], the other one, classified
as ET, explores the same app on the fly on multiple devices [51]. The combination of UB and SEIE
falls in the ET + OP subcategory as it explores the app and the execution logs are analyzed to find
portability issues [15].

6.4.5 Testing approaches for reliability and compatibility testing. Reliability testing is a type of
testing conducted to evaluate the ability of a test item to perform its required functions, including
evaluating the frequency with which failures occur, when it is used under stated conditions for a

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Junior and Amalfitano, et al.

specified period of time [33]. Compatibility testing instead measures the degree to which a test
item can function satisfactorily alongside other independent products in a shared environment
(co-existence), and where necessary, exchanges information with other systems or components
(interoperabilility) [33]. SEIE approaches classified as AH have been exploited for both reliability
and compatibility testing of mobile apps. These approaches generate ad hoc test cases implementing
specific usage scenarios to test the reliability of the apps [69], or executed on multiple devices
having different characteristics to check the absence of compatibility issues [50].

7 G3: - TOOLS FOR SUPPORTING NFR TESTING FOR MOBILE APPS
In this Section, we discuss which of the proposed NFR testing techniques are tool supported
(Subsection 7.1), how the software of such tools is licensed (Subsection 7.2), and what type of
functionality, according to the SWEBOK classification, is provided by the tools for each specific q.c.
testing (Subsection 7.3).

7.1 𝑅𝑄31 Tool support to NFR testing of mobile apps
The 69.6% (39/56) of the selected studies introduced or exploited a tool, the remaining 30.4%
(17/56) did not explain whether and how the presented technique was tool supported. Table 14
lists the studies that introduced or exploited a tool. For each study, the Table reports the tool name
(if available), tool type according to the SWEBOK classification we adopted, the the URL where it
can be reached (if available). As the Table shows, 13/39 studies described a tool but did not name it.
We observed that none of the tools was described or used in more than one study.

7.2 𝑅𝑄32 Testing tool licensing
Among the tools that have been made available by the authors, 69% (27/39) of the them were
distributed without any license, 23.0% (9/39) were distributed as Free Open-Source Software
(FOOS), 2.6% (1/39) as Freeware, and 5.2% (2/39) is Proprietary software. Proprietary tools are
IntentDroid developed by IBM, and ZIPT (Zero-Integration Performance Testing) developed by
the University of Illinois in collaboration with Google. We observed that supporting tools that
have a Proprietary license were usually proposed in primary studies fully or partially conducted by
Industry. We believe that the Industry collaboration in these primary studies influences how the
developed tools are made available. Supporting tools with FOSS and Freeware license are usually
proposed in primary studies fully conducted by Academics, and their executable file or code is
normally publicly available.

7.3 𝑅𝑄33 Types of NFR testing tools
The tools presented in literature to support the execution of testing processes for NFRs have been
classified on the basis of the functionality they offer, according to the classification provided by
the SWEBOK [14] and described in Subsection 2.3. Figure 17 shows the distribution of tool types,
whereas Figure 18 reports for each q.c. the number of studies where a given tool type has been
adopted. As Table 14 shows, 30 tools provide more than one feature. The map reported in Figure 19
shows the types of features and feature combinations of the tools used to testing each q.c.. Moreover,
the ID of the paper, where the tool has been presented, is traced to each type or combination of
types. Tools for performance efficiency and security have a wider variety of feature combinations.
As expected, tools for performance efficiency mostly offer TH, OC, and TG features, since they
have to provide a complex test harness to execute the test cases or explore the app, to collect
the consumption logs, and to analyze them trough complex oracles for checking the presence of
performance issues. Specific test generators are needed to produce performance test cases from
the models. The tools used for security have to provide TH, TG, CAI, and OC features. Indeed they

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:25

have to provide a complex test harness to explore the app with the goal of finding vulnerabilities as
well as the feature for generating security tests from models. These tools should also provide the
functionality to inspect or instrument the code in order to guide the navigation of the app or to find
known vulnerabilities. Usability tools mainly provide the CR feature for enabling the capture of
user events and for replaying them in order to find usability issues on the user interface. The T and
OC features are respectively used to trace the user interactions, e.g. for collecting the encountered
user interfaces or eyes tracking, and to implement complex oracles able to check usability issues
automatically. Portability tools mainly offer a TH feature as they have to offer a complex software
infrastructure to execute test cases on multiple devices.

Fig. 17. Types of supporting tools.
Fig. 18. Relationship between types of supporting
tools and quality attributes.

PE SU P C

TG

TG + TH

CAI + TG

OC + TH

S2, S11, S54

S12

S45

S6, S37, S42,
S43, S50

T + TH

S10

CAI + TH

S26

CR + OC

CR + T

S24

S34

CAI + OC + TH

S15

TH TG

S4 S20

CAI + TH

S17, S25, S53

OC + TG

S19, S48

TG + TH

S33

CAI + OC + TH

S31, S47

CAI + TG + TH

S3

OC + TG + TH

S9

CR

S5, S27

CR + T

S34, S35, S40

CR + OC

S36, S38

CAI + TH

S14

OC + TH

S21

TG

S1, S8

OC + TH T + TH

S43 S51

TG

S1

Fig. 19. Tool types for each quality characteristic.

8 DISCUSSION
In the following section, we summarize our findings for each research goal. Then, we discuss the
open research challenges that we identified.

8.1 Findings about the G1 research goal
G1 aimed at characterizing the research works in the area of NFRs testing of mobile apps. The
results of our study show a growing interest from the research community in this topic, likely
depending on a growing awareness of the relevance of NFR testing for the success of mobile

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Junior and Amalfitano, et al.

apps. This topic has been addressed in a variety of relevant publication venues of the software
engineering community. Most contributions were fully developed in academia, but in the last 6 years
more industrial involvement in this research field has been recorded. Concerning the geographic
distribution of the contributors, the most prolific countries included China, USA, Canada and Brazil,
with at least 4 contributions each.

8.2 Findings about the G2 research goal
G2 aimed at characterizing the NFRs techniques for mobile apps from the perspectives of the
addressed quality characteristic, the tackled mobile platforms, the adopted testing strategies and
testing approaches. Security, performance, and usability testing of mobile apps were of interest
to the software engineering community since 2009 and are still being investigated with much
interest. More recently, portability testing is gaining growing attention, likely due to the wide
spread of cross-platform mobile app development frameworks. Android is the most considered
mobile platform, being addressed in more than 91% of the considered studies. As to the strategies
adopted for NFRs testing, we found that White Box and Hybrid strategies have been exclusively
used for performance efficiency and security testing, indicating that these types of testing require
knowledge of how the app has been designed and implemented. Black box strategies have been
instead widely used to test all the considered q.c., especially for performance and usability testing.
As regards the NFRs testing approaches, different categories have emerged for testing each q.c..
Using the taxonomy proposed by the SWEBOK, we were able to classify and map them in six main
categories, and deduce which are the most frequently used ones for each q.c.

8.3 Findings about the G3 research goal
G3 aimed to analyze the tool support offered to NFRs testing techniques. Most of the techniques
proposed for NFR testing of mobile apps are tool supported. The vast majority of tools have been
developed in academic contexts, being distributed without any license or with open-source ones,
whereas the minority of tools developed in industry is proprietary software. Most of the presented
tools belong to the Test Harness (TH) category, followed by the Oracle comparator and assertion
checking (OC) one. Surprisingly, we did not find tools able to support Regression Testing (RT). TH
tools are usually exploited for Security, Performance and Portability testing. Capture/Replay (CR)
tools are exclusively used for Usability and Performance testing. Many of the tools offer a variety
of functionality, able to support the different testing process activities. We provided a mapping that
offers the reader an overview of the existing tools for each q.c. and the type of support each one
provides. Moreover, we have checked if any of the support tools provide functional testing. In this
case, we have identified that one study [21] provides a support tool that addresses performance
testing (e.g., completion rate, time on task) and reports a summary of app functionality issues.

8.4 Open challenges for researchers
Based on the evidence we obtained from the data discussion, we describe some of the identified
several open research challenges:
Addressing specific q.c. (s). Testing of specific quality characteristics in mobile apps is still an open
issue. Our analysis showed that testing q.c. like Compatibility and Reliability, is still underdeveloped.
Significant effort should be spent to develop suitable techniques and tools implementing this specific
type of testing.
NFRs testing of mobile hybrid apps. In the last years, Hybrid mobile apps are becoming

increasingly common on mobile devices. Testing this specific type of mobile apps is still an open
issue, and a few research contributions have emerged about this topic. Since these apps are developed
by combining web and mobile technologies, or using specific frameworks, some testing techniques

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:27

may need to be properly adapted for taking into account the characteristics of such new generation
of mobile apps [63]. As an example, white box or gray box strategies for NFR testing should be
readjusted for taking into account the specific technologies used for implementing them.

Future extensions of the Mapping Study. To the best of our knowledge, our secondary study
was the first one addressing the NFR testing for mobile apps. According to our researchmethodology,
we defined inclusion and exclusion criteria for selecting relevant articles about dynamic testing
techniques. However, during our study we made some observations that allowed us to identify
some possible interesting extensions of this mapping study. As an example, due to the exclusion
criterion EC-8 reported in Subsection 4.3, we could not consider 14 papers presenting a static
testing technique mainly in the context of security. Extending our secondary study to static analysis
techniques may be a relevant research topic that could lead interesting results for the community.
Moreover, according to EC-11, we discarded 26 papers proposing techniques aimed to find generic
errors (defects, failures, or crashes), without clearly declaring the tested quality characteristic.
Extending the mapping to include such types of contributions would certainly require an extra
effort for inferring and classifying the q.c. addressed by them. However, it could provide a wider
overview about the state of the art in this field and open novel discussions.
Making supporting testing tools available. Practitioners are interested in accessing the

existing tools for NFRs testing, in order introduce such tools in their testing processes. Analogously,
researchers are interested in accessing the existing tools, in order to evaluate and possibly improve
them. Our study showed that 69.2% (27/39) of the tools proposed in literature have not been made
publicly available. This is a significant obstacle when researcher or practitioners intend to use a
given NFRs testing technique. More attention to this aspect should be given. Making testing tools
available can be of great benefit to both the researcher and practitioner community.

Sharing industrial experiences with the academic community.We observed that only 3.6%
of the primary studies were fully conducted by industry and 10.7% come from crosscutting studies.
It could be very interesting and useful for the cultural growth of the community to share, in the
next future, the experiences and the results obtained by a more and more extensive collaboration
between the academia and the industry.

Using a consolidate terminology for q.c. (s). We observed that 52 of the 56 selected primary
studies did not use a consolidate and acknowledged terminology for indicating the addressed q.c..
We had to infer the NFR by full reading the papers and applying the definition of the quality
models proposed by the standard [32]. The lack of using a unified terminology may lead the
authors to make mistakes in the term definitions and conduction of their studies. For instance, some
studies confounded compatibility and portability quality attributes since they were related to the
adaptability sub characteristic of the portability. Therefore, we believe that the use of a consolidate
and well established terminology may improve the quality of the works and make more clear for
which q.c. they have been proposed.

9 THREATS TO VALIDITY
In this section, we discuss some threats to validity of the study and the actions taken in order to
mitigate them. Some decisions made during systematic mapping review activities can be character-
ized by subjectivity, mainly influenced by the researchers’ knowledge and viewpoints. We tried to
mitigate the following threats to validity by obeying to the actions proposed by Ampatzoglou et al.
[8].

Study selection: this threat to validity regards to aspects related to the first activities carried out
during the initial stages of the research protocol. Its main objective is to warn about risks related to
the study selection process. To mitigate this threat, we highlight that the research was conducted
using strict protocols for performing systematic mappings Petersen et al. [67] and to define the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Junior and Amalfitano, et al.

objectives, research questions and metrics to be evaluated in the study [16]. Another aspect related
to this threat regards the procedure to identify the studies. We used a set of well-known search
engines to collect the primary studies. As suggested by Dyba et al. [23] and Kitchenham and
Charters [45], to mitigate the risk of losing important studies we used a broad search engine
and indexation database (SCOPUS) and computer science-specific ones (IEEE, ACM, and Web of
Science). Moreover, we also performed backward and forward snowballing process to identify
missed studies that were not returned by search engines. Another threat regards the application
of the inclusion/exclusion criteria for studies selection. This step is threatened by the possibility
of excluding relevant works. To mitigate this threat, two researchers have been involved in this
process. Studies were included/excluded if they were accepted/discarded by both. Doubt papers
were discussed by the two researchers and a third one. An additional threat regards the strategy
used to build the search string. The keywords of the search string were chosen on the basis of
the experience of the authors, as well as insights from related works and well known terms and
definitions. Moreover we followed a process to define and calibrate the search string that relies on
the adoption of control studies to measure the adequacy of the selected terms.

Data Validity: the main threat is related to bias during the process of data extraction. To mitigate
this threat data were extracted and recorded manually by two authors. A third author, having the
best background in the research topic, analyzed the data and inferred the results. Finally, the results
were discussed by all authors to settle errors and inconsistencies.

Research Validity: this threat is related to the generalization of the results and to the coverage
of research questions. To mitigate this threat, we followed a planned protocol where the scientific
methods, goals, and research questions, all decisions were based on well-established guidelines for
conducting systematic mapping studies in the software engineering area. All the steps we followed
are well documented and all the produced material (list of selected papers, extracted data and plots)
is publicly available [39]. This allows the replications of the study and the check of the obtained
results by other researchers.

10 CONCLUSIONS
Mobile apps have gained wide popularity in recent years and new approaches from software
engineering are required to ensure their quality. For instance, a mobile app can consume too much
power to perform a task, the user interface can behave unexpectedly, or the user data can be
susceptible to attacks during an insecure connection with a server. These problems are related to
NFRs and they are fundamental features in a mobile app. Because of this, relevant studies have
been conducted aiming to characterize test techniques on mobile apps.

Inspired by this scenario, we conducted a set of discussions on the main aspects related to NFRs
dynamic testing on mobile apps. In this perspective, we provide an overview of the existing test
techniques that address the different NFRs defined according to the quality standard from ISO
[32]. Then, we characterized the test techniques identified mainly discussing the following topics:
(1) collaboration between academia and industry; (2) testing approaches and strategies; (3) most
addressed mobile app types and platforms; and (4) tool support. Moreover, we provided a broad
discussion to the testing community on the main trends and research opportunities in this field of
research. All artifacts generated from this SMS have been made publicly available, and they should
be widely used by the testing community as a support to explore research opportunities, gaps, and
future directions.
As future work, we intend to increase our investigation by searching from the gray literature.

Moreover, in this SMS we focus on dynamic testing techniques, excluding the possibility of dis-
cussing on static testing commonly used in security testing. Therefore, we intend to include a
specific investigation from static testing.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:29

ACKNOWLEDGMENTS
This studywas financed in part by the Coordenação deAperfeiçoamento de Pessoal de Nível Superior
– Brasil (CAPES) – Finance Code 001. Stevão A. Andrade research was funded by Fundação de
Amparo a Pesquisa do Estado de São Paulo - FAPESP (São Paulo Research Foundation), process
number 2017/19492-1.

REFERENCES
[1] Abdul Muqtadir Abbasi, Mustafa Al-Tekreeti, Kshirasagar Naik, Amiya Nayak, Pradeep Srivastava, and Marzia Zaman.

2018. Characterization and Detection of Tail Energy Bugs in Smartphones. IEEE Access 6 (2018), 65098–65108.
https://doi.org/10.1109/access.2018.2877395

[2] Kevin Adams. 2015. Non-functional Requirements in Systems Analysis and Design. Vol. 28. Springer, Cham. 264 pages.
https://doi.org/10.1007/978-3-319-18344-2

[3] A. S. Al-Ahmad, H. Kahtan, F. Hujainah, and H. A. Jalab. 2019. Systematic Literature Review on Penetration Testing
for Mobile Cloud Computing Applications. IEEE Access 7 (2019), 173524–173540. https://doi.org/10.1109/ACCESS.
2019.2956770.

[4] Diego R Almeida, Patrícia DL Machado, and Wilkerson L Andrade. 2019. Testing tools for Android context-aware
applications: a systematic mapping. Journal of the Brazilian Computer Society 25, 12 (2019), 1–22. https://doi.org/10.
1186/s13173-019-0093-7

[5] Ali Alotaibi, James Clause, andWilliam G.J. Halfond. 2020. Mobile App Energy Consumption: A Study of Known Energy
Issues in Mobile Applications and their Classification Schemes – Summary Plan. In Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). IEEE, New York, NY, USA, 854–854. https://doi.org/10.
1109/ICSME46990.2020.00109

[6] Domenico Amalfitano, Vincenzo Riccio, Porfirio Tramontana, and Anna Rita Fasolino. 2020. Do Memories Haunt
You? An Automated Black Box Testing Approach for Detecting Memory Leaks in Android Apps. IEEE Access 8 (2020),
12217–12231. https://doi.org/10.1109/access.2020.2966522

[7] Amr Amin, Amgad Eldessouki, Menna Tullah Magdy, Nouran Abdeen, Hanan Hindy, and Islam Hegazy. 2019. An-
droShield: Automated Android Applications Vulnerability Detection, a Hybrid Static and Dynamic Analysis Approach.
Information 10, 10 (2019), 326. https://doi.org/10.3390/info10100326

[8] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and Alexander Chatzigeorgiou. 2019. Iden-
tifying, categorizing and mitigating threats to validity in software engineering secondary studies. Information and
Software Technology 106 (2019), 201–230. https://doi.org/10.1016/j.infsof.2018.10.006

[9] Andrea Avancini and Mariano Ceccato. 2013. Security testing of the communication among Android applications. In
Proceedings of the 8𝑡ℎ International Workshop on Automation of Software Test (AST). IEEE, New York, NY, USA, 57–63.
https://doi.org/10.1109/iwast.2013.6595792

[10] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoudhury. 2017. Energypatch: Repairing
resource leaks to improve energy-efficiency of android apps. IEEE Transactions on Software Engineering 44, 5 (2017),
470–490. https://doi.org/10.1109/tse.2017.2689012

[11] Silvio Barra, Rita Francese, and Michele Risi. 2019. Automating Mockup-Based Usability Testing on the Mobile Device.
In Proceedings of the International Conference on Green, Pervasive, and Cloud Computing (GPC). Springer, Cham, 128–143.
https://doi.org/10.1007/978-3-030-19223-5_10

[12] Shikhar Bhatnagar, Yasir Malik, and Sergey Butakov. 2018. Analysing Data Security Requirements of Android Mobile
Banking Application. In Proceedings of the International Conference on Intelligent, Secure, and Dependable Systems in
Distributed and Cloud Environments (ISDDC). Springer, Cham, 30–37. https://doi.org/10.1007/978-3-030-03712-3_3

[13] Magdalena Borys and Marek Milosz. 2018. Mobile Application Usability Testing in Quasi-Real Conditions-the Synergy
of Using Different Methods. In Proceedings of the 11𝑡ℎ International Conference on Human System Interaction (HSI).
IEEE, New York, NY, USA, 362–368. https://doi.org/10.1109/hsi.2015.7170698

[14] Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. 2014. Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0 (3rd ed.). IEEE Computer Society Press, Washington, DC, USA.

[15] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. 2019. A large-scale study of application incompatibilities in android.
In Proceedings of the 28𝑡ℎ ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, New York,
NY, USA, 216–227. https://doi.org/10.1145/3293882.3330564

[16] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. 1994. The goal question metric approach. Encyclopedia of
software engineering 2 (1994), 528–532.

[17] Melissa Chau and Ryan Reith. 2020. Smartphone Market Share. https://www.idc.com/promo/smartphone-market-
share/os. [Online; accessed 10-January-2020].

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Junior and Amalfitano, et al.

[18] Lin Chou Cheng. 2016. The mobile app usability inspection (maui) framework as a guide for minimal viable product
(mvp) testing in lean development cycle. In Proceedings of the 2𝑛𝑑 International Conference in HCI and UX. ACM, New
York, NY, USA, 1–11. https://doi.org/10.1145/2898459.2898460

[19] Shaiful Alam Chowdhury and Abram Hindle. 2016. Greenoracle: Estimating software energy consumption with energy
measurement corpora. In Proceedings of the 13𝑡ℎ Working Conference on Mining Software Repositories (MSR). ACM,
New York, NY, USA, 49–60. https://doi.org/10.1145/2901739.2901763

[20] Thiago Adriano Coleti, Leticia da Silva Souza, Marcelo Morandini, Suzie Allard, and Pedro Luiz Pizzigatti Correa.
2017. ErgoMobile: A Software to Support Usability Evaluations in Mobile Devices Using Observation Techniques. In
Proceedings of the International Conference of Design, User Experience, and Usability (DUXU). Springer, Cham, 363–378.
https://doi.org/10.1007/978-3-319-58634-2_27

[21] Biplab Deka, Zifeng Huang, Chad Franzen, Jeffrey Nichols, Yang Li, and Ranjitha Kumar. 2017. ZIPT: Zero-Integration
Performance Testing of Mobile App Designs. In Proceedings of the 30𝑡ℎ Annual Symposium on User Interface Software
and Technology (UIST). ACM, New York, NY, USA, 727–736. https://doi.org/10.1145/3126594.3126647

[22] Marcio Delamaro, Mario Jino, and Jose Maldonado. 2016. Introduction to Software Testing (2nd ed.). Elsevier Brasil,
USA.

[23] T. Dyba, T. Dingsoyr, and G. K. Hanssen. 2007. Applying Systematic Reviews to Diverse Study Types: An Experience
Report. In Proceedings of the 1𝑠𝑡 International Symposium on Empirical Software Engineering and Measurement (ESEM).
IEEE, New York, NY, USA, 225–234. https://doi.org/10.1109/ESEM.2007.59

[24] Ana Rosario Espada, María del Mar Gallardo, Alberto Salmerón, and Pedro Merino. 2017. Performance analysis of
Spotify® for Android with model-based testing. Mobile Information Systems 2017 (2017), 1–14. https://doi.org/10.1155/
2017/2012696

[25] Xavier Ferre, Elena Villalba, Héctor Julio, and Hongming Zhu. 2017. Extending mobile app analytics for usability test
logging. In Proceedings of the International Conference on Human-Computer Interaction (HCI). Springer, Cham, 114–131.
https://doi.org/10.1007/978-3-319-67687-6_9

[26] Jackson Feijó Filho, Thiago Valle, and Wilson Prata. 2015. Automated usability tests for mobile devices through live
emotions logging. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile
Devices and Services Adjunct. ACM, New York, NY, USA, 636–643. https://doi.org/10.1145/2786567.2792902

[27] International Organization for Standardization. 2013. ISO/IEC/IEEE International Standard - Software and systems
engineering – Software testing –Part 2:Test processes. , 68 pages.

[28] Chenkai Guo, Jing Xu, Hongji Yang, Ying Zeng, and Shuang Xing. 2014. An automated testing approach for inter-
application security in Android. In Proceedings of the 9𝑡ℎ International Workshop on Automation of Software Test ((AST)).
ACM, New York, NY, USA, 8–14. https://doi.org/10.1145/3106237.3106244

[29] Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic detection of inter-application communication vulnerabilities
in Android. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA). ACM, New York,
NY, USA, 118–128. https://doi.org/10.1145/2771783.2771800

[30] Gavin Henry. 2021. Matt Lacey on Mobile App Usability. IEEE Softw. 38, 2 (2021), 134–136. https://doi.org/10.1109/MS.
2020.3042424

[31] ISO. 2001. ISO/IEC 9126-1, Software engineering — Product quality. ISO, Geneva, Switzerland.
[32] ISO. 2011. ISO/IEC 25010:2011, Systems and software engineering – Systems and software Quality Requirements and

Evaluation (SQuaRE) – System and software quality models. ISO, Geneva, Switzerland.
[33] ISO. 2013. ISO/IEC/IEEE 29119-1: Software and systems engineering-Software testing-Part 1: Concepts and definitions.
[34] Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek. 2019. Search-based energy testing of Android. In Proceedings

of the 41𝑠𝑡 International Conference on Software Engineering (ICSE). IEEE, New York, NY, USA, 1119–1130. https:
//doi.org/10.1109/icse.2019.00115

[35] Reyhaneh Jabbarvand and Sam Malek. 2017. 𝜇Droid: an energy-aware mutation testing framework for Android. In
Proceedings of the 11𝑡ℎ Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM, New York, NY, USA,
208–219. https://doi.org/10.1145/3106237.3106244

[36] Reyhaneh Jabbarvand, Forough Mehralian, and Sam Malek. 2020. Automated construction of energy test oracles for
Android. In Proceedings of the 28𝑡ℎ ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, New York, NY, USA, 927–938. https://doi.org/10.1145/3368089.3409677

[37] Marek Janicki, Mika Katara;, and Tuula Pääkkönen. 2012. Obstacles and opportunities in deploying model-based
GUI testing of mobile software: A survey. SOFTWARE TESTING, VERIFICATION AND RELIABILITY 22(5) (Aug. 2012),
313–341. https://doi.org/10.1002/stvr.460

[38] JongWook Jeong, NeungHoe Kim, and Hoh Peter In. 2020. Detecting usability problems in mobile applications
on the basis of dissimilarity in user behavior. International Journal of Human-Computer Studies 139 (2020), 102364.
https://doi.org/10.1016/j.ijhcs.2019.10.001

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:31

[39] Misael Junior, Domenico Amalfitano, Lina Garcés, Stevão Andrade, and Márcio Delamaro. 2021. Dataset on Dynamic
Testing Techniques of Non-Functional Requirements on Mobile Applications. https://data.mendeley.com/datasets/
gswvb2s2ht/3. Accessed: 2021-12-29.

[40] Anureet Kaur and Kulwant Kaur. 2018. Systematic literature review of mobile application development and testing
effort estimation. Journal of King Saud University - Computer and Information Sciences 1, 1 (2018), 1–22. https:
//doi.org/10.1016/j.jksuci.2018.11.002

[41] Joseph Chan Joo Keng, Lingxiao Jiang, Tan Kiat Wee, and Rajesh Krishna Balan. 2016. Graph-aided directed testing of
Android applications for checking runtime privacy behaviours. In Proceedings of the 11𝑡ℎ International Workshop on
Automation of Software Test ((AST)). ACM, New York, NY, USA, 57–63. https://doi.org/10.1145/2896921.2896930

[42] Taeyeon Ki, Chang Min Park, Karthik Dantu, Steven Y Ko, and Lukasz Ziarek. 2019. Mimic: UI compatibility testing
system for Android apps. In Proceedings of the 41𝑠𝑡 International Conference on Software Engineering (ICSE). IEEE, New
York, NY, USA, 246–256. https://doi.org/10.1109/icse.2019.00040

[43] Heejin Kim, Byoungju Choi, and W Eric Wong. 2009. Performance testing of mobile applications at the unit test level.
In Proceedings of the 3𝑟𝑑 International Conference on Secure Software Integration and Reliability Improvement (SSIRI).
Springer, Cham, 171–180. https://doi.org/10.1109/ssiri.2009.28

[44] B. Kitchenham, D. Budgen, and O.P. Brereton. 2010. The value of mapping studies: A participantobserver case study.
In Proceedings of the 14𝑡ℎ International Conference on Evaluation and Assessment in Software Engineering (EASE). BCS
Learning and Development Ltd, Swindon, Wiltshire, 25–33. https://doi.org/10.14236/ewic/EASE2010.4

[45] B. Kitchenham and S Charters. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering.
[46] Wolfgang Kluth, Karl-Heinz Krempels, and Christian Samsel. 2014. Automated Usability Testing forMobile Applications.

In Proceedings of the Web Information Systems and Technologies (WEBIST). SciTePress, Setúbal, Portugal, 149–156.
https://doi.org/10.5220/0004985101490156

[47] Konstantin Knorr and David Aspinall. 2015. Security testing for Android mHealth apps. In Proceedings of the 8𝑡ℎ

International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, New York, NY, USA,
1–8. https://doi.org/10.1109/icstw.2015.7107459

[48] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein. 2019. Automated Testing of Android Apps: A Systematic
Literature Review. IEEE Transactions on Reliability 68, 1 (2019), 45–66.

[49] Artur H Kronbauer, Celso AS Santos, and Vaninha Vieira. 2012. Smartphone applications usability evaluation: a hybrid
model and its implementation. In Proceedings of the International Conference on Human-Centred Software Engineering
(HCSE). Springer, Berlin, Heidelberg, 146–163. https://doi.org/10.1007/978-3-642-34347-6_9

[50] Ammar Lanui and Thiam Kian Chiew. 2019. A Cloud-Based Solution for Testing Applications Compatibility and
Portability on Fragmented Android Platform. In Proceedings of the 26𝑡ℎ Asia-Pacific Software Engineering Conference
(APSEC). IEEE, New York, NY, USA, 158–164. https://doi.org/10.1109/apsec48747.2019.00030

[51] Jemin Lee and Hyungshin Kim. 2016. QDroid: Mobile Application Quality Analyzer for App Market Curators. Mobile
Information Systems 2016 (2016), 1–11. https://doi.org/10.1155/2016/1740129

[52] Florian Lettner and Clemens Holzmann. 2012. Automated and unsupervised user interaction logging as basis for
usability evaluation of mobile applications. In Proceedings of the 10𝑡ℎ International Conference on Advances in Mobile
Computing & Multimedia (MoMM). ACM, New York, NY, USA, 118–127. https://doi.org/10.1145/2428955.2428983

[53] Xueliang Li, Yuming Yang, Yepang Liu, John P Gallagher, and Kaishun Wu. 2020. Detecting and diagnosing energy
issues for mobile applications. In Proceedings of the 29𝑡ℎ International Symposium on Software Testing and Analysis.
ACM, New York, NY, USA, 115–127. https://doi.org/10.1145/3395363.3397350

[54] Hongliang Liang, Yudong Wang, Tianqi Yang, and Yue Yu. 2018. AppLance: A Lightweight Approach to Detect Privacy
Leak for Packed Applications. In Proceedings of the Nordic Conference on Secure IT Systems. Springer, Cham, 54–70.
https://doi.org/10.1007/978-3-030-03638-6_4

[55] Ao Liu, Jing Xu, Weijing Wang, Jiawei Yu, and Hongcan Gao. 2019. Automated Testing of Energy Hotspots and Defects
for Android Applications. In Proceedings of the International Conference on Energy Internet (ICEI). IEEE, New York, NY,
USA, 374–379. https://doi.org/10.1109/ICEI.2019.00072

[56] Chien-Hung Liu. 2019. A compatibility testing platform for android multimedia applications. Multimedia Tools and
Applications 78, 4 (2019), 4885–4904. https://doi.org/10.1007/s11042-018-6268-y

[57] Yi Liu, JueWang, Chang Xu, XiaoxingMa, and Jian L"̈u. 2018. NavyDroid: an efficient tool of energy inefficiency problem
diagnosis for Android applications. Science China Information Sciences 61, 5 (2018), 1–20. https://doi.org/10.1007/s11432-
017-9400-y

[58] Yang Liu, Chaoshun Zuo, Zonghua Zhang, Shanqing Guo, and Xinshun Xu. 2018. An automatically vetting mechanism
for SSL error-handling vulnerability in android hybrid Web apps. World Wide Web 21 (2018), 127–150. https:
//doi.org/10.1007/s11280-017-0458-9

[59] Chu Luo, Jorge Goncalves, Eduardo Velloso, and Vassilis Kostakos. 2020. A Survey of Context Simulation for Testing
Mobile Context-Aware Applications. ACM Comput. Surv. 53, 1, Article 21 (Feb. 2020), 39 pages. https://doi.org/10.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Junior and Amalfitano, et al.

1145/3372788
[60] Xiaoxiao Ma, Bo Yan, Guanling Chen, Chunhui Zhang, Ke Huang, Jill Drury, and Linzhang Wang. 2013. Design and

implementation of a toolkit for usability testing of mobile apps. Mobile Networks and Applications 18 (2013), 81–97.
https://doi.org/10.1007/s11036-012-0421-z

[61] Katherine M Malan, Jan HP Eloff, and Jhani A de Bruin. 2018. Semi-automated usability analysis through eye tracking.
South African Computer Journal 30 (2018), 66–84. https://doi.org/10.18489/sacj.v30i1.511

[62] Abel Méndez Porras, Christian Ulises Quesada López, and Marcelo Jenkins Coronas. 2015. Automated testing of
mobile applications: A systematic map and review. In Proceedings of the 28𝑡ℎ Ibero-American Conference on Software
Engineering (CIBSE). URP,SPC,UCSP, Lima, Peru, 1–14.

[63] H. Muccini, A. Di Francesco, and P. Esposito. 2012. Software testing of mobile applications: Challenges and future
research directions. In Proceedings of the 7𝑡ℎ International Workshop on Automation of Software Test (AST). IEEE, New
York, NY, USA, 29–35.

[64] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software Testing (3rd ed.). Wiley Publishing, New
York, NY, USA.

[65] Kshirasagar Naik, Yasir Ali, Veluppillai Mahinthan, Ajit Singh, and Abdulhakim Abogharaf. 2014. Categorizing
configuration parameters of smartphones for energy performance testing. In Proceedings of the 9𝑡ℎ International
Workshop on Automation of Software Test (AST). ACM, New York, NY, USA, 15–21. https://doi.org/10.1145/2593501.
2593504

[66] Simon O’Dea. 2020. Smartphone users worldwide 2016-2021. https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/. [Online; accessed 10-January-2020].

[67] K. Petersen, S. Vakkalanka, and L. Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software
engineering: An update. Information and Software Technology 64 (2015), 1–18. https://doi.org/10.1016/j.infsof.2015.03.
007

[68] Roger Pressman. 2016. Software Engineering: A Practitioner’s Approach (9 ed.). McGraw-Hill, Inc., USA.
[69] Titis Sari Putri and Fatwa Ramdani. 2017. Reliability testing using hybrid exploratory basis of tour and fuzzy Inference

System Tsukamoto. In Proceedings of the International Conference on Sustainable Information Engineering and Technology
(SIET). IEEE, New York, NY, USA, 176–183. https://doi.org/10.1109/siet.2017.8304131

[70] Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: automatic security analysis of smartphone
applications. In Proceedings of the 3𝑟𝑑 Conference on Data and Application Security and Privacy (CODASPY). ACM, New
York, NY, USA, 209–220. https://doi.org/10.1145/2435349.2435379

[71] Mehmet Sahinoglu, Koray Incki, and Mehmet S. Aktas. 2015. Mobile Application Verification: A Systematic Mapping
Study. In Proceedings of the International Computational Science and Its Applications (ICCSA). Springer, Cham, 147–163.
https://doi.org/10.1007/978-3-319-21413-9_11

[72] Sébastien Salva and Stassia R Zafimiharisoa. 2015. APSET, an Android aPplication SEcurity Testing tool for detecting
intent-based vulnerabilities. International Journal on Software Tools for Technology Transfer 17, 2 (2015), 201–221.
https://doi.org/10.1007/s10009-014-0303-8

[73] João B. F. Sequeiros, Francisco T. Chimuco, Musa G. Samaila, Mário M. Freire, and Pedro R. M. Inácio. 2020. Attack and
System Modeling Applied to IoT, Cloud, and Mobile Ecosystems: Embedding Security by Design. ACM Comput. Surv.
53, 2 (2020), 25:1–25:32. https://doi.org/10.1145/3376123

[74] Hossain Shahriar, Sarah North, and Edward Mawangi. 2014. Testing of memory leak in Android applications. In
Proceedings of the 15𝑡ℎ International Symposium on High-Assurance Systems Engineering. IEEE, New York, NY, USA,
176–183. https://doi.org/10.1109/hase.2014.32

[75] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. 2019. MoSSOT: An Automated Blackbox Tester for Single
Sign-On Vulnerabilities in Mobile Applications. In Proceedings of the Asia Conference on Computer and Communications
Security (ASIACCS). ACM, New York, NY, USA, 269–282. https://doi.org/10.1145/3321705.3329801

[76] Lady Silva and Denivaldo Lopes. 2020. Model Driven Engineering for Performance Testing in Mobile Applications. In
Proceedings of the 5𝑡ℎ South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media
Conference (SEEDA-CECNSM). IEEE, New York, NY, USA, 1–7. https://doi.org/10.1109/seeda-cecnsm49515.2020.9221828

[77] Ian Sommerville. 2011. Software Engineering (9th ed.). Addison-Wesley Publishing Company, USA.
[78] Oleksii Starov, Sergiy Vilkomir, Anatoliy Gorbenko, and Vyacheslav Kharchenko. 2015. Testing-as-a-Service for Mobile

Applications: State-of-the-Art Survey. Vol. 307. Springer, Cham. https://doi.org/10.1007/978-3-319-08964-5_4
[79] Carola Trahms, Sebastian Möller, and Jan-Niklas Voigt-Antons. 2018. Estimating Quality Ratings from Touch Interac-

tions in Mobile Games. In Proceedings of the 10𝑡ℎ International Conference on Quality of Multimedia Experience (QoMEX).
IEEE, New York, NY, USA, 1–6. https://doi.org/10.1109/qomex.2018.8463419

[80] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita Fasolino. 2019. Automated functional
testing of mobile applications: a systematic mapping study. Software Quality Journal 27, 1 (2019), 149–201. https:
//doi.org/10.1007/s11219-018-9418-6

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:33

[81] Muhammad Usman, Muhammad Zohaib Iqbal, and Muhammad Uzair Khan. 2020. An automated model-based approach
for unit-level performance test generation of mobile applications. Journal of Software: Evolution and Process 32 (2020),
e2215. https://doi.org/10.1002/smr.2215

[82] Wesley van der Lee and Sicco Verwer. 2018. Vulnerability Detection on Mobile Applications Using State Machine
Inference. In Proceedings of the European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, New York,
NY, USA, 1–10. https://doi.org/10.1109/eurospw.2018.00008

[83] Mian Wan, Yuchen Jin, Ding Li, and William GJ Halfond. 2015. Detecting display energy hotspots in Android apps. In
Proceedings of the 8𝑡ℎ International Conference on Software Testing, Verification and Validation (ICST). IEEE, New York,
NY, USA, 1–10. https://doi.org/10.1109/ICST.2015.7102585

[84] YingjieWang, Guangquan Xu, Xing Liu,WeixuanMao, Chengxiang Si,Witold Pedrycz, andWeiWang. 2020. Identifying
vulnerabilities of SSL/TLS certificate verification in Android apps with static and dynamic analysis. Journal of Systems
and Software 167 (2020), 110609. https://doi.org/10.1016/j.jss.2020.110609

[85] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan. 2014. IntentFuzzer: detecting capability leaks
of android applications. In Proceedings of the 9𝑡ℎ Symposium on Information, computer and communications security.
ACM, New York, NY, USA, 531–536. https://doi.org/10.1145/2590296.2590316

[86] Badamasi Imam Ya’u, Norsaremah Salleh, Azlin Nordin, Norbik Bashah Idris, Hafiza Abas, and Ali Amer Alwan. 2019.
A systematic mapping study on cloud-based mobile application testing. Journal of Information and Communication
Technology 18, 4 (2019), 485–527. https://doi.org/10.32890/jict2019.18.4.5

[87] Shengcheng Yu, Chunrong Fang, Yexiao Yun, and Yang Feng. 2021. Layout and Image Recognition Driving Cross-
Platform Automated Mobile Testing. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE). IEEE, New York, NY, USA, 1561–1571. https://doi.org/10.1109/ICSE43902.2021.00139

[88] Noorrezam Yusop, Massila Kamalrudin, Safiah Sidek, and John Grundy. 2016. Automated support to capture and
validate security requirements for mobile apps. In Proceedings of the Asia Pacific Requirements Engineering Conference
(APSEC). Springer, Singapore, 97–112. https://doi.org/10.1007/978-981-10-3256-1_7

[89] Samer Zein, Norsaremah Salleh, and John Grundy. 2016. A Systematic Mapping Study of Mobile Application Testing
Techniques. Journal of Systems and Software 117, C (July 2016), 334–356. https://doi.org/10.1016/j.jss.2016.03.065

[90] Hailong Zhang, Haowei Wu, and Atanas Rountev. 2016. Automated test generation for detection of leaks in Android
applications. In Proceedings of the 11𝑡ℎ International Workshop on Automation of Software Test. ACM, New York, NY,
USA, 64–70. https://doi.org/10.1145/2896921.2896932

[91] Tao Zhang, Jerry Gao, Jing Cheng, and Tadahiro Uehara. 2015. Compatibility testing service for mobile applications.
In Proceedings of the Symposium on Service-Oriented System Engineering (SOSE). IEEE, New York, NY, USA, 179–186.
https://doi.org/10.1109/sose.2015.35

[92] Chenyang Zhu, Zhengwei Zhu, Yunxin Xie, Wei Jiang, and Guiling Zhang. 2019. Evaluation of Machine Learning
Approaches for Android Energy Bugs Detection With Revision Commits. IEEE Access 7 (2019), 85241–85252. https:
//doi.org/10.1109/access.2019.2925350

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:34 Junior and Amalfitano, et al.

A MAPPING TABLES

Table 12. Final set of selected studies.

ID (ref) Title PE S U P R C Year Venue
S1 [50] A cloud-based solution for testing applications compatibility and portability on fragmented

android platform
✓ ✓ 2019 Conference

S2 [81] An automated model-based approach for unit-level performance test generation of mobile
applications

✓ 2020 Journal

S3 [7] Androshield: automated android applications vulnerability detection, a hybrid static and dynamic
analysis approach

✓ 2019 Journal

S4 [70] Appsplayground: automatic security analysis of smartphone applications ✓ 2013 Conference
S5 [38] Detecting usability problems in mobile applications on the basis of dissimilarity in user behavior ✓ 2020 Journal
S6 [6] Do memories haunt you? an automated black box testing approach for detecting memory leaks

in android apps
✓ 2020 Journal

S7 [79] Estimating quality ratings from touch interactions in mobile games ✓ 2018 Conference
S8 [42] Mimic: ui compatibility testing system for android apps ✓ 2019 Conference
S9 [75] Mossot: an automated blackbox tester for single sign-on vulnerabilities in mobile applications ✓ 2019 Conference
S10 [57] NavyDroid: an efficient tool of energy inefficiency problem diagnosis for Android applications ✓ 2018 Journal
S11 [24] Performance analysis of spotify (r) for android with model-based testing ✓ 2017 Journal
S12 [34] Search-based energy testing of android ✓ 2019 Conference
S13 [61] Semi-automated usability analysis through eye tracking ✓ 2018 Journal
S14 [49] Smartphone applications usability evaluation: a hybrid model and its implementation ✓ 2012 Conference
S15 [35] 𝜇Droid: an energy-aware mutation testing framework for Android ✓ 2017 Symposium
S16 [28] An automated testing approach for inter-application security in android ✓ 2014 Workshop
S17 [58] An automatically vetting mechanism for SSL error-handling vulnerability in android hybrid

Web apps
✓ 2018 Journal

S18 [12] Analysing data security requirements of android mobile banking application ✓ 2018 Conference
S19 [72] APSET, an Android aPplication SEcurity Testing tool for detecting intent-based vulnerabilities ✓ 2015 Journal
S20 [88] Automated support to capture and validate security requirements for mobile apps ✓ 2016 Conference
S21 [46] Automated usability testing for mobile applications ✓ 2014 Conference
S22 [65] Categorizing Configuration Parameters of Smartphones for Energy Performance Testing ✓ 2014 Workshop
S23 [91] Compatibility testing service for mobile applications ✓ 2015 Symposium
S24 [83] Detecting Display Energy Hotspots in Android Apps ✓ 2015 Conference
S25 [29] Dynamic detection of inter-application communication vulnerabilities in android ✓ 2015 Symposium
S26 [10] EnergyPatch: Repairing Resource Leaks to Improve Energy-Efficiency of Android Apps ✓ 2017 Journal
S27 [20] ErgoMobile: A software to support usability evaluations in mobile devices using observation

techniques
✓ 2017 Conference

S28 [41] Graph-aided Directed Testing of Android Applications for Checking Runtime Privacy Behaviours ✓ 2016 Workshop
S29 [13] Mobile application usability testing in quasi-real conditions-the synergy of using different

methods
✓ 2018 Conference

S30 [47] Security testing for Android mHealth apps ✓ 2015 Workshop
S31 [9] Security testing of the communication among Android applications ✓ 2013 Workshop
S32 [18] The mobile app usability inspection (MAUi) framework as a guide for minimal viable product

(MVP) testing in lean development cycle
✓ 2016 Conference

S33 [82] Vulnerability Detection on Mobile Applications Using State Machine Inference ✓ 2018 Symposium
S34 [21] ZIPT: Zero-integration performance testing of mobile app designs ✓ ✓ 2017 Symposium
S35 [52] Automated and unsupervised user interaction logging as basis for usability evaluation of mobile

applications
✓ 2012 Conference

S36 [11] Automating Mockup-Based Usability Testing on the Mobile Device ✓ 2019 Conference
S37 [1] Characterization and Detection of Tail Energy Bugs in Smartphones ✓ 2018 Journal
S38 [60] Design and Implementation of a Toolkit for Usability Testing of Mobile Apps ✓ 2013 Journal
S39 [92] Evaluation of Machine Learning Approaches for Android Energy Bugs Detection with Revision

Commits
✓ 2019 Journal

S40 [25] Extending mobile app analytics for usability test logging ✓ 2017 Conference
S41 [19] GreenOracle: Estimating Software Energy Consumption with Energy Measurement Corpora ✓ 2016 Conference
S42 [43] Performance testing of mobile applications at the unit test level ✓ 2009 Conference
S43 [51] QDroid: Mobile Application Quality Analyzer for App Market Curators ✓ ✓ 2016 Journal
S44 [69] Reliability Testing using Hybrid Exploratory Basis of Tour and Fuzzy Inference System

Tsukamoto
✓ 2017 Conference

S45 [55] Automated Testing of Energy Hotspots and Defects for Android Applications ✓ 2019 Conference
S46 [90] Automated Test Generation for Detection of Leaks in Android Applications ✓ 2016 Workshop
S47 [84] Identifying vulnerabilities of SSL/TLS certificate verification in Android apps with static and

dynamic analysis
✓ 2020 Journal

S48 [54] AppLance: A Lightweight Approach to Detect Privacy Leak for Packed Applications ✓ 2018 Conference
S49 [76] Model Driven Engineering for Performance Testing in Mobile Applications ✓ 2020 Conference
S50 [53] Detecting and diagnosing energy issues for mobile applications ✓ 2020 Symposium
S51 [56] A compatibility testing platform for android multimedia applications ✓ 2019 Journal
S52 [74] Testing of Memory Leak in Android Applications ✓ 2014 Symposium
S53 [85] IntentFuzzer: Detecting capability leaks of android applications ✓ 2014 Symposium
S54 [36] Automated construction of energy test oracles for Android ✓ 2020 Conference
S55 [26] Automated usability tests for mobile devices through live emotions logging ✓ 2015 Conference
S56 [15] A Large-Scale Study of Application Incompatibilities in Android ✓ 2019 Symposium

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:35

Table 13. Strategies and approaches adopted for NFRs testing.

ID (ref) Bl
ac
k
Bo

x

W
hi
te

Bo
x

H
yb

ri
d

UB FB SEIE CB IDB MB Technique description
S1 [50] ✓ AH Tests are already implemented and stored. They are executed in cloud on multiple mobile devices.
S2 [81] ✓ FS Tests are automatically generated starting from a performance model of the application under

test.
S3 [7] ✓ ET CFB The app is tested on the fly by launching intents and API calls. Scan of reverse engineered code.
S4 [70] ✓ ET The app is tested on the fly by exploring its UI.
S5 [38] ✓ UOH Based on the analysis of recorded user interactions.
S6 [6] ✓ OP Tests are composed by user events that may generate memory leaks.
S7 [79] ✓ UOH Based on the analysis of recorded user interactions.
S8 [42] ✓ OP Tests are composed by user events and executed on different devices.
S9 [75] ✓ FSM Tests are generated from a FSM modeling the application UI. The FSM is inferred automatically.
S10 [57] ✓ EG ET The app is explored through its UI, meanwhile the performance is monitored to find inefficiencies.
S11 [24] ✓ FSM Tests are generated from a FSM modeling the application UI.
S12 [34] ✓ FSM Tests are generated from multiple FSMs modeling the app behavior. Models are automatically

inferred.
S13 [61] ✓ UOH Based on the analysis of recorded user interactions and eye tracking
S14 [49] ✓ UOH Based on the analysis of recorded user interactions
S15 [35] ✓ MT Based on a mutation testing process involving specific energy mutants
S16 [28] ✓ EG The app is solicited by tests simulating attack behaviors. Scan of reverse engineered code.
S17 [58] ✓ ET CFB The app is tested on the fly by exploring its UI. Scan of reverse engineered code.
S18 [12] ✓ ET CFB The app is tested on the fly by exploring its UI. Scan of reverse engineered code.
S19 [72] ✓ FSM Tests are generated from a Finite State Machine modeling the behavior of the application.
S20 [88] ✓ WM Tests are generated from use cases and user interface models.
S21 [46] ✓ UOH Based on the analysis of recorded user interactions.
S22 [65] ✓ EP Test parameters are partitioned in primary parameters, causing most of the device’s consumes,

and stand-alone parameters.
S23 [91] ✓ OP Tests are composed by user events and executed on different devices.
S24 [83] ✓ OP Based on the execution of specific user events meanwhile performances and consumes are

monitored, traced, logged, and analyzed.
S25 [29] ✓ ET CFB The app is tested on the fly meanwhile it is explored. The exploration is guided by a specific CFG.
S26 [10] ✓ ET CFB The app is tested on the fly meanwhile it is explored. The exploration is guided by a specific CFG.
S27 [20] ✓ UOH Based on the analysis of recorded user interactions.
S28 [41] ✓ CFB Tests are generated starting from a specific CFG obtained by reverse engineering.
S29 [13] ✓ UOH Based on the analysis of recorded user interactions and eye tracking.
S30 [47] ✓ EG CFB The app is tested on the fly by test cases designed for finding known errors. Scan of reverse

engineered code.
S31 [9] ✓ MT Based on a mutation testing process involving specific intent mutants.
S32 [18] ✓ UOH Based on the analysis of recorded user interactions.
S33 [82] ✓ EG FSM Tests are generated from a FSM modeling the application UI. The FSM is inferred automatically.

Tests covers path of the FSM that may expose known vulnerabilities.
S34 [21] ✓ OP Based on the execution of predefined user events that may cause usability errors. Performances

and consumes are monitored, traced, logged, and analyzed.
S35 [52] ✓ UOH Based on the analysis of recorded user interactions
S36 [11] ✓ UOH EG Based on the analysis of recorded interactions made by user events that may cause usability

errors.
S37 [1] ✓ OP EG Based on the analysis of recorded interactions made by user events that may cause usability

errors. Meanwhile, performances and consumes are monitored, traced, logged, and analyzed.
S38 [60] ✓ UOH Based on the analysis of recorded interactions made by user events that may cause usability

errors.
S39 [92] ✓ EG FS Based on machine learning approaches for testing energy consumption.
S40 [25] ✓ OP Based on the analysis of recorded interactions made by known user events that may cause

usability errors.
S41 [19] ✓ EG FS Based on machine learning approaches for testing energy consumption.
S42 [43] ✓ OP Based on the analysis of recorded interactions made by user events that may cause usability

errors. Meanwhile, performances and consumes are monitored, traced, logged, and analyzed.
S43 [51] ✓ ET The app is tested on the fly by exploring its UI.
S44 [69] ✓ AH Specific exploratory testing scenarios are designed and executed.
S45 [55] ✓ CFB Tests are generated starting from a specific CFG obtained by reverse engineering.
S46 [90] ✓ EG FSM Tests are generated from a FSM modeling the application UI. The FSM is inferred automatically.

Tests covers path of the FSM that may expose known leaks.
S47 [84] ✓ EG ET Potential vulnerable activities are automatically explored. The exploration is guided by the code.
S48 [54] ✓ OP ET The app is explored through its UI. Execution data are logged and analyzed to find vulnerabilities.
S49 [76] ✓ FS Test cases are generated starting from Metamodels modeling performance aspects.
S50 [53] ✓ OP EG Based on the execution of specific user events that may cause performance issues. Performances

and consumes are monitored, traced, logged, and analyzed.
S51 [56] ✓ OP Test cases made by specific user events are designed and executed on multiple devices.
S52 [74] ✓ EG ET The app is tested on the fly by exploring its UI. During the exploration events that may cause

known vulnerabilities are executed.
S53 [85] ✓ EG ET The app is tested on the fly by launching intents that may cause known vulnerabilities. Code

static analysis is needed to construct the intents to be executed.
S54 [36] ✓ EG FS Based on machine learning approaches for testing energy consumption
S55 [26] ✓ UOH Based on the analysis of recorded interactions made by user events that may cause usability

errors.
S56 [15] ✓ OP ET The app is explored through its UI. Execution logs are analyzed to find portability issues.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:36 Junior and Amalfitano, et al.

Table 14. Supporting tools for NFRs testing of mobile apps.

ID (ref) Tool name TH TG CR OC CAI T URL (if available)
S1 [50] NoName ✓ N/A
S2 [81] NoName ✓ N/A
S3 [7] AndroShield ✓ ✓ ✓ https://github.com/AmrAshraf/AndroShield
S4 [70] AppsPlayground ✓ N/A
S5 [38] NoName ✓ N/A
S6 [6] FunesDroid ✓ ✓ https://github.com/reverse-unina/FunesDroid
S8 [42] Mimic ✓ N/A
S9 [75] MoSSOT ✓ ✓ ✓ https://github.com/cuhk-mobitec/MoSSOT
S10 [57] NavyDroid ✓ ✓ N/A
S11 [24] NoName ✓ N/A
S12 [34] COBWEB ✓ ✓ N/A
S14 [49] UEProject ✓ ✓ N/A
S15 [35] 𝜇Droid ✓ ✓ ✓ https://www.ics.uci.edu/~seal/projects/mu_droid/tool.

html
S17 [58] NoName ✓ ✓ N/A
S19 [72] APSET ✓ ✓ https://github.com/statops/apset
S20 [88] MobiMEReq ✓ N/A
S21 [46] NoName ✓ ✓ N/A
S24 [83] dLens ✓ ✓ https://sites.google.com/site/dlensproject/home
S25 [29] IntentDroid ✓ ✓ https://www.ibm.com/common/ssi/cgi-bin/ssialias?

infotype=an&subtype=ca&appname=gpateam&supplier=
897&letternum=ENUS214-533

S26 [10] EnergyPatch ✓ ✓ https://www.comp.nus.edu.sg/~rpembed/epatch/home.
html

S27 [20] ErgoMobile ✓ N/A
S28 [41] MAMBA ✓ ✓ N/A
S31 [9] NoName ✓ ✓ ✓ N/A
S33 [82] MAT ✓ ✓ https://github.com/wesleyvanderlee/AppSecurity
S34 [21] ZIPT ✓ ✓ http://www.usertesting.com/
S35 [52] ATEBs detector ✓ ✓ N/A
S36 [11] NoName ✓ ✓ N/A
S37 [1] NoName ✓ ✓ N/A
S38 [60] NoName ✓ ✓ N/A
S40 [25] NoName ✓ ✓ N/A
S42 [43] NoName ✓ ✓ N/A
S43 [51] QDroid ✓ ✓ https://github.com/leejaymin/QDroid
S45 [55] EHDetector ✓ ✓ N/A
S47 [84] DCDroid ✓ ✓ ✓ N/A
S48 [54] AppLance ✓ ✓ N/A
S50 [53] NoName ✓ ✓ N/A
S51 [56] CTP ✓ ✓ N/A
S53 [85] IntentFuzzer ✓ ✓ N/A
S54 [36] ACETON ✓ https://github.com/seal-hub/ACETON

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Dynamic Testing Techniques of Non-Functional Requirements in Mobile Apps: A Systematic Mapping Study 1:37

Table 15. Publication Venues.

Venue name #
Journal

IEEE Access 3
Mobile Information Systems 2
IEEE Transactions on Software Engineering 1
Journal of Software: Evolution and Process 1
Information 1
International Journal of Human-Computer Studies 1
Science China Information Sciences 1
South African Computer Journal 1
World Wide Web 1
Journal on Software Tools for Technology Transfer 1
Mobile Networks and Applications 1
Journal of Systems and Software 1
Multimedia Tools and Applications 1

Conference
International Conference on Software Engineering 2
Asia-Pacific Software Engineering Conference 2
Conference on Human-Computer Interaction 2
Conference on Data and application security and privacy 1
Conference on Quality of Multimedia Experience 1
Conference on Computer and Communications Security 1
Conference on Human-Centred Software Engineering 1
Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments 1
Conference on Web Information Systems and Technologies 1
Conference on Software Testing, Verification and Validation 1
Conference of Design, User Experience, and Usability 1
Conference on Human System Interaction 1
Conference in HCI and UX Indonesia 1
Conference on Advances in Mobile Computing & Multimedia 1
Conference on Green, Pervasive, and Cloud Computing 1
Working Conference on Mining Software Repositories 1
Conference on Secure Software Integration and Reliability Improvement 1
Conference on Sustainable Information Engineering and Technology 1
Conference on Energy Internet 1
Nordic Conference on Secure IT Systems 1
South-East Europe Design Automation, Computer Engineering, Computer Networks and Social
Media Conference

1

Joint European Software Engineering 1
Symposium

International Symposium on Software Testing and Analysis 3
Joint Meeting on Foundations of Software Engineering 1
Symposium on Service-Oriented System Engineering 1
Symposium on Security and Privacy 1
Symposium on User Interface Software and Technology 1
International Symposium on High-Assurance Systems Engineering 1
Symposium on Information, Computer and Communications Security 1

Workshop
Workshop on Automation of Software Test 5
Conference on Software Testing, Verification and Validation Workshops 1

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Problem Statement
	Research Questions and Objectives
	Contributions
	Thesis Outline

	State-of-the-art
	Preliminary Remarks
	Non-Functional Requirements: Classification, Challenges, and Testing
	Classification of Non-Functional Requirements
	Problems Associated with Non-Functional Requirements
	An Overview on Non-Functional Requirements Testing

	Metamorphic Testing Approach
	Practical Guidelines for the implementation of Metamorphic Testing
	Challenges for the use of Metamorphic Testing
	Metamorphic Testing in the Context of Non-Functional Requirements

	Mobile Application Testing: Concepts, Challenges, and Trends
	A Comprehensive Analysis of Mobile Applications Testing
	Challenges Associated with Mobile Applications Testing
	Non-Functional Testing in Mobile Applications

	Final Remarks

	Fundamentals of Security Testing
	Preliminary Remarks
	A Guide to Security Requirements and Testing
	Security Testing in Android Applications

	Secure username and password authentication in Android applications
	Final Remarks

	Security Dynamic Testing Techniques in Mobile Applications: Findings from a Systematic Mapping Study
	Preliminary Remarks
	Goals, Research Questions, and Metrics
	Results
	NFR testing techniques for mobile apps
	Distribution of NFRs addressed by primary studies
	Mobile Platforms
	Security Testing Strategies
	Approaches for Security testing

	Tools for supporting NFR testing for mobile applications
	Tool support to NFR testing of mobile apps
	Testing tool licensing
	Types of NFR testing tools

	Discussion
	Security is one of the critical and relevant NFR
	Security testing is not a simple and accessible task
	Android is the most addressed and vulnerable mobile platform in the context of security
	Some tools for security testing are not easily accessible

	Final Remarks

	A GUI-Based Metamorphic Testing Technique for Detecting Authentication Vulnerabilities in Android Mobile Apps
	Preliminary Remarks
	Metamorphic-based Vulnerability Testing Technique
	Metamorphic Vulnerability Testing Environment
	Architectural overview

	Metamorphic Relationships for Detecting Authentication Vulnerabilities
	Vulnerabilities selection and weaknesses description
	Definition of Metamorphic Relationships
	Improper Certificate Validation
	Insufficient Session Expiration
	Session Fixation
	Missing Encryption of Sensitive Data
	Authentication Bypass

	Experimental Evaluation
	Object selection
	Experimental procedure
	Experimental results and answers to RQs
	Answer to RQ1
	Answer to RQ2
	Answer to RQ3

	Threats to Validity
	External validity
	Internal validity
	Conclusion validity
	Construct validity

	Final Remarks

	Conclusions
	Revisiting the Thesis Contribution
	Limitations and Future Work

	Bibliography
	Systematic Mapping Paper

