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ABSTRACT

OLIVEIRA DE SOUZA JUNIOR, C. A. A hardware/software codesign for the chemical
reactivity of BRAMS . 2017. 109 f. Master dissertation (Master student Program in Computer
Science and Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Several critical human activities depend on the weather forecasting. Some of them are transporta-
tion, health, work, safety, and agriculture. Such activities require computational solutions for
weather forecasting through numerical models. These numerical models must be accurate and
allow the computers to process them quickly. In this project, we aim at migrating a small part of
the software of the weather forecasting model of Brazil, BRAMS — Brazilian developments
on the Regional Atmospheric Modelling System — to a heterogeneous system composed of
Xeon (Intel) processors coupled to a reprogrammable circuit (FPGA) via PCIe bus. According
to the studies in the literature, the chemical equation from the mass continuity equation is
the most computationally demanding part. This term calculates several linear systems Ax = b.
Thus, we implemented such equations in hardware and provided a portable and highly parallel
design in OpenCL language. The OpenCL framework also allowed us to couple our circuit to
BRAMS legacy code in Fortran90. Although the development tools present several problems, the
designed solution has shown to be viable with the exploration of parallel techniques. However,
the performance was below of what we expected.

Keywords: Hardware, FPGA, OpenCL, codesign, heterogeneous-computing.





RESUMO

OLIVEIRA DE SOUZA JUNIOR, C. A. A hardware/software codesign for the chemical
reactivity of BRAMS . 2017. 109 f. Dissertação (Mestrado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Várias atividades humanas dependem da previsão do tempo. Algumas delas são transporte, saúde,
trabalho, segurança e agricultura. Tais atividades exigem solucões computacionais para previsão
do tempo através de modelos numéricos. Estes modelos numéricos devem ser precisos e ágeis
para serem processados no computador.Este projeto visa portar uma pequena parte do software
do modelo de previsão de tempo do Brasil, o BRAMS — Brazilian developments on the Regional

Atmospheric Modelling System — para uma arquitetura heterogênea composta por processadores
Xeon (Intel) acoplados a um circuito reprogramável em FPGA via barramento PCIe. De acordo
com os estudos, o termo da química da equação de continuidade da massa é o termo mais
caro computacionalmente. Este termo calcula várias equações lineares do tipo Ax = b. Deste
modo, este trabalho implementou estas equações em hardware, provendo um ćodigo portável e
paralelo na linguagem OpenCL. O framework OpenCL também nos permitiu acoplar o código
legado do BRAMS em Fortran90 junto com o hardware desenvolvido. Embora as ferramentas
de desenvolvimento tenham apresentado vários problemas, a solução implementada mostrou-se
viável com a exploração de técnicas de paralelismo. Entretando sua perfomance ficou muito
aquém do desejado.

Palavras-chave: Hardware, FPGA, OpenCL, coprojeto, computação-heterogênea.
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CHAPTER

1
INTRODUCTION

Weather forecasting is the utilization of science and technology to predict the state
of the atmosphere at a provided location. The predictions require quantitative data from the
current situation of the atmosphere at a given place, and scientific understanding of atmospheric
processes to predict how the atmosphere will change (HENKEL, 2015).

According to Society (2015) the meteorological profession is responsible for two crucial
services: weather forecasts and warnings. The government and industry use forecasts to protect
life and property and to improve the efficiency of operations.

Several critical human activities depend on the weather forecasting. Some of them are
transportation, health, work, and safety. Imagine an air travel where passengers do not know
what are the risks ahead; a forest fire where firefighters have no clue where the fire will move
(LABORATORY, 2015).

Forecasts based on temperature and precipitation are important to agriculture and so the
traders of commodity markets. Weather forecasting is also critical to estimate the crop-disease
spread (WARNER, 2010). Trying to predict the weather is not a new science.

Ancient civilizations started to forecast the weather at the very early ages. They used
astronomical and meteorological events to keep track of seasonal changes in the weather. By the
year 650 B.C., Babylonians tried to predict weather (short-term) through clouds patterns and
optical phenomena, such as halos (GRAHAM; PARKINSON; CHAHINE, 2002).

By the end of Renaissance period, it had become clear to philosophers that forecasting
based only on observations and assumptions was not an adequate method. They needed to
improve their understanding of the atmosphere — the development of new tools was necessary
to measure properties of the atmosphere, such as moisture, temperature, and pressure. The first
tool dates back to 14th century, the hygrometer.

On the 16th century, Galileo Galilei invented the thermometer. Later in the 17th century,
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Evangelista Torricelli created the barometer. Other tools came later on recently centuries (for
example radiosonde and weather satellite). These instruments allowed us to create weather
observation stations and the dissemination of them around the globe. Besides the tools, it was
also necessary a better understanding of the atmosphere.

In the 19th century, the development of thermodynamics allowed meteorologists to set
the fundamental physical principles that govern the flow of the atmosphere (LYNCH, 2008). In
1890, Cleveland Abbe acknowledged that meteorology is the application of hydrodynamics and
thermodynamics to the atmosphere (WILLIS; HOOKE, 2006).

In 1904, Vilhelm Bjerknes published a paper in german (The Problem of Weather
Forecasting from the Standpoint of Mechanics and Physics). In this paper, he introduces the hydro-
and thermodynamics into meteorology. Vilhelm included the second law of thermodynamics in
his set of equations; this error was corrected by Lewis Fry Richardson (GRØNØS, 2005). The
latter made an estimate method for solving numerical equations — According to Richardson, it
would be required 64 thousand people to predict the weather in time. It is clear that predicting
the weather was impossible before computational era (LYNCH, 2008).

Predicting the weather became possible in the 20th century, with Von Neumann’s ENIAC.
Charney realized that could overcome Richardson’s methods impracticability with new com-
puters, and a revised set of equations where scientists could solve complex equations through
numerical methods. In April 1950, Charney’s research group succeed to predict the weather for
24 hours in the North America.

With the computer availability increasing in the 20th century, universities started offering
courses on atmospheric modeling. At the time, people shared their time as both modelers and
developers; the generated code had many errors, so it was necessary more human effort to correct
it. The development in the field allowed the modelers to have available, for free, well-tested
community, global and limited-area models, and access to full documentation, regular tutorials,
and technical support (WARNER, 2010).

Last century was responsible for many scientific advances that allowed us to predict the
weather phenomena. This prediction uses numerical models; we can classify such models accord-
ing to their domain operation: Global (the entire Earth planet) and regional (e.g. Country, State,
and City). The global models cannot represent accurately the regional weather phenomena due
to limited computing power. On the other hand, regional models are more accurate (OSTHOFF
et al., 2012; LABORATORY, 2015). In this project, we are using Brazilian developments on the
Regional Atmospheric Modelling System (BRAMS)1, a Brazilian regional model.

Currently, BRAMS is the largest high-performance application in Brazil according to
Panetta (2015). We used a PERL script to count the lines of BRAMS, with CLOC2 we discovered

1 http://brams.cptec.inpe.br/
2 http://cloc.sourceforge.net/
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that BRAMS has over 400 thousands lines of code in Fortran. We can see the results in Table 1.
Since the application is huge, we used some tools available on the Internet to detect bottlenecks
and generate graphical data, they are Gprof, and Gprof2dot, respectively.

Table 1 – Results from CLOC.

Language Files Blank Comment Code

Fortran 90 748 67905 126111 454676

C 14 2154 5102 6062

Bourne Shell 4 694 857 5081

C/C++ Header 39 390 1129 1496

make 18 186 173 891

Sum 823 71329 133372 468206

1.1 Objective
The main objective of this work is to show that is viable to migrate segments of code

of BRAMS to a heterogeneous architecture, particularly hardware platforms that use Xeon
Intel processor coupled to a programmable circuit (FPGA) via PCIe. Thus, we can provide
a hardware/software solution for a snippet of BRAMS that will be functionally integrated to
BRAMS.

According to the studies in the literature, the chemical equation from the mass continuity
equation is the most computationally demanding part. This term calculates several linear systems
Ax = b. Thus, we implemented such equations in hardware and provided a portable and highly
parallel design in OpenCL language. The OpenCL framework also allowed us to couple our
circuit to BRAMS legacy code in Fortran90. Although the development tools present several
problems, the designed solution has shown to be viable with the exploration of parallel techniques.
However, the performance was below of what we expected.

1.2 Motivation
The weather prediction is considered a super application or a supercomputing application.

They demand high computing power with increasing inclination for growth (KIRK; WEN-MEI,
2012).

In the last 20 years, processors have increased in 1000 times their performance. Increasing
the performance of current processors require changes in the architecture. Due to energy limits, it
is not viable to boost the frequency on current state-of-art processors. This limitation has forced
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designers to use large-scale parallelism, heterogeneous cores, and accelerators for demanding
applications (BORKAR; CHIEN, 2011).

The applications will depend on customized accelerators, especially in hardware, to gain
performance. In many cases, the acceleration also improves computational efficiency regarding
the energy consumption compared to a solution based on software (CONG; ZOU, 2009).

Accelerators are special-purpose processors used to accelerate CPU-bound applications.
The development of them is usually in Graphics Processing Unit (GPU) or Field-Programmable
Gate Array (FPGA); both can achieve substantial performance for certain workloads when
compared to Central Processing Unit (CPU). FPGAs are highly customizable and, in general,
offer the best performance (CHE et al., 2008).

1.3 Document organization
In Chapter 2, we present the fundamental concepts for this project and the literature

review. In Chapter 3, we describe our three architectures for Jacobi method. We also describe
how we managed the interoperability with CPU for each architecture. In Chapter 4, we present
the profiling that supports that the chem term is the most expensive in the mass continuity
equation. Then we show the results for each architecture and its problems. Lastly, we compare
our hardware solution with the current software solution in BRAMS. In Chapter 5, we conclude
our project and present the main limitations and future work. In Appendix A, we depict the
installation of BRAMS. In Appendix B, we show how to visualize the results from BRAMS. In
Annex A, there are useful links to libraries, additional software, and BRAMS source code.
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CHAPTER

2
FUNDAMENTAL CONCEPTS

2.1 Brazilian developments on the Regional Atmospheric
Modelling System – BRAMS

BRAMS is an project originally developed by ATmospheric, Meteorological, and Envi-
ronmental Technologies (ATMET), IME/USP (Institute of Mathematics and Statistics/University
of São Paulo), IAG/USP (Institute of Astronomy, Geophysics and Atmospheric Sciences) and
CPTEC/INPE (Center for Weather Forecasts and Climate Studies/National Institute for Space
Research), and funded by Financier of Studies and Projects (FINEP) (Brazilian Funding Agency)
(INPE/CPTEC, 2015).

They aimed at producing an adapted version of Regional Atmospheric Modeling System
(RAMS) for the tropics (FREITAS et al., 2009), which provided a single model to Brazilian
Regional Weather Centers. One of the purposes of BRAMS/RAMs is to simulate atmospheric
circulations through a numerical prediction model. The simulation can range from hemispheric
scales down to large eddy simulations (LES) of the planetary boundary layer (LONGO et al.,
2013).

Since version 4.2, the CPTEC/INPE team is responsible for the entire software develop-
ment. BRAMS uses the cathedral model. Software built in a cathedral model must provide the
source-code every release, and only the software developers can access the source-code between
releases (RAYMOND, 2001). The software license is under CC-GNU-GPL, and some parts may
receive other restricted licenses.

Three main models represent BRAMS. The tracer transport model, chemical model
(Coupled Chemistry Aerosol–Tracer Transport (CCATT)) and a surface model. BRAMS in-
corporate the tracer transport model and chemical model, and Joint UK Land Environment
Simulator (JULES) is the name of the surface model. In this dissertation, we focus on CCATT,
more specifically the numerical solution of the chemical reactivity.
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2.1.1 CCATT-BRAMS

CATT-BRAMS is a Eulerian atmospheric chemistry transport model fully coupled to
BRAMS. Its design allows us to study transport processes associated with the emission of tracers
and aerosols (FREITAS et al., 2010). CATT-BRAMS solves the mass continuity equation for
tracers; we present it in Equation (2.1).

∂ s
∂ t

=

(
∂ s
∂ t

)
adv

+

(
∂ s
∂ t

)
PBL di f f

+

(
∂ s
∂ t

)
deep conv

+(
∂ s
∂ t

)
shallow conv

+

(
∂ s
∂ t

)
chem

+W +R+Q
(2.1)

“Where s is the grid box mean tracer mixing ratio” (LONGO et al., 2013); a prognostic variable,
this variable is governed by the prognostic equation, which means that involve derivatives
(RANDALL, 2013). “The term adv represents the 3-D resolved transport (advection by the mean
wind); and the terms PBL diff, deep conv, and shallow conv stand for the sub-grid scale turbulence
in the Planetary Boundary Layer (PBL), and deep and shallow convection, respectively”.

Advection and convection stand for the transfer of energy generated by the movement of
particles of liquid like water in the atmosphere. Advection transfer horizontally, and convection
transfer energy vertically (ACKERMAN; ACKERMAN; KNOX, 2013). Deep convection is
the thermally driven turbulent mixing that lifts the air from the lower to the upper atmosphere.
“Shallow convection: thermally driven turbulent mixing, where vertical lifting is capped below
500hPa” (DAVISON, 1999; VAUGHAN, 2009).

“The chem term refers simply to the passive tracers’ lifetime, the W is the term for wet
removal applied only to aerosols, and R is the term for the dry deposition applied to both gasses
and aerosol particles” (LONGO et al., 2013).

CATT-BRAMS evolved to CCATT-BRAMS (Chemistry CATT-BRAMS). This new
model includes a gas phase chemical module, which solves chem term in Equation (2.1). We
show this module in Equation (2.2).

(
∂ρk
∂ t

)
chem

=

(
dρk
dt

)
= Pk(ρ)−Lk(ρ), (2.2)

Where ρ stands for the number density for each of the N species, and Pk and Lk are the net
production and loss of species k, respectively. P and L terms include photochemistry, gas phase,
and aqueous chemistry. The solution of this equation is the most expensive term of Equation (2.1).

The development of CCATT required advanced numerical tools to provide a flexible
multi-purpose model, i.e. the model can run for both operational forecasts and research simula-
tions. Figure 1 illustrates the simulation of CCATT-BRAMS system. The illustration represents
the primary sub-grid scale processes involved in the trace gas and aerosol distributions.
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Figure 1 – Simulation of CCATT-BRAMS system, figure from (LONGO et al., 2013).

Moreover, the model system allows the user to provide any chemical mechanism. Cur-
rently, there are three widely used chemistry mechanisms; they are as follows: Regional Atmo-
spheric Chemistry Mechanism (RACM) with 77 species (STOCKWELL et al., 1997), Carbon
Bond (CB) with 36 species (YARWOOD et al., 2005), and the Regional Lumped Atmospheric
Chemical Scheme (RELACS) with 37 species (CRASSIER et al., 2000).

Scientific projects frequently use RACM mechanism due to its number of species it
covers; RELACS is a reduced version of RACM. CPTEC uses RELACS for operational air
quality prediction. According to Gácita (2011), RELACS can replicate RACM results reasonably
well.

To solve the Equation (2.2) with k species Longo et al. (2013) uses Rosenbrock method
(WANNER; HAIRER, 1991; VERWER et al., 1999) to change from nonlinear differential
equation system to a linear algebraic increment in terms of Ki. In this method, the integration
step is adjusted as a function of the calculated error (FERNANDES, 2014).

The solution of this linear algebraic increment, which corresponds to P and L, is in
Equation (2.3).

ρ(t0 + τ) = ρ(t0)+
s

∑
i=1

biKi, (2.3)

Where t0 stands for initial concentration, τ is the timestep. The product sum approximates the
integral, where i is the Rosenbrock stage. Each timestep and stage require the update of Ki
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increment according to the linear system in Equation (2.4a).



Ki = τF(ρi)+ τJ(ρ(t0)).
i

∑
j=1

γi jK j

ρi = ρ(t0)+
i−1

∑
j=1

ai jK j

F(ρi) = P(ρi)−L(ρi),

(2.4a)

(2.4b)

(2.4c)

Where ai j and γi j are constants that depend on s, ρi stands for the intermediate solution used for
recalculating the net production on stage i given by the term F(ρi), and J is the Jacobian matrix
of the net production at time t0. Solving the Equation (2.5) is the most computing intensive.

Ax = b (2.5)

Where A is a N ×N matrix, N is the number of species. The vector x is the solution, and b is
the right-hand side or vector of the independent terms. BRAMS solves the Equation (2.4b) by
using Sparse1.3a (KUNDERT; SANGIOVANNI-VINCENTELLI, 1988). In Figure 2 we show
the pseudo-algorithm for the Rosenbrock method with Sparse1.3a to solve each stage.

CCATT-BRAMS runs operationally at CPTEC/INPE since 2003; it covers the entire
South America with a spatial resolution of 25 km. It is possible to predict the emission of Gases
and Aerosols in real time1, as well as meteorological variables2 (MOREIRA et al., 2013).

2.1.2 Libraries

In this subsection, we will briefly explain each library necessary for BRAMS.

2.1.3 NetCDF

According to Rew (2015) Network Common Data Form (NetCDF) “is a set of interfaces
for array-oriented data access and a freely-distributed collection of data access libraries for C,
Fortran, C++, Java, and other languages. The netCDF libraries support a machine-independent
format for representing scientific data. Together, the interfaces, libraries, and format support the
creation, access, and sharing of scientific data".

This library creates an abstraction level for machine-dependent data representation.
Such abstraction allows the application to share those files across the networks on different
workstations. Programs with NetCDF interface can read and write data without the restriction of
machine-dependent binary data files (REW; DAVIS, 1990).

1 http://meioambiente.cptec.inpe.br/
2 http://previsaonumerica.cptec.inpe.br/golMapWeb/DadosPages?id=CCattBrams
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Input: Sparse1.3 data structure
1 begin
2 foreach block do
3 foreach grad_point do
4 Read variables from BRAMS;
5 Update photolysis rate;

6 Compute initial kinetic reactions;
7 while Timestep < threshold do
8 Compute Jacobian of the matrix of concentrations;
9 Compute Equation (2.2);

10 foreach chemical_specie do
11 foreach grad_point do
12 Update F (ρ) on the data structure;

13 while error > tolerance do
14 foreach chemical_specie do
15 foreach grad_point do
16 Update matrix A;

17 Update bi;
18 foreach grad_point do
19 Compute 1st Rosenbrock method;

20 Update bi;
21 foreach grad_point do
22 Compute 2nd Rosenbrock method;

23 Update matrix of concentrations ρ;
24 Update production term F (ρ);
25 Update bi;
26 foreach grad_point do
27 Compute 3rd Rosenbrock method;

28 Update matrix of concentrations ρ;
29 Update production term F (ρ);
30 Update bi;
31 foreach grad_point do
32 Compute 4th Rosenbrock method;

33 Update matrix of concentrations ρ;
34 Compute error and rounding;
35 if tolerance - rounding > 1.0 then
36 Accept solution;

37 else
38 Compute the new integration step;

39 Update the integration step;

40 Update variables from BRAMS;

Algorithm: Rosenbrock Method

Figure 2 – Rosenbrock Method.
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The NetCDF software was developed by Glenn Davis, Russ Rew, Ed Hartnett, John
Caron, Dennis Heimbigner, Steve Emmerson, Harvey Davies, and Ward Fisher at the Unidata
Program Center in Boulder, Colorado, and many users also contributed to software development.

2.1.4 HDF5

With the Hierarchical Data Format (HDF5) technology suite is possible to organize, store,
discover, access, analyze, share, and preserve diverse, complex data in heterogeneous computing
and storage environments (GROUP, 2011).

HDF5 supports all types of digital data from any origin or size. This suite is useful for
data collected from satellites, nuclear testing models, high-resolution MRI brain scans. Besides
the data, HDF5 files also contain the metadata necessary for efficient data sharing, processing,
visualization, and archiving.

According to Fazenda et al. (2012), BRAMS uses HDF5 to overcome data writing phase
that was preventing scalability of BRAMS to 9,600 cores; in this work, they used a technique
called disk-direct. Such technique was essential to perform I/O collective operations; these
operations interpolate the sub-domains in a single file in an external memory.

2.1.5 Zlib

Zlib is a library for lossless data-compression for use virtually on any computer hardware
and operating system. The data format from zlib is portable across platforms. Jean-loup Gailly
and Mark Adler are responsible for Zlib creation (GAILLY; ADLER, 2015).

2.1.6 Szip

Szip is a data compressor for data from the sphere. For energy compression, it uses a
Haar wavelet transform on the sphere. This transformation reduces the entropy of the data. After
this transformation, it encodes with Huffman and run-length. Both compression algorithms are
lossless and lossy (MCEWEN; EYERS, 2011).

2.1.7 Mpich

Message Passing Interface CHameleon (MPICH) is a portable implementation of the Mes-
sage Passing Interface (MPI). Of the goals of MPICH is to provide efficient MPI implementation
for different computation and communication platforms (MPICH, 2015).

MPICH is open source. It works on several platforms, including Linux (on IA32 and
x86-64), Mac OS/X (PowerPC and Intel), Solaris (32- and 64-bit), and Windows.
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2.1.7.1 MPI

Programming and debugging for parallel algorithms are much more complicated than
programming for sequential algorithms. There are several models of parallel programming; they
are as follows (NIELSEN, 2016):

∙ Vector supercomputers, which relies on Single Instruction, Multiple Data (SIMD);

∙ Multi-core machines with shared memory, which uses multi-threading;

∙ Clusters of computer machines with distributed memory.

The latter can include the first and the second parallel programming; this is the parallel
programming paradigm suitable for MPI. Each node can execute a program using its local
memory, and cooperation among nodes depends on sending and receiving messages (GROPP et

al., 2014).

Message Passing Interface is an Application Programming Interface (API). This API
hides the fine details of implementation from the programmer, and it also provides portability
and efficiency with a wide acceptance from academy and industry. This API works with most
common sequential languages, i.e. C, C++, Java, Fortran and so on (KARNIADAKIS; KIRBY,
2003).

2.2 Linear Equation
According to Anton and Rorres (2013), Larson (2016), a linear equation in n variables

x1,x2,x3 . . .xn = b can be represented in the form of the Equation (2.6).

a1x1 +a2x2 + . . .+anxn = b (2.6)

A system with m equations in n variables is called linear system. In Equation (2.7) we
present a general linear system of this form.

a11x1 +a12x2 + . . .+a1nxn = b1

a21x1 +a22x2 + . . .+a2nxn = b2

...
...

am1x1 +am2x2 + . . .+amnxn = bm

(2.7)

A solution whose x1,x2,x3 . . .xn satisfies every equation is called consistent. Otherwise,
it is inconsistent.
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2.3 Linear Solver
According to Golub and Loan (2013) and Peng (2013), there are two fundamental

categories to solve linear systems: direct and iterative methods.

2.3.1 Direct Method - LU

In theory, direct methods return the exact solution after a finite number of operations; in
practice, this is not possible due to rounding errors. Lower Upper (LU) decomposition, Cholesky,
Gaussian elimination are the main algorithms from this category.

Currently, BRAMS uses LU decomposition to solve the linear systems. Such method
is computationally expensive, since LU decomposition requires O(n3) and solving through
backward and forward substitution requires O(n2) (BINDEL; GOODMAN, 2006). The library
responsible for decomposition and substitution is Sparse1.3a.

Sparse 1.3 is a package of subroutines in C for solving large sparse systems of linear
equations. This library manages the necessary memory for the sparse matrix by using linked-list
representation; it also offers an interface for Fortran, which turned the integration to BRAMS
much simpler. Its original purpose was for use in circuit simulators; it is also able to handle node
and modified-node admittance matrices (KUNDERT; SANGIOVANNI-VINCENTELLI, 1988).

2.3.2 Iterative Method - Jacobi

Regarding the iterative solvers, they offer an approximate solution after an infinite
convergence process. Those algorithms convergences to x = A−1b. Although simple, Jacobi has
a highly parallel nature. Equation (2.8) shows an instance of Jacobi for a 3×3 matrix (GOLUB;
LOAN, 2013; MORRIS; PRASANNA, 2005).

x1 = (b1 −a12x2 −a13x3)/a11,

x2 = (b2 −a21x1 −a23x3)/a22,

x3 = (b3 −a31x1 −a32x2)/a33.

(2.8)

The current solution of this method requires the solution of the previous iteration. In
the first iteration, it is common to suppose that all variables from the linear system are zero. In
Equation (2.9) we show this computation, assume that x(k−1) is the previous solution and x(k) is
the new approximation; from this equation, it is clear that the main diagonal is nonzero.

x(k)1 = (b1 −a12x(k−1)
2 −a13x(k−1)

3 )/a11,

x(k)2 = (b2 −a21x(k−1)
1 −a23x(k−1)

3 )/a22,

x(k)3 = (b3 −a31x(k−1)
1 −a32x(k−1)

2 )/a33.

(2.9)
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The general algorithm for Jacobi is in Figure 3.

Input: Matrix A, Vector x, Vector b
Output: Vector x

1 begin
2 for i < n do
3 for j < n do
4 if i ≠ j then
5 sum= sum+Ai j ×xk−1

j ;

6 xk
i =(bi−sum)/ aii;

7 return x

Algorithm: Jacobi Method

Figure 3 – Jacobi Method algorithm.

From this algorithm, it is possible to infer a parallel computation of each row i since
there is no dependence among rows. Iterative methods require stopping criteria that can identify
when the error is small enough; this is essential for time execution as well. In our algorithm we
used vector norm as the stopping criteria, we present vector norm in Equation (2.10).

‖x‖p =
(∣∣xp

1

∣∣+ . . .+ |xp
n |
)1/p (2.10)

In this case, we consider p = 2, which is the Euclidian norm (standard vector length). As
we want to measure the Euclidian distance between two vectors, the current solution and the
previous solution, we use Equation (2.11). This distance must be close to zero, which means that
the solution converged.

ξabs = ‖x(k)− x(k−1)‖ (2.11)

We implemented Figure 3 and the stopping criteria in Equation (2.11) in hardware using
Open Computing Language (OpenCL). Intel FPGA SDK (Software Development Kit) allowed
us to implement hardware in FPGA by using the OpenCL framework.

2.4 OpenCL
Until 2004, programmers could improve software time execution by just changing to a

processor with a higher clock frequency. When Intel CPUs reached 3.6Ghz (TSUCHIYAMA et

al., 2012; MUNSHI et al., 2011), cooling commodity microprocessors became impractical; in
Figure 4, we show the increase of clock rate and power (PATTERSON; HENNESSY, 2012).

From this point on, it was evident to the vendor that increasing clock rate was not
possible anymore. That forced the vendors to invest their money and efforts to change the
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Figure 4 – Clock rate and power increase of eight generations of Intel microprocessors, figure from (PATTERSON;
HENNESSY, 2012).

design of the processors; from 2006 until now, all desktop and server companies decided to ship
multiprocessors per chip.

Current processors allow the programmer to improve throughput rather than response
time. Most of the processors require parallel processing to take full advantage of them.

Although the most intuitive parallel programming is in CPU, it is possible to use parallel
programming for accelerators; in this dissertation, we consider accelerator every non-CPU
hardware. Shifting towards to multicore technologies imposes a severe change in software
development, especially if there is heterogeneity of hardware (BUCHTY et al., 2012).

Heterogeneous systems became critical for scientific and industrial applications, and
OpenCL is the first industry standard for programming such systems. OpenCL supports a very
wide range of systems, from smartphones to supercomputers; this framework delivers much
more portability than any other parallel programming standard (MUNSHI et al., 2011).

2.4.1 Data structures for OpenCL

Programming for heterogeneous platform demands the programmer to execute the
following steps:

∙ Discovers the components in the heterogeneous system (CPU, FPGA, GPU);

∙ Retrieve the characteristics of these components; this allows the software to use specific
features for each hardware component;

∙ Create the logic responsible for computing the problem on the platform;
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∙ Establish the memory objects necessary for the computation;

∙ Define order execution of the kernels on the specific components of system;

∙ Gather the final results from the component.

We can accomplish such steps by using OpenCL API and its data structures. Every
OpenCL application requires five data structures; they are as follows: device, kernel, program,
command queue, memory object, and context.

The device, as the name says, is the set of accelerators available to perform some
computation; the host is responsible for sending the data for computation. The kernel is the
OpenCL function that performs the calculation on the device. The program is the source code or
executable location responsible for implementing the kernels.

The API guarantee the order of memory transfers and kernel execution through the
command queue. Memory objects maintain the necessary data (on the device) used by the
kernels. Regarding the last data structure, we have the context; this structure conducts the
interaction between the host and the kernels by managing all the previous data structures.

In Figure 5, it is possible to see how data structures interact with each other. This picture
represents OpenCL mapped to an FPGA device (green box), in this manner, program resides
inside the FPGA.

These data structures are essential to guarantee OpenCL portability and programming
model. OpenCL standard defines two different programming models: data-parallel and task-
parallel programming model. Programmers must know both models when designing and ap-
plication in OpenCL; defining which is better depends on the algorithm and the underlying
hardware.

2.4.2 Data Parallelism

Data parallelism is suitable for SIMD, this kind of parallelism is the basis for GPU.
Usually, this kind of model is perfect for matrix problems.

OpenCL API defines this programming model through N-Dimensional Range (NDRange).
N ranges from one to three; each dimension must specify the index space extent. This index
space range allows the programmer to divide the problem into work-groups and work-items.

In this author’s opinion, programming using NDRange leads to a confusing index subdi-
vision. Usually, the programmer learns that i stands for rows and j for columns. In this messy sea
of indexes, we associate i to x and j to y; which is the opposite of how OpenCL maps the index
space. The first dimension, x, defines the width of the matrix, i.e. the dimension in columns. The
second dimension, y, defines the size in rows.
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Figure 5 – OpenCL Data Structures – Consider Program as a single data structure; we replicated it to make the
understanding easier.

This index space subdivision is the same for work-groups and work-items. A global
problem can break into work-groups, and each work-group can have one or more work-items;
we better explain this subdivision in Figure 6.

By using work-groups, OpenCL API imposes some restrictions to the programmer. Only
work-items that belong to the same work-groups can share data, which can impose dependencies
on them. These dependencies require a work-group barrier synchronization. In OpenCL 1.0,
synchronization is not possible between work-groups.

2.4.3 Task Parallelism

Although the OpenCL execution model aims at data parallelism as the primary target
(MUNSHI et al., 2011), the model also allows the programmer to use task parallelism. This
parallelism uses a single work-item, this equivalent to NDRange defined as 1 for each dimension.
According to Tsuchiyama et al. (2012), Munshi (2009) task parallelism is suitable when there
are different commands; this application is common when using CPUs.

This kind of parallelism requires a method to balance the work between the processing
units since a task can perform its work before the others. This parallelism is useful for pipelining,
where multiple instructions execute at the same time in different stages of the pipeline; it is a
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Figure 6 – An example of how the global IDs, local IDs, and work-group indices are related for a two-dimensional
NDRange. For this figure, we have the following indices: the shaded block has a global ID of (gx,gy) =
(6,5), a work-group ID of (wx,wy) = (1,1) plus a local ID of (lx, ly) = (2,1), figure from (MUNSHI,
2009).

crucial feature considering FPGA devices. Note that we did not mention GPUs; these devices, as
we mentioned earlier, are suitable for data parallelism due to the number of cores available.

2.5 Intel FPGA SDK for OpenCL
Programming in OpenCL for CPU, GPU, ARM or FPGA requires the vendor to imple-

ment and provide for the programmer. In the scope of this dissertation we used Intel implementa-
tion for OpenCL in FPGAs.

By using OpenCL standard, we could abstract away the FPGA design. Debugging is also
another important leading factor, it is possible to guarantee correct functioning of the kernel by
emulating in the CPU. In this section, we present key features of this standard applied to FPGAs
from Intel. In Figure 7 we show OpenCL system implementation on the FPGA.

In this figure, we present multiple kernel pipelines; a kernel represents a high-performance
implementation of a hardware circuit (CZAJKOWSKI et al., 2012a). Each of these pipelines
connects to internal and external interfaces to memory (Figure 8 shows the partitioning of the
FPGA). The external interface is necessary for accessing the Global Memory, which in turn
requires a global interconnect to manage the request from different pipelines; this global inter-
connect is also needed for Peripheral Component Interconnect Express (PCIe) interface with the
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Figure 7 – Components from OpenCL system on Intel FPGAs, figure from (ALTERA, 2013).

host. the internal interface is critical to local memory (ALTERA, 2013; INTEL, 2016b).

Figure 8 – Partitioning of the FPGA. PCIe, DDR3 controller and IPs are every project of OpenCL, so only the
remaining is available for the kernels, figure granted by André Perina.

.

Unlike the GPU, where there are multiple cache levels, in FPGA local memory requires
M20K blocks spread over the board (INTEL, 2016a). In Figure 9, we show a local memory with
a single bank and three M20K blocks.

Regarding private memory, Intel uses FPGA register to implement them. That is the
fastest memory in the hierarchy, and there is a generous number of them in the FPGA. The
device can access these register in parallel, which allows a much higher bandwidth than any other
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Figure 9 – Implementation of local memory with three M20K blocks, figure from (INTEL, 2016a).

memory in OpenCL. According to our experiments, Intel infers registers for single variables or
small arrays; a relative big array requires a local memory.

Intel performs several optimizations before generating the hardware, and Figure 10 shows
the flow of the compilation of OpenCL based on LLVM compiler infrastructure. The input is an
OpenCL application (.cl) that contains a set of kernels and a host program (.c) (CZAJKOWSKI
et al., 2012b).

Compilation of the host source code uses a standard C compiler. The compiled file links
with Altera OpenCL (AOCL) Host Library. Regarding the kernel source code, it uses an offline
kernel compiler (JANIK; TANG; KHALID, 2015), i.e. the programmer must compile the kernel
separate from the host; this process may take hours to compile.

Compilation of the hardware is not as simple as it seems. A C-language parser outputs
an LLVM Intermediate Representation (IR) for each kernel (in essence, kernel is a C code); this
intermediate representation is in the form of instructions and dependencies between them.

From this IR, the compiler optimizes it (live-value analysis) for an FPGA target. After
optimizing, a Control-Data Flow Graph (CDFG) conversion takes place. The conversion is
necessary to improve performance, reduce area and energy consumption before RTL generation
(RTL generator) in Verilog for a kernel.

A system with interfaces to host and off-chip memory instantiates the compiled kernels.
The host interface allows the host to access each kernel and specify workspace parameters and
kernel arguments. Off-chip memory represents the global memory for a kernel in OpenCL, in
our case, it is a DDR3 memory. Finally, we can synthesize the complete system in Figure 7 on
an FPGA.

At last, the compiled host program has two elements. The first is the ACL Host Library;
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it calls the functions that allow the host application to exchange information with the FPGA
kernels. The second is the auto-discovery that allows the host program to detect the kernels types
on an FPGA.
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Figure 10 – Design flow with OpenCL, figure from (CZAJKOWSKI et al., 2012b).

The main advantage of OpenCL over the traditional Hardware Description Language
(HDL) is to produce designs with proper functionality without the FPGA design effort (consider-
ing the kernel is working correctly). Once the user has created a functional model, the focus is
on the optimization. It is different from the HDL designs, where only in the design process we
can assure the correct functionality (JANIK; TANG; KHALID, 2015).

We present further implementation details in Chapter 3; we explain the pipelines of our
architectures, memory hierarchy, interoperability between the host and the device.

2.6 FPGA

In 1985, Xilinx introduced the FPGA (BOBDA, 2007). An FPGA is a semiconductor
device, which contains a two-dimension array of generic logic cells and programmable switches
(CHU, 2011; MOORE ANDREW; WILSON, 2017). Over the years, the FPGAs has shown that
capacity (number of gates) and speed are inversely proportional to price and power consumption,
see Figure 11.
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Figure 11 – Xilinx field-programmable gate array (FPGA) progression. (Price and power are per logic cell.), figure
from (AHMAD et al., 2016).

With an FPGA the programmer can define the behavior of the hardware after the manu-
facturing, that is why the name field programmable. That is possible due to the logic cells that
can perform the behavior of different functions; once defined the logic and synthesized, the
programmer can download the design through a bus to the FPGA; this bus can be a simple USB
cable (BOUT, 2011).

Modern FPGAs contain a set of configurable Static Random Access Memory (SRAM),
high-speed input/output pins (I/Os), logic blocks, and routing. They also have many Logic
Elements (LE), which are the smallest unit of logic; usually, they are a Look-Up Table (LUT).
Each LE can perform complex functions or simple basic logic as AND/OR. FPGAs also have
configurable memory blocks; these memory blocks allows the programmer to provide a higher
throughput since they are over the board.

Although FPGAs are reconfigurable, they also provide hard logic or hard Intellectual
Property (IP), i.e. that does not change. Those circuits implement specific logic considered
commodity, which allows the programmer to reduce cost and power of the design. These features
allowed the programmers to build complex systems called System-On-a-Programmable-Chip
(SOPC).

In general, SOPC or System-On-Chip (SOC) focus on lower-power electronics or high-
performance applications. According to Silva (2014), SOPC is a suitable option for high-
performance computing.

2.7 Development Environment for OpenCL
We used Bittware S5PH-Q-A7 board available at the Reconfigurable Computing Lab-

oratory (LCR) at USP. In the next subsection, we further detail the main resources in this
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device.

2.7.1 BittWare Board S5PH-Q

S5PH-Q is a half-length x8 card based on the high-bandwidth and the power-efficient
Altera Stratix V GX A7. Stratix V FPGA is suitable for high-end applications; according to
(DINIGROUP, 2017), this board guarantees 5,410 millions of gates for use.

The S5PH-Q is a versatile and efficient solution for high-performance network processing,
signal processing, and data acquisition (BITTWARE, 2015). LCR purchased this board for the
projects involving BRAMS and heterogeneous computing. Figure 12 shows the block diagram
for this device, in Table 2 we detail the features.

Figure 12 – Top-Level Component Implementation Block Diagram, figure from (BITTWARE, 2015).

2.8 Hardware/Software Codesign
Hardware/software codesign emerged in the 90’s as a discipline, however this task was al-

ready common among the microprocessor companies. At the time, they were not conscious of the
term codesign. Currently, a successful electronic system design requires the of hardware/software
codesign techniques (TEICH, 2012).

The current technology allows the programmers to deal with multiple processor cores,
memory arrays, application specific hardware on a single chip (GALLERY, 2015). A more recent
approach is from Intel on the HARP (Heterogeneous Architecture Research Platform) program,
which included a Intel microprocessor and a Stratix V FPGA (GUPTA, 2015).

Such evolution in the technology requires the programmers to have knowledge in hard-
ware and software, thus they can define the design trade-offs. In this manner, hardware/software
codesign is becoming and ordinary task. In the literature we have some definition for hardware/-
software codesign.
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Table 2 – S5PH-Q Features

Device Features
Altera R○ Stratix R○ V GX
FPGA

∙ 20 full-duplex, high-performance, multi-gigabit SerDes
transceivers @ up to 14.1GHz

∙ 952,000 logic elements (LEs) available

∙ Up to 52 Mb of embedded memory

∙ 1.4 Gbps LVDS performance

∙ Up to 1,963 variable-precision DSP blocks

∙ Embedded HardCopy Blocks

Memory

∙ Two banks of 4 GBytes DDR3 SDRAM (1Gx64)

∙ Four banks of up to 18 MBytes QDRII/QDRII+(8M x 18)

∙ 128 MBytes of Flash memory for booting FPGA

PCIe Interface x8 Gen1, Gen2, Gen3 direct to FPGA
USB USB 2.0 interface for debug and programming
Debug Utility Header

∙ RS-232 port to Stratix V

∙ JTAG debug interface to Stratix V

QSFP+ Cages (optional) 2 QSFP+ cages on front panel connected to FPGA via 8 SerDes
Size Half-length, standard-height PCIe slot card

According to Schaumont (2012), “Hardware/Software codesign is the design of cooperat-
ing hardware components and software components in a single design effort.". Another definition
in the book is: “the activity of partitioning, where one partition holds the flexible part (software),
and the other the fixed part (hardware)".

Gallery (2015) defines as a “concurrent design of both hardware and software of the
system by taking into consideration the cost, energy, performance, speed and other parameters of
the system".

Figure 13 shows the pros and cons of Hardware and Software. In Hardware, it is possible
to have a better performance, less energy consumption (more work done per unit of energy),
power density (processors can no longer increase clock). In Software, design complexity is much
harder in hardware, design cost, shrinking design schedules (time-to-market is reducing over the
years, but software development can start even without a hardware platform).
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Figure 13 – Driving factors in hardware/software codesign, figure from (SCHAUMONT, 2012).

Partitioning or balancing is a hard task, and there is no magical solution. This work
requires experience; another important factor is the cost, many times it is better a cheaper product
than a fast product. Blickle, Teich and Thiele (1998) shows a theorem proving that determining a
feasible allocation is a NP-Complete problem. In this work they consider the problem of mapping
a set of tasks to resources.

There are some developed works on the literature that consider the hardware/software
partitioning. Gupta and Micheli (1993) automates the design space exploration; initially, the
algorithm of this work considers that all functionalities are in hardware and gradually moves to
some of them to software based on the communication overhead. The problem is that much of
the initial problem requires many resources from the hardware, because the initial guess starts
from the problem entirely in hardware.

Ernst, Henkel and Benner (1993) follows an opposite approach, they start with an
initial partition in software and gradually moves the software part into hardware. They used a
partitioning heuristic, where the algorithm minimizes the amount of hardware resources. They
show good results for the partitioning of the digital control of a turbocharged diesel engine and a
filter algorithm for a digital image compared to software.

2.9 Related Work
Sparse matrices are necessary for several scientific and engineering applications. For ex-

ample, least squares problems, eigenvalue problems, and image reconstruction. When compared
to dense matrices, sparse matrices tend do be slower. The irregularity of memory access causes
many cache misses, and there is the fact that memories are still much slower than processors.
Another source for this slowness, is the high ratio of load and store operations, stressing the
load/store units (ZHUO; PRASANNA, 2005).

FPGAs can effectively compute sparse matrix. The modern FPGAs provide multiple
spatial floating-point operators, a significant of high-bandwidth on-chip memory, and abundant
I/O pins (KAPRE; DEHON, 2009).

Kapre and DeHon (2009) parallelizes a Sparse Matrix Solver for SPICE (Simulation
Program with Integrated Circuit Emphasis); the results range from 300 to 1300 MFlop/s on a
Xilinx Virtex-5, while the processor (Intel Core i7 965) achieved 6 to 500 MFlops/s. According
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to the authors, the former library (Sparse 1.3a) was not suitable for parallelization on FPGAs
due to the frequent change of the non-zero pattern of the matrix.

They used the KLU solver. Circuit simulations are suitable problems for this solver.
According to Eller, Singh and Sandu (2010), LU decomposition is not easily parallelizable. Later,
they integrated the solver to SPICE (KAPRE; DEHON, 2012). In this new version, they also
studied the energy savings of their work, which ranges from 8.9× up to 40.9× compared to
CPU. They provide a codesign between the MicroBlaze and their hardware; MicroBlaze has
poor support for double precision.

LU direct method emerged at the beginning of 2000 with Daga et al. (2004), Zhuo and
Prasanna (2006). However, none of the works consider sparse matrices; which is the problem
of BRAMS. In Wu et al. (2011), they compute the preprocessing in CPU and the numeric
factorization in FPGA of the LU algorithm; they use sparse representation.

In Foertsch, Johnson and Nagvajara (2005), they consider the problem of Full-AC load
flow, an important task in power system analysis. In their work, they compare Jacobi method
to Newton-Raphson methods and conclude that Jacobi could outperform Newton method by
exploring pipeline parallelism in FPGA. They do not consider any coupling to the load flow
problem, i.e. there is not codesign.

Morris and Prasanna (2005), Prasanna and Morris (2007) study a related problem to
BRAMS, they solve Partial Differential Equations (PDE) discretized in a linear system (sparse
and dense) in FPGA. They also consider a highly pipelined Jacobi; the algorithm represented in
floating point with 64 bits. However, they fail to consider a better approach to fit bigger matrices,
each column of the row requires a multiplier. In this manner, hardware resources are proportional
to matrix size.

When they need bigger matrices, they multiplex the entries to the underlying hardware.
They also have problems with reduction, which required the implementation of an efficient one.
The authors do not provide any circuit to test the convergence of the algorithm; they test their
hardware with a predefined number of iterations.

Kasbah and Damaj (2007) implements Jacobi method in Handel-C. According to them,
the hardware of the method can outperform the same algorithm in Software. They validate their
tests by using the Handel-C simulator, i.e. they do not perform any test on the hardware. The
authors also had to consider the algorithm in integer representation since Handel-C does not
support floating point, and the library from Celoxica had some bugs to handle more than four
floating point operations. In this dissertation, we do not simulate the results; all the computations
are in FPGA, which provides much more accurate results.

Bravo et al. (2006) proposes the use of Jacobi method to solve the Eigenvalue and
Eigenvector problems; a similar work is in Wang and Wei (2010). In the proposed architecture,
they improve FPGA area by implementing the whole system in VHDL. They compare their
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results, represented in floating point with 18 bits, with the results of the CPU, represented in
floating point with 64 bits, and conclude that their design is faster and provides accurate results.
In this work there is no codesign, the entire execution is in hardware with pre-fixed values stored
in ROM memory.

Ruan et al. (2013) presents a similar approach that we used in BRAMS; they use a high-
level synthesis from Maxeller, where the programmer defines the kernel in Java and MaxCompiler
is responsible for creating a bitstream file. They also provide a codesign between CPU and
FPGA; in their project, they provide a modification for Jacobi method called pipeline-friendly
Jacobi.

According to their results, MaxCompiler generated a hardware that is capable of running
at 175Mhz on Virtex-6. They compared their results with three different configurations: FPGA
v.s single-thread CPU, FPGA v.s multi-thread CPU, and FPGA v.s MPI CPU. We show their
speedup results in Figure 14, as we can see FPGA is superior even with MPI parallelism. Matrix
size is a problem in their design, they cannot fit matrices bigger than 200×200 in the memory.
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Figure 14 – Speedup compared to CPU versions. The x dimension stands for matrix size, and y dimension speedup
in FPGA.

Schmid et al. (2014) proposes the use of the Heterogeneous Image Processing Acceler-
ation Framework (HIPAcc) for Multiresolution Analysis (MRA). They use this framework to
generate code for the FPGA target; one of the case studies proposes Jacobi method as a smoother
for PDE. They achieved 154Mhz on a mid-range FPGA (Xilinx Zynq 7045).

Although the success regarding the results, their design suffers from the number of block
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RAMS. They cannot control the underlying hardware to reuse block RAM more efficiently. The
pragmas in the framework have a severe impact over the Initiation Interval (II) (SCHMID et al.,
2014); however the framework does not offer any tool to help the programmer improve II.

An and Wang (2016) uses OpenCL for programming Singular Value Decomposition
(SVD) in the AMD GPU. For computing SVD they used an adapted version of Jacobi method
called one-sided Jacobi method. According to Lambers (2010), one-sided Jacobi implicitly
applies the Jacobi method for the symmetric eigenvalue problem.

In their work, they used a W9100 graphics card from AMD, and according to the authors,
it was the best and fastest graphics card. They performed the same tests we did, i.e. they use
single and multi-thread to program the kernel. For small matrices, they had a better execution
time single thread, for matrices with the order of 16 they had an improvement by using multiple
threads. In this work, they do not perform any study related to power consumption, according to
AMD vendor, this board can consume up to 275W.

In Gomes (2009), they use Jacobi for fluid simulation by implementing the algorithm
in CUDA. According to them, the algorithm suffers from global memory latency. In FPGA we
could improve this problem by using more local memory during computation since we can define
our local memory size (as long as it does not exceed the hardware capacity). We avoided such
problem due to the small memory footprint of our problem.

Fernandes (2014) decided to solve the linear systems from chemical reactivity of BRAMS
by using optimum linear estimation. The author implemented the algorithm in OpenMP and
OpenACC, although they achieve good results in time execution and precision, they do not
couple their algorithm to BRAMS. According to Fazenda et al. (2006), coupling the chemical
reactivity to CCATT-BRAMS is a complex task.

Michalakes and Vachhrajani (2008) developed Kinetic PreProcessor (KPP) Rosenbrock
chemical integrator for GPUs in CUDA. They converted WRF Single Moment 5-tracer (WSM5)
to CUDA, a model that represent the microphysics of clouds and precipitation. Their GPU did
not provide double precision, so they needed to use single precision. Their implementation also
requires a CPU per GPU. Their results show a speed-up of 1.23×, but they do not mention if
this is due to the lower precision of the results.

Linford and Sandu (2009) used a Cell Broadband Engine Architecture (CBEA) to solve
mass balance equations of Chemical transport model. They implemented a 3D chemical transport
module for FIXED-GRID, this model also uses Rosenbrock method. Their work presents a
superlinear speed-up. However, their vector stream processing requires the kernel to process the
double of computing that it needs.

According to the authors these useless arithmetic operations is crucial to sustaining a
higher throughput; otherwise branching conditions would be prohibitively expensive. Branching
is not a problem on FPGA since all code-paths are established in hardware (ACCELEWARE,
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2014).

Eller, Singh and Sandu (2010) also use Rosenbrock method to solve the chemical system.
In their experiments, they use Rodas-3 and Rodas-4 methods. Although the names suggest the
number of stages, Rodas-3 uses four stages and three function calls. Rodas-4 has six stages and
five function calls. They had to make significant changes in Rosenbrock data structure to fit the
data in a 16KB of local memory. Memory transfer is responsible for one-third of the overall
running time.

According to the authors, Rosenbrock does not provide any speed-up for each iteration;
in some cases, the results in GPU was slower. Their results point to the fact that local memory is
the main problem.

In Fu et al. (2017), they implement Shallow Water Equations solver in three different
architectures. One of them is CPU-FPGA, they had to decompose the solver in three FPGAs to
fit the double precision version; this solution resulted in a low bandwidth among the FPGAs. A
second approach involved the use of mixed precision, which resulted in a relative error of less
than 2% and 80% of the resources of a single FPGA; they implemented their design by using
Java from MaxCompiler. This version had a speedup of 75× compared to CPU.

In Yang et al. (2016), they present an ultra scalable solution — in the order of 10M-
core — for Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics. They implement a
highly parallel incomplete LU method that does not sacrifice convergence rate in their SW26010
processor.

In Table 4, we provide the main features of each work compared to our third architecture
Arch 3.
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Table 4 – Table of comparison among related works

Features A B C D E Advantages Disadvantage
Arch 3 X X X X X 100% in hardware. Performance loss due to

data representation.
Kapre X X X X Direct Method. Floating point division im-

pacts on the performance.
Nagvajara X O X Compare Jacobi to other it-

erative methods.
It does not test in hardware.

Prasana X X X X Division latency hidden. Hardware scale according
to matrix size.

Kasbah X X Fast prototype with Handel-
C.

Integer representation.

Bravo X X X It requires less FPGA area. VHDL.
Ruan X O X X X High-level synthesis with

Java.
Java is not a parallel pro-
gramming language.

Schmid X X X Optimized code for differ-
ent architectures.

Block are not reused.

An X X X Portable code. Intense communication
CPU-GPU.

Gomes X O X X First CUDA implementa-
tion. Comparison between
different iterative solvers.

Nvidia GPU-only.

Fernandes X X Optimum linear estimation
has faster conversion.

Not coupled to BRAMS.

Michalakes X X WSM5 is 100% in GPU. GPU board without double
precision support.

Linford X X X Superlinear speed-up Half of the computation is
not necessary.

Eller X X X Comparison with CPU
and GPU with parallel
paradigm.

Memory transfer is respon-
sible for one-third of the
overall running time.

Features:

∙ A: Parallel;

∙ B: Double Precision;

∙ C: Iterative Method;

∙ D: Codesign;

∙ E: Hardware;

∙ O: No information about it.
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CHAPTER

3
DEVELOPMENT OF THE CODESIGN FOR
THE CHEMICAL REACTIVITY OF BRAMS

Currently, BRAMS bases on software and MPI parallelism. This project focus on the
chemical reactivity term included in BRAMS (CCATT). According to Zhang et al. (2011) and
Linford et al. (2009), chemical reactivity can represent 90% of the computational time. On Tupã
(Cray XE6) CPTEC/INPE this term is responsible for 80% of computational time (FERNANDES,
2014). In this chapter, we compare our approach with the implementation of BRAMS for solving
the linear systems from the chemical reactivity.

3.1 CCATT–BRAMS software
BRAMS solves the mass equation of the chemical reactivity term using Sparse1.3a.

This library in C decomposes Equation (2.5) into LU form. Figure 15 represents BRAMS (gray
square) and Sparse1.3a (yellow square); it is important to point out that we used BRAMS with a
single grid.

We divided Figure 15 into three regions for a better explanation of how chemical BRAMS
couples with the reactivity. The blue outermost region represents the South America, according
to Alisson (2016) the Brazilian model can apply the chemical reactivity to the South America
with a 20km resolution and 3.5 days of anticipation. The grayish middlemost region exemplifies
BRAMS over the South America with only a single process, i.e. one process is responsible for
computing the entire grid. The following yellowish inner region represents Sparse1.3a library
inside the process. In Figure 16, we represent BRAMS with multiple processes, note that we still
have a single grid.

Each MPI process computes its slice of the domain decomposition. The shaded areas
are the ghost zones; these regions are necessary for solving the fluid dynamical equations, as
a consequence, the nearest neighbors generate communications among them. The strongest
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Figure 15 – Generic representation of BRAMS system with a single process. In this figure, we present BRAMS
over the South America with a single grid, yellow square represents Sparse1.3 running for all the points
over the grid.
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Figure 16 – Generic representation of BRAMS system with MPI processes. In this figure, we present BRAMS over
the South America with a single grid distributed over N processes, each process executes Sparse 1.3 for
its set of points of the grid. The shaded areas are the ghost zones, i.e. the shared data area.
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communications happen between horizontal and vertical neighbors; diagonal neighbors have
less intensive communication (RODRIGUES et al., 2009).

MPI assigns each domain to only one process, the only shared areas are the ghost
zones.The less shared area, the less the external communication among MPI processes. The set
of processes is distributed over the processors of the nodes, on our environment set we have a
single node with four core processors.

Although BRAMS is in Fortran 90, it is possible to call C functions. However, the
programmer must take some extra care with interoperability of both languages, in the next
section we describe the main problems raised from this coupling.

3.1.1 Interoperability with Sparse1.3a

Sometimes it is necessary to mix different languages for a single executable; this usually
happens when the programmer couples a library to its program. BRAMS coupled sparse1.3a, a
C library with Fortran-ready interface. So no extra effort was necessary to adapt the C library.

To use this library with BRAMS, the programmer must enable Fortran interface. By
enabling this option, Fortran programmers do not have to worry about interoperability problems,
such as data type representation, arguments type (passed by reference or by value), and array
representation (Row- or column-major order).

3.2 CCATT–BRAMS Codesign
Jacobi iterative solver has a parallel nature, which makes it suitable for FPGA paral-

lelization (MORRIS; PRASANNA, 2005). The chemical kinetic process has diagonal matrices
(ZHANG et al., 2011), for our set of tests we guarantee they are strict diagonally dominant,
this is necessary for Jacobi method convergence. Figure 17 shows a generic representation of
BRAMS coupled to the hardware designed in OpenCL.

We implemented three versions of Jacobi method: Multi-threaded dense, Multi-threaded
sparse, and single thread sparse. We describe them over the next subsections.

3.2.1 Jacobi Multi-threaded Dense

In our first attempt with Intel FPGA SDK, we programmed the FPGA using similar
approaches used for GPU OpenCL. In other words, we used the concept of several computing
units working in parallel to solve a problem in an SIMD mode. Although the source code is
portable, performance is not, with this approach we support this affirmation.

We followed some of Intel best practices (INTEL, 2016a) for our first version, we avoided
the divide operation for floating-point and used aligned memory in 64 bytes. This implementation
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Figure 17 – Generic representation of BRAMS coupled to the Jacobi method in Hardware. In this figure, we present
BRAMS over the South America with a single grid, red square represents Jacobi hardware circuit. Such
circuit computes all the points over the grid.

uses a dense representation of matrix A. Figure 18 shows the schematic of the first version of
Jacobi Method.

Here we present m pipelines. Each pipeline can process different work-items from
various work-groups. During kernel compilation, we can choose two options for work group size:
max_work_group_size and reqd_work_group_size. The first option is a hint of the maximum
number of work items; the compiler must not exceed this number.

The second option is much more strict, and it does not let the compiler optimize the
work-group size for the problem. Work-group size is the number of work items for each work-
group. We tested both options, and the first generated the best hardware. Figure 19 depicts how
work-groups and work-items map to our linear system.

According to the Verilog generated by Altera compiler, the compiler issues two work
groups in hardware for a single compute unit, and all the remaining work groups are scheduled,
i.e. two work-groups are executing at the same time. The option num_compute_units allows us
to increase the number of hardware available, although Intel does not recommend to do so due to
the concurrent access to global memory. Each hardware group has three stats:
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Figure 18 – Schematic of Jacobi method with multiple threads with dense representation.

1. NEW — Prepare to issue new work-group;

2. ISSUE — work items in a work-group;

3. WAIT — Check if ready to accept new work-group or if all done.

A better approach uses SIMD work item, which uses a single compute unit for performing
in parallel an amount of work. The latter is only possible for work group size, whose number
is a power of two. Our design comprises 47 work groups (processing element) with 47 work
items each, i.e. our problems uses a prime number. We did not pad matrices with zeros to avoid
transferring additional data.

After each work-group finishes, it stores the final result in the DDR3 memory (the global
memory). The host can fetch data from the global memory of the device through PCIe interface.

The orange block represents the condition of Jacobi Method, where all non-diagonal
elements of the matrix line must perform a multiply-accumulate (MAC) operation. Only then
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47×47

. . .

Work-group 1

Work-group 47

...

...

...

...

...

Work-items
47×1 47×1

A x = b

=

... ...

Figure 19 – Each color represents one work-group, each work-group has 47 work-items. According to the verilog,
two work-groups are executing at the same time.

it is possible to load the Matrix A and xth element from global memory for multiplication. We
accumulate each result of the multiplication in a local memory.

Once traversed the entire line (green square), the hardware loads b vector element and
performed a subtraction afterward. Then we perform a multiplication from this result with a load
of 1/aii; this is the final solution for an item of the result vector. As we have 47 work-groups and
only two real work-groups, the final result is only available after the runtime schedules all the
work-groups.

Each work group requires its memory space; this restriction does not allow OpenCL to
synchronize the work-groups (MUNSHI, 2009, p. 27). That becomes visible in Jacobi hardware;
not all work-groups are processing at the same time. This asynchronism forced us to calculate
the vector norm in software.

To calculate the vector norm, the programmer must enqueue a read from the result buffer
and execute it in software. Another possible solution is to have a specific kernel to calculate
it, but this would require two kernel enqueues. For a huge vector, this is not a problem, since
the execution time is higher than API delay time, which it is not our case. Jacobi method in
Hardware and norm in software take turns until result converges to the desired solution with
minor or no error.

3.2.2 Interoperability with Jacobi Multi-Threaded Dense

In this subsection, we explain how interoperability works between Fortran 90 and Jacobi
method in FPGA, for such approach we used OpenCL. Each OpenCL application requires a host
and a device code. The host is in C/C++, we design the FPGA circuit in OpenCL language, also
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called OpenCL C programming language (MUNSHI et al., 2011).

As we saw in Subsection 3.1.1, it is possible to call a C function from Fortran. However,
now we had to take care with data type representation (double or Real*8); arguments from
Fortran are passed by reference, in C they are passed by value; array representation in Fortran is
column-major, in C they are row-major. Indices in Fortran start from 1, not 0.

In this version, we solved one linear system at a time. That is the same approach used by
Sparse1.3a. In fact, we replaced the previous sparse function to ours.

For using our solver, we first needed to reprogram the FPGA on the system. We guarantee
that with two similar approaches. The first requires the programmer to load the FPGA binary
(AOCX) in advance through Intel SDK command, and set a variable:

1 $ a o c l program < dev ice > < f i l e > . aocx
2 $ export CL_CONTEXT_COMPILER_MODE_ALTERA=3

The second reprograms the FPGA during runtime on the creation of program structure.
It is user’s decision to choose what is the best approach. Usually, the delay of reprogramming is
about one or two seconds. Because of this overhead, we put all the kernel definitions in a single
cl file.

After reprogramming, BRAMS execution starts and when it gets to chemical reactivity it
starts solving the matrices through FPGA circuit designed in OpenCL. Apart from creating the
necessary OpenCL structures, we use C language as a bridge between Fortran and FPGA circuit.
Figure 20 shows how BRAMS calls the circuit. Different from the GPU, our cl file represents a
physical circuit in FPGA not software.

Fortran 90 File C file

SUBROUTINE Solve_linear

CALL solver_jacobi_fpga
EnqueueNDRange(jacobi_method)

Load xj
(k)Load Sum

Am,⏺

Workgroup m

×

Load Aij Load xj
(k)Load Sum

+

Acc Sum

j ← 1

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

A1,⏺

Pool of processing elements

A2,⏺A3,⏺⋯ A4,⏺Am,⏺

A1,⏺

Workgroup 1

. . .

×

Load Aij

+

Acc Sum

j ← 1

j ← j + 1

Load bi

− Load 1/Aii

×

Store xi
(k+1)

Compute Unit

Skip if i = j Skip if i = j

Figure 20 – Interoperability of BRAMS and OpenCL. Fortran calls a function from the C host, which in turn is
responsible to manage the device.

As we can see, software and hardware have a strong communication. The C file is on the
host processor, and it is responsible for calculating the vector norm for each iteration of Jacobi.
If the result did not converge, we send all the necessary data and NDRange. A host that uses
NDRange bigger than 1 expects a circuit with data parallelism.
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Any communication between FPGA and host requires 64 bytes aligned memory; not
doing so degrades transfer time. In Fortran, we could not align spack2d struct, because the
directives for aligning memory in Fortran does not work for derived types (KRISHNAIYER,
2015).

For avoiding transfer time penalty, we had to copy the matrix into an aligned vector in C.
We considered the modification of spack2d struct, but that would require a significant adjustment
on BRAMS source code, which could lead to undefined behavior and results.

The numbers of communications equal the number of Jacobi iterations; We set 150 as a
maximum number of iterations. We used previous experience to define this threshold.

3.2.3 Jacobi Multi-threaded Sparse

During the first approach, we realized that much of the execution time was in I/O. For
each iteration we send an enormous amount of zeros, to improve the I/O time we changed the
matrix representation from dense to Compressed Row Storage (CSR).

According to Fernandes (2014), around 10% of the matrix elements are non-zeros. So in
our first attempt, we defined the NNZ to be 10% of 47×47. During execution time, we received
segmentation fault due to the lack of memory to accommodate the NNZ.

By analyzing the NNZ of matrices, we noticed that this number ranges from 8% up to
25%. Allocating and freeing device buffer during runtime is very expensive; we must choose
a fixed size. At this point, we reached a trade-off: a small NNZ is risky, and a big NNZ sends
additional data to the device. We chose the later by defining the buffer size according to the
Equation (3.1), CSR format saves memory, whose NNZ is not bigger than this equation.

N(M−1)−1
2

−1, (3.1)

where: N = Number of rows
M = Number of columns.

Choosing NNZ size according to Equation (3.1) does not improve I/O because we are not
saving any space; we just avoid filling the pipeline with zeros. This new architecture in Figure 21
is very similar to Figure 18, but now we avoid additional calculation by using CSR format. In
this version, we still must perform vector norm computation on the host, because of the same
reasons of the dense version.

The main difference in this architecture is the internal loop (dotted square); we only read
the NNZ values from the ith row. In loads we use CSR representation, note that we use lower
case for all the loads, this is because CSR representation uses three vectors. Since each line has
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Figure 21 – Schematic of Jacobi method with multiple threads with sparse representation.

its NNZ size, we defined each group to have one work item to process each line; we show this
scheme in Figure 22.

3.2.4 Interoperability with Jacobi Multi-Threaded Sparse

Changing the matrix representation required few modifications on host code. We added a
C algorithm for converting from dense representation to CSR; we called dnscsr_c,this function
relies on the dnscsr algorithm from Sparsekit 1.

Sparsekit dnscsr function is in Fortran 90, using this library does not require any modi-
fication to BRAMS source code. We decided to rewrite this function in C to avoid managing
different source codes.

Refactoring the algorithm added the burden of managing row- and column-major order

1 <https://people.sc.fsu.edu/~jburkardt/f_src/sparsekit/sparsekit.html>

https://people.sc.fsu.edu/~jburkardt/f_src/sparsekit/sparsekit.html
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...

Work-group 0 Work-group 1 Work-group n

Work-item 0 Work-item 1 Work-item n

47×1 47×1

x = b

=
... ...

1×NNZa

Figure 22 – Each color represents one work-group, each work-group has one work-item. In this manner, the number
of work-items is equal to the number of work-groups.

of matrix A. So in Fortran we passed the transposed matrix of A to dnscsr_c; we used transpose
for simplicity of the algorithm in C, and avoid undefined behavior. This is not a problem, since
we are not using dense representation.

As we told in Subsection 3.2.3, the NNZ varies from one matrix to another. So it is
not possible to determine a single size of the vectors Value and JA. Allocating and freeing
memory for each matrix is not a good option either, since this increases execution time. So, in
our approach, we declare three vectors Value, IA, and JA, where Value and JA have fixed size
according to Equation (3.1).

The host code of OpenCL uses these vectors that come from Fortran. Thus, we avoid
creating them for each matrix during execution. Fortran is also responsible for calling dnscsr_c
before any call to Jacobi Multi-threaded Sparse solver.

3.2.5 Jacobi Single-threaded Sparse

According to Intel (2016a), sharing fine-grained data is not suitable for data parallel
programming model. In these cases, using a single thread kernel can offer a higher throughput.

In the two previous architectures we could not compute vector norm, due to the restriction
of different memory space for each work group; and consequently, we are not able to share
memory.

In a single thread; we can compute vector norm because in this case, OpenCL works
like a C to Hardware. We can also avoid dispatching multiple times the same data from CPU to
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FPGA since we can define in our kernel to execute Jacobi until the matrix converges.

For using single thread kernel, we must set reqd_work_group_size (1,1,1) and not use
get_global_id. When designing the hardware as a single thread, the programmer must declare
the variable in the deepest scope possible; otherwise, it will consume more hardware resource
than it needs. AOCL (Altera OpenCL) generates a detailed report containing the depth of the
variables; we improved the depth of our variables through this report.

Regarding loop pipelining, single kernel executes multiple iterations in flight. Not all
loops are capable of pipelining; the outermost loop (plain square), responsible for controlling
the iterations of the algorithm, is an example. The algorithm demands the loop to stop when it
convergences since each matrix have different stop criteria the compiler cannot infer any order.

CSR format adds a complex loop exit condition in the pipeline (dotted red square)
since each row has different NNZ; Note the red border square, it means that it is necessary
two loads. Another problem is the loop-carried dependency on the sum accumulator. Such
condition, multiple loads, and loop-carried dependency degrade loop pipeline performance
because subsequent iterations cannot launch until the previous one completes. So for Jacobi
single sparse, dot product is the bottleneck.

During vector norm calculation (innermost dotted black square) we also have a loop-
carried dependency on the accumulator, but now there is a well-formed loop. That is, the loop is
always the same independent of iteration. Such loop allows us to remove it by inferring shift
registers. So the vector norm calculation becomes parallel. In Figure 23, we show the pipelines
for Jacobi.

Besides the different architecture, this kernel is 100% in hardware. So we do not avoid
any expensive operation; we used built-in functions for power and square root calculation. This
architecture represents the Jacobi method algorithm in hardware, totally independent from the
host processor.

Figure 23 shows a single compute unit. Although the compiler allows the programmer to
infer more compute units in a single kernel, the behavior does not make sense. Define more than
one compute unit for a single thread kernel means the same calculation over different circuits.
Different from NDRange, the amount of work is not divisible.

Each matrix belongs to a single kernel; the programmer can increase throughput by
replicating the kernels manually and calling them with different queues and matrices on the host.
As already stated in the previous architectures, the programmer must consider if this a good
approach due to memory competition.
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Figure 23 – Schematic of Sparse Jacobi method with single thread.
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3.2.6 Interoperability with Jacobi Single-threaded Sparse

The complex hardware architecture allowed us to improve host code because we do not
have to keep track of convergence. It also improved I/O exponentially, now we send the data
only once, and receive the result back.

Regarding I/O we implemented two modifications. First, we changed the buffer allo-
cations; we noticed that we could boost performance by using pinned memory. This kind of
memory resides in a non-pageable space, by using such allocation we avoid one extra copy from
pageable memory to non-pageable; we show this in Figure 24. It is important to point out that a
huge amount of pinned memory can degrade system host performance by decreasing pageable
memory space (CHENG; GROSSMAN; MCKERCHER, 2014).

Pageable data Transfer Pinned data Transfer

Pageable
memory

Pinned
memory

DRAM DRAM

Pinned
memory

host host

Device Device

Figure 24 – How pageable and pinned memory data transfer work, based on Harris (2012).

In the second modification, we implemented a double buffering scheme. This method
hides I/O latency, while the pipeline is processing one matrix, another one is being transferred
from the host to FPGA. Double buffering is kernel independent, i.e. the programmer order
the enqueues to overlap communication and computation. Since Intel FPGA SDK does not
implement out-of-order queues, we had to use two queues for using double buffering.

With exactly same function, we could call this new hardware from Fortran. The biggest
change was on the underlying hardware. Now we launch the kernel as a task, not as NDRange.
So, for each call from Fortran, we have a task parallelism.
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CHAPTER

4
RESULTS

In this chapter, we present the profiling from BRAMS. In this profiling we confirm that
the chem term is the most expensive equation in the mass continuity equation. Then we show the
experiments with the hardware in FPGA to solve the linear system from this equation.

We perform three experiments, one for each architecture of Jacobi method, we also
present the results from Sparse1.3a. We used the same heterogeneous machine we used for
profiling BRAMS. Regarding the analysis, we discuss precision, time execution, and energy.

4.1 Result analysis

We used Gprof to profile BRAMS under two configurations: with the chemical module
enabled, and with the chemical module disabled. Such configuration is possible through the
RAMSIN file, the input configuration file. We discuss the results below.

In the first configuration, we realized that the function radrrtm_ is responsible for 68%
of the total time of computation. That is the only function that exceeds 3% of the total time.

On Figure 25 we can see the call graph, we generated this graphic representation with
gprof2dot. It is important to point out that this call graph is not complete, we defined some
thresholds to make the call graph fit the page. For this discussion, this call graph is enough.

When we enable the chemical module, we note that rodas-3 from Rosenbrock method
takes about 41% of the total time. We represented the call graph on Figure 26; again this is a
partial call graph.

The second heaviest function is spFactor; it is responsible for 17% of the total time. This
function decomposes the matrix in LU format, as we mentioned earlier this decomposition is
O(n3). By comparing the call graph in Figure 25 with Figure 26, we noted that solving linear
systems in rodas-3 are two times more expensive than computing radiation.
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Figure 25 – Call Graph for BRAMS with chemical module disabled.

4.2 Experiments

We performed the experiments on a heterogeneous machine. Currently, we have a single
node for testing BRAMS execution with FPGA. In this single node, we must run BRAMS with a
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Figure 26 – Call Graph for BRAMS with chemical module enabled.

single MPI process.

According to HRZ (2017), the fine-grained scheduling available in GPU is not present
on the FPGA circuit generated by Intel OpenCL SDK, i.e. two processes cannot share the FPGA
circuit. Even with this information, we decided to perform some tests to reinforce this affirmation.

In our first attempt, we replicated the kernel for each MPI process. That requires the
knowledge of how many processes will access the device simultaneously. Figure 27 shows the
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schematic for our explanation using two processes.
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Figure 27 – Each MPI process accesses a copy of the kernel (an FPGA circuit).

For using this scheme, FPGA reconfiguration must occur before BRAMS execution.
Otherwise, both processes try to reconfigure the same FPGA and a deadlock occurs. During
execution, we realized that this approach is not feasible; the second MPI process is not able to
continue execution because Intel FPGA SDK kills it.

We tried another method; we decided to share OpenCL structures by using inter-process
shared memory in Linux1. Figure 28 shows that each process has a private Context and Queue,
we share program, device, and memory. We can see the program as a set of FPGA circuits, where
each circuit represents a kernel. The device represents the FPGA board; each process declares a
memory region inside the FPGA (device), in the figure we represent them as two purple boxes.

The first problem arose from this approach was the execution order of the MPI processes.
MPI does not impose any order in its pool of processes; we needed to execute the master process
before any other process. The master process was responsible for creating the shared region.
During our tests, with two processes, we could infer an order randomly.

Considering the cases where there was order among processes, we still reached the Intel
runtime restriction. Regarding the out-of-order cases, a segmentation fault occurred because
there was no program structure.

We tried to avoid this problem by using a mixed approach. We programmed the FPGA
before BRAMS execution, as we tried in the first approach, and execute BRAMS with shared
1 http://man7.org/linux/man-pages/man7/shm_overview.7.html
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Figure 28 – OpenCL data structures – Program, Device and Memory buffers are shared among MPI processes.

memory. This approach did not require to make any modification to BRAMS source code.
Although we avoid the order problem, runtime still kills the second process. These tests could
confirm that each device requires a single process access.

4.3 Results from Jacobi Multi-threaded Dense

In our first design, we programmed our FPGA as GPU, i.e. we used the concept of several
working units working parallel. Despite the difficulty to understand, this programming model is
very common for parallel programming, and we found several tutorials teaching how to program
simple problems in OpenCL. Jacobi method is similar to matrix-vector multiplication, a general
operation in OpenCL programming.

During this approach, we realized the host is as important as the kernel. In this attempt,
we committed several errors that led to a severe degradation in performance. We will discuss the
kernels problems, and then host problems.

The memory hierarchy is critical regarding kernel programming. We have three memory
types: Global, Local and Private memory. We tried to use the general practice of avoiding
memory access to global memory by copying the contents to a local memory.

Our designs usually had a higher frequency when we avoided this practice, after some
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digging on the source code behavior we discovered that compiler optimizes accesses to constant
global memory. When the programmer defines the global memory as a constant, which is the
case for the matrix A and vector b in the linear system, the compiler creates a cache in on-chip
memory to store these arguments, and it allows to cache the data for each load (INTEL, 2016a).

Intel FPGA SDK allows the programmer to define two types of cache. The first approach
requires a key __constant for all constant parameters; in this manner, a single cache is responsible
for storing all the values from different constant parameters. The default cache size is 16Kb;
however, the programmer can define another size during compilation. Using a single constant
cache did not improve the performance of our kernel, in our case, this approach decreased the
kernel frequency.

A second method uses __global const, which creates a cache for every parameter, i.e.
no shared cache. According to our results, this configuration led to higher frequency kernels.

Copying from global memory to local memory is useful when data is not constant,
otherwise it is not worth it. We used this approach for x in Jacobi method; this copy requires a
barrier to guarantee that all work-groups have a copy of x. Each iteration of Jacobi updates the
current solution and uses it for the next iteration.

It is important to point out that the pipeline for NDRange in this architecture is not the
same pipeline for the single thread. This pipeline accepts multiple work-items from different
work-groups; thus there is no pipeline for loops in the kernel.

This pipeline differences became apparent with the graphical reports from Intel FPGA
SDK. Although the user may compile the project on a computer with Ubuntu (operational
system), the tool requires Red Hat or CentOS to generate this report. Figure 29 shows the report,
regarding loop pipelining, for this architecture.

Figure 29 – Pipeline report for Jacobi multi-threaded dense.
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This report describes the information about the developed kernel. On the left of the figure
is the loop analysis; in this field, we have four tabs. The first tab indicates if it pipelined the loop
in line 19; the compiler does not support loop pipelining in NDRange. II represents how many
cycles this loop must wait before processing the next iteration; as we do not have loop pipelining,
this value is n/a.

Regarding the third and fourth columns, as the name says, they are related to the bottle-
neck of the pipeline and the details of how the compiler optimizes the loop. Programming like a
NDrange does not generate a report with much information. On the right, we have the source
code of the kernel. The report highlights which line is consuming more resources.

Although we could improve kernel area utilization and performance with the reports,
communication CPU-FPGA the was a problem. For every iteration of Jacobi, we needed to
exchange information with the host, because we could not perform vector norm in hardware.
Figure 30 shows this strong communication.

This communication exchange caused a severe drop of performance in BRAMS. In
average, for each matrix computation, we needed 28ms. Intel provides a profiling tool that is
capable of measuring the communication and kernel computation time accurately. We show the
communication and execution time in Figure 31.

In the kernel execution tab, the tool presents the kernel execution time (jacobi_method)
and memory transfers. Note that the execution starts when the FPGA receives the first chunk of
data; the communication is dominant in time execution.

Besides the time execution, we wanted to check the occupancy and stall of the kernel
pipeline. This first measures the amount of work we perform; the second measures the contention
in the memory bandwidth.

According to Figure 32, we do not have enough work for our kernel; our highest occu-
pancy is 52%. Considering that we are filling the pipeline with zeros, the occupancy for actual
computation must be even smaller. Regarding the stalls, we have a worst-case scenario of 9.29%;
the ideal percentage is zero, i.e. almost no contention in the memory.

Lastly, we present the statistics for this architecture in Figure 33. As we can see, our
design still allows much improvement regarding memory bandwidth; this requires significant
change on BRAMS structure of the chemical reactivity.

From our experience with the tool, we do not recommend to execute kernel profiling
for more than a few seconds to BRAMS execution. We tried to generate a final profiling with
the entire execution, and it generated a file with more than 25GB. Reading such file was not
possible due to memory restrictions imposed by our machine. We believe that this behavior must
be similar for other huge applications. Although Altera ensures that their profiling hardware
counters do not increase any overhead, we had different results in this dissertation and we did
notice some overhead.
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Figure 30 – CPU communicates with FPGA for every iteration. CPU sends to the FPGA the initial data, after FPGA
processing it, the FPGA returns the result to the CPU, which in turn computes the vector norm and
decides if it sends another data or computes another iteration.

Despite the unsatisfactory performance of this architecture, we wanted to prove that our
design was correct. We measured the error in the Rosenbrock Method, this method computes a
linear system, whose solution depends on Jacobi Method, and updates vector b for the next stage.
After the fourth stage, the algorithm computes the error and rounding of the block. If rounding is
over the tolerance, Rosenbrock updates each matrix A of the block. In this manner, a new set of
linear systems is available for each Rosenbrock stage.

Computing a 24-hour weather forecasting is not possible with this architecture due to
time limitation. According to our extrapolation, it would be necessary 44 days to process this
resolution. So we measured just the first block of error of the Rosenbrock Method; we compare
the result with the first block of error in software using Sparse1.3a. We obtained a satisfactory
error of 1.241371e−19.
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Figure 31 – Communication and execution time with Intel FPGA SDK profiling for kernels. Note that there is much
more communication than computation.

Figure 32 – Efficiency of Jacobi multi-threaded dense with Intel FPGA SDK profiling for kernels. The red line
points that the global memory reads (line 22) are the bottleneck of the application.

Figure 33 – Statistics of Jacobi multi-threaded dense with Intel FPGA SDK profiling for kernels.

Regarding energy consumption, we used PowerPlay Power Analyzer Tool from Quartus
II; this tool is responsible for estimating the potency in mW of the circuit. According to the tool,
our design consumes about 11W. We summarize the results of this architecture in Table 6 and
Table 7. In the latter, we split the execution time from transfer time.

Table 6 – Results from Arch 1.

Area Frequency Time Energy Error
19% 305 Mhz ∼44 days 11 W 1.241e-19
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Table 7 – Timing results from Arch 1.

CPU-FPGA Execution FPGA-CPU Total Time
11686us 9153us 7806us 28645us

4.4 Results from Jacobi Multi-threaded Sparse

In the profiling of the previous execution, we noted that communication was not the only
problem. We realized that there was extra computational time in the kernel; as we were using a
dense representation, we chose to avoid filling the pipeline with zeros.

We decided to use CSR, a sparse representation suitable for Sparse Matrix-Vector
multiplication (SpMV) (BELL; GARLAND, 2008). As we mentioned earlier, Jacobi method
is very similar to the matrix-vector algorithm; we used this characteristic in the choice of CSR
format.

In Figure 34, we show the statistics related to stall, occupancy, and bandwidth. We
compare each result with the previous architecture, which is the most similar architecture. We do
not present the loop pipeline report for this architecture (NDRange does not pipeline the loops).

Figure 34 – Efficiency of Jacobi multi-threaded sparse with Intel FPGA SDK profiling for kernels. Sparse format
causes a severe drop of performance when saving the results back to the global memory.

The red rows represent the worst case in efficiency in the kernel. Reading from global
memory is still the bottleneck of the application. We noted a severe drop in efficiency in saving
the results back to the global memory by using sparse format. We found two principal reasons for
this low efficiency: unbalanced access to global memory on the SpMV, and a higher percentage
of stalls in the pipeline.

Regarding the stalls, in this architecture, the compiler could not hide global memory
latency due to the increase of three reads from the global memory. Although ia and ja are constant
vectors, fetching from global memory must be avoided.

From Figure 35, we noted that changing matrix representation did not cause any im-
provement in BRAMS execution. We decided to check kernel execution and memory transfers.

Again, we compare the results with the dense version. From this, we could find what was
causing the bad performance of Jacobi. Despite the lower execution time, we noted that there
were more memory transfers between computations than in Architecture 1 due to CSR format.
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Figure 35 – Execution and memory transfer time of Jacobi multi-threaded sparse with Intel FPGA SDK profiling
for kernels. Note that transfer time did not improve due to variable sparsity of the matrices.

In the dense representation, we needed to transfer four data structures, and now we send six data
structures.

What draw our attention was the worst-case stall. In this version we improved in 6%. As
expected, memory bandwidth is lower in the sparse architecture, since we need fewer data from
global memory. Figure 36 shows these statistics.

Figure 36 – Statistics of Jacobi multi-threaded sparse with Intel FPGA SDK profiling for kernels.

As we did in the previous architecture, we evaluated the precision from this architecture.
We used the same set of configuration for comparison, i.e. we used extrapolation to measure the
error from the first block of the Rosenbrock Method obtained in Jacobi (hardware) compared
to the first block obtained in the Sparse1.3a (software). As expected, our average error is
1.241371e−19; the same result from the previous architecture.

We also studied the impact of our new design on power consumption, as we mentioned
earlier we cannot execute a weather forecasting for 24 hours due to time limitation. According to
PowerPlay Power Analyzer Tool, this new architecture requires 14W. We show the summarized
results in Table 8 and Table 9.
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Table 8 – Results from Arch 2.

Area Frequency Time Energy Error
29% 260 MHz ∼50 days 14 W 1.241e-19

Table 9 – Timing results from Arch 2.

CPU-FPGA Execution FPGA-CPU Total Time
17597us 7846us 7863us 33306us

4.5 Results from Jacobi Single-threaded Sparse
This architecture has a significant improvement over the previous ones. Now we can

compute the entire algorithm in hardware; this kernel is similar to a C to hardware.

We reused most of the knowledge of Architectures 1 and 2. At this point memory
hierarchy was a solid concept, and we used the best practices for a single thread kernel. With
this new concept of programming, new problems arose; we discuss the problems, solutions, and
results from this architecture.

Our first version was a copy-paste of the Jacobi algorithm in software. We knew that
there was room for plenty optimization, but we needed to perform the compilation to see the
problems. Intel FPGA SDK allows us to compile only the intermediate object file; this is much
faster than generating the hardware.

Compiling the kernel source into an intermediate representation is enough to provide a
detailed report of loop pipelining. As we mentioned earlier, a single thread kernel pipelines the
iterations of the loops. We show this report in Figure 37 and discuss the improvements we made.

According to Figure 37, copy from the current to the previous solution has II of 1; this
the most efficient pipeline, it means that every cycle computes an iteration. Traversing each line
of the matrix leads to a great result as well. We show an optimum pipeline in Figure 38.

This ideal pipeline is not present in the loop responsible for traversing each NNZ element
from the ith row. The problem with this loop is the data dependency on the sum accumulator; as
we cannot guarantee the same NNZ for each row, the pipeline must wait for the current iteration
to finish before it starts the next one. This restriction also prevents us from using shift registers
on the matrix-vector operation.

We show in Figure 39, how it is the pipeline for matrix-vector accumulator; we use two
iterations for simplicity. Note that this implies in an empty pipeline for some cycles, and it is
responsible for reducing the performance of Jacobi.

We have a similar problem in the convergence calculation, but now there is a well-formed
loop. We declared an array (conv) to avoid data dependency, and we used a shift register to
guarantee an optimum II. For using a shift register in OpenCL, we fully unrolled the loop
responsible for accumulating all the elements of conv. In Figure 40, we show the report for the
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Figure 37 – Pipeline report for Jacobi single-threaded sparse.
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Figure 38 – Optimum pipeline with II of 1, figure from Intel (2016a).
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Figure 39 – Matrix-vector pipeline with II of 11, based on Intel (2016a).

changes we made to this kernel.

These modification on the loop pipelines allowed us to reduce from 24 cycles to 14
cycles; an improvement of 42% compared to the initial solution. During this optimization stage,
we noted that our kernel demanded one global write for each iteration of Jacobi; we improved
that by using a local memory and performing a single write in the end of computation. With
this solution, we want to measure stall, occupancy, efficiency, execution and transfer time of the
kernel. We profiled the kernel to obtain accurate measures.

In Figure 41 we show the kernel efficiency. Despite the lower occupancy ( 18%) compared
to the Architectures 1 and 2, we present optimum efficiency and stall for every pipeline. In this
architecture, there is no bottleneck, which means that we achieved the best pipeline configuration.
The worst-case stall is still very close to zero.

Using a shift register for convergence calculation led to an effective bandwidth. The
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Figure 40 – Pipeline report for Jacobi single-threaded sparse optimized.
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Figure 41 – Efficiency for Jacobi single-threaded sparse. After the modifications, all the pipelines shows 100% of
efficiency and almost zero stall.

same applies to the stalls in the pipeline; in the profiling, we can see numbers very close to zero.
Besides the great results for the pipelines and stalls, we cannot infer the same about occupancy.

The changes in the architecture showed that occupancy is still a problem. That is not
a design related problem, but a data problem. We do not provide enough data for the kernel,
resulting in an idle time in the kernel; in future work, we intend to change BRAMS structure
related to the chemical reactivity — spack data structure. In this manner, we will be able to
improve occupancy.

Even with low occupancy, we had an improvement with this design compared to the
previous ones. According to our results for a 24-hour weather forecasting, we improved the
computational time in 63 times. We show in Figure 42 execution and memory transfers time.

Here we present an appropriate balance between execution and memory transfers. This
result relies on the improved Jacobi method; we implemented it 100% in hardware, in this
manner Jacobi only communicates with the host to receive and send data. According to our
measures, processing an entire linear system takes in average 1ms.

As we mentioned before, our design suffers from the lack of massive data to process.
Figure 43 supports this affirmation by showing how much data is necessary during execution
(measured column); in the same figure, we can see that the burst write is six times better in this
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Figure 42 – Execution and memory transfers time for Jacobi single-threaded sparse. Each bar in spjacobi_method1
means a complete execution over a matrix.

architecture than in Architecture 2, and two times better than Architecture 1.

Figure 43 – Statistics for Jacobi single-threaded sparse.

Once we improved time execution, we could perform comparisons with software re-
garding the precision of the floating point. For such comparison, we retrieved the first block of
error of the Rosenbrock Method in software and in hardware every timestep, then we measured
the difference between the results. We measured the error for 1440 timesteps (24-hour weather
forecasting), and we obtained an average error of −6.277075e−09. If we compare in the same
conditions as the previous architectures, we obtain an average error of 8.027268e−20, i.e. 10×
smaller than Architectures 1 and 2.

Jacobi impacts Rosenbrock convergence rate since it depends on the error of fourth stage.
In the Literature, we find several works supporting that Jacobi method has a slow convergence
rate (TAMULI et al., 2015; KHUSHPREETKAUR, 2012). We decided to take advantage of this
slow rate convergence to improve throughput by using double buffering scheme. In Figure 42,
there are some matrices whose execution time is higher than memory transfer.

According to our experiments, we could not use double buffering on Intel FPGA SDK
correctly. By using this scheme, we noted that data from different queues were overlapping the
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pipeline, which returned a wrong result. No warning or error during compilation occurred, we
found these errors during the measuring of Rosenbrock error.

We decided to make a copy of the kernel and then distribute them over the queues, in
our case, we use two queues. Our first attempt was not successful due to space limitation of the
FPGA; we had to downgrade our design to make the replication fit the FPGA.

During the execution of BRAMS with the downgraded version, we noted the same
problems we had before. According to our experiments, sharing the FPGA is not possible when
using OpenCL for Intel devices (a similar problem happened when we tried to share the FPGA
for more than one proccess, see Section 4.2).

After all the possible optimizations, we decided to measure the energy required for
processing the chemical reactivity in FPGA. We could make a more accurate test than the
previous architectures since we could perform a complete execution of BRAMS for a 24-hour
weather forecasting.

According to our results, this architecture requires 15W. So far, this architecture is the
most energy efficient and fastest version we implemented by using 15% more of resources of the
FPGA. We summarize the results in Table 10 and in Table 11.

Table 10 – Results from Arch 3.

Area Frequency Time Energy Error
34% 269 MHz ∼19 hours 15 W 8.027e-20

Table 11 – Tmining results from Arch 3.

CPU-FPGA Execution FPGA-CPU Total Time
92us 912us 9us 1013us

4.6 Results from Jacobi Single-threaded Dense
In the Arch 3, we noticed that NNZ is a problem in CSR sparse format since we cannot

infer an optimum pipeline. To avoid this problem, we implemented a dense version of Arch 3;
we called it Arch 4. We do not present any report for this architecture since we it did not improve
the time execution. The compiler unrolls automatically the internal loop to process more data
in parallel, this feature can be disabled, this is why the hardware takes 45% of the available
hardware. Unrolling the loop also decreases hardware frequency, it needs 239 Mhz.

In this manner, we can conclude that sparse format is still the most suitable format for
our problem. We show the results in Table 12, as we can see in this table, transferring from CPU
to FPGA is faster using dense format. This behavior shows that transferring small chunks of data
is slower than sending bigger ones due to the delay of the OpenCL API.
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Table 12 – Timing results from Arch 4.

CPU-FPGA Execution FPGA-CPU Total Time
78us 3090us 16us 3184us

4.7 Results from Sparse1.3a
We also executed BRAMS with a single process with Sparse1.3a for a 24-hour weather

forecasting. We compare execution time from the software library with our Arch 3.

According to the results, the software versions takes about one hour and fifteen minutes
to complete the execution. The same execution in hardware takes about 19 hours to execute, i.e.
our hardware demands 15× more time execution, which is prohibitive in practice.

This poor execution time is related to several factors: (a) matrix size; (b) communication;
and (c) one process per FPGA. Batched execution of linear algebra operations on small matrices
are still a problem, and high performance accelerator remains a challenging problem (DONG et

al., 2016).

The focus of this project was to migrate a snippet of BRAMS to a heterogeneous machine
with FPGA, which was successfully performed. Time execution is not critical at this moment. In
Table 13, we show the main characteristics of each implementation, and their advantages and
disadvantages. In Table 15, we compare the transfer and execution time for each architecture.

Table 13 – Table of comparison among implementations.

Features A B C D E Advantages Disadvantage
Arch 1 X X X Easy to understand and pro-

gram.
Too much communication
between CPU-FPGA.

Arch 2 X X X Pipeline never computes ze-
ros.

It is hard to define a suitable
NDRange.

Arch 3 X X X 100% of Jacobi in hardware. Performance loss due to data
representation.

Arch 4 X X X No load imbalance. Performance loss compared
to Arch 3.

Sw X X X Fast and suitable for CPUs. It is not suitable for paral-
lelism.

Features:

∙ A: Parallel algorithm;

∙ B: MPI Support;

∙ C: Coupled to BRAMS;

∙ D: Iterative method;

∙ E: Direct Method;
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Table 15 – Comparison among architectures

Arch CPU-FPGA Execution FPGA-CPU Total Time
1 11686us 9153us 7806us 28645us
2 17597us 7846us 7863us 33306us
3 92us 912us 9us 1013us
4 78us 3090us 16us 3184us
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CHAPTER

5
CONCLUSION

In this project, we explore the possibility to use heterogeneous computing to solve the
chem term. As we showed in the related works, coupling the chemical reactivity to BRAMS is a
complex task that we could perform by using OpenCL. We used this framework to implement
the dense and sparse version of Jacobi, an iterative linear solver.

We provide a parallel Jacobi suitable for FPGAs pipelining. By using FPGA, we could
implement 100% of the algorithm on the device side and still maintain it coupled to BRAMS, to
the best of our knowledge, this is the first work that couples FPGA to BRAMS. According to our
tests, we proved the program presents the same behavior and accuracy of the software.

Such algorithm is critical to the solution of the chem term of the mass continuity equation;
the chemical term became the most expensive when the developers included the gas chemical
module. We obtained the same results through profilings techniques applied to BRAMS, such as
Gprof. Currently, BRAMS executes only in CPU with MPI parallelism.

With this project, we could prove that porting parts of BRAMS to heterogeneous com-
puting — CPU-FPGA — is possible. Our work allows the scientific community to explore more
parallel solution using FPGAs.

5.1 Limitations
As we presented in Section 4.2, our design does not allow more than one process to

access the same device. The sparse format we chose imposes a severe drop of performance in
pipeline execution. Performance is also a problem since our best architecture is 15× slower than
software.

CSR format imposes a load imbalance on the computation, and such problem imposes
a higher latency in the pipeline. With this format, it is not possible to improve II of SpMV
operation since the sparsity of the matrices varies from 8% up to 25%.
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5.2 Future Work
In future work, we intend to solve the limitations in our design. Our first target is the

Rosenbrock method, which we could perform the stages of the method in hardware, as we saw in
Figure 2, all Rosenbrock stages require minor modifications and perform the same computation.
Such implementation could be carried out if there is enough space in FPGA area.

We would also need to study the I/O involved in this process if this is a suitable solution.
Regarding the sparse format, we could explore the viability of other sparse formats that could
perform in parallel. One of the options is the Ellpack format, which does not impose a load
imbalance. Although it seems a perfect solution, such format could lead to huge amount of
additional memory and computation.

During BRAMS execution, we noted that much of the communication could be avoided.
Instead of sending a single matrix to process and receiving a single result, we could process the
entire block by sending all the data related to the block and manage them in hardware.

Another possible solution is to explore the serialization of the MPI processes, i.e. when
they reach FPGA execution only one of the process could perform the computation at a time. For
this, we could use a master-slave approach similar to what already happens in BRAMS, where
just the master has access to the device.

A harder optimization requires the modification of BRAMS source code related to
chemical reactivity data structure — spack data structure. Fortran90 does not align components
of derived type, i.e. components from the data structure. A deeper study of this structure could
boost BRAMS performance.
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APPENDIX

A
INSTALLATION

In this Appendix, we describe the installation of BRAMS 5.2 and its libraries. Before
compiling BRAMS and the necessary libraries, the user needs to install Intel Fortran Compiler1

(ifort); our tests with gfortran failed.

After installing ifort, the user can proceed to compile the libraries2 below. We provide
useful links to libraries and BRAMS source code in Annex A.

∙ netcdf 4.1.3;

∙ hdf5 1.8.15;

∙ zlib 1.2.8;

∙ szip 2.1;

∙ mpich 3.1.4.

In this section, we consider the following directory structure for local installation3.

Main directory: home/<username>/brams

Libraries: home/<username>/brams/lib

Source code of BRAMS 5.2: home/<username>/brams/model

Each library demands its configuration, but the steps afterward are the same. The user
needs to make, make check and make install. Do not ignore the make check command, the
user must read the log file to find any particular problem.

∙ Compile Zlib.
1 https://software.intel.com/en-us/fortran-compilers
2 It is important to point out that it is necessary the same library versions cited in this section.
3 The user may choose another location.
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1 $ CC= i c c FC= i f o r t CPP= i c p c . / c o n f i g u r e −−p r e f i x = / home / <
username >/ brams / l i b / z l i b / 1 . 2 . 8 /

∙ Compile Szip.

1 $ CC= i c c FC= i f o r t CXX= i c p c F77= i f o r t . / c o n f i g u r e −−p r e f i x = /
home / < username >/ brams / l i b / s z i p / 2 . 1 /

∙ Compile Mpich.

1 $ CFLAGS=−O2 FFLAGS=−O2 CXXFLAGS=−O2 FCFLAGS=−O2 CC= i c c FC=
i f o r t F77= i f o r t CXX= i c p c . / c o n f i g u r e −−d i s a b l e − f a s t −−
p r e f i x = / home / < username >/ brams / l i b / mpich / 3 . 1 . 4

– Before the installation of Mpich you need to export the bin directory to bash file.

1 $ g e d i t ~ / . b a s h r c
2 export PATH=\$PATH : / home / < username >/ brams / l i b / mpich

/ 3 . 1 . 4 / b i n
3 $ source ~ / . b a s h r c

– Additionally you need to add your computer to the hosts list.

1 $ g e d i t / e t c / h o s t s
2 1 2 7 . 0 . 1 . 1 <computer−name>

∙ Compile hdf5 and enable parallelism and fortran.

1 $ CFLAGS=−O2 FCFLAGS=−O2 CXXFLAGS=−O2 CC=/ home / < username >/
brams / l i b / mpich / 3 . 1 . 4 / b i n / mpicc FC=/ home / < username >/
brams / l i b / mpich / 3 . 1 . 4 / b i n / mpif90 CXX=/ home / < username >/
brams / l i b / mpich / 3 . 1 . 4 / b i n / mpicxx . / c o n f i g u r e −−enable−
f o r t r a n −−enable−p a r a l l e l −−p r e f i x = / home / < username >/
brams / l i b / hdf5 / 1 . 8 . 1 5 /

∙ Compile Netcdf with gcc and ifort, disable “netcdf-4" option.

1 $ FC= i f o r t F77= i f o r t F90= i f o r t CC=gcc . / c o n f i g u r e −−p r e f i x
= / home / < username >/ brams / l i b / n e t c d f / 4 . 1 . 3 / −−d i s a b l e −
s h a r e d −−d i s a b l e −n e t c d f −4 −−enable−f o r t r a n

∙ Compile JULES and make some modifications.

– Backup the LIB directory of JULES;

– Rename makefile_ifort to makefile;
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– Edit the variable BUILD=debug to BUILD=fast.

After installing all the required libraries, the user may proceed to BRAMS installation.
BRAMS source code is available in Annex A.

∙ Go to /home/<username>/brams/model/build

∙ Configure BRAMS;

1 $ . / c o n f i g u r e −−program−p r e f i x =BRAMS −−p r e f i x = . . / i n s t a l l −−
enable− j u l e s −−with−chem=RELACS_TUV −−with−a e r =SIMPLE −−
with−fpcomp =/ home / < username >/ brams / l i b / hdf5 / 1 . 8 . 1 5 / b i n /
h5pfc −−with−cpcomp =/ home / < username >/ brams / l i b / hdf5
/ 1 . 8 . 1 5 / b i n / h5pcc −−with−fcomp= i f o r t −−with−ccomp= i c c −−
with−z l i b = / home / < username >/ brams / l i b / z l i b / 1 . 2 . 8 /

With BRAMS installed, the user may want to test it. CPTEC/INPE provides a test case;
the user can also find this link in Annex A. The steps below refer to the installation of BRAMS’s
test case. The user must choose where it want to install the test case.

∙ Rename ANL, HIS and POSPROCESS to ANL.old, HIS.old and POSPROCESS.old;

∙ Create new directories with the respective names ANL, HIS and POSPROCESS;

∙ Rename RAMSIN to RAMSIN.bak;

∙ Make a copy of RAMSIN-5.1-meteo-only and rename it to RAMSIN;

∙ Download surface data and place it on datain directory;

∙ Edit RAMSIN file according to the following lines:

– Rename all

1 / Use r s / s a u l o f r e i t a s / work t o / home / < username >/ run / b i n /
t e s t c a s e _ b r a m s 5 . 1 / s h a r e d _ d a t a i n /SURFACE_DATA

– Rename CCATT = 0 to CCATT = 1;

– Rename CHEMISTRY = -1 to CHEMISTRY = 4;

∙ Move the executable of BRAMS to <testcase_home>;

For executing BRAMS, the user needs the following command:

1 mpirun −np N . / e x e c u t a b l e −f RAMSIN

Where N is the number of cores running in parallel BRAMS.
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APPENDIX

B
OBSERVING THE RESULTS

BRAMS will write two outputs on POS directory. They are in Grads format. On Ubuntu
it is possible to install Grads through apt-get:

1 $ sudo ap t−g e t i n s t a l l g r a d s

In other operating systems, it is necessary to download from Grads website. The link
for Grads is also available in Appendix A, download and install it according to the website
instructions.

After installing Grads, go to POS directory. For each model output, there is a file with a
description of extension .ctl and another extension .bin which contains the binary output. For
opening them, use the following command:

1 $ g r a d s − l

This command will display a prompt for the graphical output, and the terminal will return
“ga->". With this prompt, the user can open a .ctl file, for example:

1 $ ga−> open l i g h t −A−2015−08−27−030000−g1 . c t l

It will display something like this:

1 LON s e t t o −64.9338 −59.8931
2 LAT s e t t o −3.6793 1 .35826
3 LEV s e t t o 1000 1000
4 Time v a l u e s s e t : 2 0 1 5 : 8 : 2 7 : 0 2 0 1 5 : 8 : 2 7 : 0
5 E s e t t o 1 1

You can also check the variables in the file:

1 $ ga−> q f i l e
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The screen will display a variable list and other data. For plotting a variable, use the
command “d" and the variable name as in the example below:

1 $ ga−> d tempc

For more information type help command. Now the user is able to see the results and
compare with the test case provided by INPE/CPTEC. We used this test case for profiling the
application.
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ANNEX

A
USEFUL LINKS

∙ Libraries:

– <ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.1.3.tar.gz>

– <http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.15-patch1.tar.gz>

– <http://zlib.net/zlib-1.2.8.tar.gz>

– <http://www.hdfgroup.org/ftp/lib-external/szip/2.1/src/szip-2.1.tar.gz>

– <http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz>

∙ BRAMS:

– <ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/src/BRAMS.tgz>

∙ BRAMS testcase:

– <ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/testcase/testcase_brams5.1.tgz>

∙ Grads

– <http://www.iges.org/grads/>

ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.1.3.tar.gz
http://www.hdfgroup.org/ftp/HDF5/current/src/hdf5-1.8.15-patch1.tar.gz
http://zlib.net/zlib-1.2.8.tar.gz
http://www.hdfgroup.org/ftp/lib-external/szip/2.1/src/szip-2.1.tar.gz
http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz
ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/src/BRAMS.tgz
ftp://ftp1.cptec.inpe.br/poluicao/BRAMS/testcase/testcase_brams5.1.tgz
http://www.iges.org/grads/
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