• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2019.tde-21022019-163017
Document
Author
Full name
Valdemir Garcia Ferreira
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1990
Supervisor
Committee
Andrade, Celia Maria Finazzi de (President)
Barroso, Leonidas Conceicao
Pereira, Aldenice Brito
Title in Portuguese
MÉTODOS DE RUNGE-KUTTA-ROSENBROCK PARA EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Nesta dissertação é estudada a classe dos métodos de Runge-Kutta e também do tipo Rosenbrock para a solução de Equações Diferenciais Ordinárias. Atenção especial é dedicada aos métodos de Rosenbrock-Wanner (ROW) métodos, os quais são extensões dos métodos clássicos de Rosenbrock. Um procedimento é apresentado para a obtenção dos métodos de Rosenbrock-Wanner de quarta ordem A-estáveis e um método com estas propriedades é mostrado. Isto é confirmado por resultados numéricos. Todo o estudo, aqui apresentado, baseia-se na teoria dos grafos ao estilo de J.C.Butcher.
Title in English
Not available
Keywords in English
Not available
Abstract in English
This work is concerned with Runge-Kutta and Rosenbrock methods for numerical solution of Ordinary Differential Equations. Special attention is devoted to an extension of the classical Rosenbrock method, namely the Rosenbrock-Wanner (ROW) methods. A procedure for obtaining forth order A-stable ROW methods is presented and a method with these properties is exhibited. This is confirmed by numerical results. The whole study is based on graphs theory in Butcher's like style.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-02-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.