• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2019.tde-21022019-163017
Document
Auteur
Nom complet
Valdemir Garcia Ferreira
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1990
Directeur
Jury
Andrade, Celia Maria Finazzi de (Président)
Barroso, Leonidas Conceicao
Pereira, Aldenice Brito
Titre en portugais
MÉTODOS DE RUNGE-KUTTA-ROSENBROCK PARA EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Mots-clés en portugais
Não disponível
Resumé en portugais
Nesta dissertação é estudada a classe dos métodos de Runge-Kutta e também do tipo Rosenbrock para a solução de Equações Diferenciais Ordinárias. Atenção especial é dedicada aos métodos de Rosenbrock-Wanner (ROW) métodos, os quais são extensões dos métodos clássicos de Rosenbrock. Um procedimento é apresentado para a obtenção dos métodos de Rosenbrock-Wanner de quarta ordem A-estáveis e um método com estas propriedades é mostrado. Isto é confirmado por resultados numéricos. Todo o estudo, aqui apresentado, baseia-se na teoria dos grafos ao estilo de J.C.Butcher.
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
This work is concerned with Runge-Kutta and Rosenbrock methods for numerical solution of Ordinary Differential Equations. Special attention is devoted to an extension of the classical Rosenbrock method, namely the Rosenbrock-Wanner (ROW) methods. A procedure for obtaining forth order A-stable ROW methods is presented and a method with these properties is exhibited. This is confirmed by numerical results. The whole study is based on graphs theory in Butcher's like style.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-02-21
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.