• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-24102018-155954
Document
Author
Full name
Jorge Andoni Valverde Tohalino
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2018
Supervisor
Committee
Pardo, Thiago Alexandre Salgueiro (President)
Breve, Fabricio Aparecido
Rezende, Solange Oliveira
Travieso, Gonzalo
Title in English
Extractive document summarization using complex networks
Keywords in English
Artificial intelligence
Automatic summarization
Complex networks
Natural language processing
Abstract in English
Due to a large amount of textual information available on the Internet, the task of automatic document summarization has gained significant importance. Document summarization became important because its focus is the development of techniques aimed at finding relevant and concise content in large volumes of information without changing its original meaning. The purpose of this Masters work is to use network theory concepts for extractive document summarization for both Single Document Summarization (SDS) and Multi-Document Summarization (MDS). In this work, the documents are modeled as networks, where sentences are represented as nodes with the aim of extracting the most relevant sentences through the use of ranking algorithms. The edges between nodes are established in different ways. The first approach for edge calculation is based on the number of common nouns between two sentences (network nodes). Another approach to creating an edge is through the similarity between two sentences. In order to calculate the similarity of such sentences, we used the vector space model based on Tf-Idf weighting and word embeddings for the vector representation of the sentences. Also, we make a distinction between edges linking sentences from different documents (inter-layer) and those connecting sentences from the same document (intra-layer) by using multilayer network models for the Multi-Document Summarization task. In this approach, each network layer represents a document of the document set that will be summarized. In addition to the measurements typically used in complex networks such as node degree, clustering coefficient, shortest paths, etc., the network characterization also is guided by dynamical measurements of complex networks, including symmetry, accessibility and absorption time. The generated summaries were evaluated by using different corpus for both Portuguese and English language. The ROUGE-1 metric was used for the validation of generated summaries. The results suggest that simpler models like Noun and Tf-Idf based networks achieved a better performance in comparison to those models based on word embeddings. Also, excellent results were achieved by using the multilayered representation of documents for MDS. Finally, we concluded that several measurements could be used to improve the characterization of networks for the summarization task.
Title in Portuguese
Sumarização extractiva de documentos usando redes complexas
Keywords in Portuguese
Inteligência artificial
Processamento de linguagem natural
Redes complexas
Sumarização automática
Abstract in Portuguese
Devido à grande quantidade de informações textuais disponíveis na Internet, a tarefa de sumarização automática de documentos ganhou importância significativa. A sumarização de documentos tornou-se importante porque seu foco é o desenvolvimento de técnicas destinadas a encontrar conteúdo relevante e conciso em grandes volumes de informação sem alterar seu significado original. O objetivo deste trabalho de Mestrado é usar os conceitos da teoria de grafos para o resumo extrativo de documentos para Sumarização mono-documento (SDS) e Sumarização multi-documento (MDS). Neste trabalho, os documentos são modelados como redes, onde as sentenças são representadas como nós com o objetivo de extrair as sentenças mais relevantes através do uso de algoritmos de ranqueamento. As arestas entre nós são estabelecidas de maneiras diferentes. A primeira abordagem para o cálculo de arestas é baseada no número de substantivos comuns entre duas sentenças (nós da rede). Outra abordagem para criar uma aresta é através da similaridade entre duas sentenças. Para calcular a similaridade de tais sentenças, foi usado o modelo de espaço vetorial baseado na ponderação Tf-Idf e word embeddings para a representação vetorial das sentenças. Além disso, fazemos uma distinção entre as arestas que vinculam sentenças de diferentes documentos (inter-camada) e aquelas que conectam sentenças do mesmo documento (intra-camada) usando modelos de redes multicamada para a tarefa de Sumarização multi-documento. Nesta abordagem, cada camada da rede representa um documento do conjunto de documentos que será resumido. Além das medições tipicamente usadas em redes complexas como grau dos nós, coeficiente de agrupamento, caminhos mais curtos, etc., a caracterização da rede também é guiada por medições dinâmicas de redes complexas, incluindo simetria, acessibilidade e tempo de absorção. Os resumos gerados foram avaliados usando diferentes corpus para Português e Inglês. A métrica ROUGE-1 foi usada para a validação dos resumos gerados. Os resultados sugerem que os modelos mais simples, como redes baseadas em Noun e Tf-Idf, obtiveram um melhor desempenho em comparação com os modelos baseados em word embeddings. Além disso, excelentes resultados foram obtidos usando a representação de redes multicamada de documentos para MDS. Finalmente, concluímos que várias medidas podem ser usadas para melhorar a caracterização de redes para a tarefa de sumarização.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-10-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.