• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2009.tde-22012010-162306
Documento
Autor
Nome completo
Renata Pelissari
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2009
Orientador
Banca examinadora
Pinto Junior, Dorival Leão (Presidente)
Andrade Filho, Mário de Castro
Leite, Jose Galvao
Título em português
Análise empírica de dados multinomiais
Palavras-chave em português
Decomposição de Doob-Meyer
Modelo de intensidade multiplicativo
Multinomial
Probabilidade
Teste de logrank
Resumo em português
Em diversas análises estatísticas, nos deparamos com dados multinomiais, dos quais precisamos analisar o comportamento ao longo do tempo e sua relação com fatores determinantes. Os métodos clássicos para modelos de regressão multinomiais consistem em utilizar a estrutura de modelos lineares generalizados para desenvolver tais modelos McCullagh & Nelder (1989). No entanto, este enfoque apresenta algumas desvantagens como não admiter a incidência de zeros em nenhuma categoria, a hipótese da proporcionalidade da razão de chances e o fato de não serem modelos adequados para análise de dados censurados. Com o objetivo de analisar dados multinomiais com essas características propomos um modelo que é uma extensão do modelo de intensidade multiplicativo desenvolvido por Aalen (1978) e apresentado em Fleming & Harrington (2005), para variáveis aleatórias multinomiais. Com isso, ao invés de modelarmos as probabilidades associadas às categorias, como nos métodos clássicos, modelamos a função intensidade associada à variável aleatória multinomial. Através do critério martingale, estimamos os parâmetros do modelo ajustado e propomos testes de hipóteses para estes parâmetros para uma e duas populações. O teste para comparação de duas populações é baseado na estatística de logrank
Título em inglês
Empirical analysis of multinomial data
Palavras-chave em inglês
Doob-Meyer decomposition
Multinomial
Multiplicative intensity model lograk test
Probability
Resumo em inglês
In several applications, we want to analyze the behavior of multinomial datas over the time and its relationship with important factors. The classic methods commonly used for multinomial regression models are based in the generalized linear model framework. However, this models presents some disadvantages such that: it does not admit the incidence of zeros in any category, the assumption of proportionality of odds ratio and the fact that they are not appropriate models to analyze censored data. For multinomial data analyses with this characteristics, we propose a model that it is an extension of the multiplicative intensity model developed by Aalen to random multinomial variables. Therefore, instead of modeling the categorical probabilities, as in the classics methods, we modeled the intensity fuction associated with the multinomial variable. Using the martingale criterion, we estimate the models parameters and propose hypothesis testing for these parameters for one and two populations. The test for comparing two populations is based in the logrank statistics
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2010-01-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.