• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-26022018-145221
Document
Author
Full name
Chandler Wellington Caulkins
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2000
Supervisor
Committee
Monard, Maria Carolina (President)
Prado, Jose Pacheco de Almeida
Rezende, Solange Oliveira
Title in Portuguese
Aquisição de Conhecimento Utilizando Aprendizado de Máquina Relacional
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Aprendizado de Máquina AM é uma área de Inteligência Artificial IA que estuda métodos computacionais para adquirir novos conhecimentos bem como meios de organizar o conhecimento já existente. Para isso, são necessárias linguagens de descrição de objetos e de conceitos aprendidos. Elas podem ser divididas em dois tipos: baseadas em atributos, ou proposicionais, e relacionais. Sistemas de AM proposicional têm sido aplicados com relativo sucesso, utilizando dados no formato atributo-valor. No entanto, são incapazes de aprender relações em função da linguagem que utilizam. Programação Lógica Indutiva PLI é uma abordagem recente dentro de AM que faz uso de uma linguagem de descrição relacional baseada em lógica de primeira ordem, de modo que consegue aprender relações entre os objetos. Todo problema que pode ser resolvido por um sistema de aprendizado proposicional pode, em princípio, ser resolvido por um sistema de aprendizado relacional, desde que os fiados estejam devidamente formatados. Uma série de ferramentas foi por nós implementada para converter os dados do formato atributo-valor para o formato relacional apropriado de dois sistemas de PLI, FOIL (Quinlan, 1990) e PROGOL (Muggleton, 1995). A partir dessas representações, tornou-se possível analisar o comportamento de cada um deles em bases de dados naturais com características diferentes. Como estudo de caso do mundo real, utiliza-se uma base de dados disponibilizada pelo Programa de Melhoramento Genético da Raça Nelore PMGRN da Universidade de São Paulo em Ribeirão Preto (Làbo et al., 1999). Utilizando os sistemas PLI, adquire-se um conhecimento sobre essa base de dados de gado. Para tanto segue-se uma metodologia baseada no processo KDD (Knowledge Discovery in Databases) descrito em (Fayyad, 1996).
Title in English
Not available
Keywords in English
Not available
Abstract in English
Machine Learning ML is an arca in Artificial Intelligence AI which studies computational methods for acquiring new knowledge along with ways to organize existing knowledge. To do this, de,scriptive languages are necessary for the objects being studied as well as the concepts that are learned. The languages can be divided into two type,s: languages based on attributes, or propositional languages, and relational languages. Propositional ML systems have been applied to several problemas with quite a bit of succe,ss, by using data in an attribute-value format. Yet they canriot learn relationships because of the propositional language they use. Inductive Logic Programming ILP is a recent ML approach which uses a relational description language based on first-order logic, so that it is able to learn relationships between objects. Any problem that caia be solved using propositional learning can, theoretically, be solved using a relational learning system, once the data has been put in the correct format. A series of tools have been implemented by us to convert data in attribute-value format to appropriate relational formats for two ILP systems, FOIL (Quinlan, 1990) and PROGOL (Muggleton, 1995). Using these representations, it is possible to analyze the behavior of each one in natural databases with different characteristics. A database made available by the Program for the Genetic Improvement of the Nelore Breed PMGRN at the University of São Paulo in Ribeirão Preto is used as a realworld case study. Some knowledge is acquired about the cattle database, by using an ILP system and the results are discussed. A knowledge acquisition process based on the Knowledge Discovery in Database,s KDD process described in (Fayyad, 1996) is used.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-02-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.