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ABSTRACT

BARELLA, V. Imbalanced classification tasks: measuring data complexity and recommen-
ding techniques. 2021. 148 p. Tese (Doutorado em Ciências – Ciências de Computação e
Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos – SP, 2021.

Machine learning classification algorithms tend to perform poorly in datasets with class imbal-
ance. Class imbalance is not a problem per se, but it poses adverse effects when combined with
other data characteristics, such as class overlap and noise. This study aims to measure data
characteristics in imbalanced datasets and recommend techniques to deal with class imbalance
in a meta-learning system.

Popular data complexity measures were decomposed per class to better assess the imbalanced
datasets characteristics. They were applied to controlled artificial datasets and to real datasets.
These measures were correlated with several classification models’ predictive performance.
The measures were also evaluated before and after applying popular pre-processing techniques
for imbalanced datasets. Moreover, a meta-learning system was implemented using popular
meta-features along with the data complexity measures developed in this research. The results
showed that decomposing the data complexity measures per class improved their ability to
measure complexity in imbalanced datasets. Furthermore, according to experimental results,
they were the most important meta-features in the meta-learning system.

Based on the results, data science practitioners should consider measuring the data complexity
of imbalanced datasets, whether it is to interpret the data characteristics, select techniques, or
develop new techniques.

Keywords: Machine learning, Imbalanced datasets, Data complexity, Meta-learning, Meta-
features.





RESUMO

BARELLA, V. Tarefas de classificação desbalanceadas: medindo complexidade de dados
e recomendando técnicas. 2021. 148 p. Tese (Doutorado em Ciências – Ciências de Com-
putação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2021.

Algoritmos de classificação em aprendizado de máquina tendem a desempenhar pior em da-
dos com classes desbalanceadas. Desbalanceamento de classes não é um problema sozinho,
mas provoca efeitos adversos quando combinado com outras características de dados, como
sobreposição de classes e ruído. Este estudo tem por objetivo medir características de dados
desbalanceados e recomendar técnicas para lidar com desbalanceamento por meio de um sistema
de meta-aprendizado.

Nesta pesquisa, medidas populares de complexidade de dados foram decompostas por classe
para melhor aferir as características de dados desbalanceados. Elas foram aplicadas em conjuntos
de dados artificiais controlados e conjuntos reais. Essas medidas foram correlacionadas com o
desempenho preditivo de diversos modelos de classificação. Elas também foram avaliadas antes
e após a aplicação de famosas técnicas de pré-processamento pra dados desbalanceados. Além
disso, um sistem de meta-prendizado foi implementado usando meta-atributos populares na
literatura juntamente com as medidas de complexidade de dados desenvolvidas nessa pesquisa.
Os resultados mostraram que decompor as medidas de complexidade por classe melhorou sua
habilidade em medir complexidade em dados desbalanceados. Ademais, de acordo com os
resultados dos experimentos, elas foram os meta-atributos mais relevantes para o sistema de
meta-aprendizado.

Baseado nos resultados desta pesquisa, praticantes de ciência de dados devem considerar medir
a complexidade de conjuntos de dados desbalanceados, seja para interpretar características de
dados, selecionar técnicas ou desenvolver novas técnicas.

Palavras-chave: Aprendizado de máquina, Dados desbalanceados, Meta-aprendizado, Meta-
atributos.
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CHAPTER

1
INTRODUCTION

Machine Learning (ML) is an area of study whose objective is programming computers
to learn (MITCHELL, 1997). A classification task is a specific form of task in ML. It consists
of identifying which of a set of categories a new observation belongs to based on previous
observations (FLACH, 2012). The previous observations are expressed by a set of pairs (Ti, y j),
where Ti is usually a set of characteristics, and y j is its category. The set of characteristics is
called features, the categories are called classes, and the set of pairs are called the training set. In
ML, a computer program follows a classification algorithm to induce a function to map each Ti

to their corresponding y j.

One factor that may hinder the adequate induction of a function is the class imbal-
ance, which is a disproportion in the number of observations between the training set classes
(FERNÁNDEZ et al., 2018). Several authors reported poor performances in the classes less
represented, which are called minority classes and usually are the classes of interest (YANG
et al., 2009; TAVALLAEE; STAKHANOVA; GHORBANI, 2010; CHEN et al., 2018). Class
imbalance is the object of study of this thesis. We investigated tools to assess better the nature
of the problem and the data-level techniques. We also explored a recommendation system to
suggest different approaches techniques to mitigate the effects of class imbalance.

This chapter is organized as follows: Section 1.1 discusses the nature of the class
imbalance problem and motivates our research, Section 1.2 presents the objective and the
hypotheses of this thesis, and Section 1.3 outlines the organization of this document.

1.1 The Class Imbalance Problem

Classification models induced on datasets with class imbalance tend to underperform in
the minority classes. To identify this problem, better performance measures rather than accuracy
are needed (JAPKOWICZ; SHAH, 2011). The accuracy problem is that it favors models with
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high performance on the majority classes even when they perform poorly on the minority classes.
The most common performance measures in the literature of class imbalance are gmean, f-
measure, and AUPRC (FERNÁNDEZ et al., 2018). The right choice of the performance measure
will depend on the domain and task at hand.

Besides the importance of the performance measure, another key to understanding the
problem is the nature of the class imbalance problem. Although class imbalance is usually in
conjunction with low performance in the minority classes, it is not a rule. The reason is that class
imbalance is not a problem, per se. It combines with other data characteristics forming a particular
effect that is harmful to the classification of the minority classes (BATISTA; PRATI; MONARD,
2004; JO; JAPKOWICZ, 2004; SáEZ et al., 2014; KHOSHGOFTAAR; HULSE; NAPOLITANO,
2011; MALDONADO; WEBER; FAMILI, 2014). Figure 1 shows three different datasets. Blue
circles represent the majority class, orange squares represent the minority class, and the black
line represents a linear SVM classifier induced from the data. Each dataset represents a different
data characteristic, i.e., linear separability, class overlap, and label noise.

When the classes are linearly separable in the feature space (Figure 1a), a suitable linear
model can be induced even when the classes are imbalanced. In the face of overlap (Figure 1b),
the model tends to favor the majority class, degrading its performance in the minority class. The
same holds when the data is noisy (Figure 1c).

Although all the data characteristics mentioned above degrade the performance also in
balanced datasets, the problem has its particularities when the datasets are imbalanced. The most
important of them is that the performance in the minority class is the one usually affected. Also,
domains with class imbalance are usually more interested in identifying the minority classes than
the majority classes, such as in oil spill detection in the sea (KUBAT; MATWIN et al., 1997),
fault diagnosis (YANG et al., 2009), and medical diagnosis (MAZUROWSKI et al., 2008). That
means when a classification task is imbalanced, the models induced tend to perform poorly in
the class of interest.

In recent years, researchers have focused on measuring such data characteristics to
understand ML’s problems better and propose techniques to mitigate their effects (HO; BASU,
2002; LORENA et al., 2019). Measures proposed with that objective have been called data
complexity measures. Although they have been used to express the complexity of imbalanced
datasets (LUENGO; HERRERA, 2015; DÍEZ-PASTOR et al., 2015; FERNÁNDEZ; JESUS;
HERRERA, 2015), this thesis shows that they do not work adequately in such scenarios. We
present a simple but effective adaptation of them, consisting of a decomposition per class. Our
experiments demonstrate that our adaptation assesses better the difficulty in both artificial and
real imbalanced datasets. We also investigated the relationship between data complexity and
predictive performance before and after applying some popular pre-processing techniques for
the class imbalance problem.

Pre-processing is a popular approach to mitigate the effects of class imbalance (BARUA
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Figure 1 – Examples of data characteristics in imbalanced datasets and linear models induced from them

(a) Linear Separability (b) Class Overlap

(c) Label Noise

Source: Elaborated by the author.

et al., 2014; YU; NI; ZHAO, 2013; NG et al., 2015). It consists of modifying the dataset to make
it more balanced. Oversampling and undersampling are the main strategies. The former adds
examples to the minority classes employing duplication or synthesis of examples, and the latter
removes examples from the majority classes. Pre-processing techniques are used independent of
the learning step, but it may remove significant instances or generate noise in the training set.

SMOTE is a popular oversampling technique that generates new examples by interpolat-
ing minority class instances (CHAWLA et al., 2002). Figure 2 shows the datasets from Figure 1
and linear SVM classifiers after applying SMOTE to them. SMOTE helped the classification
algorithm identify the minority class better, but it gave the minority class a non-natural shape and
oversampled noise data. In a more complex scenario, SMOTE could not have improved enough
the classifier.

Another possible approach is the algorithm-level approach, which consists of adapting
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Figure 2 – Examples of data characteristics in imbalanced datasets after applying SMOTE and linear
models induced from them

(a) Linear Separability (b) Class Overlap

(c) Label Noise

Source: Elaborated by the author.

classification algorithms to take imbalance into account during the learning step (VEROPOULOS
et al., 1999; SEIFFERT et al., 2009). Some adaptations include new hyper-parameters, such
as different weights for each class or a cost matrix. Other approaches are based on adapting
ensembles and outlier detection techniques, for example, one-class classification. Algorithm-level
techniques usually do not include a pre-processing step in the pipeline, but it is dependent on the
classification algorithm used.

Using class weights on SVM classifiers is an example of an algorithm-level approach
(VEROPOULOS et al., 1999). Figure 3 shows the datasets from Figure 1 and linear SVM classi-
fiers with class weights induced from them. The use of class weights helped the classification
algorithm better identify the minority class, but it could not have improved the classifier in a
more complex scenario.
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Figure 3 – Examples of data characteristics in imbalanced datasets and linear models with class weights
induced from them

(a) Linear Separability (b) Class Overlap

(c) Label Noise

Source: Elaborated by the author.

No technique works best for all datasets, which leads researchers to develop approaches
to recommend a good technique depending on the dataset (MORAIS; MIRANDA; SILVA, 2016;
BORSOS; LEMNARU; POTOLEA, 2018; SMOLYAKOV et al., 2019; COSTA et al., 2020). A
technique’s performance is usually related to the data characteristics of the dataset, where the
decomposed DCMs can be useful. This thesis investigated the use of meta-learning (MtL) on a
recommendation system to suggest pre-processing and algorithm-level techniques. We used MtL
to induce models to map the data characteristics to the performance of techniques, considering
the decomposed DCMs as meta-features. Our approach recommended techniques better than a
baseline, and the decomposed DCMs were the most important meta-features in the system.

Although our experiments indicated the importance of the DCMs and decomposed
DCMs as meta-features, their high computational cost may prevent them from being used
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as meta-features. Thus, we also investigated an MtL approach to estimate the decomposed
DCMs. Our approach demonstrated to be useful in estimating the decomposed DCMs even when
pre-processing techniques were applied.

1.2 Objective and Hypotheses

The main objective of this thesis was to assess the difficulty of imbalanced datasets
through DCMs. To this end, we decomposed the DCMs per class and demonstrated their high
correlation with the predictive performance considering several ML algorithms. Also, we showed
that the gain in performance after applying pre-processing techniques is correlated with the
reduction in data complexity. Moreover, we implemented and analyzed an MtL approach to
recommend both pre-processing and algorithm-level approaches for imbalanced datasets, where
the decomposed DCMs were the most important meta-features.

The main question that motivated this thesis is “How to define measures able to assess
the complexity of imbalanced datasets and use these measures to recommend pre-processing and
algorithm-level techniques with a good predictive performance for imbalanced datasets?”

The research question above guided the development of the following hypotheses to
be tested in this thesis. The discussion for each hypothesis can be found in the chapters in
parenthesis.

1. The original DCMs do not properly assess the difficulty of imbalanced datasets.

(Chapters 2 and 3)

2. Decomposing the DCMs per class improves their ability to measure data complexity
in imbalanced datasets.

(Chapters 2 and 3)

3. The gain observed in predictive performance after applying pre-processing tech-
niques is related to the reduction in data complexity.

(Chapters 3 and 4)

4. It is possible to recommend both pre-processing and algorithm-level techniques for
imbalanced datasets automatically.

(Chapter 5)

5. The decomposed DCMs are relevant characteristics to recommend techniques for
imbalanced datasets properly.

(Chapter 5)
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6. It is possible to estimate the decomposed DCMs reducing their computational cost.

(Chapter 6)

1.3 Thesis Organization

This thesis is organized as a collection of papers. Thus, chapters 2 to 6 are articles written
during the Ph.D. program. These chapters’ order was chosen in a cohesive and progressive
sequence, but they can be read in any order since they are self-contained. It is important to stress
that some chapters share similar background sections due to this document’s format. Chapter
7 presents the final remarks of this thesis. We describe below the following chapters with their
main contributions.

• Chapter 2 - “Data Complexity Measures for imbalanced Classification Tasks”

Using artificial datasets with controlled characteristics, we show that the DCMs do not
assess the difficulty of imbalanced datasets properly. We introduce our proposed decompo-
sition per class and show their effectiveness on those datasets.

• Chapter 3 - “Assessing the Data Complexity of Imbalanced Datasets”

We extended the experiments from Chapter 2, considering real datasets retrieved from
open access repositories. We show that the observations made on artificial datasets hold on
to the real ones. Moreover, we analyzed the effects of applying popular pre-processing
techniques for imbalanced datasets in the data complexity and their correlation with
predictive performance gain.

• Chapter 4 - “The Influence of Sampling on Imbalanced Data Classification”

This chapter shows how the decomposed DCMs change as we progressively increase the
sampling size of popular pre-processing techniques. We compared its overall tendency
with the tendency of the predictive performance of several ML algorithms.

• Chapter 5 - “Recommending Techniques for Imbalanced Datasets Using Meta-Learning
and Data Complexity Measures”

Applying MtL concepts, we implemented a recommendation system that suggests a set of
techniques depending on imbalanced datasets’ characteristics. We show that the system
outperforms a baseline and that the decomposed DCMs are the most relevant meta-features
to the system.

• Chapter 6 - “Simulating Complexity Measures on Imbalanced Datasets”

In this chapter, we estimate the decomposed DCMs using MtL. We show that our approach
reduces the computational cost of measuring them with a relatively small error rate.
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• Chapter 7 - “Conclusion”

We present the final remarks, summarizing the main contributions of this thesis, discussing
the limitations, and suggesting future works.
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Abstract

In imbalanced classification tasks, the training datasets may show class overlapping and
classes of low density. In these scenarios, the predictions for the minority class are impaired.
Although assessing the imbalance level of a training set is straightforward, it is hard to mea-
sure other aspects that may affect the predictive performance of classification algorithms in
imbalanced tasks. This paper presents a set of measures designed to understand the difficulty of
imbalanced classification tasks by regarding on each class individually. They are adapted from
popular data complexity measures for classification problems, which are shown to perform poorly
in imbalanced scenarios. Experiments on synthetic datasets with different levels of imbalance,
class overlapping and density of the classes show that the proposed adaptations can better explain
the difficulty of imbalanced classification tasks.
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2.1 Introduction

In classification tasks, a training dataset is regarded as imbalanced when there is a dispro-
portion between the number of examples of each class. A typical domain in which this inequality
is found is the prediction of frauds in credit card transactions (BRAUSE; LANGSDORF; HEPP,
1999). Most of these transactions are legitimate, with a very low proportion of fraudulent transac-
tions. Traditional Machine Learning (ML) classification algorithms tend to perform badly for the
minority class, which in turn is usually the class of most interest. For instance, in the example of
the credit card transactions, the predictions for the fraudulent transactions should be very precise,
since classifying fraudulent transactions as legitimate can have a high financial cost.

Although the problem of imbalanced classes in ML was pointed out many years ago, it
is still an open issue. In 1997, Kubat et al. discussed the difficulty found in some imbalanced
training datasets and proposed a method to remove examples from the majority class (KUBAT;
MATWIN et al., 1997). Later, many methods were proposed in the literature to deal with the
same problem by either preprocessing the training set (CHAWLA et al., 2002; HAN; WANG;
MAO, 2005; HE et al., 2008) or learning adapted models which are aware of and can deal with
class imbalance (SUN et al., 2007; VEROPOULOS et al., 1999). The state-of-art of the literature
on imbalanced classification problems helps data specialists mitigate some of the challenges,
but there is still a need to better understand the difficulties imposed in such sort of classification
problems (HAIXIANG et al., 2016).

Nonetheless, it is well known that an imbalanced dataset does not always impose prob-
lems on the minority class predictions. When the classes are linearly separable in the input
feature space, it is not difficult to induce a proper classification model, even for imbalanced data
(PRATI; BATISTA; MONARD, 2004). The problem arises when the classes overlap. In this
case, traditional classification algorithms tend to ignore the minority class examples and focus
on the majority class only. Therefore, it is worth investigating other aspects that may influence
the difficulty in imbalanced classification tasks.

Ho and Basu (2002) gathered and proposed measures that help to assess the complexity
of classification problems, such as class overlapping and density (HO; BASU, 2002). These
measures estimate the difficulty of a classification task through information from the training
dataset only. Some of the complexity measures assess the overlapping by the range of the features
values, others use neighborhood information to measure the classification difficulty and there are
also measures which assess the linearity of a classification task.

We show in a controlled set of experiments that the original complexity measures of Ho
and Basu (2002) do not properly estimate the classification difficulty when the training datasets
are imbalanced. For such, synthetic datasets with different levels of difficulty were generated.
They have different imbalance ratios, levels of overlapping, density values and dimensionalities.
The data complexity measures were adapted in order to take into account each class individually.
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Herewith, the difficulty of classifying each one of the classes, including the minority class, can
be better assessed. Indeed, the results reveal that the original data complexity measures evaluate
mostly the difficulty of the majority class. They also reveal that the adapted complexity measures
properly evaluate the difficulty of the classes individually.

This paper is divided into five sections. Section 2.2 discusses how the complexity
measures have been used in the literature related to imbalanced classification tasks. Section 2.3
describes the original complexity measures along with a description of how they are adapted
to estimate the difficulty of each class separately. Next, Section 2.4 presents the experimental
setup designed in this work to assess the difficulty of imbalanced classification tasks. The
experimental results are shown and discussed in Section 2.5. Section 2.6 concludes this paper
with contributions, limitations and future works.

2.2 Related Works

The complexity measures from Ho and Basu (2002) have been used in various analyses
of classification problems, including: supporting data pre-processing tasks, such as noise identifi-
cation (GARCIA; CARVALHO; LORENA, 2015); understanding the domains of competence of
different ML techniques (LUENGO; HERRERA, 2015); generating datasets spanning different
complexity levels (MACIÀ; BERNADÓ-MANSILLA, 2014).

Related with imbalanced data, Luengo et al. (2011) used the complexity measures to
predict whether a preprocessing technique can be successful or not (LUENGO et al., 2011).
They found intervals of values of some of the complexity measures in which the techniques
showed improved performance. Other authors also used the complexity measures to analyze
the suitability of using a specific technique in imbalanced datasets. Díez-Pastor et al. (2015)
used them to predict data complexity intervals for which some diversity-enhancing techniques
may improve the results of an ensemble method (DÍEZ-PASTOR et al., 2015). Fernándes et al.
(2015) used one complexity measure combined with other characteristics (such as imbalance)
in a multi-objective approach to select attributes and instances from a dataset (FERNÁNDEZ;
JESUS; HERRERA, 2015).

Anwar et al. (2014) proposed a new complexity measure for imbalanced datasets (AN-
WAR; JONES; GANESH, 2014). The definition of their complexity measure is similar to one
of the complexity measures from Ho and Basu (2002), but using more neighbors in a nearest
neighbor classifier. They also present a procedure to optimize the number of neighbors to be
regarded which can be quite costly. However, the main contribution of their work is to show that
the complexity measure values may be decomposed by class. They have also decomposed some
of the original complexity measures to estimate classification complexity by class. But their
work concluded that, despite these decompositions, these measures remain unable to properly
estimate the difficulty of imbalanced classification problems. Despite very correlated to our work,
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we understand that the work of Anwar et al. (2014) lacks a deeper analysis of the behavior of
complexity measures in imbalanced problems, which we address here.

With this paper, we intend to fill the previous gaps by: (i) adapting most of the original
complexity measures from Ho and Basu (2002) to assess the difficulty of each class individually;
(ii) designing artificial datasets with controlled characteristics which helps us to understand
better the effects of different aspects in the difficulty of imbalanced classification problems;
(iii) performing an extensive set of experiments to show how the original and adapted measures
behave in imbalanced classification problems of different characteristics. Our adaptations are
very simple and do not imply in additional computational costs in the calculation of the measures.
Experimentally, most of the adapted complexity measures are able to successfully estimate the
difficulty of imbalanced classification problems.

2.3 Data Complexity Measures and Adaptations
This section describes the original data complexity measures used in this paper and their

adaptations for estimating the difficulty of each class in a dataset. The description of the original
measures is based on the works (HO; BASU, 2002; LORENA; de Souto, 2015) and implemented
in a revised R package (GARCIA; LORENA, 2018). The measures were separated into three
main groups: feature overlapping, neighborhood-based and linear separability.

2.3.1 Feature overlapping measures

The feature overlapping measures assess the discrimination power of the input attributes.

F1: maximum Fisher’s discriminant ratio

F1 computes the Fisher’s discriminant ratio for each attribute, which is defined by:

f =
(µc1−µc2)

2

σ2
c1
+σ2

c2

, (2.1)

in which µc j and σc j are respectively the mean and the variance of the values of the feature
in class j. F1 outputs the maximum f among all input attributes. The higher the F1 value, the
simpler is the classification problem concerning feature separability. Since F1 relates two means
and variances, it was not possible to adapt it and obtain a similar information by class. Therefore,
F1 is maintained as originally proposed in the experiments. We opted to include F1 in the analysis
because its use is reported in many papers dealing with imbalanced datasets, e.g. (LUENGO et

al., 2011; FERNÁNDEZ; JESUS; HERRERA, 2015; DÍEZ-PASTOR et al., 2015).

F2: Volume of overlap region

F2 computes the volume of the overlapping region of the classes using the minimum
and maximum values of each input attribute per class. If the attribute ranges overlap in a certain
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region, this region is considered ambiguous for the attribute. Next, a product of the normalized
size of the ambiguous regions for all attributes is output. As an example, suppose an attribute
whose values for class 1 range between 0 and 1, and the values for class 2 range between 0.75
and 1.25. The overlapping region for this attribute has size 0.25. Taking the full range of values
for normalization, the final overlapping for this attribute is 0.25

1.25 = 0.2. F2 is null if at least one
of the attributes does not have any overlapping region and is equal to 1 when the classes are
completely overlapped for all attributes. However, in the original measure, a given volume of
overlapping may represent a low overlapping with respect to one class, whilst the overlapping is
high for another class. The proposed adaptation considers the impact of the overlapping volume
per class. The difference between the original F2 and the adaptation is the division of the size of
the ambiguous region of each attribute by the range of the class of interest, instead of the range
of all values of the attribute. Taking the previous example, F2 for class 1 would be 0.25

1 = 0.25
and F2 for class 2 would be 0.25

0.5 = 0.5.

F3: Feature efficiency

In F3, one feature is considered efficient depending on how much examples are not in an
ambiguous region. For each attribute, the number of examples out of the ambiguous region is
divided by the total number of examples. F3 outputs the maximum of such values among all the
input attributes, which corresponds to the best discriminative attribute. F3 ranges in the [0,1]
interval and higher values are expected for simpler datasets. Similar to F2, F3 has a bias towards
the majority class, since the minority class may be completely inside the ambiguous region and
F3 can still be close to 1. The adaptation of F3 considers one class at a time. The F3 per class
divides the number of examples from the class outside the ambiguous region by the number of
examples from the class only.

F4: Collective feature efficiency

F4 uses the main concept of F3 but instead of getting the maximum value from all at-
tributes, it combines their discrimination power. First, the most discriminative attribute according
to F3 is found; next, the examples correctly discriminated by that attribute are removed. The
previous steps are repeated until all examples are correctly discriminated or until all attributes
are removed. F4 is the proportion of examples discriminated at the end of the process. As in F3,
higher F4 values are obtained for simpler problems. Our adaptation of F4 computes the number
of examples correctly discriminated in each class divided by the number of examples from that
class.

2.3.2 Neighborhood measures

The neighborhood measures use the concept of Nearest Neighbors (NN) to assess
classification difficulty.
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N1: The fraction of points on the class boundary

N1 builds a minimum spanning tree (MST) that connects all the examples from a dataset
based on their distances, despite their classes. Next, it counts the number of examples that are
connected to at least one example from another class. Those examples are possibly borderline
and the fraction of their number over the total number of examples is the final N1 measure. N1 is
bounded between 0 and 1 and values closer to 0 represent a lower complexity. The adaptation
from this work consists in calculating the number of examples from the class of interest which
connects with another class divided by the number of examples from that class only.

N2: The ratio of average intra/inter class NN distance

N2 compares the intraclass and interclass dispersions of the classes. For each example, its
distance from the NN of the same class (intraclass) and its distance to the NN of a different class
(interclass) are computed. N2 is the ratio of the intraclass distances average and the interclass
distances average. Higher values are expected for problems of higher complexity. By taking the
averages of all examples, N2 values are biased towards the majority class. Our adaptation takes
the averages of the intra and inter class distances for examples of one class at a time. Therefore,
the N2 value for a specific class will take the ratio of two averages: the average of intraclass
distances between the examples from that class only; and the average of the interclass distances
for the examples from that class only.

N3: Leave-one-out error rate of the 1NN classifier

N3 gives the leave-one-out training error of a nearest-neighbor classifier, which is easy to
be calculated and is a good indicator of the separability of the classes. When a dataset is highly
imbalanced, N3 tends to be closer to the majority class error and it may become inadequate.
Therefore, our adaptation of N3 takes the NN training error per class.

N4: Nonlinearity of a 1-NN classifier

N4 uses a method which creates a new test set by interpolating two randomly selected
examples from the same class multiple times. Then an NN classifier using the training set is used
to predict the labels of the examples in the interpolated test set. N4 gives the error rate achieved
in this procedure. A value closer to one may indicate either that the classes are overlapped or
that the classes are not convex. Using the same criterion as in N3, N4 was adapted to take the
error rate per class.

T1: Fraction of maximum covering spheres

T1 tries to explain the training set with hyper-spheres. Suppose that every example in
the training set has a hypersphere with radius zero. If we gradually increase the radius of all
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hyperspheres some of them will touch a hypersphere from a different class. When that happens
both hyperspheres stop growing. The method stops when there is no more growing hypersphere.
The hyperspheres that are contained in another hypersphere are discarded. T1 is the ratio between
the number of remaining hyperspheres and the number of examples in the dataset. A number
closer to 0 indicates that there is no need for many hyperspheres to describe the training set
and a number closer to 1 indicates a higher complexity and that almost the same number of
hyperspheres as number of examples is needed to describe the training set. Consider a binary
training dataset highly imbalanced and completely overlapped. T1 may be low for this training
set since a few number of hyperspheres is needed to describe the data compared to the number
of examples. But we may notice that to describe the minority class, we need almost the same
number of minority examples as hyperspheres. Therefore, our adaptation of T1 consists of taking
the ratio between the hyperspheres needed to describe each class and the number of examples
from that class.

2.3.3 Linear Separability Measures

The linear separability measures whether the classes can be linearly separable in the
attribute space.

L1: The minimized sum of error distance of a linear classifier

In L1, one linear model (e.g. a linear SVM) is built using the training dataset and
calculating the distances of erroneous instances to the obtained hyperplane. L1 is the sum of
these distances. L1 is equal to 0 for linearly separable problems. In our adaptation, only the
distances of erroneous examples from each specific class are summed up.

L2: The training error of a linear classifier

L2 is the training error of a linear classifier. Higher values are expected for non-linear
problems. Our adaptation takes the error rate per class.

L3: Nonlinearity of the linear classifier

L3 is based on the same method of N4. A test set is interpolated and instead of an NN
classifier, L3 uses a linear classifier to predict the labels of the examples from the test set. Our
adaptation for L3 takes the error rate per class.

2.4 Experimental Setup

A set of experiments using synthetic datasets was designed to compare how the original
complexity measures and the adapted complexity measures behave in imbalanced tasks. All
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datasets are binary classification problems generated by multivariate normal distributions with
different levels of imbalance, class overlapping, dimensionality and density. The majority class
has a fixed size of 1000 examples and the size of the minority class was varied from a high
imbalance ratio to a balanced problem. To simulate class overlapping, the distances between the
centroids of the classes distributions varied as completely overlapped to completely separated
and the dimensionality was changed using different numbers of input attributes.

Regarding density, two different settings are tested: one in which both minority and
majority classes have the same density; and another in which the minority class examples occupy
the same hyper-volume as the examples from the majority class. To illustrate this, Figure 4a
shows an example in which the two classes have the same density and Figure 4b shows one
example in which the two classes occupy the same hyper-volume. Both figures are bidimensional
datasets in which one majority class of 1000 examples is represented by the green circles, one
minority class of 50 examples is represented by the blue triangles and the centroids of the classes
have a distance fixed in four. It is clear that in Figure 4a the examples from the minority class are
concentrated in a region, whilst in Figure 4b they are distributed more sparsely. Fixing the radius
of the majority class in two, all datasets in which the distance between the center of the classes
is four are linearly separable, including the sparse ones. But in the sparse datasets, the margin of
separation between the classes becomes narrower.

Figure 4 – Examples of synthetic datasets with a majority class size of 1000, minority class size of 50 and
distance between centroids of 4

(a) High Density in the Minority Class (b) Low Density in the Minority Class

Source: Barella et al. (2018).

To control the density level of the classes, a method is applied to make the samples
distribution within the input space as dense as desired. Equation 2.2 represents the density of
a class ci, where nci represents the number of examples in that class and hyperVolumeci gives
the hyper volume of the region those examples occupy. The idea is to control the distance of
the furthest example of a class from the class centroid and adjusting the distances of other
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examples based on this value. To achieve this objective we must consider Equation 2.3, which
represents the hypervolume, in which rci is the radius of the hypersphere which contains all
examples from class ci, d is the dimension of the input space (number of attributes) and α is a
multiplicative factor that varies according to d. For d equal 2, 3 and 5, α is respectively π , 4π

3

and 8π

15 . For instance, considering d = 2, Equation 2.3 resumes to πr2
ci

, which is the hypervolume
of an hypersphere in a bidimensional Euclidean space. The same reasoning applies to the other
dimensions.

densityci =
nci

hyperVolumeci

(2.2)

hyperVolumeci = αrd
ci

(2.3)

In order to make the minority class as dense as the majority class, we first need to find
the density of the majority class. Using Equations 2.2, 2.3 and since the number of majority class
examples as 1,000, we get the result shown in Equation 2.4. After calculating the density of the
majority class, we can isolate the radius of the minority class hyper sphere (rmin) by combining
Equations 2.2 and 2.3 and replacing densitymin by densityma j. Equation 2.5 represents the radius
found for the minority class in the case it is set as dense as the majority class. In this Equation,
nmin is the number of examples in the minority class.

densityma j =
1000
α2d (2.4)

rmin = 2 d

√
nmin

1000
(2.5)

The radius of the minority class can be either two for a sparse dataset or given by
Equation 2.5 for a dense distribution. Then, the factor k, which is the proportion used to adjust
the position of every example, can be calculated. k is defined by Equation 2.6, in which rnew is
the new desired radius and r is the original radius of the set of examples that should be adjusted.
Equation 2.7 calculates the new value of the i-th attribute of an example xc j from class c j, where
µ

c j
i is the mean value of the i-th attribute of all examples in class c j. After applying Equation 2.7

on all examples from the class and all their attributes, the class becomes as dense as desired.

k =
rnew

r
(2.6)

{xc j
i }new = k(xc j

i −µ
c j
i )+µ

c j
i (2.7)

For each scenario, 1,000 datasets are generated, giving a total of 180,000 different
datasets. The size of the minority class was varied as 10, 50, 100, 500 and 1000 (from a high
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imbalance ratio to a balanced problem). To simulate class overlapping, the distances between the
centroids of the classes distributions varied as 0 (completely overlapped), 0.5, 1, 1.5, 2 and 4
(completely separated). We varied the number of input attributes as 2, 3 and 5. Regarding density,
we considered the scenario in which the minority and majority classes have the same densities
and another where the minority class examples occupy the same hyper-volume as the examples
from the majority class. The original data complexity measures and the adapted measures were
applied to all datasets.

A test set for each training set was created using the same distribution as their original
counterparts. For each training example, 500 test examples are created, so that the proportions
of examples per class are kept the same as those of the training sets. Equation 2.7 was also
applied to the test sets using the k values obtained from the training sets. SVMs classifiers with
radial kernel are induced for all training datasets and tested on their corresponding test sets. The
R package (MEYER et al., 2017) was used in this induction, with default parameter values.
The radial kernel was employed because the generated datasets come from normal distribution.
The performance measures of total accuracy, accuracy per class and the geometric mean of the
accuracies per class were calculated for the test sets. The performance metrics recorded are used
as indicators of the difficulty of the classification problems. Therefore, the correlation between
the performance of the classifiers and the complexity measures is used to evaluate their ability in
estimating classification difficulty.

We used 100 times a 5 fold cross validation. We chose 5 folds because some of the
datasets have a low number of minority examples and using 10 folds would result in test sets
with 1 or 2 minority examples. For each training set, we calculated the complexity measures.
We also computed the performance measures accuracy, positive accuracy, negative accuracy and
gmean for the following classification algorithms: SVM (with C and gamma from 2−12 to 212);
Random Forest; KNN (with k from 1 to 50); and Naive Bayes.

2.5 Results and Discussion

The main reason for our proposed adaptations of the data complexity measures is that
their original definition poses a bias towards the majority class. We will show that this bias
affects their ability to properly assess the difficulty in imbalanced classification tasks, in which
the minority class is usually the class of interest. First, we show that the original data complexity
measures have a similar behavior as the measures capturing the difficulty of the majority class
only. Next, we show that the adapted measures properly assess the difficulty of imbalanced
tasks, while the original complexity measures do not. We also detail the behavior of some of
the complexity measures (highlighted in the previous analysis) by the level of class overlapping.
Finally, we summarize all the analysis by regarding on the behavior of N3, which is the adapted
complexity measure that showed a highlighted correlation to the difficulty of the imbalanced
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classification problems generated.

2.5.1 Correlation between the original and the adapted complexity
measures

Figure 5 shows the Pearson correlation between the values of the adapted and the original
data complexity measures. This analysis is performed by class, that is, the green bars show
the correlations obtained for the complexity recorded for the majority class only, whilst the
complexity for the minority class is shown by the blue bars. The x-axis represents each of the
complexity measures and the y-axis represents the correlation of the adapted complexity measure
to the corresponding original complexity measure.

Figure 5 – Pearson correlation between the adapted complexity measures and the original data complexity
measures

Source: Barella et al. (2018).

For all measures, it is possible to notice that the complexity of the majority class correlates
more to the values of the original complexity measures than the minority class complexity.
The results are particularly highlighted for the overlapping and neighborhood measures. This
demonstrates that the original complexity measures are biased towards the majority class. The
linearity measures for the majority class are less correlated to the original values than the others
mainly because of the fact that most of the datasets are highly overlapped. In these datasets,
the linear models cannot distinguish any minority class example and they are accurate for
all examples in the majority class. Taking only the datasets for which the distance between
the classes are equal or greater than one (with less overlapping), the correlation between the
original linearity complexity measures and the adapted counterparts to assess the majority class
complexity gets higher. They are 86%, 92% and 83% for L1, L2 and L3, respectively.
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2.5.2 Correlation between complexity measures and performance mea-
sures

In Figure 6a, we calculated the Pearson correlation between the original complexity
measures values and the performance measures of the SVM classifiers in order to assess the
potential of the complexity measures to estimate the classification difficulty posed by the synthetic
classification datasets generated. The values of each complexity measure were correlated with two
performance measures: accuracy (green bars) and the gmean (blue bars), which is a performance
measure more suited to evaluate imbalanced classification problems. The x-axis represents the
complexity measures and the y-axis shows the correlations. Figures 6b and 6c show similar
plots for the adapted complexity measures considering the minority class and the majority class,
respectively.

It is important to highlight that in Figure 6 some correlations are positive and others
are negative. This happens because while for some of the complexity measures higher values
indicate a more complex classification problem, for others an opposite relationship is verified.
But all measures are behaving as expected considering these aspects, so that for more complex
problems a low accuracy is verified.

The original data complexity measures are extremely correlated to the accuracy perfor-
mance metric. The problem is that accuracy is biased towards the majority class. For example,
taking a test set with 90% of the examples in the majority class, a model that classifies all
examples in this class will show an accuracy of 90%. Therefore, the standard accuracy measure
is inadequate in such scenarios.

The correlation values between the original complexity measures and the gmean perfor-
mance, on the other hand, decrease considerably. This indicates that the original data complexity
measures do not point properly the difficulty of imbalanced classification problems. Not only the
values are lower but the order of relevance of the complexity measures is inverted. That is, the
complexity measures correlate the most with the accuracy are the least correlated with gmean
and vice-versa. It is interesting to notice that the complexity measure F1 is the only one which is
more correlated to the gmean than to the accuracy. Differently of the other complexity measures
discussed, the mathematical definition of F1 cannot be directly associated with the accuracy bias,
which can explain this result.

Although the original data complexity measures show a low correlation with gmean, our
adaptation of the complexity measures for the minority class are highly correlated, as illustrated
in Figure 6b. They are also highly correlated with the minority class accuracy. It is interesting to
observe that the most relevant measures in Figure 6a are the same as those in Figure 6b, but with
a slightly different order.

In Figure 6c, the adapted complexity measures values are highly correlated with the
majority class accuracy, although the correlations are lower than those of the original complexity
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Figure 6 – Graph bars showing the Pearson correlation between the data complexity measures and per-
formance measures of the SVM classifiers. The measures are ordered by the correlation
magnitude.

(a) Correlation between the original data complexity
measures and performance measures accuracy and
gmean

(b) Correlation between the adapted data complexity
measures assessing the minority class and the per-
formance measures minority class accuracy and
gmean

(c) Correlation between the adapted data complexity
measures assessing the majority class and the per-
formance measures majority class accuracy and
gmean

Source: Barella et al. (2018).
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measures and of the adapted complexity measures for the minority class. We can also notice
that the difficulty of the majority class is not highly correlated to the gmean performance. The
correlations between the linear measures and the gmean are close to zero. This corroborates that
the linear models usually are perfectly accurate on the majority class, but fail for the minority
class examples.

Overall, the obtained results demonstrate that computing the complexity measures per
class is more suitable in imbalanced classification datasets than using the original complexity
measures.

2.5.3 Correlation between complexity measures and gmean by class
overlapping

Overlapping, imbalance, density and dimensionality were varied in the simulated datasets
generated. The correlations between the values of each of these characteristics and the gmean
performance are higher for the overlapping factor - there is a 70% of Pearson correlation between
the class overlapping (distances of the classes centroids) and gmean. The imbalance, density and
dimensionality factors have, respectively, 33%, 7% and 0% of Pearson correlation with gmean.

Focusing on the class overlapping aspect, Figure 7 shows the correlation between the top
three complexity measures (original and adapted) and the SVM gmean, detailed by the distance
between the centroids of the classes. The solid lines correspond to the top three adapted measures
for the minority class, namely L3, N1 and N3. The dashed lines correspond to the top three
original data complexity measures, which are F1, F3, and F4.

Figure 7 reveals that the adapted measures estimate classification difficulty properly
for all levels of class overlapping, except the last (less overlapping or distance four). In that
case, the classes are linearly separable and the class imbalance is not an issue, as previously
stated. The original data complexity measures F3 and F4 show their highest absolute value
of correlation when distances are between 0 and 1 (high overlapping). So when the datasets
have a high overlapping (distances between 0 and 1) and they have also a high imbalance rate,
the problem gets very hard and minority class gets ignored by the classifier. But the original
complexity measures still estimate those problems as simple, since the majority class is easy to
identify. When the datasets have a high overlapping and a low imbalance ratio (the classes are
more equilibrated), the majority class gets more difficult to be identified and the gmean values
tend to be higher too. In summary, when there is a high overlapping, the original complexity
measures tend to estimate erroneously the actual difficulty of the imbalanced classification
datasets. After distance one, the correlations of the complexity measures values with gmean
approach zero, indicating that they have lost the ability to assess the difficulty of imbalanced
tasks in those scenarios.

The measure F1 is an exception. It does not assess the difficulty of the majority class



2.5. Results and Discussion 43

Figure 7 – Pearson correlation between measures and gmean by distance between centroids.

Source: Barella et al. (2018).

neither the minority class. It is a relation between the distance of the classes and their sparseness.
When the classes are completely overlapped, F1 has a correlation close to zero with gmean.
Although there is no correlation, it does not mean that F1 is not properly assessing the difficulty
in those datasets. In those cases, F1 is mostly zero - showing that this measure describes those
tasks as extremely difficult. When the distance between the classes is 0.5, F1 is highly correlated
with gmean, showing that it is correctly evaluating the classification difficulty. After that distance,
the correlation gets lower as the distances are increased. Despite the proper difficulty assessment
ability F1 showed in most of the artificial datasets, its correlation with gmean is lower to that
of the adapted complexity measures when the distances are higher than 0.5 (medium to low
overlapping).

2.5.4 Behavior of N3

N3 was chosen as a representative to summarize the analysis performed so far. Figure 8
shows the behavior of this measure. The x-axis shows the gmean values, divided into intervals;
and the y-axis shows the mean values of N3 for each gmean interval. The original N3 measure
values are represented by green circles, the N3 values for the majority class are represented
by the orange squares and the N3 values for the minority class are represented by the purple
triangles. The original N3 measure and the N3 measure for the majority class behave similarly,
as occurred in Figure 5. The N3 measure for the minority class is extremely correlated with
gmean, while the original N3 complexity measure shows a low correlation, as in Figure 6.

It is interesting to detail the behavior of N3 by intervals of gmean. When the tasks are
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Figure 8 – Behavior of measure N3 according to the variability of gmean.

Source: Barella et al. (2018).

very difficult (gmean values between 0 and 0.4), there is no balanced dataset and the imbalanced
datasets have a high overlap - 95% of the datasets have distances between the centroids values in
the interval [0,1]. In those cases, the majority class is not difficult to predict and the minority
class is extremely difficult to predict, as the adapted complexity measures per class show.

In the interval of gmean between 0.4 and 0.6, 42% of the datasets are completely
balanced and completely overlapped (the distance is 0 between the classes centroids). Also, 40%
of the datasets are imbalanced, but with more than 10 examples in the minority class, and have
distances values of 0.5 and 1. Those scenarios are the most difficult ones for the majority class.
Our adaptation for the majority class is capturing this difficulty as shown by the rise of values in
the opposite sense of the adapted measure for the minority class. This behavior can exemplify
the inversed correlation for the original measures discussed in Figure 7. Also, the minority class
is less difficult compared to what happens for the datasets from the gmean interval of 0 to 0.4,
but they are still not simple either. Our adapted N3 assessing the minority class is estimating that
appropriately.

In the interval of gmean between 0.6 to 1, the classes get more distant from each other
until they are completely separated. The behavior of all N3 measures values properly shows that
the tasks are getting easier for both minority and majority class.

It is important to mention that we do not suggest using the difficulty of the minority
class to understand the whole dataset. Alternatively, it would be more interesting to assess the
complexity of all classes separately to better understand the difficulty of the classification task as
a whole.
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2.6 Conclusion and Future Works
Imbalanced classification tasks are still an open problem in ML. For that sort of classifi-

cation problems, the overlapping between the classes is one of the main issues, but calculating
the overlapping level is not straightforward. One way to assess information from the training
dataset is through the use of data complexity measures. We showed that the main data complexity
measures from the literature do not properly assess the difficulty in the case of imbalanced classi-
fication problems. We adapted them to evaluate the classes separately, giving some focus to the
minority class. Through an experiment with synthetic datasets, we showed that our adaptations
estimate correctly the classification difficulty in imbalanced scenarios. We also showed that the
original data complexity measures estimate mainly the difficulty of the majority class, which
may be erroneous especially for imbalanced tasks with a high class overlapping. Although the
difficulty of the minority class is usually the main challenge in imbalanced tasks, we still suggest
assessing the difficulty of both classes to understand the whole classification problem.

We only analyzed the behavior of the measures through artificial datasets and we will
investigate them in real datasets afterward. The datasets created are only binary classification
problems and some measures cannot be directly used in multi-class classification problems - such
as the linearity measures, which use linear SVM models. It is necessary to investigate approaches
to assess the difficulty of the classes in imbalanced multi-class classification problems too.

The adapted measures can also be useful in meta-learning as meta-features and to guide
the recommendation of pre-processing techniques, methodologies and classification algorithms.
We expect that the presented tools can help data specialists to mitigate the problem of data
imbalance in classification tasks.
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Abstract

Imbalanced datasets are an important challenge in supervised Machine Learning (ML).
According to the literature, class imbalance does not necessarily impose difficulties for ML
algorithms. Difficulties mainly arise from other characteristics, such as overlapping between
classes and complex decision boundaries. For binary classification tasks, calculating imbalance
is straightforward, e.g., the ratio between class sizes. However, measuring more relevant charac-
teristics, such as class overlapping, is not trivial. In the past years, complexity measures able to
assess more relevant dataset characteristics have been proposed. In this paper, we investigate
their effectiveness on real imbalanced datasets and how they are affected by applying different
data imbalance treatments (DIT). For such, we perform two data-driven experiments: (1) We
adapt the complexity measures to the context of imbalanced datasets. The experimental results
show that our proposed measures assess the difficulty of imbalanced problems better than the
original ones. We also compare the results with the state-of-art on data complexity measures
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for imbalanced datasets. (2) We analyze the behavior of complexity measures before and after
applying DITs. According to the results, the difference in data complexity, in general, correlates
to the predictive performance improvement obtained by applying DITs to the original datasets.

3.1 Introduction

In classification tasks, class imbalance is a disproportion of the number of instances
from each class in the dataset. Although several articles report poor predictive performances of
traditional Machine Learning (ML) algorithms when applied to these datasets (HE; GARCIA,
2008; FERNáNDEZ et al., 2018; CHAWLA et al., 2002; KUBAT; MATWIN et al., 1997;
BARUA et al., 2014; ABDI; HASHEMI, 2016), Batista, Prati and Monard showed that imbalance
is not a problem per se. In fact, it increases the adverse effect of other data intrinsic characteristics,
such as class overlapping. Data topology characteristics, such as overlapping, linear separability,
among others, are not easily measured. They have many more complex concepts and aggregate
more information about the data than a simple class imbalance ratio.

Topological characteristics can be estimated by using data complexity measures, which
were initially proposed by Ho and Basu and extended by many other authors (HO; BASU;
LAW, 2006; ORRIOLS-PUIG; MACIá; HO, 2010; LORENA; de Souto, 2015; LORENA et

al., 2019). Several studies investigate the use of these measures in classification tasks (MACIÀ;
BERNADÓ-MANSILLA, 2014; GARCIA; CARVALHO; LORENA, 2015; LUENGO; HER-
RERA, 2015; GARCIA et al., 2018), some of them for imbalanced datasets (LUENGO et al.,
2011; DÍEZ-PASTOR et al., 2015; FERNÁNDEZ; JESUS; HERRERA, 2015). Although their
use in imbalanced classification tasks seems straightforward, Barella et al. showed that for
artificial datasets, the complexity measures do not adequately represent the difficulties found in
imbalanced datasets. To deal with this deficiency, the authors proposed modifications to these
measures. The modifications consist of decomposing the data complexity for each class in the
dataset. We investigate, using real imbalanced datasets, the effectiveness of those measures and
the original ones. Additionally, we define them formally, make a package publicly available, and
compare them with the state-of-the-art complexity measures for imbalanced datasets.

Data Imbalance Treatments (DITs) have been proposed to balance the number of in-
stances between the dataset classes (FERNáNDEZ et al., 2018; CHAWLA et al., 2002; KUBAT;
MATWIN et al., 1997; BARUA et al., 2014; ABDI; HASHEMI, 2016). Furthermore, they can
modify other characteristics of the datasets, which can affect their predictive performance. In
this paper, we also investigate the relation between data complexity measures and predictive
performance before and after applying DITs. Figure 9 illustrates DITs modifying characteristics
of a dataset and affecting the predictive performance. In this figure, the solid box represents what
the literature usually discusses, which is the improvement of predictive performance based on
balancing the classes. In this study, we investigate the improvement of predictive performance



3.2. Background 49

based on the decrease of data complexity, represented by the dashed box in the figure.

Figure 9 – Diagram of DIT techniques modifying data characteristics and affecting predictive performance

DIT
Modifies

Imbalance

+
Other Data

Characteristics
(ex: overlapping

classes)

Affects Predictive
Performance

Data Complexity
Measures

Source: Barella et al. (2020).

We believe this paper will help to understand the difficulty that an imbalanced dataset
may pose to any classification algorithm and how DITs can deal with this problem. Thus, the
main contributions of this paper are:

1. Formally define the adapted complexity measures to imbalanced domains;

2. Show that the adapted data complexity measures assess the difficulty on real imbalanced
datasets;

3. Show that the adapted data complexity measures assess the difficulty of a dataset before
and after applying DITs.

This paper is organized in five sections. Section 3.2 describes the original complexity
measures, how they are adapted to estimate the difficulty of each individual class, and the state-
of-art on complexity measures for imbalanced datasets. Moreover, it presents the main DITs
considered in this paper, as well as related works. Next, Section 3.3 presents the experimental
designs for this study. We show and discuss the experimental results in Section 3.4. In Section
3.5, we stress the main contributions and limitations, and indicate future work directions.

3.2 Background

In this section, we describe the main data complexity measures and our proposed adapta-
tions of them for DIT. We also describe the main pre-processing techniques found in the literature
for imbalanced classification.
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3.2.1 Data Complexity Measures and Adaptations

The original data complexity measures were proposed by Ho and Basu and extended
by many studies (HO; BASU; LAW, 2006; ORRIOLS-PUIG; MACIá; HO, 2010; LORENA;
de Souto, 2015; LORENA et al., 2019). Orriols-Puig, Maciá and Ho implemented a package
called DCoL (Data Complexity Library) and proposed generalizations of complexity measures for
multiclass problems. Moreover, limitations remained and some were solved later by Lorena et al.,
who surveyed, standardized and implemented the cutting edge measures in a revised R package
called ECoL (Extended Complexity Library) (GARCIA; LORENA, 2018). In order to adapt them
for the imbalance problem, Barella et al. decomposed the measures to assess the complexity
of each class separately. This subsection describes the original data complexity measures used
in this paper, as defined by Lorena et al., and their adaptations for estimating the difficulty of
each class in an imbalanced dataset, proposed by Barella et al. and formalized here. The aim is
to decompose the measures per class, enabling us to assess classification difficulties from the
perspective of the minority class.

To describe the measures, we consider a training set T with n instances, in which each
instance is a pair (xi,yi), where xi is a vector of characteristics (which we will call features)
xi = (xi1, . . . ,xim), m is the number of features and yi ∈ {0,1}. Consider also a function c(T )

whose output is the value of complexity measure c applied in dataset T , with c(T ) ∈ [0,1].
According to Lorena et al., the higher the c(T ) value, the more complex the dataset. The
complexity measures are organized into three main groups: feature overlapping, neighborhood
information, and linear separability.

To illustrate the differences between the original and the adapted measures in balanced
and imbalanced datasets, we use two artificial datasets. They are shown in Figure 10, where the
classes were sampled from multivariate normal distributions. The class 0 represents the negative
class, and the class 1 represents the positive class. Both classes have 1000 instances in the
balanced datasets, and the class distribution in the imbalanced dataset is 1000 and 100 examples
for class 0 and class 1, respectively. We show the values of the data complexity measures for the
two datasets in addition to their detailed description.

3.2.1.1 Feature overlapping measures

The feature overlapping measures assess the discrimination power of the predictive
attributes. Most of them evaluate the features individually and the most discriminate feature
is selected, while others use a combination of the individual feature assessments. The feature
overlapping measures considered in this article are F1, F2, F3, and F4. The feature overlapping
complexity measures are detailed next, as well as a description of the proposed adaptation.

• F1: Maximum Fisher’s discriminant ratio.
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Figure 10 – Example datasets to illustrate the differences between the measures
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Source: Barella et al. (2020).

F1 computes the Fisher’s discriminant ratio for each attribute. The aim is to assess how
close the classes, for each of the features in the feature space. To do this, the measure
considers the mean and variance values of each feature in each class.

F1(T ) = argmaxm
j=1( f j) (3.1)

f j =
(µ f c0−µ f c1)

2

σ2
f c0

+σ2
f c1

(3.2)

F1 is defined by Equation 3.1 for a problem with two classes, where µ jcy and σ jcy are,
respectively, the mean and the variance of the values of the feature j in the objects from
class y. F1 outputs the maximum f among all features. This measure has an unbounded
limit interval, since the values are in the interval [0,∞[. For normalization matters, Lorena
et al. (2019) (LORENA et al., 2019) applied Equation 3.3, where M is the value of the
measure. The implementation in the package ECoL (GARCIA; LORENA, 2018) also uses
this value. Thus, we will also use it. This equation guarantees that the measured value is in
the interval ]0,1], whereby the more complex the dataset is, the higher the value.

Mnorm =
1

M+1
(3.3)

Since F1 relates two means and variances, it was not possible to adapt it and obtain similar
information per class. Therefore, F1 is maintained in the experiments as initially proposed.
We opted to include F1 in the analysis because its use is reported in previous papers
dealing with imbalanced datasets, e.g., (LUENGO et al., 2011; FERNÁNDEZ; JESUS;
HERRERA, 2015; DÍEZ-PASTOR et al., 2015).
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The F1 values for the datasets in Figure 10 are shown in Table 1. F1 assessed that the
imbalanced dataset is more difficult than the balanced one.

Table 1 – F1 values for the datasets in Figure 10

Dataset F1
Balanced Dataset 0.58
Imbalanced Dataset 0.82

• F2: Volume of overlap region

F2 computes the volume of class overlapping regions, using the minimum and maximum
values of each feature per class. It considers, for each feature, the range of possible values
in which instances belonging to both classes can be found. It is calculated using Equation
3.4,

F2(T ) =
l

∏
i=1

max{0,minmax( fi)−maxmin( fi)}
maxmax( fi)−minmin( fi)

(3.4)

where:

minmax( fi) = min(max( f c0
i ),max( f c1

i )) (3.5)

maxmin( fi) = max(min( f c0
i ),min( f c1

i )) (3.6)

maxmax( fi) = max(max( f c0
i ),max( f c1

i )) (3.7)

minmin( fi) = min(min( f c0
i ),min( f c1

i )) (3.8)

The values max( f c j
i ) and min( f c j

i ) are the maximum and minimum values of feature fi in
a class c j, respectively.

Thus, if the attribute ranges overlap in a region, this region is considered ambiguous
regarding the attribute. Next, a product of the normalized size of the ambiguous regions for
all attributes is output. As an example, suppose an attribute whose values for class 0 range
between 0 and 1, and values for class 1 range between 0.75 and 1.25. The overlapping
region for this attribute has size 0.25. Taking the full range of values for normalization, the
final overlapping for this attribute is 0.25

1.25 = 0.2. F2 is zero if at least one of the attributes
does not have any overlapping region and is equal to 1 when the classes are entirely
overlapped for all attributes.

Classes may have different overlapping regions, and a single measure value may not
represent the real complexity of the dataset, especially when the classes are imbalanced.
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Considering the previous example, although half of the class 1 range is inside the ambigu-
ous region, F2 evaluates that only 20% of the attribute’s range represents the ambiguous
region. F2 tends to underestimate the complexity of the dataset with the smallest range,
which can undermine the proper assessment of the minority class complexity. The pro-
posed adaptation considers the impact of the overlapping volume per class. The difference
between the original F2 and the adaptation is the division of the size of the ambiguous
region of each attribute by the range of value for the class of interest, instead of the range
of all values of the attribute. This is illustrated by Equation 3.9 for class c1. Considering
the previous example, F2 for class 0 would be 0.25

1 = 0.25 and F2 for class 1 would be
0.25
0.5 = 0.5.

F2c1(T ) =
l

∏
i=1

max(0,minmax( fi)−maxmin( fi))

max( f c1
i )−min( f c1

i )
(3.9)

The F2 values for the datasets in Figure 10 are shown in Table 2. The original F2 assessed
that the balanced and the imbalanced dataset with similar complexity. The decomposed
measures assessed that the imbalanced dataset is easier for the majority class and more
difficult for the minority class.

Table 2 – F2 values for the datasets in Figure 10

Dataset Original
F2

Negative class
F2

Positive class
F2

Balanced Dataset 0.33 0.52 0.56
Imbalanced Dataset 0.34 0.43 0.74

• F3: Feature efficiency

In F3, the number of instances inside the ambiguous region defines the inefficiency of
a feature. The greater the amount of instances inside the ambiguous region, the more
inefficient this feature is in separating the classes. Equation 3.10 illustrates how F3 is
calculated.

F3(T ) =
m

min
i=1

no( fi)

n
(3.10)

In this equation, no( fi) returns the number of instances in the overlapping region for fi,
whose value is defined by:

no( fi) =
n

∑
j=1

I(x ji > maxmin( fi)∧ x ji < minmax( fi)) (3.11)

where I is the indicator function that returns 1 if its argument is true and 0, otherwise.
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Similar to F2, F3 has a bias towards the majority class, since the whole minority class
can be inside the ambiguous region and F3 can still be close to 1. The adaptation of F3
considers one class at a time. The F3 per class divides the number of instances from that
class of interest inside the ambiguous region by the number of instances from the class
only. In our adaptation, Equations 3.10 and 3.11 are changed to Equations 3.12 and 3.13
respectively, where nc1 is the number of instances from class c1 and xc1

ji is the value of the
j-th attribute from the i-th instance of class c1.

F3c1(T ) =
m

min
i=1

nc1
o ( fi)

nc1

(3.12)

nc1
o ( fi) =

nc1

∑
j=1

I(xc1
ji > maxmin( fi)∧ xc1

ji < minmax( fi)) (3.13)

The F3 values for the datasets in Figure 10 are shown in Table 3. The original F3 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

Table 3 – F3 values for the datasets in Figure 10

Dataset Original
F3

Negative class
F3

Positive class
F3

Balanced Dataset 0.92 0.89 0.90
Imbalanced Dataset 0.83 0.81 0.94

• F4: Collective feature efficiency

F4 is similar to F3, but instead of using the minimum value from all attributes, it combines
their discrimination power. The proportion of instances remaining, after using all features
to discriminate them, is the outcome of F4. For this purpose, first, it finds the most
discriminative attribute according to

m
argmin

i=1

no( fi)
n ; next, it removes the instances correctly

discriminated by this attribute. It repeats the previous steps until all instances are correctly
discriminated or until all attributes are removed. F4 is equal to the proportion of instances
not discriminated at the end of the process. Equation 3.14 illustrates how F4 is calculated,
where Tl is the dataset of the l-th iteration (with l in interval [1,m]) and no( fmin(Tl))

measures the number of instances in the overlapping region of attribute fmin from dataset
Tl .

F4(T ) =
no( fmin(Tl))

n
(3.14)

Considering any i-th iteration of F4, the most discriminative attribute ( fmax) of dataset Ti

can be found using Equation 3.15, where no( f j) is computed according to Equation 3.11.
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The dataset of each iteration can be defined by Equations 3.16 and 3.17. Thus, the dataset
at the i-th iteration is a subset of the previous dataset (Ti−1), considering only the instances
inside the overlapping region of fmin.

fmin(Ti) = { f j|
m

min
j=1

(no( f j))}Ti (3.15)

T1 = T (3.16)

Ti = Ti−1−{x j|x ji < maxmin( fmin(Ti−1))∨ x ji > minmax( fmin(Ti−1))} (3.17)

Our adaptation of F4 computes the number of misclassified instances in each class divided
by the number of instances from that class, i.e., we adapted F4 to calculate the complexity
of a class c1. For such, Equations 3.14, 3.15 and 3.17 must be substituted, respectively, by
Equations 3.18, 3.19 and 3.20, where nc1

o is defined in Equation 3.13.

F4c1(T ) =
nc1

o ( f c1
min(Tl))

nc1

(3.18)

f c1
min(Ti) = { f j|

m
min
j=1

(nc1
o ( f j))}Ti (3.19)

Ti = Ti−1−{x j|x ji < maxmin( f c1
min(Ti−1))∨ x ji > minmax( f c1

min(Ti−1))} (3.20)

The F4 values for the datasets in Figure 10 are shown in Table 4. The original F4 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures assessed
that the imbalanced dataset is easier for the majority class and more difficult for the minority
class.

Table 4 – F4 values for the datasets in Figure 10

Dataset Original
F4

Negative class
F4

Positive class
F4

Balanced Dataset 0.87 0.89 0.90
Imbalanced Dataset 0.71 0.81 0.94

3.2.1.2 Neighborhood measures

The neighborhood measures use the concept of Nearest Neighbor (NN) to assess classifi-
cation difficulties. They use the distance between instances to assess, for example, the shape of
decision boundaries and class distributions. In this paper, we considered the measures N1, N2,
N3, N4, and T1. A description of the original data complexity measures and an explanation of
our adaptations are presented next.



56 Chapter 3. Assessing the Data Complexity of Imbalanced Datasets

• N1: Fraction of points on the class boundary

N1 builds a minimum spanning tree (MST) that connects all instances in a dataset based
on their pairwise distances, despite their classes. Next, it counts the number of instances
connected to at least one instance from another class. These instances are possibly bor-
derline and the ratio between their number and the total number of instances is the final
N1 measure. N1 is bounded between 0 and 1, the closer to 0, the lower the complexity.
Equation 3.21 expresses N1, where (xi,x j) represents a connection between instances xi

and x j and MST represents the set of all connections in the tree.

N1(T ) =
1
n

n

∑
i=1

I((xi,x j) ∈MST ∧ yi 6= y j) (3.21)

N1 has a bias towards the majority class since the use of the normalization factor n leads
to underestimation of the minority class complexity as the imbalance aggravates. Our
adaptation considers each class separately. For such, considering one class at a time, we
calculate the proportion of instances from that class that connects with an instance from a
different class. With this adaptation, we can measure how complex a class is considering
the concept of the N1. Equation 3.22 shows the adaptation, where xc1

i denotes an example
of class c1.

N1c1(T ) =
1

nc1

nc1

∑
i=1

I((xc1
i ,x j) ∈MST ∧ y j 6= c1) (3.22)

The N1 values for the datasets in Figure 10 are shown in Table 5. The original N1 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

Table 5 – N1 values for the datasets in Figure 10

Dataset Original
N1

Negative class
N1

Positive class
N1

Balanced Dataset 0.25 0.26 0.24
Imbalanced Dataset 0.13 0.08 0.64

• N2: Ratio of average intra/inter class NN distance

N2 compares the intraclass and interclass dispersions of the classes. For each instance, its
distance to the NN of the same class (intraclass) and its distance to the NN of a different
class (interclass) are computed. N2 is the ratio of the intraclass distance average and
the interclass distance average. Higher values represent problems of higher complexity.
Equation 3.23 shows how N2 is calculated. In this equation, d(xi,x j) is the distance
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function between xi and x j, NN(xi) ∈ {T |y = yi} is the nearest neighbor of xi from the
same class and NN(xi) ∈ {T |y 6= yi} is the nearest neighbor of xi from a different class.

N2(T ) =
∑

n
i=1 d(xi,NN(xi) ∈ {T |y = yi})

∑
n
i=1 d(xi,NN(xi) ∈ {T |y 6= yi})

(3.23)

By taking the averages of all instances, N2 values are biased towards the majority class.
Our adaptation takes the averages for one class at a time. Therefore, the N2 value for
a specific class, for example a class 1, will be the ratio of two averages: the average of
intraclass distances for class 1 (i.e., the distance between each instance from class 1 and
its NN from also class 1) and the average of the interclass distances for class 1 (i.e., the
distance between each instance of class 1 with its NN from a different class). Equation
3.24 shows the modified N2, where xc1

i denotes an example of class c1.

N2c1(T ) =
∑

nc1
i=1 d(xc1

i ,NN(xc1
i ) ∈ {T |y = c1})

∑
nc1
i=1 d(xc1

i ,NN(xc1
i ) ∈ {T |y 6= c1})

(3.24)

The N2 values for the datasets in Figure 10 are shown in Table 6. The original N2 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

Table 6 – N2 values for the datasets in Figure 10

Dataset Original
N2

Negative class
N2

Positive class
N2

Balanced Dataset 0.18 0.18 0.19
Imbalanced Dataset 0.13 0.11 0.44

• N3: Leave-one-out error rate of the NN classifier

N3 is the ratio between the number of examples whose NN are from a different class and
the total number of examples from T . It is the same concept of the leave-one-out error of
a NN classifier, which is easy to calculate and is a good indicator of the separability of
classes. The following equation expresses how N3 is defined:

N3(T ) =
∑

n
i=1 I(NN(xi) 6= yi)

n
(3.25)

When a dataset is highly imbalanced, N3 tends to be closer to the majority class error,
which can be inadequate. To overcome this problem, we adapted N3 to take into account
the error per class, i.e., the ratio between the number of examples from the class of interest
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whose NN are from a different class and the number of examples from that class. Equation
3.26 represents our adaptation in which c1 represents the class of interest.

N3c1(T ) =
∑

nc1
i=1 I(NN(xc1

i ) 6= c1)

nc1

(3.26)

The N3 values for the datasets in Figure 10 are shown in Table 7. The original N3 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

Table 7 – N3 values for the datasets in Figure 10

Dataset Original
N3

Negative class
N3

Positive class
N3

Balanced Dataset 0.17 0.18 0.17
Imbalanced Dataset 0.10 0.05 0.52

• N4: Nonlinearity of a 1-NN classifier

N4 uses a method that creates a new test set by interpolating randomly selected instances
from the same class. Next, an NN classifier uses training set T to predict the labels of the
instances in the interpolated test set. N4 returns the error rate obtained. A value closer
to 1 may indicate either overlapped classes or that the classes do not form convex sets.
Equation 3.27 shows how to calculate F4, where l is the number of interpolated instances,
x′i is an interpolated instance, NNT(x′i) is the NN from T to x′i and y′i is the class of x′i.

N4(T ) =
1
l

l

∑
i=1

I(NNT(x′i) 6= y′i) (3.27)

Using the same criterion as in N3, N4 was adapted to return the error rate per class. Thus,
an NN classifier using the dataset T labels each interpolated instance x′i from the class of
interest c1. The error rate is used as a measure. Considering a c1 as the class of interest,
Equation 3.28 represents our adaptation for F4. In this adaptation, lc1 is the number of
interpolated instances from class c1 and xc1

′

i is an interpolated example from class c1.

N4c1(T ) =
1
lc1

lc1

∑
i=1

I(NNT(xc1
′

i ) 6= c1) (3.28)

The N4 values for the datasets in Figure 10 are shown in Table 8. The original N4 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.
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Table 8 – N4 values for the datasets in Figure 10

Dataset Original
N4

Negative class
N4

Positive class
N4

Balanced Dataset 0.13 0.13 0.13
Imbalanced Dataset 0.06 0.03 0.42

• T1: Fraction of maximum covering spheres

T1 looks for an interpretation of a training set using hyper-spheres. To explain how it works,
suppose that every instance in the training set has a hypersphere with radius zero. If we
gradually increase the radius of all hyperspheres, some of them will touch a hypersphere
from a different class. When this occurs, both hyperspheres stop expanding. The method
finishes when there is no more expanding hypersphere, discarding the hyperspheres
contained in another hypersphere. T1 is the ratio between the number of remaining
hyperspheres and the number of instances in the dataset. A number closer to 0 indicates
that there is no need for many hyperspheres to describe the training set. A number closer to
1 indicates a higher complexity and that as many hyperspheres as number of instances are
needed to describe the training set. Equation 3.29 represents T1, where Hyperspheres(T )

calculates the number of hyperspheres needed to cover the dataset.

T 1(T ) =
Hyperspheres(T )

n
(3.29)

Consider a binary training set entirely overlapped and highly imbalanced, T1 may be
low for this training set, since a small number of hyperspheres is needed to describe the
data compared to the number of instances. However, to describe the minority class we
need almost the same number of minority class instances as hyperspheres. Therefore, our
adaptation of T1 takes the ratio between the hyperspheres necessary to describe each class
and the number of instances in the class. Equation 3.30 substitutes Equation 3.29 in our
definition, when Hyperspheres(T,c1) calculates the number of hyperspheres needed to
cover the examples of class c1.

T 1c1(T ) =
Hyperspheres(T,c1)

nc1

(3.30)

The T1 values for the datasets in Figure 10 are shown in Table 9. The original T1 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.
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Table 9 – T1 values for the datasets in Figure 10

Dataset Original
T1

Negative class
T1

Positive class
T1

Balanced Dataset 0.26 0.27 0.26
Imbalanced Dataset 0.13 0.08 0.64

3.2.1.3 Linear Separability Measures

These measures assess whether the classes can be linearly separable in the attribute space.
They assume that a classification problem solved with a hyperplane is simpler than another with
a non-linear boundary. The measures from this category considered in this article are L1, L2,
and L3.

To build the linear classifier for the complexity measures, Ho and Basu (2002) (HO;
BASU, 2002) suggest solving the optimization problem proposed by Smith (1968) (SMITH,
1968). Recent studies propose the using a Support Vector Machine (SVM) with a linear kernel
(ORRIOLS-PUIG; MACIá; HO, 2010; LORENA et al., 2019). SVM obtains the hyperplane by
solving the following optimization problem:

Minimize
w,b,ε

1
2
‖w‖2 +C

( n

∑
i=1

εi

)
(3.31)

Sub ject to :

{
yi(w ·xi +b)≥ 1− εi,

εi ≥ 0, i = 1, . . . ,n
(3.32)

where C is the trade-off between the margin maximization, achieved by minimizing the
norm of w, and the minimization of the training errors, modeled by ε . The hyperplane is given
by w ·x+b = 0, where w is a weight vector and b is an offset value. All the linearity measures
described in this article will adopt this notation. Next, we describe the measures investigated in
this study.

• L1: Minimized sum of error distance of a linear classifier

L1 uses a linear model (e.g., a linear SVM) induced by a training set and the distances
between misclassified instances and a hyperplane representing the model. L1 returns the
average of these distances, which is equal to 0 for linearly separable problems.

Considering the SVM hyperplane, L1 can be calculated using all εi, as shown in Equation
3.33. We normalize L1 to the interval [0,1], whereby the larger the value, the more complex
the dataset, using 1− 1

L1+1 .

L1(T ) =
1
n

n

∑
i=1

εi|h(xi) 6= yi (3.33)
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where h(xi) represents the SVM prediction for the i-th training example.

As L1 has a bias towards the majority class, we adapt it so that only the distances of
misclassified instances from each specific class are summed up, as shown in Equation
3.34:

L1c1(T ) =
1

nc1

nc1

∑
i=1

ε
c1
i |h(xi) 6= c1 (3.34)

The L1 values for the datasets in Figure 10 are shown in Table 10. The original L1 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

Table 10 – L1 values for the datasets in Figure 10

Dataset Original
L1

Negative class
L1

Positive class
L1

Balanced Dataset 0.08 0.08 0.09
Imbalanced Dataset 0.05 0.00 0.33

• L2: Training error of a linear classifier

L2 is the training error of a linear classifier. For its calculation, we induce a linear classifier
from the training set and use its classification error rate. The higher the values the less
linear is the classification boundary. Equation 3.35 shows how L2 is calculated. In this
equation, h(xi) is the predicted class for the instance xi.

L2(T ) =
∑

n
i=1 I(h(xi) 6= yi)

n
(3.35)

Our adaptation returns the error rate per class, using Equation 3.36:

L2c1(T ) =
∑

nc1
i=1 I(h(xc1

i ) 6= c1)

nc1

(3.36)

The L2 values for the datasets in Figure 10 are shown in Table 11. The original L2 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

• L3: Nonlinearity of the linear classifier

Similar to N4, L3 interpolates a test set and, instead of a KNN classifier, uses a linear
classifier to classify instances from the test set. Equation 3.37 shows how L3 is calculated.
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Table 11 – L2 values for the datasets in Figure 10

Dataset Original
L2

Negative class
L2

Positive class
L2

Balanced Dataset 0.11 0.11 0.12
Imbalanced Dataset 0.05 0.01 0.44

In this equation, hT(x′i) is the prediction of the linear model induced using training set T

for the interpolated instance x′i.

L3(T ) =
1
l

l

∑
i=1

I(hT(x′i) 6= y′i) (3.37)

Our adaptation returns the error rate per class, using Equation 3.38:

L3c1(T ) =
1
lc1

lc1

∑
i=1

I(hT(xc1
′

i ) 6= c1) (3.38)

The L3 values for the datasets in Figure 10 are shown in Table 12. The original L3 assessed
that the imbalanced dataset is easier than the balanced one. The decomposed measures
assessed that the imbalanced dataset is easier for the majority class and more difficult for
the minority class.

Table 12 – L3 values for the datasets in Figure 10

Dataset Original
L3

Negative class
L3

Positive class
L3

Balanced Dataset 0.08 0.06 0.07
Imbalanced Dataset 0.04 0.00 0.46

3.2.1.4 Other Complexity Measures for Imbalanced Datasets

Recently, four other data complexity measures were proposed specifically for imbalanced
datasets (ANWAR; JONES; GANESH, 2014; SINGH; GOSAIN; SAHA, 2020; LU; CHEUNG;
TANG, 2019). They are CM, wCM, dwCM, and BI3. All of them use a kNN classifier in their
calculation. In the experimental analysis, we compare them with our adaptations on the original
data complexity measures. Next, we describe these four measures.

• CM: Complexity measure for imbalanced datasets

CM considers the k nearest neighbors of each minority class instance (ANWAR; JONES;
GANESH, 2014). If the majority of the k nearest neighbors does not belong to the minority
class, this instance is considered difficult. CM is the percentage of difficult minority class
instances. Equation 3.39 shows how CM is calculated, considering c1 as the minority class,
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k as a parameter defined by the user, and NNj(xc1
i ) as the j-th nearest neighbor of instance

xc1
i .

CM(T,k) =
1

nc1

nci

∑
i=1

I

(
∑

k
j=1 I(NNj(xc1

i ) 6= c1)

k
> 0.5

)
(3.39)

The CM values for the datasets in Figure 10 are shown in Table 13. We used the CM for
the whole dataset and a k optimization defined by Anwar, Jones and Ganesh. The CM for
the whole dataset assessed that the imbalanced dataset is easier than the balanced one. The
decomposed measures assessed that the imbalanced dataset is easier for the majority class
and more difficult for the minority class.

Table 13 – CM values for the datasets in Figure 10

Dataset Dataset
CM

Negative class
CM

Positive class
CM

Balanced Dataset 0.14 0.13 0.15
Imbalanced Dataset 0.07 0.03 0.49

• wCM: Weighted complexity metric

wCM extends CM using a distance weighted kNN classifier instead of a kNN (SINGH;
GOSAIN; SAHA, 2020). On this measure, each neighbor j of each instance i from the
minority class has a weight defined by their distance. The weights are normalized using the
distances of the closest neighbor and the farthest neighbor. The calculation of Wi j, which
is the weight of the j-th neighbor of the i-th minority instance is defined by Equation 3.40.
wCM then uses the weights on its calculation, as defined by Equation 3.41.

Wi j =


d(xi,NNk(xi))−d(xi,NNj(xi))

d(xi,NNk(xi))−d(xi,NN1(xi))
, if d(xi,NNk(xi)) 6= d(xi,NN1(xi))

1, if d(xi,NNk(xi)) = d(xi,NN1(xi))

(3.40)

wCM(T,k) =
1

nc1

nci

∑
i=1

I

(
∑

k
j=1Wi jI(NNj(xc1

i ) 6= c1)

∑
k
j=1Wi j

> 0.5

)
(3.41)

The wCM values for the datasets in Figure 10 are shown in Table 14. We used the wCM
for the whole dataset and k = 11 as suggested in Singh, Gosain and Saha. The CM for the
whole dataset assessed that the imbalanced dataset is easier than the balanced one. The
decomposed measures assessed that the imbalanced dataset is easier for the majority class
and more difficult for the minority class.

• dwCM: Dual weighted complexity metric

According to the authors, wCM may not be robust enough depending on the value of k,
and therefore they also propose a dual weighted complexity metric, the dwCM (SINGH;
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Table 14 – wCM values for the datasets in Figure 10

Dataset Dataset
wCM

Negative class
wCM

Positive class
wCM

Balanced Dataset 0.13 0.12 0.14
Imbalanced Dataset 0.06 0.02 0.5

GOSAIN; SAHA, 2020). The difference between wCM and dwCM are the weights. In
dwCM, the weights are calculated according to the Equation 3.42.

Wi j =


d(xi,NNk(xi))−d(xi,NNj(xi))

d(xi,NNk(xi))−d(xi,NN1(xi))
× d(xi,NNk(xi))+d(xi,NN1(xi))

d(xi,NNk(xi))+d(xi,NNj(xi))
,

if d(xi,NNk(xi)) 6= d(xi,NN1(xi))

1, if d(xi,NNk(xi)) = d(xi,NN1(xi))

(3.42)

The dwCM values for the datasets in Figure 10 are shown in Table 15. We used the dwCM
for the whole dataset and k = 11 as suggested in Singh, Gosain and Saha. The CM for the
whole dataset assessed that the imbalanced dataset is easier than the balanced one. The
decomposed measures assessed that the imbalanced dataset is easier for the majority class
and more difficult for the minority class.

Table 15 – wCM values for the datasets in Figure 10

Dataset Dataset
dwCM

Negative class
dwCM

Positive class
dwCM

Balanced Dataset 0.14 0.12 0.15
Imbalanced Dataset 0.06 0.02 0.48

• BI3: Bayes imbalance impact index

Inspired by the Bayes optimal classifier, Lu, Cheung and Tang proposes a measure called
Bayes Imbalance Impact Index (BI3). It is calculated according to Equation 3.43, where

fn(xi,k) =
∑

k
j=1 I(NN j(xi)6=c1)

k , fp(xi,k) =
∑

k
j=1 I(NN j(xi)=c1)

k , and f ′p(xi,k) =
nc0
nc1
× fp(xi,k).

BI3(T,k) =
1

nc1

nci

∑
i=1

f ′p(xi,k)
fn(xi,k)+ f ′p(xi,k)

−
fp(xi,k)

fn(xi,k)+ fp(xi,k)
(3.43)

The BI3 values for the datasets in Figure 10 are shown in Table 16. We used k = 5 as
suggested by Lu, Cheung and Tang. BI3 assessed that the imbalanced dataset is more
difficult than the balanced one.

All four measures described above are parameter dependent. The user must set the
parameter k, and its choice may change the outcome of the measure. For example, Singh, Gosain
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Table 16 – BI3 values for the datasets in Figure 10

Dataset BI3

Balanced Dataset 0.00
Imbalanced Dataset 0.29

and Saha reported that CM and wCM may be sensitive to the parameter choice. CM proposes
a strategy to choose k. The other three fix a value for the parameter. BI3 presents a strategy of
flexible k to avoid 0 values on its calculation. They also do not compare their results with N3 -
which has a similar concept in terms of assessing the data complexity. In this paper, we evaluate
the related work aforementioned not only with N3, but all our proposed adaptations on the data
complexity measures.

In this work, we consider only these data complexity measures because they are the most
used, studied and have different biases. We also consider measures proposed specifically for
imbalanced datasets. Nevertheless, there are other complexity measures that were not described
(KOLACZYK, 2009; SMITH; MARTINEZ; GIRAUD-CARRIER, 2014). For example, measures
extracted from a structural representation of the dataset using graphs, which take into account
the relationship between instances (KOLACZYK, 2009). In Smith, Martinez and Giraud-Carrier,
a subset of measures that extract instance hardness is proposed, i.e. considering an instance as
hard if it is misclassified by a diverse set of simple classification algorithms.

3.2.2 Pre-processing techniques for imbalanced classification tasks

There are two main approaches to deal with imbalanced data classification tasks: (1)
pre-processing the data to make it more balanced (CHAWLA et al., 2002; HAN; WANG; MAO,
2005; HE et al., 2008; JO; JAPKOWICZ, 2004; KUBAT; MATWIN et al., 1997); (2) developing
classification algorithms which are more robust to imbalanced data (GONZALEZ-ABRIL et al.,
2014; CIESLAK et al., 2012; CANO; ZAFRA; VENTURA, 2013; DIAMANTINI; POTENA,
2009). Pre-processing techniques are usually independent from classification algorithms. How-
ever, they may modify the original data distribution, removing important instances or adding
noise (HE; GARCIA, 2008). Adapted classification algorithms reduce Data Mining pipelines,
but do not improve data quality. In this paper, we focus on the former, which is more often
adopted.

Pre-processing techniques are used based on data undersampling and/or oversampling
(FERNáNDEZ et al., 2018). To balance the data, undersampling techniques remove instances
from the majority class and oversampling techniques insert instances in the minority class
(FERNáNDEZ et al., 2018). Both undersampling and oversampling can occur randomly or based
on some criteria. Next, we discuss some of the main pre-processing strategies for balancing
datasets in ML.
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3.2.2.1 Random sampling

Random undersampling (RU) removes instances from the majority class at random until
obtaining a data distribution considered balanced (HE; GARCIA, 2008). Random oversampling
(RO) replicates instances from the minority class at random until obtaining a data distribution
considered balanced (HE; GARCIA, 2008). In the literature, they are usually used until classes
are equally represented in the number of instances.

3.2.2.2 Synthetic minority oversampling techniques

SMOTE (Synthetic Minority Oversampling Technique) (CHAWLA et al., 2002) is an
oversampling technique that creates artificial data by interpolation, as follows. At each iteration,
SMOTE selects at random an instance x from the minority class. Next, it uses KNN to find the
k closest instances to x in the minority class. It selects one of the neighbors z at random and
creates a new instance that is a combination of x and z. The combination is an interpolation that
randomly creates any possible point between x and z. This step is repeated until a distribution of
instances considered balanced is obtained.

BorderlineSMOTE is a version of SMOTE that searches for minority class instances
close to decision boundaries to interpolate (HAN; WANG; MAO, 2005). Instead of selecting
minority class instances from all training sets, it selects minority class instances close to the
decision boundary. The procedure that BorderlineSMOTE uses to select them is: (1) find the k

NN for a minority class instance x; (2) count the number Nma j of neighbors that belongs to the
majority class; (3) if k

2 ≤ Nma j < k then x is put in a set called DANGER; (4) repeat the steps for
all minority class instances. Afterwards SMOTE is run to balance the dataset but it selects only
instances from the DANGER subset.

ADASYN, also based on SMOTE, addresses the number of instances to be interpolated
by each minority class instance (HE et al., 2008). For such, it follows three steps: (1) it defines
G, which indicates how many instances should be interpolated for the entire minority class; (2)
for each instance in the minority class, it calculates the percentage of majority class instances in
the k nearest neighbors; (3) it normalizes the set of all percentages (Γi, where i is the minority
class instance), so that ∑Γi = 1; finally, Γi×G gives the number of instances to be interpolated
using SMOTE for each minority class instance i.

3.2.2.3 Cluster based oversampling

CBO (Cluster-Based Oversampling) (JO; JAPKOWICZ, 2004) is an oversampling tech-
nique that takes into account both inter and intraclass imbalance. Differently from the inter
and intraclass distance defined in Section 3.2.1, inter and intraclass imbalance considers the
disproportion between classes and inside a class, respectively. Interclass imbalance is the con-
cept commonly used to describe a disproportion between classes in number of instances. The
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intraclass imbalance describes the disproportion inside a class, i.e when the subconcepts of the
same class have a disproportion between them.

For such, CBO first applies, separately, a clustering algorithm to the instances from the
majority class and to the instances from the minority class, generating two sets of clusters - one
for each class. Next, CBO oversamples all clusters belonging to the majority class, except the
largest cluster. In the end, each cluster of the majority class should have the same number of
instances as the largest cluster. Finally, oversampling is applied to all clusters belonging to the
minority class, making (1) the number of instances in the minority class equal to the number
of instances in the majority class after oversampling, and (2) each cluster in the minority class
equally balanced.

3.2.2.4 One-sided selection

OSS (One-sided Selection) (KUBAT; MATWIN et al., 1997) is an undersampling tech-
nique that keeps only the most representative instances of the majority class. For such, OSS

initially chooses one instance x of the majority class at random. Next, using the instances of the
minority class and x as training data, OSS applies the k-Nearest Neighbors (KNN) algorithm
with k = 1 to classify the remaining instances of the majority class. The correctly classified
instances are excluded from the majority class, as they are considered redundant. Thus, after the
undersampling, the majority class will have only the instances that were incorrectly classified
by k−NN and x. Finally, OSS uses a data cleaning technique to remove borderline and noisy
instances, originally, Tomek Links (TOMEK, 1976).

All techniques modify the values of the data complexity measures described in Section
3.2.1. For example, SMOTE modifies the neighborhood measures by generating new instances
near existing ones. More specifically, the N3 measure may be reduced by generating samples
near overlapping decision borders; and OSS may modify overlapping measures, such as F2,
when it reduces the range of the values considered by the measures.

In the same way that, according to their bias, pre-processing techniques modify the
complexity measures, these techniques can artificially modify the complexity measure values.
For example, since N3 is based on NN, the duplication of instances in the training set by RO
decreases the N3 value. In an extreme case, when all minority class instances are duplicated, the
N3 value for this class would become 0, but the predictive performance of a classifier using the
new dataset would not improve.

New pre-processing techniques for imbalanced classification have been recently pro-
posed, including other SMOTE adaptations (BARUA et al., 2014; ABDI; HASHEMI, 2016),
undersampling based on clustering (NG et al., 2015), and sampling based on evolutionary
algorithms (YU; NI; ZHAO, 2013). According to Barua et al., SMOTE adaptations favored
noisy instances. To overcome this problem, the authors proposed a new approach to select
minority class instances that discard those with no minority neighbor. This SMOTE adaptation,
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called MWMOTE (Majority Weighted Minority Oversampling Technique), weights the minor-
ity class instances and generates new instances within a minority cluster. MDO (Mahalanobis
Distance-based Over-sampling technique) (ABDI; HASHEMI, 2016), another SMOTE adap-
tation, generates synthetic minority class instances that have the same Mahalanobis distance
to the class mean as other existing minority class instances. In this article, we use the standard
pre-processing techniques described in Section 3.2.2 because they are the most used and studied.

Data complexity measures have also been used to tackle the imbalance problem. Luengo
et al. used complexity measures to predict whether a DIT technique would be useful. They
found intervals of values for some complexity measures in which the techniques were useful.
Complexity measures have also been used to analyze the suitability of using a specific DIT
technique. Díez-Pastor et al. used complexity measures to predict data complexity intervals
in which some diversity-enhancing techniques may improve the results of an ensemble of
classifiers. Fernández, Jesus and Herrera used one complexity measure combined with other
characteristics (such as imbalance) in a multi-objective approach to select attributes and instances
from an imbalanced dataset. Fernandes and Carvalho adapted the N1 measure to the context of
imbalanced multi-class classification and used it in a multi-objective approach as undersampling.

To the best of our knowledge, no work in the literature has analyzed the data complexity
measures regarding the imbalance problem on real datasets by decomposing the original measures
per class. All the works previously mentioned use the original data complexity measures. Next,
we show experimentally that the traditional complexity measures do not capture complexity in
imbalanced datasets properly. Therefore, the contributions of the aforementioned studies can be
improved by using our adaptations.

3.3 Experimental Settings

The contributions of this study are guided by the following research questions: Are the
original data complexity measures suitable for imbalanced datasets? Does a decomposition by
class improve their performance on imbalanced datasets? Is there a correlation between the
difference in data complexity and the difference in predictive performance after applying DITs?

To answer these questions, we performed an extensive empirical analysis, using 203
datasets, which were randomly divided into two groups. We use the first group of datasets to
evaluate the performance of the data complexity measures on assessing imbalanced datasets.
From these results, we select the most relevant complexity measures for the studied cases. Next,
we use the selected measures to analyze the complexity after applying DITs. We collected the
datasets from OpenML (VANSCHOREN et al., 2013) and made them available, together with the
experiment results1. We also implemented a package for the adapted data complexity measures,

1 <https://github.com/victorhb/IS2020_results>

https://github.com/victorhb/IS2020_results


3.3. Experimental Settings 69

called ImbCoL 2.

3.3.1 Data Complexity Measures Experiments

In these experiments, we used a group of 102 datasets to investigate whether the original
data complexity measures can assess how difficult an imbalanced classification dataset is. The
predictive performance of a classification model was used to estimate the difficulty of a dataset
using a grid search approach. Table 17 shows a summary of the 102 datasets used in this
experiment. Minimum, maximum and mean values for the number of instances, number of
features and percentage of the minority class are shown. For more details, please see Table 24 in
the Appendices or the GitHub link3. 33 out of the 102 datasets have less than 25% of minority
class instances. We call them the high imbalanced datasets. The remaining 69 ones are called the
low imbalanced datasets.

Table 17 – Summary of the 102 datasets used on the experiment to evaluate the data complexity measures.

Dataset
Characteristic

Min
Value

Max
Value

Mean
Value

Number of Instances 36 2,534 486
Number of Features 3 95 16
% Minority Class 2.15 49.70 32.27

To reduce the influence of the bias of the ML algorithm, we used a pool of six algorithms,
which were tuned using grid search. The hyperparameters and their possible values are listed
in Table 18, in which m is the number of attributes and a = (m+2)

2 . We considered all data
complexity measures described in Section 3.2.1.

Table 18 – Classification algorithms used and their possible hyperparameter values

Classification Algorithms Hyperparameters Values

Support Vector Machines (SVM)

kernel linear, radial, polynomial, sigmoidal
cost 2−10, 2−9, ..., 210

gamma 2−10, 2−9, ..., 210

degree 2, 3, 4, 5

Random Forest (RF)
number of trees 100, 200, ..., 1000
number of variables

√
m

2 ,
√

m,
√

m×2
K-Nearest Neighbours (KNN) k 1, 3, 5, ..., 31
Naive Bayes (NB) None None

C4.5
threshold for pruning 0.1, 0.2, ..., 0.5
min instances per leaf 2, 3, ..., 10

Multi-Layer Perceptron Neural
Networks (MLP)

learning rate 0.1, 0.2, ..., 1
number of neurons in hidden layer a−3, a−2, ..., a+3

2 <https://github.com/victorhb/ImbCoL>
3 <https://github.com/victorhb/IS2020_results>

https://github.com/victorhb/ImbCoL
https://github.com/victorhb/IS2020_results
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Using 30 repetitions of stratified 5-fold cross-validation, we extracted, for each dataset,
150 sets of data complexity measures from the training subsets and 150 sets of predictive
performances from the validation subsets. Next, we assigned, to each dataset, the mean of the
150 values of each complexity measure and the predictive performance. The best model was
chosen according to the highest predictive performance on average for each dataset. Figure 11
illustrates the steps followed in these experiments. Afterwards, we correlated, for each dataset,
the mean data complexity measures with the mean predictive performance.

Figure 11 – Diagram illustrating the steps of the first experiment

Dataset

Train Data

Test Data

Data Complexity Measures 

Best Performance

Cross
Validation

Classification

Source: Barella et al. (2020).

We measured the predictive performance using gmean, which is widely used in the
imbalanced data literature. Gmean is the geometric mean between the true positive rate (TPR)
and the true negative rate (TNR), defined by gmean =

√
TPR×TNR. We used the Pearson

correlation to correlate the data complexity measures and the Gmean. For the complexity
measures dependent of k, we set the parameter according to their original publications: for CM,
we estimated a different k for each dataset, for wCM and dwCM we set k = 9,11, and for BI3,
we set k = 5.

3.3.2 Experiments with Data Imbalance Treatment Techniques

The second group of experiments, with 101 datasets, is carried out to assess the effective-
ness of complexity measures when DIT techniques are applied to the training dataset. Table 19
shows a summary of the 102 datasets used in this experiment. Minimum, maximum and mean
values for the number of instances, number of features and percentage of the minority class are
shown. For more details, please see Table 25 in the Appendices or the GitHub link4. 29 out of the
101 datasets have less than 25% of minority class instances. We call them the high imbalanced
datasets. The remaining 72 ones are called the low imbalanced datasets. The two sets of datasets
used in both experiments, the one described in this section and the one described on Section
3.3.2, share similar characteristics regarding the number of instances, number of features and
imbalance. For further details about the similarities between the two sets, please see Figure 34 in
the Appendices.

Previous studies have shown that the application of DIT techniques to imbalanced
datasets can improve the predictive performance obtained by ML algorithms (CHAWLA et al.,
4 <https://github.com/victorhb/IS2020_results>

https://github.com/victorhb/IS2020_results
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Table 19 – Summary of the 101 datasets used in the experiment using data imbalance treatment techniques.

Dataset
Characteristic

Min
Value

Max
Value

Mean
Value

Number of Instances 34 2,372 342
Number of Features 3 71 17
% Minority Class 2.33 49.80 32.57

2002; HAN; WANG; MAO, 2005; HE et al., 2008; JO; JAPKOWICZ, 2004; KUBAT; MATWIN
et al., 1997). However, there are situations in which their use either reduces or does not affect
the predictive performance, and increases the overall computational cost. Additionally, as when
using ML algorithms, each DIT technique has a bias, thus some techniques are better than others
for particular data conformations (CHAWLA et al., 2002; HAN; WANG; MAO, 2005; HE
et al., 2008; JO; JAPKOWICZ, 2004; KUBAT; MATWIN et al., 1997). In these experiments,
we investigate how the DIT techniques change the data complexity and whether the changes
correlate with the predictive performance of ML algorithms.

Thus, for each dataset, we extracted the data complexity measures and predictive perfor-
mance before and after applying the DIT techniques. In these experiments, we used the same ML
algorithms previously mentioned, with default hyperparameter values. We used a different exper-
imental design from the previous experiment because, in the second experiment, we apply DITs
to the datasets. In the literature, when DITs are applied, no hyperparameter tuning is performed
in the classification algorithms (SÁEZ et al., 2015; ABDI; HASHEMI, 2016; CHAWLA et al.,
2002; HAN; WANG; MAO, 2005; JO; JAPKOWICZ, 2004). This decision is motivated by the
fact that tuning would interfere with the DIT analysis, once it would not be possible to track if the
observed behavior is due to tuning or the DIT application. The classification algorithms used, and
their default hyperparameter values were: SVM with radial kernel, cost = 1, and gamma = 1

m ;
Random Forest with 500 trees and

√
m variables; k-NN with k = 3; Naive Bayes; C4.5 with 0.2

of threshold for pruning and 2 instances per leaf at minimum; MLP with 0.3 of learning rate and
a neurons in the hidden layer; in which m is the number of attributes and a = (m+2)

2 .

To assess the effect of applying DIT techniques, we measured the gmean of ML algo-
rithms before and after the application. For each dataset, we used 5-fold cross-validation 30 times
to compute the mean values for the data complexity measures and the predictive performance.
Figure 12 illustrates the followed steps.

The final ratio hyperparameter of the DIT techniques was set to make the two classes
completely balanced, except for OSS, which does not have this hyperparameter. For SMOTE,
BorderlineSMOTE and ADASYN, the interpolation used the 3 nearest neighbors of each instance.
For CBO, we used the k-means clustering algorithm with 4 groups and 100 iterations. We
combined two oversampling strategies with CBO: random oversampling (CBO+RO) and SMOTE
(CBO+SMOTE).
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Figure 12 – Diagram illustrating the steps of the second experiment
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Source: Barella et al. (2020).

3.4 Experimental Results and Discussion

Next, we present and discuss the main results obtained in the evaluation of the original
and modified complexity measures for the artificial and real datasets and the effect of DIT
techniques on these measures.

3.4.1 Data Complexity Measures and Real Datasets

In Barella et al., the authors evaluated how data complexity measures performed on
artificial imbalanced datasets. There, the authors generated artificial datasets in which the
instances were sampled from multivariated normal distributions, and they varied the number of
features, class density and imbalance ratio of the datasets. Their experimental results showed
that, for the datasets used, they were not suitable for imbalanced data. In the same work, the
authors proposed adaptations to these measures, which improved their adequacy to assess the
difficulty of the artificial imbalanced datasets considered. In this paper, we expand this analysis
by deepening the previous analysis, but this time on real datasets and performing additional
evaluations.

Figure 13 compares the Pearson correlations of the gmean performance with the data
complexity measures, both the original measures and their adaptations assessing the majority
and the minority class. The figure shows the results for the artificial datasets described in Barella
et al. and the real datasets described in Section 3.3.

Regarding the complexity measures, a value close to 1 should be read as describing a
very difficult dataset, while, regarding the gmean performance, a value close to 1 means that a
classifier achieved the perfect performance. Difficult datasets are expected to have high values of
complexity measures and low values in gmean performance. Thus, in order for the complexity
measures to adequately assess the difficulty of a dataset, negative correlations between the
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Figure 13 – Correlation between the data complexity (original and adapted) and gmean measures, for the
artificial and real datasets.
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measures and the gmean performance are expected. Indeed, all observed correlations were
negative, with the exception of the linearity measures for the adapted ones assessing the majority
class.

The results show a low correlation between the original data complexity measures and
gmean in both artificial and real datasets. The average of the absolute values of the correlations
for these measures are 0.42 and 0.49 for artificial and real datasets, respectively. The F1 measure
has the strongest correlation among all original complexity measures. However, it has a low
value, smaller than 0.75 in the absolute value. It is important to point out that in previous work
(BARELLA et al., 2018) F1 had an even lower correlation with the gmean, probably because it
is not standardized as described in Section 3.2.1.

Regarding the experimental results using data complexity measures adapted for the
minority class, the correlations are improved. On average, the absolute correlation values are
increased to 0.4 for the synthetic datasets and to 0.2 for the real datasets. The main difference
when compared with the results with the original complexity measures is that the correlation is
now higher. As an example, for the real datasets, the correlation of the original N3 is −0.63 and
the correlation of N3 adapted for the minority class is −0.91.

Overall, the results for the artificial datasets are similar to those obtained using real
datasets. Therefore, the benefits of the data complexity measures also apply to the real datasets.

Regarding the results for the adapted measures in the majority class, they showed lower
correlations, since the gmean performance is more affected by the performance in the minority
class. The correlation between gmean and TPR was 0.94 and between gmean and TNR was 0.62.
We expected gmean to be more correlated with TPR than TNR because the minority class is
usually more difficult to learn. For this reason, from now on, we only consider the complexity of
the minority class for the adapted measures in this paper. Gmean will continue to be calculated
the same way, considering both classes.

In the imbalanced data literature, the imbalance ratio is mainly used to show the difficulty
a dataset may impose on a classification task. In our experiment, the correlation between the
predictive performance and the imbalance ratio was just 0.26 while the correlation between
the N3 for the minority class and the predictive performance is 0.91, both in absolute values.
These results show that our adaptations can provide relevant information for future studies in
imbalanced data classification.

Next, we detail our analysis of the behavior of the most correlated measure, N3. Figure
14 illustrates the behavior of N3. In this figure, each triangle/circle is one dataset, with the shape
and color representing different imbalance levels, high and low. The x-axis is the value of N3
measure and the y-axis is the gmean performance. We discretized imbalance into two categories:
low imbalance (more than 25% of examples from the minority class in the dataset) and high
imbalance (less or equal to 25% of examples from the minority class in the dataset).



3.4. Experimental Results and Discussion 75

It can be observed in Figure 14 that there is a high correlation between the original N3
measure and gmean when the datasets have low imbalance levels. When the datasets have a
high imbalance level, the original N3 loses its ability to correlate with gmean, corroborating
the fact that they do not correctly capture the difficulty in imbalanced scenarios. The Pearson
correlations for the slightly imbalanced and the highly imbalanced scenarios are −0.92 and
−0.41, respectively.

Figure 14 – Relation between N3 and gmean.
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Regarding the adapted N3 for the minority class, we can see that the correlations are
strong for both highly imbalanced and slightly imbalanced datasets. There is only one dataset in
the figure with a high divergence between the difficulty assessed by N3 for the minority class
and the predictive performance obtained. Apart from this dataset, all others compose a strong
linear correlation. The Pearson correlations for the low imbalanced and the high imbalanced
scenarios are −0.89 and −0.93, respectively. These results also show that the adapted N3 leads
to a smaller difference between these two correlations than the original N3.

To check if the relation found in N3 can be generalized to the other complex measures,
we plot their values in Figure 15. In this figure, we also separate the correlations into low and high
imbalance. It can be seen that what was seen for N3 also holds for the other neighborhood and the
linearity measures, N1, N2, N4, T1, L1, L2, and L3. Thus, again, while for the original measures
there is a strong correlation for low imbalance and a weak correlation for high imbalance, for the
adapted complexity measures, the correlations are strong for both slightly and highly imbalanced
datasets.

These results indicate that the original data complexity measures work correctly only for
datasets with low imbalance levels. When the datasets have high imbalance levels, they lose their
ability to assess their difficulty. They also show that most of our adapted complexity measures
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Figure 15 – Correlation between the data complexity measures and gmean, separated by imbalance degree.
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work well, regardless of the dataset imbalance level.

3.4.1.1 Comparison with related work

Figure 16 shows the correlation between the data complexity measures in the minority
class and F1 over the 102 datasets. We also included the measures described in the related
work considering only the minority class. The most correlated measures with gmean are N1,
N3, L2, L3, CM, wCM9, wCM11, dwCM9, dwCM11. The correlation between the percentage
of instances belonging to the minority class (% min class) and the number of instances in the
minority class (# min class) are the least correlated with the gmean performance. BI3 is highly
correlated with % min class, but presented a low correlation with the gmean. L2 and L3 measures
are highly correlated with each other, with a correlation of 0.99, indicating they are capturing
similar characteristics from the datasets. Both measures assess the linear separability of the class,
but L3 also considers the convexity of the class border. Moreover, N1, N3, CM, wCM9, wCM11,
dwCM9, dwCM11 are correlated with each other with correlations above 0.9. All of these
measures use the concept of nearest neighbors to be calculated. These correlations are stronger
between CM, wCM9, wCM11, dwCM9, dwCM11, varying from 0.97 to 1, indicating they are
capturing very similar characteristics. All CMs measures use a kNN classifier to calculate the
data complexity.

We selected the measures with a correlation above 0.8 with gmean to understand how
the main DIT techniques modify the data complexity. They are N1, N3, L2, L3, CM, wCM9,
wCM11, dwCM9, dwCM11. In the next section, we show the results only for N1, N3, L2,
and wCM11 to avoid redundancy. The complete table of results for the next section, with all 9
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Figure 16 – Correlations between gmean performance, data characteristics, original F1, and complexity
measures for the minority class.
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measures, can be accessed from the GitHub link5.

3.4.2 DIT Techniques Discussion

In this section, we show that the DIT techniques modify the data complexity of the
datasets and that there is a correlation between the difference in data complexity and the
improvement of predictive performance for most DIT techniques.

5 <https://github.com/victorhb/IS2020_results>

https://github.com/victorhb/IS2020_results
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3.4.2.1 The reduction of data complexity caused by DIT techniques

To see how DIT techniques affect the complexity of imbalanced datasets, we investi-
gated their effect on the 4 previously selected data complexity measures before and after their
application to 101 datasets not used in the experiments reported in the previous section.

Figure 17 shows four boxes, one for each data complexity measure considered. The
boxplots represent the difference in data complexity between after and before the application
of each DIT technique, represented on the x-axis. The orange boxplots consider the datasets
whose minority class have less than 25% of representation (high imbalance). The blue boxplots
show these results for the datasets with more than 25% of minority class representation (low
imbalance).

Figure 17 – Data complexity measures differences before and after using the DIT techniques.
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On the low imbalanced datasets, the application of DIT techniques had, in general, a small
impact on their complexity, for the four data complexity measures. For N1 and N3 measures,
the CBO-based techniques presented the highest reduction, with a statistical difference between
them and the other techniques, but no statistical difference between the two CBO techniques
considering a Friedman-Nemenyi test with a confidence level of 95%. For the N1 measure, also
the CBO-based techniques showed the largest decrease, which is statistically different from
all other techniques, besides BSMOTE. For the L2 measure, most of the DIT techniques were
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similar in median, with the exception of ADASYN, that was statistically different compared to
CBO+RO, CBO+SMOTE, SMOTE, and BSMOTE.

Overall, the DIT techniques did not obtain a large complexity reduction when applied
to the low imbalance datasets. One reason may be that the techniques completely balance the
training set and, because those datasets have a low imbalance ratio, they modified them modestly.

The highly imbalanced datasets, on the other hand, were strongly modified by most
of the DIT techniques, for the four data complexity measures. RO, e.g., obtained an average
difference of 0.45 for N3 and it was statistically different to RU, SMOTE, BSMOTE, ADASYN,
and OSS according to a Friedman-Nemenyi test with a confidence level of 95%. Considering
N1, RO also obtained the highest difference in median, and was statistically different from all
other techniques, except for BSMOTE and the CBO-based techniques. For wCM11, RO was
statistically different from RU, OSS, SMOTE, and BSMOTE. Considering L2, BSMOTE was
the best in median, but statistically different only to RU, and OSS.

In general, N1, N3 and wCM11 behaved similarly among all the DIT techniques. They
had lower differences for RU and OSS, in both high and low imbalance; CBO-based techniques
had a larger difference in median for the low imbalanced datasets; and RO had a slightly larger
difference for the high imbalanced datasets. All three measures use the concept of NN in their
calculation and were highly correlated to each other in the previous experiment, as shown in
Figure 16.

3.4.2.2 The performance gain caused by the DIT techniques

To investigate whether there is a relation between the values returned by the complexity
measures and the gains obtained by the DIT techniques, we first investigated the effect of the
DIT techniques on the predictive performance of ML algorithms for the 101 datasets used.
For such, we assessed the gmean performance of six classification algorithms, using their
default hyperparameter values. Figure 18 shows six boxes, one for each ML algorithm, with the
differences in the predictive performance of each classifier before and after applying each DIT
technique. The blue boxplots show the results for the datasets whose minority class has more
than 25% of representation (low imbalance) and the orange boxplots show the results for the
datasets with less than 25% of minority class representation (high imbalance).

Figure 18 shows an improvement for all DIT techniques for most classification algorithms,
with the exception of OSS. The improvements are larger for the highly imbalanced datasets. In
general, ML algorithms have more difficulty in learning good models from these datasets.

The SVM classifier was the algorithm with the largest improvement in the predictive
performance after applying the DIT techniques. However, it was the algorithm with the lowest
predictive performance on average before applying the DIT techniques. Besides, SVM predictive
performance is highly affected by the hyperparameter values (MANTOVANI et al., 2015), which
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Figure 18 – Differences in gmean performance before and after applying DIT
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were not tuned in these experiments.

As discussed previously, RO was the DIT technique that reduced the data complexity the
most regarding the N3 measure. However, RO did not outperform the other DIT techniques in
predictive performance. Actually, in some cases, it performed worse than other techniques, for
example RU and SMOTE, when inducing RF and J48. To balance the training set, RO duplicates
the number of instances in the minority class. Since it was applied to highly imbalanced datasets,
probably RO duplicated most, if not all, minority class examples from the datasets. As N1, N3,
and wCM11 are based on the nearest neighbors, the duplication of the instances in the minority
class affects their values. However, the improvement on the predictive performance was not
better than the other techniques. We believe that RO artificially over reduces the values of those
measures causing an underestimation of the data complexity after its application.

3.4.2.3 The relation between data complexity modification and performance gain

In order to verify if the reduction in data complexity and the improvement in predictive
performance are correlated, we used the Pearson correlation. The results are shown in Figure 19,
where the x-axis represents the data complexity measures considered, the y-axis represents the
method used (combination of DIT technique and classification algorithm), and each cell of the
heatmap is the value of the Pearson correlation between the differences in data complexity and
differences in predictive performance when a method is applied to the 101 datasets considered.
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Figure 19 – Correlation between the difference in data complexity and difference in predictive perfor-
mance for all DIT techniques and classification algorithms considered
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Values followed by “*” mean that the p-value for that correlation was above 0.05.

The DIT technique that, in general, presented the lowest correlations in magnitude was
OSS. Moreover, NB and J48 performances are usually not well correlated with the reduction
in data complexity of any of the measures considered compared to the other classification
algorithms when the same DIT technique is applied. N1, N3 and wCM11 do not correlate well
when CBO-based techniques were applied.

Despite some low correlations in magnitude pointed out previously, most of the differ-
ences in data complexity are highly correlated with the predictive performance of the methods
considered. They corroborate with the evidence discussed in Section 3.4.1 that the adapted data
complexity measures considered are suitable tools to assess the data complexity of imbalanced
datasets, now considering when DIT techniques are applied.

3.5 Final Remarks

As confirmed in this paper, dataset imbalance is not a problem in itself. But it increases
the chances of the adverse effects of other characteristics, such as overlapping and difficult border
decisions. To investigate these effects, we used data complexity measures. The original data
complexity measures have been used in the literature to assess these characteristics, including
their occurrence in imbalanced tasks. We show in this paper that the original data complexity
measures do not work well with imbalance in real datasets. Therefore we strongly discourage
their use in these scenarios. However, we also show that simple adaptations of these measures can
make them useful to assess the difficulty of ML classification algorithms to deal with imbalanced
datasets.

According to our experimental results, most of the adapted data complexity measures
correlated better with the difficulty in imbalanced tasks than the imbalance ratio itself. Thus, the
adapted measures can assess the difficulty of inducing a good model from a dataset better than
the imbalance ratios used in the literature. Thus, the adapted measures can provide meaningful
insights for data science researchers and practitioners. They can improve the understanding of
the difficulty of the datasets used and guide the application of ML algorithms to these datasets.
Another contribution from this study is to show the importance of selecting DIT techniques that
can effectively reduce the data complexity, instead of only balancing the training set.

The experimental results show that the reduction of data complexity obtained by using
DIT techniques occur mainly for highly imbalanced datasets. They also show that, for most of
the DIT investigated, there is a correlation between the reduction in data complexity and gain in
predictive performance.

Our adaptations of complexity measures were designed and tested only on binary datasets.
For use in multiclass datasets, some of the data complexity measures may be dependent on



3.5. Final Remarks 83

the class decomposition strategy used (one versus all; one versus one). We believe that this is
a good direction for future work. Moreover, we considered only the gmean performance for
the experiments, because it is the most popular in recent works. Although it is a widely used
performance measure for imbalanced data classification tasks, it would be interesting to study
the behavior of the data complexity measures with other metrics used in imbalanced dataset
classification tasks, such as AUC, F-measure, and kappa.

Future work shall consider the use of the adapted complexity measures in the proposal
of meta-learning systems for the recommendation of suitable DIT techniques for a new dataset.
The measures values can also be explored in the proposal of new data balancing strategies. For
instance, one may guide the generation of new instances in the minority class in order to optimize
a given measure value.
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Abstract
Classification tasks using imbalanced data are not challenging on their own. When

the classes are linearly separable, a regular classification algorithm usually induces predictive
models able to distinguish the classes properly. Imbalanced data poses difficulty for the minority
class when the training sets have classes overlapping or a complex border decision. Assessing
these characteristics is fundamental to understand the classification task difficulty and to choose
adequate pre-processing techniques for imbalanced data. Measures able to identify the complexity
of a classification task for a given dataset have been proposed. These measures use different
criteria to identify how difficult it is to induce a classifier from a dataset. In this paper, we
investigate the use of data complexity measures to estimate the best sample size for data
imbalance pre-processing techniques. For such, this paper assesses the predictive performance
and the data complexity of real datasets after applying pre-processing techniques using different
sample sizes. According to experiments, the data complexity measures are a tool to help in
choosing a proper sample size to improve the predictive performance of the classifiers. We also
observe that only the difficulty of predicting the minority class is not enough when dealing with
sampling. As an alternative to deal with this deficiency, we suggest a combination of the data
complexity of both classes.
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4.1 Introduction

Real world labeled dataset is often imbalanced. A dataset is imbalanced when there is
a disproportion of the number of examples among the classes. Data imbalance can occur in
binary and multiclass datasets. Although in this paper, we investigate imbalanced binary data,
the same study can be easily adapted for multiclass imbalanced data. Several authors have found
that imbalance usually relates to low performance on the minority classes, i.e., the classes less
represented (KUBAT; MATWIN et al., 1997; FERNáNDEZ et al., 2018). Even so, imbalance
does not impose a problem when the classes are well separated in the attributes space. The
problem arises when characteristics such as overlapping and difficult border decisions combine
with imbalance - in those cases, the majority classes tend to predominate over the minority ones
on classification models (BATISTA; PRATI; MONARD, 2004).

The main pre-processing techniques for imbalanced tasks aim at balancing the number of
examples from the classes in order to decrease the imbalance, the overlapping, and the difficult
border decisions (HE; GARCIA, 2008). For example, some of them interpolate new instances
while others remove majority class instances (CHAWLA et al., 2002; KUBAT; MATWIN et al.,
1997). They claim that those techniques improve the performance obtained in several datasets, as
shown in the literature (FERNáNDEZ et al., 2018). However, there is a lack of understanding of
what those techniques do to the datasets, i.e., how the interpolation or the RU and RO modify
their characteristics.

Data complexity measures (CMs) allow one to estimate the expected difficulty of a
classification task by extracting descriptions of the overlap between classes imposed by feature
values, the separability, distribution of the data points, and certain structural characteristics of
the task based only on the training set available for learning (HO; BASU, 2002). Barella et al.

suggested adaptations in the CMs should be made to extract proper information of the datasets
when they are imbalanced. Such adaptations consist of assessing the difficulty of each class
separately, and they empirically demonstrate that the difficulty of the minority class is a good
estimator of the difficulty of an imbalanced classification task. We show in this paper that a
combination of the difficulty of all classes is preferred when using balancing techniques.

In this paper, we explore the main pre-processing techniques for imbalanced datasets
regarding performance and CM. We vary the sample size generated by the techniques and observe
the modification on the CMs and the performance considering several classification algorithms to
identify the combinations that can generate better models. The obtained results indicate that the
CMs are useful to estimate the sample size parameter on pre-processing techniques. Besides that,
the results reinforce the idea using an empirical analysis that imbalance itself is not a problem
except when combined with overlapping and difficult border decisions.

This paper is separated into five sections. Section 4.2 describes the CMs used to estimate
the difficulty of each class separately. Moreover, we present the main pre-processing techniques
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for imbalanced learning considered in this paper. Next, Section 4.3 presents the experimental
setups designed in this work. The experimental results are shown and discussed in Section 4.4.
Section 4.5 concludes this paper with contributions, limitations and future works.

4.2 Background

Imbalance ratio measures are usually used to describe the difficulty of imbalanced
datasets. They capture information about the disproportion between the classes, but they lack
information about overlapping and border decision. To that purpose, the CMs are commonly
applied. They were gathered and proposed by Ho and Basu and since then they are used on
several domains (LUENGO; HERRERA, 2015). After, Barella et al. showed that the original
CMs do not work correctly when the datasets are imbalanced and suggested adaptations to
overcome it. We considered those adaptations on this paper.

4.2.1 Data Complexity Measures for Imbalanced Classification Tasks

Due to lack of space, we considered only a subset of the CMs. We chose those which are
more correlated with the imbalance problem as described in (BARELLA et al., 2018): N3, N1,
and L2. They are described below.

4.2.1.1 N3: Leave-one-out error rate of the 1NN classifier

N3 gives the leave-one-out error of a nearest-neighbor (NN) classifier, which is easy to
be calculated and is a good indicator of the separability of the classes. We considered the N3
adaptation per class which takes the NN training error for each class. Equation 4.1 represents
our adaptation considering a class 1, where NN(xi) is the nearest neighbor of xi, yi is the class of
example xi, I is the indicator function that returns 1 if its argument is true and 0 if it is false, and
nc1 is the number of examples from class 1.

N3c1 =
∑

nc1
i=1 I(NN(xi) 6= yi)

nc1

(4.1)

4.2.1.2 N1: The fraction of points on the class boundary

N1 builds a minimum spanning tree (MST) that connects all the examples from a dataset
based on their distances, despite their classes. Next, it counts the number of examples connected
to at least one example from another class. Those examples are possibly borderline and the
fraction of their number over the total number of examples is the final N1 measure. N1 is
bounded between 0 and 1, and values closer to 0 represent a lower complexity. For this paper,
we considered the adaptation which consists in calculating the N1 for each class. Equation 4.2
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represents N1 considering a class 1, where (xi,x j) represents a connection between examples xi

and x j, and MST represents the set of all connections in the tree.

N1c1 =
1

nc1

nc1

∑
i=1

I((xi,x j) ∈MST ∧ c1 6= y j) (4.2)

4.2.1.3 L2: The training error of a linear classifier

L2 is the training error of a linear classifier. For that purpose, it builds a linear model
and the error rate of the classifier is computed. Higher values represent non-linear problems. We
considered the adaptation that takes the error rate per class, as Equation 4.3 shows, where h(xi)

is the class prediction of the linear classifier for example xi.

L2c1 =
∑

nc1
i=1 I(h(xi) 6= yi)

nc1

(4.3)

Some works used them to tackle the imbalance problem. Luengo et al. used the CMs
to predict whether a pre-processing technique can be successful or not. They found intervals
of values of some of the CMs in which the techniques showed performance improvement.
Other authors also used the CMs to analyze the suitability of using a specific technique in
imbalanced datasets. Díez-Pastor et al. used them to predict CMs intervals for which some
diversity-enhancing techniques may improve the results of an ensemble method. Fernández,
Jesus and Herrera used one CM combined with other characteristics (such as imbalance) in a
multi-objective approach to select attributes and instances from a dataset.

4.2.2 Pre-Processing Techniques

The techniques for imbalanced learning are usually divided into two main general
approaches: (1) pre-processing the data in order to make it more balanced (CHAWLA et al.,
2002; HAN; WANG; MAO, 2005; HE et al., 2008; JO; JAPKOWICZ, 2004; KUBAT; MATWIN
et al., 1997); and (2) development of algorithms in the classification step that are more tolerant
and robust to handle imbalanced data (GONZALEZ-ABRIL et al., 2014; CIESLAK et al., 2012;
CANO; ZAFRA; VENTURA, 2013; DIAMANTINI; POTENA, 2009). While dealing with
imbalanced data in the pre-processing techniques allows the selection of the most appropriate
technique and can include the expert feedback, the same task in the classification step with robust
classifiers can avoid one more bias in the ML pipeline. In this paper, we focus on the former.

Regarding the pre-processing techniques, the methods can be categorized into two groups:
undersampling and oversampling methods (FERNáNDEZ et al., 2018). Undersampling methods
make the data more balanced by removing instances of the majority class while oversampling
methods do that by inserting instances in the minority class (FERNáNDEZ et al., 2018). Both
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undersampling and oversampling can be done randomly or according to an informed strategy.
Next, we discuss the main pre-processing strategies.

4.2.2.1 Random sampling

In the random undersampling (RU), instances of the majority class are removed at
random until a more balanced class distribution is reached (HE; GARCIA, 2008). In the random
oversampling (RO), instances of the minority class are replicated at random until a more balanced
class distribution is reached (HE; GARCIA, 2008).

4.2.2.2 Synthetic minority oversampling techniques

The Synthetic Minority Oversampling Technique (SMOTE) (CHAWLA et al., 2002) is an
oversampling technique that creates artificial data by interpolation, as follows. At each iteration,
SMOTE selects an instance x at random in the minority class, and then it looks for the k NNs of
x. SMOTE then selects one of the neighbors z at random and creates a new instance, which is a
combination of x and z. The combination is an interpolation that randomly creates any possible
point between x and z. This step is repeated until a more balanced distribution of instances is
reached.

The Borderline SMOTE (BSMOTE) is based on SMOTE and it searches for minority
examples from decision boundaries to interpolate (HAN; WANG; MAO, 2005). Instead of
selecting minority examples from all training set, it selects minority examples from the decision
boundary. The method that BSMOTE uses to select them is: (1) find the k NN for a minority
example x; (2) count the number Nma j of neighbors that belongs to the majority class; (3) if
k
2 ≤Nma j < k then x is put in a set called DANGER; (4) repeat the steps for all minority examples.
After SMOTE is run to balance the dataset but it selects only examples from the DANGER
subset.

The Adaptive Synthetic Sampling Approach (ADASYN) is also based on SMOTE and it
addresses the number of examples to be interpolated by each minority example (HE et al., 2008).
ADASYN follows the next steps: (1) first, it defines G, that indicates how many examples should
be interpolated for the entire minority class; (2) next, for each example in the minority class,
it calculates the percentage of majority examples in the k nearest neighbors; (3) the set of all
percentages (Γi, where i is the minority example) is normalized so that ∑Γi = 1; finally, Γi×G

gives the number of examples to be interpolated using SMOTE for each minority example i.

More recent pre-processing techniques for imbalanced classification have been proposed,
including other SMOTE adaptations (BARUA et al., 2014; ABDI; HASHEMI, 2016), under-
sampling based on clustering (NG et al., 2015), and sampling based on evolutionary algorithms
(YU; NI; ZHAO, 2013). For example, Barua et al., claimed that the SMOTE adaptations were
favoring noisy examples e proposed a new way of selecting minority examples that discard the
ones with no minority neighbor. Their proposed adaptation, which is called Weighted Minority
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Oversampling Technique (MWMOTE), weights the minority examples and generates new ex-
amples within a minority cluster. The Mahalanobis Distance-based Over-sampling technique

(MDO) (ABDI; HASHEMI, 2016) is another SMOTE adaptation. It generates synthetic minority
examples that have the same Mahalanobis distance from the class mean as other existing minority
examples. In this article, we are considering the standard pre-processing techniques because they
are most used and studied and the adaptation of the CMs proposed by Barella et al..

4.3 Experimental Setup

The empirical analysis aims at evaluating how the main classification algorithms and CMs
behave when varying the percentage of sampling using pre-processing techniques. Therefore,
the objective is to determine whether the pre-processing techniques and the sample size build
accurate models with low class overlapping or simple border decisions for a diverse set of
classification techniques and classification problems.

For the empirical analysis, we collected 43 binary datasets from the OpenML repository
(VANSCHOREN et al., 2013) with less than 25% of minority class representation. For each
dataset, we compute the CMs values described in Section 4.2.1 plus the predictive performance
achieved by the ML techniques when applied to five pre-processing techniques described in
Section 4.2.2 for each sampling rate.

The pre-processing techniques used are RU, RO, SMOTE, BSMOTE, and ADASYN
because they are the most standard techniques in the literature. The sample size is added according
to rates that range from 10% to 200%, with intervals of 10%. Each rate value corresponds to a
percentage of the examples needed to completely balance the training set, i.e., a rate of 100%
means a training set with a proportion of 1 : 1 between the classes. To illustrate, consider a
training set with 110 examples on the majority class and 10 examples on the minority class. A
percentage of 10% means (110− 10)× 0.1 = 10 examples to be added to the minority class
(in the case of oversampling techniques) or removed from the majority class (in the case of
undersampling technique).

The classifiers used are: the ANN based on backpropagation (also called Multilayer
Perceptron - MLP) with one hidden layer, learning rate of 0.3 and momentum of 0.5 (HAYKIN,
1999); the SVM with linear and radial kernel (CRISTIANINI; SHAWE-TAYLOR, 2000); the DT
induced by the C4.5 algorithm with pruning (QUINLAN, 1986); the ensemble called Random
Forest (RF) with 500 DTs, the kNN, a lazy learning technique with k = 3 and Naive Bayes (NB)
classifier (MITCHELL, 1997).

In order to decrease the randomness, 10 different executions were made for each sampling
rate. The predictive performance of the classifiers and CMs were evaluated with gmean. Once
the datasets are imbalanced, the gmean performance measure is used and the performance was
evaluated using the 5-fold stratified cross-validation. The gmean is defined by

√
T PR×T NR,
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where T PR is the true positive rate and T NR is the true negative rate.

4.4 Results and Discussion

This paper aims at showing that the right choice in the sample size of the pre-processing
techniques can improve the performance of the classifiers and the CMs. Also, the CMs have
similar behavior to the performance measure. In other words, the CMs are potentially good
estimators for pre-processing techniques sample size.

First, we show a summary of how the techniques behave for each classification algorithm
and each sample size considering the gmean performance. After, it is shown a general overview
of the performance results obtained through a ranking regarding combinations of pre-processing
techniques and classification algorithms. Finally, we show the behavior of three data CMs and
how they relate to the performance observed.

Figure 20 represents the median behavior of the pre-processing techniques when varying
their sample size parameter regarding the performance of each classifier. The last plot summarizes
the average gmean values for all of the classifiers. Each line represents a pre-processing technique
where each point is the median value of the gmean performance considering the combination of
that classification algorithm and that pre-processing technique with the sample size defined on
axis x. The None performance is shown in black circles at 0% of sample size, the BSMOTE by
blue squares, SMOTE by yellow triangles, ADASYN by yellow circles, RO by green lozenges
and RU by dark blue upside down triangles.

For most of the classification algorithms, the oversampling techniques improved until it
stabilizes and the RU improved until near 100% (completely balanced) and then it decreases. That
happened for C4.5, Linear SVM, MLP, Radial SVM, RF, and the summary of all algorithms. The
exception of the kNN is related to RO, which has not improved nor decreased the performance
independently of sample size. The replication approach of RO was not effective on the observed
results for kNN, possibly because it does not aggregate new information for the training set.
Also, NB does not behave similarly, possibly due to its restricted assumptions.

In general, the pre-processing techniques behaved as following: for the undersampling
technique, the performance improved accordingly to the sample size until it got completely
balanced, after that point the performance decreased; for the overlapping techniques, the perfor-
mance improved until a point where the curve became mostly flat. In that point, RU achieved
the best performance around 100% of balance but the other techniques maintained a high
performance under sampling sizes higher than 100%.

Table 20 shows the percentage that each technique ranked first place when comparing
the gmean performance per classification algorithm. We included another row called "All" which
represents the ranking for the pre-processing techniques independently of the classification
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Figure 20 – Median behaviour of pre-processing techniques regarding gmean performance from several
classification algorithms.
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algorithms and another column called "None" which represents the ranking for the classifiers
without any pre-processing technique.

RU ranked first place the most among the majority of the classification algorithms,
except for linear and radial SVMs, for those algorithms the ADASYN and RO performed first
place respectively in the ranking. Considering all classification algorithms, not applying any
pre-processing technique performed better in 7% of the datasets, and although it is higher than
the percentage of victories of SMOTE and BSMOTE (both had 2% of the victories) that does
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Table 20 – Percentage of victories for each pre-processing technique per classification algorithm

Techniques
Class.
Alg. None ADASYN BSMOTE RO SMOTE RU

C4.5 12% 9% 9% 19% 2% 48%
KNN 14% 12% 9% 0% 5% 59%
MLP 9% 7% 5% 9% 19% 50%
NB 14% 14% 19% 2% 21% 28%
RF 12% 2% 0% 24% 7% 55%

Linear
SVM 12% 26% 12% 14% 19% 17%

Radial
SVM 9% 9% 5% 40% 5% 31%

All 7% 19% 2% 14% 2% 55%

not mean that they performed worse than None. Since SMOTE, BSMOTE and ADASYN are all
based on interpolation, they perform similarly.

Next, we observe the CMs to check if they behave similarly. Figure 21 shows the median
behavior of the pre-processing techniques when varying their sample size parameter regarding
the CMs. We first analyze the behavior of the CMs for the minority class since they are good
estimators of the difficulty imposed by the data (BARELLA et al., 2018). All measures for
minority class, i.e., L2 minority, N1 minority, and N3 minority decrease the data difficulty along
with the sample size - the higher the sample size, the lower the difficulty of the minority class.
Different from Barella et al., we observe that when a balancing technique is applied, the difficulty
of the minority class no longer stands for the whole set anymore. A contrast is observed with the
majority class: it gets more difficult with the sampling size increase.

The observed behavior shows that a combination of both minority and majority difficulties
must be calculated in order to represent the difficulty of the whole training set when a sampling
technique is applied. We opted for a geometric mean of both values since the gmean performance
is used. The equation 1−

√
(1−Cma j)× (1−Cmin) is used to calculate the CMs geometric

mean, where Cma j and Cmin are the value of majority CM and minority CM respectively. The
subtraction by one is performed in order to maintain the meaning of the CMs which 1 represents
maximum difficulty, and 0 represents minimum difficulty.

The pattern noted on the performance analysis appeared when using the gmean of the
CMs. In other words, the pre-processing techniques behaved on classification algorithms and
CMs as follows. For the RU, the performance improved (and the difficulty decreased) accordingly
to the sample size until it got completely balanced, after that point, the performance decreased,
and the difficulty increased. For the overlapping techniques, the performance improved, and the
CMs decreased until a point where the curve became mostly flat.
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Figure 21 – Median behaviour of pre-processing techniques regarding data complexity measures.
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4.5 Conclusion

Imbalanced datasets are challenging only when the minority class shows class overlap-
ping or complex border decisions. Measuring such characteristics is fundamental to understand
the classification task and to decide about adequate pre-processing techniques and their param-
eters to use. The CMs are a tool to describe datasets characteristics, and they can be used to
understand and explain imbalanced domains. In this paper, we expand their use on analyzing
balancing pre-processing techniques. We showed evidence that they are potentially useful for
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estimating sample size parameters of pre-processing techniques. As future work, we will inves-
tigate how to use their concepts on pre-processing techniques or adaptations of classification
algorithms for imbalanced datasets.

Although the difficulty of the minority class is a good estimator of the whole imbalanced
dataset, we show that only the minority class information is not enough when dealing with bal-
ancing techniques. We suggest a combination of both minority and majority by geometric mean
when dealing with them. An analysis of the influence of sample parameter on the performance of
several classification algorithms is also presented. We noted that usually a completely balanced
dataset is better for RU and less is enough for oversampling techniques for most classification
algorithms.

Due to computational cost, our analyses considered only 43 datasets, which have a
maximum of around 1,000 examples. The relatively small datasets may not represent big data
tasks. Also, the pre-processing techniques are the most standard in the literature. In the next
experiments, we shall evaluate the same analysis on the cutting edge methods. Lastly, we
only considered binary classification tasks. Further investigation must be done for bigger and
multi-class datasets.
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Abstract

Datasets with class imbalance are likely to impose difficulties in inducing classification
models. Several techniques have been proposed to deal with this problem, such as data pre-
processing, algorithm adaptation, ensemble methods, and one-class classification. Each technique
has a different bias and performs better in some datasets and not in others. Since no technique
works best for all datasets, selecting a good technique is fundamental. One approach to select
techniques is through a recommendation system, whose main objective is to predict the user’s
score to an item. In this research, we implemented a recommendation system based on meta-
learning, a subfield of machine learning that facilitates automatic learning based on metadata. Our
system used a diverse set of meta-features, including the decomposed data complexity measures
proposed specifically for imbalanced datasets, which had never been used as meta-features before.
The system outputs a ranking of the methods according to the performances predicted by the
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meta-regressors. We show that the decomposed data complexity measures are the most relevant
meta-features in the system. The methods suggested by the system increased the predictive
performance of the induced models compared to those suggested by a baseline indicating that
taking the system into account on building machine learning pipelines has a high impact on their
performance.

5.1 Introduction

A common issue in Machine Learning (ML) is having to learn from imbalanced datasets.
A class labeled dataset is imbalanced when its classes have disproportionate number of examples.
Although models induced from those datasets tend to perform poorly with respect to the minority
classes, the problem is not caused by the imbalance alone. The problem arises when the imbalance
is combined with other data characteristics, such as class overlap, difficult decision boundaries,
small disjuncts, and noise (BATISTA; PRATI; MONARD, 2004; JO; JAPKOWICZ, 2004;
LÓPEZ et al., 2013; FRENAY; VERLEYSEN, 2014). The approaches to tackle the problem can
be either by means of pre-processing (CHAWLA et al., 2002; HE et al., 2008) or adaptation on
the learning steps of the classification algorithms (VEROPOULOS et al., 1999; WANG; YAO,
2009). Due to its diverse nature, several techniques were proposed to mitigate its effect, but no
technique works best for every dataset (FERNÁNDEZ et al., 2018).

In order to find an adequate learning algorithm for a ML task, a greedy approach searches
for a suitable combination of methods based on trial-and-error. Although it finds adequate ML
methods, it has a high computational cost. Other approaches such as genetic programming and
Bayesian optimization can help on reducing the search cost, but they still may be not fast enough
for some applications.

One way to overcome the algorithm selection problem is through a recommendation
system using meta-learning (MtL), which aims at predicting the best technique for a certain
dataset based on previous experiences (RICE, 1976; SMITH-MILES, 2008; MUÑOZ et al.,
2018). To recommend a technique, usually a model is induced from a meta-dataset containing the
datasets characteristics as predictive features and the technique that performed the best as target
feature. For example, Morais et. al (MORAIS; MIRANDA; SILVA, 2016) implemented a system
to recommend undersampling techniques. Furthermore, Smolyakov et al. (SMOLYAKOV et al.,
2019) implemented a recommendation system for sampling sizes for pre-processing strategies.
More recently, Costa et al. (COSTA et al., 2020) created a system able to recommend a variety
of techniques, both for oversampling and undersampling. Nevertheless, little attention has been
paid to a recommendation system able to recommend a broader range of techniques, including
not only pre-processing techniques but algorithm-level, ensemble, and one-class classification
techniques.

The selection of a proper set of meta-features is key to the success of a MtL system.
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Statistical and landmarking meta-features (RIVOLLI et al., 2018), as well as data complexity
measures (DCMs) (HO; BASU, 2002; LORENA et al., 2019; GARCIA et al., 2020; ALCOBAçA
et al., 2020) are examples of commonly used meta-features in the literature. Although the DCMs
have been successfully used as meta-features, it has been shown they do not properly measure
imbalanced datasets (BARELLA et al., 2020; BARELLA et al., 2018). They were decomposed
by class, which improved their ability to measure imbalanced datasets (BARELLA et al., 2020).
However, no research has approached the use of the decomposed DCMs in a MtL system.

In the present study, we evaluated a MtL system to recommend a wide range of techniques
for imbalanced datasets. To implement it, we considered not only standard meta-features and
the original DCMs, but also the decomposed DCMs. We showed that the system outperforms
the baseline as the number of recommended techniques increases. Furthermore, through a
meta-feature importance analysis, we showed that the decomposed DCMs are the most relevant
meta-features for the system.

This paper is organized into five sections. Section 5.2 describes the concepts used in
this work regarding MtL, meta-features, techniques for imbalanced datasets, and the related
work. Next, Section 5.3 explains how the recommendation system was implemented, and the
evaluation methods applied. In Section 5.4, we present and discuss the results obtained. Finally,
Section 5.5 discusses the main contributions, limitations, and future work of this paper.

5.2 Background

In this section, we first introduce the MtL concepts. Secondly, we present the groups of
traditional meta-features and DCMs considered in this work. Then, the pool of techniques for
imbalanced datasets, which our MtL approach recommends, is described. Finally, we discuss the
state-of-art of MtL for imbalanced datasets.

5.2.1 Meta-learning

Rice et al. (RICE, 1976) initially addressed the algorithm selection problem. In this study,
the author proposed an abstract model to systematize the algorithm selection problem to predict
the best algorithm when more than one algorithm is available. The main components in this
model are the following: the problem instance space (P) composed of datasets; the instance
feature space (F) based on the meta-features used to describe the datasets; the algorithm space
(A) with the pool of ML algorithms that might be recommended; and the evaluation measure
space (Y ) responsible for assessing the performance of the ML algorithms in solving the problem
instances contained in P. By using the previous sets, the MtL system can obtain an algorithm
able to map a dataset x, described by the meta-features f , into one (or more) algorithm α able to
solve the problem with an acceptable predictive performance according to Y , i.e., with maximum
y(α(x))
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Smith-Miles et al. (SMITH-MILES, 2008) improved this abstract model by proposing
generalizations that can also be applied to the algorithm design problem. This idea includes the
following extra components: the set of MtL algorithms; the generation of empirical rules or
algorithm rankings; and the examination of the empirical results, which may guide theoretical
support to refine the algorithms.

More recently, Vanschoren et al. (VANSCHOREN, 2018) surveyed the MtL field based
on three types of meta-data: (1) learning from model evaluations, (2) learning the relationships
between data characteristics and predictive performance, and (3) transfer learning. Our work fits
in the second category, and we describe the main components of this type of MtL approach on
the following.

One crucial component of the previous models is the definition of the set of standard meta-
features (F) used to describe the datasets’ properties. These meta-features must be able to provide
evidence about the algorithms’ future performance in A (SOARES; PETRAK; BRAZDIL, 2001;
REIF, 2012) and to discriminate, with a low computational cost, the performance of a group of
algorithms. Rivolli et al. (RIVOLLI et al., 2018) gathered the most used meta-features in the
literature. We consider such meta-features in this paper. We also considered the DCMs (HO;
BASU, 2002; LORENA et al., 2019) and the decomposed DCMs (BARELLA et al., 2020). In
Section 5.2.2, we describe the meta-features used in this paper.

Defining the set of problem instances (P) is another concern. Ideally, a large number of
diverse datasets should be used in order to induce a reliable meta-model. Unfortunately, it is not
always possible due to the computational cost and/or availability of the datasets. Thus, in order
to reduce the bias in this choice, datasets from different contexts should be retrieved from several
data repositories, such as UCI1 (DUA; GRAFF, 2017) and OpenML2 (VANSCHOREN et al.,
2013). To the best of our knowledge, we considered the greatest amount of different datasets
when compared to other works that tackled the recommendation problem of techniques for
imbalanced datasets.

Muñoz et al. (MUÑOZ et al., 2018) explored the problem of evaluating ML approaches
on open repositories of datasets. According to them, most of those datasets usually do not pose a
problem for some ML algorithms to induce a proper model. They visualized the datasets in a
meta-feature space and implemented a method to fill the gaps in this space with new artificial
datasets. Unfortunately, the method could not fill all the gaps in the meta-feature space, and it is
necessary investigating further. In this paper, we used datasets from OpenML (VANSCHOREN
et al., 2013). Even though using datasets from open repositories has drawbacks, recommending
ML methods for imbalanced datasets is still an open problem.

The algorithm space A represents a set of candidate algorithms recommended in the
algorithm selection process. Ideally, these algorithms should also be sufficiently different and

1 https://archive.ics.uci.edu/ml/index.php
2 http://www.openml.org/
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represent different regions in the algorithm space (MUÑOZ et al., 2018). Different measures can
evaluate the models induced by the algorithms. Although most of the studies in the MtL evaluate
using accuracy, we considered gmean to take into account the imbalance of the datasets. We also
considered several classification algorithms and techniques for imbalanced datasets with different
biases. To the best of our knowledge, we are the only work to tackle both pre-processing and
algorithmic level recommendation on imbalanced datasets. The performance of the techniques
were calculated by means of gmean metric.

After extracting the meta-features and evaluating a set of algorithms’ performance, the
next step is labeling each meta-example in the meta-base. Brazdil et al. (BRAZDIL et al., 2009)
summarize the three main properties frequently used to label the meta-examples in MtL: (i)
the algorithm that presented the best performance on the dataset (a classification task); (ii) the
ranking of the algorithms according to their performance on the dataset (a ranking classification
task), where the algorithm with the best performance is top-ranked; and (iii) the performance
value obtained by each evaluated algorithm on the dataset (a regression task). To implement our
MtL system, we labeled the meta-dataset considering the latter.

5.2.2 Meta-features

In our MtL system, we considered the traditional meta-features (RIVOLLI et al., 2018),
the DCMs (HO; BASU, 2002; LORENA et al., 2019), and the decomposed DCMs (BARELLA
et al., 2020).

5.2.2.1 Traditional meta-features

The main standard meta-features used in the MtL literature can be divided into five
groups:

• Simple: meta-features that are easily extracted from data (REIF et al., 2014), with low
computational cost (REIF, 2012). They are also named general measures (CASTIELLO;
CASTELLANO; FANELLI, 2005).

• Statistical: meta-features that capture statistical properties of the data (REIF et al., 2014),
mainly regarding localization and distribution, such as average, standard deviation, corre-
lation, and kurtosis. They only characterize numerical attributes (CASTIELLO; CASTEL-
LANO; FANELLI, 2005).

• Information-theoretic: meta-features based on information theory (CASTIELLO; CASTEL-
LANO; FANELLI, 2005), usually entropy estimates (SEGRERA; PINHO; MORENO,
2008), which capture the amount of information in (subsets of) a dataset (SMITH-MILES,
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2008).

• Model-based: meta-features extracted from a model induced from the data (REIF et al.,
2014). They are often based on properties of decision tree (DT) models (BENSUSAN;
GIRAUD-CARRIER; KENNEDY, 2000; PENG et al., 2002), when they are referred to
as decision-tree-based meta-features (BENSUSAN; GIRAUD-CARRIER; KENNEDY,
2000).

• Landmarking: meta-features that use the performance of simple and fast learning algo-
rithms to characterize the datasets (SMITH-MILES, 2008). The algorithms must have
different biases and should capture relevant information with a low computational cost.

• Others: standalone, time-related, concept and case-based meta-features (VANSCHOREN
et al., 2012; MUÑOZ et al., 2018), clustering and distance-based measures (VUKICEVIC
et al., 2016; PIMENTEL; CARVALHO, 2019), among others. These describe characteris-
tics that do not fit into the other groups.

Although the traditional meta-features play an important role on general MtL systems,
it is usually necessary to add domain specific meta-features in order to achieve a good MtL
performance. Therefore, we also considered measures designed specifically for imbalanced
datasets. Next, we discuss the DCMs and their adaptation for imbalanced datasets.

5.2.2.2 Data Complexity Measures

The DCMs were proposed to assess the difficulty in a training set (HO; BASU, 2002).
They were extended by many studies (HO; BASU; LAW, 2006; ORRIOLS-PUIG; MACIá; HO,
2010; LORENA; de Souto, 2015; LORENA et al., 2019). A package called DCoL (Data Com-
plexity Library) popularized and implemented generalizations of DCMs for multiclass problems
(ORRIOLS-PUIG; MACIá; HO, 2010). Some limitations of the package were solved (LORENA
et al., 2019), and they were standardized and implemented in a revised R package called ECoL
(Extended Complexity Library) (GARCIA; LORENA, 2018). They were then adapted for the
imbalance problem by decomposing the DCMs for each class separately (BARELLA et al.,
2020), which we call here the decomposed DCMs.

The measures can be classified into three different categories: overlapping, neighborhood,
and linearity. These categories are described below. For more details of the measures mentioned
below, check (LORENA et al., 2019) for the DCMs and (BARELLA et al., 2020; BARELLA et

al., 2018) for the decomposed DCMs. We also considered a geometric mean of the decomposed
measures (BARELLA; GARCIA; CARVALHO, 2019).
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• Feature overlapping measures

The feature overlapping measures assess the discrimination power of the predictive at-
tributes. Most of them evaluate the features individually and the feature that discriminate
the most is selected, while others use a combination of the individual feature assessments.
The overlapping DCMs considered in this article are F1, F2, F3, and F4. The decomposed
DCMs are the decomposed versions of F2, F3, and F4.

• Neighborhood measures

The neighborhood measures use the concept of Nearest Neighbor (NN) to assess classifi-
cation difficulty. They use the distance between instances to assess, for example, the shape
of decision boundaries and class distributions. This paper considered the measures N1, N2,
N3, N4, T1, and their decomposed versions.

• Linear Separability Measures

These measures assess whether the classes can be linearly separable in the attribute space.
They assume that a classification problem solved with a hyperplane is simpler than another
with a non-linear boundary. The measures from this category considered in this article are
L1, L2, L3, and their decomposed versions.

In this paper, we used these DCMs as meta-features in an MtL system, and we performed
a time analysis. We also performed a meta-feature importance analysis.

Although the DCMs showed to be useful for different applications, their computational
cost might prevent them from being used in time-restricted applications. For such applica-
tions, estimations of the measures can be used (GARCIA et al., 2020; BARELLA; GARCIA;
CARVALHO, 2020). For this paper, we applied the precise calculation of the DCMs

5.2.3 Techniques for imbalanced datasets

The techniques for imbalanced learning are usually separated into two main general
approaches: (1) pre-processing the data in order to make it more balanced (CHAWLA et al., 2002;
HAN; WANG; MAO, 2005; HE et al., 2008; JO; JAPKOWICZ, 2004; KUBAT; MATWIN et al.,
1997); and (2) development of algorithms in the classification step that are more tolerant and
robust to handle imbalanced data (WANG; YAO, 2009; VEROPOULOS et al., 1999; LIU; TING;
ZHOU, 2008). In this work, we built a MtL system able to recommend a pool of techniques,
including pre-processing and algorithm-level techniques. Next, we describe the techniques
considered here.

5.2.3.1 Pre-processing

Regarding the pre-processing techniques, the methods can be categorized into two groups:
undersampling and oversampling methods (FERNÁNDEZ et al., 2018). Undersampling methods
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make the data more balanced by removing instances of the majority class, while oversampling
methods add instances to the minority class (FERNÁNDEZ et al., 2018). Both undersampling
and oversampling can be performed randomly or according to an informed strategy.

In the random undersampling (RU), some majority class instances are removed at
random until a more balanced class distribution is reached (HE; GARCIA, 2008). In the random
oversampling (RO), some minority class instances are replicated at random until a more balanced
class distribution is reached (HE; GARCIA, 2008).

The Synthetic Minority Oversampling Technique (SMOTE) (CHAWLA et al., 2002)
generates artificial data by interpolation, as follows. At each iteration, SMOTE selects an instance
x at random in the minority class, and then it looks for the k NNs of x. SMOTE then selects
one of the neighbors z at random and creates a new instance, a combination of x and z. The
combination is an interpolation that randomly creates any possible point between x and z. This
step is repeated until a more balanced distribution of instances is reached.

The Borderline SMOTE (BSMOTE) is based on SMOTE, and it searches examples from
the decision boundaries (HAN; WANG; MAO, 2005). Thus, instead of interpolating minority
examples from the entire training set, it selects minority examples from the decision boundaries.
The method that BSMOTE uses to select the examples from the boundaries is: (1) find the k NN
for a minority example x; (2) count the number Nma j of neighbors that belongs to the majority
class; (3) if k

2 ≤ Nma j < k then x is put in a set called DANGER; (4) repeat the steps for all
minority examples. Next, SMOTE is run to balance the dataset, selecting only examples from
the DANGER subset.

The Adaptive Synthetic Sampling Approach (ADASYN) is also based on SMOTE, and it
addresses the number of examples to be interpolated considering each minority example (HE
et al., 2008). ADASYN follows the next steps: (1) first, it defines G, that indicates how many
examples should be interpolated for the entire minority class; (2) next, for each example in the
minority class, it calculates the percentage of majority examples in the k nearest neighbors; (3)
the set of all percentages (Γi, where i is the minority example) is normalized so that ∑Γi = 1;
finally, Γi×G gives the number of examples to be interpolated using SMOTE for each minority
example i.

5.2.3.2 Algorithm-level

While pre-processing techniques modify the data to improve the predictive performance
on imbalanced datasets, algorithm-level techniques modify the learning step itself. Here, we
considered three approaches: class weight, one-class learning, and ensemble.

Class weights are used during the models’ induction, usually to give different penalties for
the errors depending on the class. Each classification algorithm can be implemented in different
ways to take into consideration the class weights. In this paper, we consider two implementations
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considering class weights. The first is the SVM considering one loss function for each class,
attaching a different weight for each of them (VEROPOULOS et al., 1999). The second is the
Random Forest (RF) when the classes’ priors are given (BREIMAN, 2001). We did not tune
these hyper-parameters. Instead, we applied a rule of thumb where the weight for the majority
class is 1 and the weight for the minority class is Nma j

Nmin
, where Nma j is the number of majority

instances and Nmin is the number of minority instances in the training set.

One-class classification, also known as learning in the absence of counterexamples, is an
outlier identification approach used in imbalanced datasets (FERNÁNDEZ et al., 2018). In this
approach, a model can be induced to identify the majority class, which is the better-represented
class and outputs everything else as outliers. This technique is beneficial when the minority class
lacks structure, and noisy examples and small disjuncts compose it. In this paper, we considered
the one-class classification approaches based on SVM and RF, respectively, One-Class SVM
(SCHÖLKOPF et al., 2001) and Isolation Forest (LIU; TING; ZHOU, 2008).

Adaboost is a well known adaptative ensemble method that at each iteration favors the
instances misclassified by the previous classifiers (FREUND; SCHAPIRE, 1997). Adaboost can
mitigate the effects of imbalanced datasets, but other ensemble techniques, designed specifically
for imbalanced data, include a pre-processing step. In this paper, we considered the combination
of RU and SMOTE with Bagging and Boosting, which are Under Bagging (BARANDELA;
VALDOVINOS; SÁNCHEZ, 2003), SMOTE Bagging (WANG; YAO, 2009), Under Boosting
(SEIFFERT et al., 2009), and SMOTE Boosting (CHAWLA et al., 2003).

5.2.4 Meta-learning to recommend techniques for imbalanced datasets

Several techniques to mitigate the effect of imbalanced classes on classification tasks
were proposed. None of them works for all cases, which leads interest to a recommendation
system capable of selecting a technique for a specific dataset. Next, we present the state-of-art of
the MtL system to recommend techniques for imbalanced datasets. We detail the main differences
between our work and the state-of-art, and also show a general comparison of them on Table 21.

To the best of our knowledge, (MORAIS; MIRANDA; SILVA, 2016) proposed the first
MtL approach to recommend undersampling techniques. They investigated the recommendation
of hyper-parameters for those techniques. They only considered SVM as the classification
algorithm and undersampling techniques. The meta-learner was based on KNN and in only 29
datasets. In our work, we considered a larger number of datasets, a larger pool of classification
algorithms, and techniques for imbalanced datasets, as well as more regression algorithms for
the meta-models.

(SMOLYAKOV et al., 2019) evaluated a MtL approach to suggest both over and under-
sampling on approximately 100 real datasets. Although their approach had a remarkable perfor-
mance on artificial datasets, they did not achieve the same results in real datasets. They suggested
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that increasing the datasets’ diversity and the quality of the meta-features might improve the
performance of the MtL. In our work, we considered more datasets and more meta-features.

(BORSOS; LEMNARU; POTOLEA, 2018) investigated a new measure to assess over-
lapping in imbalanced datasets and applied it as a meta-feature on an MtL system to suggest
classification algorithms. Although the results are compelling, they used datasets from the KEEL
repository, a binary decomposition of multiclass datasets. In this repository, one multiclass
dataset could be decomposed into several binary datasets. For example, the Glass dataset was
decomposed into 13 datasets. In that case, during the evaluation of the MtL system using a
random cross-validation approach, the training datasets must contain information about the
testing datasets. To properly evaluate an MtL system, it is advisable not to include information
about training datasets in testing datasets. To avoid impairing the proper evaluation of the MtL
system, we manually removed datasets explicitly from the same context. As future work, the
overlapping measure proposed by them should be considered as a meta-feature.

(COSTA et al., 2020) analyzed the relation between meta-features and whether or not
it is beneficial to apply a particular pre-processing technique. Although they found interesting
relations, the analysis could have been improved by using the decomposed DCMs. They also
focused on pre-processing techniques, not considering algorithm-level approaches.

Table 21 compares the general characteristics of this work and the works aforementioned.
Each line represents a characteristic, including the reference, year of publication, number of real
datasets used in the experiments, presence of pre-processing techniques for imbalanced datasets,
presence of algorithmic-level techniques for imbalanced datasets, classification algorithms used,
quantity of traditional meta-features considered, quantity of DCMs considered as meta-features,
quantity of measures specifically designed for imbalanced datasets considered as meta-features.
Each column represents a different paper, including this work. They show recent interest in
the scientific community in applying MtL to recommend techniques for imbalanced datasets.
Differently from what has been done, we recommended both pre-processing and algorithm-level
approaches. We also considered a set of meta-features explicitly designed for the imbalance
problem, and we show their relevance in the meta-models induced.

5.3 Materials and Methods
The purpose of this study is to answer the following questions:

1. Can meta-regressors predict the performance of pre-processing and algorithmic approaches
for imbalanced datasets?

2. Does a meta-learning approach recommend both pre-processing and algorithm-level
approaches for imbalanced datasets better than the baselines?

3. Were the decomposed DCMs important meta-features for the meta-models?
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4. Is the meta-learning approach time efficient in comparison with performing a brute force
approach?

Table 21 – Comparison of the state-of-art on MtL for imabalnced datasets and this work

Year 2016 2017 2018 2020 2021 (this paper)
Number of

datasets 29 100 66 163 162

Pre-proc.
techinques Yes Yes Yes Yes Yes

Alg.-level
techinques No No No No Yes

Classification
algorithms SVM

Adaboost
with DT SVM, DT SVM

SVM, RF,
KNN, NB,
DT, MLP,
JRip, Adaboost

Traditional
meta-features Some Some Some Several Several

Traditional
DCMs None None One None Several

Meta-features for
imbalanced

datasets
None None One None Several

In order to answer them, a MtL system was implemented to predict a wide range of
techniques for imbalanced datasets, including pre-processing and algorithm-level approaches.
The system was compared to baselines on a meta-level, a base level, and time elapsed analyses.
A meta-feature importance analysis was also performed.

First, for each training dataset, the meta-features were extracted, and the gmean perfor-
mance of each technique was repeatedly calculated and averaged considering 10 times 5-fold
cross-validation. The meta-datasets were formed by combining all training datasets as instances,
the meta-features as predictive attributes, and the gmean performances as target values. Therefore,
one meta-dataset was built for each technique. Then, for each meta-dataset, a meta-regressor was
induced to predict the performance of that technique. The meta-features of a separated testing
dataset were extracted and given to each meta-regressor as input. Finally, the predictions of the
meta-regressors were ranked and a list of the best techniques was returned as output from the
system. Figure 22 represents the steps described.

In order to evaluate the system, 162 datasets were collected from OpenML. Duplicated
datasets and versions from the same datasets were manually identified and removed. A leave-
one-out strategy was applied to define the training and testing datasets. The meta-features
considered were all the ones described in section 5.2.2, available in the R pacakges mfe3, ECoL4

3 https://github.com/rivolli/mfe
4 https://github.com/lpfgarcia/ECoL
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Figure 22 – Representation of the implemented meta-learning system
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Source: Elaborated by the author.

and ImbCoL5. The techniques considered were all the ones described in section 5.2.3, and
summarized in Table 22. For each technique, a set of classification algorithms was applied, and
all possible combinations summed 110 possible recommendations. Each combination’s gmean
performance was turned into a target value on a meta-dataset, a total of 110 meta-datasets. The
meta-regressors were induced by DWNN, LASSO, RF, and SVR regression algorithms. As a
baseline approach, the medians of the target values were predicted, ignoring the meta-features.

We opted to deal with the MtL task by combining a meta-regression approach with a
ranking approach. Although a meta-classification task would be more straightforward, some
tricky decisions would be necessary, such as choosing the best method for each dataset even when
there is no clear winner. We remove this decision by considering a meta-regression approach,
which facilitates the system to recommend a method with similar performance to the best
performance achieved.

5.4 Results and Discussion

In this section, we evaluate the Mtl approach to recommending different techniques
for imbalanced datasets. Generally speaking, we show that the meta-regressors’ error is lower
than the baseline in most cases in a meta-level analysis. Moreover, we show in a base-level
analysis that the recommendations provided by the MtL system perform considerably better than
the ones recommended by the baseline as the list of recommended techniques becomes larger.
For two regression algorithms, we provide an analysis of the most important meta-features in
which the decomposed DCMs are particularly positioned at the top of the meta-features ranking.
Furthermore, we show that the system’s application has a lower computational cost for the
datasets with lower dimensionality.

5 https://github.com/victorhb/ImbCoL
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Table 22 – Description of the imbalance treatment techniques used

Name Pre-
processing

Algorithmic
level

Classification
Algorithms

Random
Undersampling X

SVM, RF, KNN, NB,
DT, MLP, JRip

Random
Oversampling X

SVM, RF, KNN, NB,
DT, MLP, JRip

SMOTE X
SVM, RF, KNN, NB,

DT, MLP, JRip

Borderline SMOTE X
SVM, RF, KNN, NB,

DT, MLP, JRip

ADASYN X
SVM, RF, KNN, NB,

DT, MLP, JRip
Class weight X SVM, RF

One class
classification X SVM, RF

AdaBoost X SVM, DT
UnderBagging X X SVM, DT

SMOTE Bagging X X SVM, DT
UnderBoosting X X SVM, DT

SMOTE Boosting X X SVM, DT

5.4.1 Meta-level analysis

We evaluated each individual meta-regressor according to two analyses, presented in
Figure 23. The x-axis represents the regression algorithm used to induce each meta-regressor
and the median as the baseline. Instead of using a regressor to predict a method’s performance,
the median approach takes the median value of performances in the training set as the prediction.
In the meta-level analysis, the median approach is a baseline that represents the expected
performance of each technique independently of the datasets’ characteristics. That means that an
informed system recommending based on datasets’ characteristics must perform better than the
median approach to justify its computational cost. The colors represent the datasets’ imbalance
level, where high imbalance corresponds to less than 25% of minority class instances in the
dataset, and low imbalance corresponds to more than 25% instances of the minority class.
Each boxplot represents the error of each meta-regressor on each dataset under a leave-one-out
evaluation. In other words, each pair of boxplots shows 110 methods × 162 datasets = 17,820

different values.

Figure 23a shows the mean squared error (MSE) prediction on the y-axis. RF was the
best regressor algorithm of all. The performance of SVR was similar to the baseline. DWNN,
RF, and LASSO showed lower MSEs compared to the baseline.

The relative error of the meta-regressors compared to the median method is shown on the
y-axis in Figure 23b. Thus, the relative error is the fraction of the meta-regressor error over the
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median approach error. Values greater than 1 mean the median approach performed better than
the meta-regressor, and values lower than 1 mean the meta-regressor performed better. DWNN,
RF, and LASSO performed substantially better than the median approach for most cases, while
SVR performed similarly in the median.

Figure 23 – Meta-level analysis of the meta-regressors
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5.4.2 Base-level analysis

The base-level analysis considers the error of the techniques suggested by the MtL
system. Figure 24 shows the results for the base-level analysis. The x-axis represents the
recommendation approach, whether using meta-regressors or the median approach. On the
y-axis, we show the difference between the upperbound baseline performance, which is the
best performance achieved for each dataset on the experiments, and the recommended method’s
performance. Each panel represents a different number of recommended methods, where 1 means
that the approaches recommended only the method with the highest predicted performance, 3
means the approaches recommended the top 3 methods with the highest predicted performance,
etc. Independently of the number of recommended methods, only the best performance among
the recommended is shown in the figure. As the number of recommended methods increased,
the error of all approaches decreased. The MtL approaches performed better than the median
approach, especially for the datasets with a high imbalance level, when recommending more
methods. N.B., when recommending only one method, the meta-regressors’ error is frequently
similar to the error of the median. It seems that due to the large number of possible methods, it is
advisable to allow the system to suggest more methods to find an adequate one.
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Figure 24 – Base-level analysis
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5.4.3 Meta-feature importance analysis

We also investigated what meta-features are relevant to the meta-regressors. RF and
LASSO allow a better interpretation of the features used. We are interested in investigating the
relevance of the decomposed DCMs, which we previously proposed and investigated.

Figure 25 shows the feature importance for RF. On the x-axis, the 30 meta-features
with the highest values of importance are shown. Axis-y shows the percentage of increment
of MSE when that feature is not used. The orange boxplots show the meta-feature previously
proposed by us, named as decomposed DCMs, the blue boxplots show the original DCMs,
and the white boxplots show the traditional meta-features. The three most relevant features are
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decomposed DCMs. Although the decomposed DCMs represented only 12% of all meta-features,
they represented 47% of the top meta-features shown in the figure. The results are in accordance
with previous publications, where we showed the same decomposed DCMs as the most correlated
with the class imbalance problem (BARELLA et al., 2018).

The most important meta-features are based on N1 and N3. The former builds a Minimum
Spanning Tree of the dataset and measures the proportion of examples from different classes
that are connected. The latter uses a nearest neighbour approach to measure how difficult it is to
learn from this training set.

Figure 25 – Random Forest feature importance analysis
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Figure 26 shows the feature importance analysis for LASSO. On the x-axis, we show
the meta-features, and on the y-axis, the feature importance for the LASSO algorithm. Since
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LASSO computes a linear combination of the features, values greater and lower than 0 are evenly
important, while values close to 0 represent negligible importance. For LASSO’s models, one
decomposed DCM, which is N1.gmean, was by far the most important meta-feature, while the
others had importance virtually zero. The same one was also the most important to RF. It is
important to stress that although LASSO’s models seem less complex, they performed worse in
comparison with RF.

Figure 26 – LASSO feature importance analysis
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5.4.4 Time analysis

Figure 27 shows the relation between calculating all meta-features and calculating all
the performances of the classifiers using the methods considered. For most of the datasets, it is
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faster to calculate the meta-features than the classifiers’ performances. For some more complex
datasets, the meta-features are more time-consuming. This resulted from the computational
cost for some of the DCMs and decomposed DCMs that are high depending on the dataset’s
size. Meta-features are planned to be fast and roughly capture characteristics of the datasets,
while data complexity measures are planned to precisely assess a characteristic’s complexity.
Therefore, to use data complexity measures as meta-features may require some adaptations to
reduce computational cost/time for large datasets. One way to overcome this is by estimating the
value of the DCMs and the decomposed DCMs (BARELLA; GARCIA; CARVALHO, 2020).

Figure 27 – Time elapsed on calculating the meta-features vs time elapsed on inducing all classifiers.
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5.5 Conclusions
In this work, we investigated a system to recommend a large and diverse group of

techniques for imbalanced datasets. The system had a low error rate in terms of suggesting the
techniques as the number of recommendations increased. Our results have shown that the MtL
approach can suggest techniques with different biases. In addition, decomposed DCMs play a
significant role as meta-features as they are the most important ones in the system.

Although other works have addressed the problem of recommending techniques for
imbalanced datasets using MtL, to the best of our knowledge, no work has approached both
pre-processing and algorithm-level techniques simultaneously. The use of the decomposed DCMs
as meta-feature is also a novelty of our work.
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Our results are encouraging, and more and more complex datasets should be incorporated
into the system. The computational cost of calculating the DCMs and the decomposed DCMs may
become a problem in larger datasets. Future work should focus on reducing the computational
cost of those measures maintaining their efficacy.

This approach has potential in areas such as recommendation systems, MtL, and end-
to-end machine learning. It could also be used by any data scientist dealing with imbalanced
datasets as a recommendation system for techniques.
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Abstract

Classification tasks using imbalanced datasets are not challenging on their own. Classifi-
cation models perform poorly on the minority class when the datasets present other difficulties,
such as class overlap and complex decision border. Data complexity measures can identify such
difficulties, better dealing with imbalanced datasets. They can capture information about data
overlapping, neighborhood, and linearity. Even though they were recently decomposed by classes
to deal with imbalanced datasets, their high computational cost prevents their use on applications
with a time restriction, such as recommendation systems or high dimensional datasets. In this
paper, we use a Meta-Learning approach to estimate the decomposed data complexity measures.
We show that the simulated measures assess the difficulty of the dataset after applying prepro-
cessing techniques to different sample sizes. We also show that this approach is significantly
faster than computing the original measures, with a statistically similar estimation error for both
classes.
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6.1 Introduction

In Machine Learning (ML), standard classification algorithms tend to perform poorly on
classes less represented on the training set. This problem is called the imbalanced data problem
(FERNáNDEZ et al., 2018). Several approaches have been proposed in the literature to mitigate
the effects of such problem, some concerning preprocessing the training data to make it more
balanced, others adapting standard classification algorithms to consider the imbalance on the
learning or prediction steps, and others may combine both strategies (CHAWLA et al., 2002;
HE et al., 2008; GONZALEZ-ABRIL et al., 2014; CANO; ZAFRA; VENTURA, 2013). No
technique performs well in all datasets, and their performance will depend on each dataset
characteristics.

Data Complexity Measures (CMs) were proposed to assess dataset characteristics, such
as data overlapping, neighborhood, linearity, and decision border complexity (HO; BASU, 2002;
LORENA et al., 2019). Their adaptations for imbalanced datasets are useful for understanding
the imbalance problem and the techniques in the literature, as they correlate with the difficulty
in imbalanced datasets and sampling sizes of preprocessing techniques (BARELLA et al.,
2018; BARELLA; GARCIA; CARVALHO, 2019). One disadvantage is that they have a high
computational cost, making them unappropriated in approaches with time restrictions such as
Meta-Learning (MtL), genetic algorithms, and iterative ones.

To overcome this challenge, we propose a MtL approach to estimate the data CM for
imbalanced datasets. A MtL approach learns from previous experiences, considering, for example,
previous applications of techniques on different datasets (SMITH-MILES, 2008; BRAZDIL et

al., 2009). A meta-dataset is usually created, in which each meta-instance represents a dataset,
and each meta-feature represents a dataset characteristic. The approach recommends the target-
feature, which can be algorithms, their performance, or a ranking of algorithms (MUÑOZ et

al., 2018). A MtL approach can induce a model to predict the performance of a technique on a
dataset based on the dataset characteristics by using a meta-dataset.

In this work, we show that a MtL approach can estimate the CMs with a small predictive
error for imbalanced datasets using regressor techniques and standard meta-features. This
evaluation considers the CM for both classes, the positive (P) and negative (N). We also show
that our approach has a low computational cost, which is faster than calculating the original CMs.
We show that the simulated measures are as useful as the original ones on an analysis with real
datasets and preprocessing techniques on different balance ratios. We also make available the
models in an R package called SImbCoL1.

This paper is separated into five sections. Section 6.2 describes the CMs used to estimate
the difficulty of each class separately. Moreover, we present the main concepts about MtL and
describe the standard meta-features used to predict CMs values. Next, Section 6.3 presents the

1 https://github.com/victorhb/SImbCoL
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experimental setups designed in this work. The experimental results are shown and discussed in
Section 6.4. Section 6.5 concludes this paper with contributions, limitations and future works.

6.2 Background

This section presents the background information to describe the proposed approach:
Section 6.2.1 describe the main concepts regarding data CMs and Section 6.2.2 introduces
the MtL framework, including the process of building a meta-dataset and how to recommend
algorithms.

6.2.1 Data Complexity Measures

The CMs were proposed to assess the difficulty in a training set (HO; BASU, 2002). They
were extended by many studies (HO; BASU; LAW, 2006; ORRIOLS-PUIG; MACIá; HO, 2010;
LORENA; de Souto, 2015; LORENA et al., 2019). A package called DCoL (Data Complexity
Library) popularized and proposed generalizations of CMs for multiclass problems (ORRIOLS-
PUIG; MACIá; HO, 2010). Some limitations of the package were solved (LORENA et al., 2019),
and they were standardized and implemented in a revised R package called ECoL (Extended
Complexity Library) (GARCIA; LORENA, 2018). They were adapted for the imbalance problem
by a decomposition strategy measuring the CM for each class separately (BARELLA et al.,
2018).

The measures can be classified into three different categories: overlapping, neighborhood,
and linearity. Such categories are described below.

6.2.1.1 Feature overlapping measures

The feature overlapping measures assess the discrimination power of the predictive
attributes. Most of them evaluate the features individually and the most discriminate feature is
selected, while others use a combination of the individual feature assessments. The overlapping
measures considered in this article are F2, F3, and F4.

• F2: Volume of overlap region. F2 computes the volume of the classes’ overlapping region
using the minimum and maximum values of each input attribute per class. If the attribute
ranges overlap in a certain region, this region is considered ambiguous for the attribute.
Next, a product of the normalized size of the ambiguous regions for all attributes is output.
For example, suppose an attribute with values for class 1 between 0 and 1, and the values
for class 2 between 0.75 and 1.25. Taking the previous example, F2 for class 1 would be
0.25

1 = 0.25 and F2 for class 2 would be 0.25
0.5 = 0.5.
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• F3: Feature efficiency. In F3, one feature is considered efficient, depending on how many
examples are not in an ambiguous region. For each attribute, the number of examples
from the class of interest out of the ambiguous region is divided by the total number of
examples from the class of interest. Then, the maximum of such values among all the input
attributes is calculated, which corresponds to the attribute that separates better. F3 is 1−
the maximum value calculated.

• F4: Collective feature efficiency. F4 uses the main concept of F3, but instead of getting
the maximum value from all attributes, it combines their discrimination power. First, the
most discriminative attribute, according to F3, is found; next, the examples correctly
separated by that attribute are removed. The previous steps are repeated until all examples
are correctly discriminated or until all attributes are removed. F4 is the proportion of
examples not discriminated at the end of the process.

6.2.1.2 Neighborhood measures

The neighborhood measures use the concept of Nearest Neighbor (NN) to assess classifi-
cation difficulty. They use the distance between instances to assess, for example, the shape of
decision boundaries and class distributions. In this paper, we considered the measures N1, N2,
N3, N4, and T1.

• N1: The fraction of points on the class boundary. N1 builds a minimum spanning tree
(MST) that connects all the examples from a dataset based on their distances, despite their
classes. Next, it counts the number of examples connected to at least one example from
another class. Those examples are considered borderline. The fraction of the number of
borderline examples for each class over the size of each class is the final decomposed N1
measure.

• N2: The ratio of average intra/inter class NN distance. N2 compares the intraclass
and interclass dispersions of the classes. For each example, its distance from the NN of
the same class (intraclass) and its distance to the NN of a different class (interclass) are
computed. Decomposed N2 is the ratio of the average of the intraclass distances for each
class and the average of the interclass distances for each class.

• N3: Leave-one-out error rate of the 1NN classifier. N3 gives the leave-one-out training
error of a nearest-neighbor classifier, which is easy to be calculated and is a good indicator
of the separability of the classes. The decomposed N3 is the error rate per class.
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• N4: Nonlinearity of a 1-NN classifier. N4 uses a method that creates a new test set by
interpolating two randomly selected examples from the same class multiple times. Then an
NN classifier using the training set is used to predict the labels of the examples in the in-
terpolated test set. Decomposed N4 gives the error rate per class achieved in this procedure.

• T1: Fraction of maximum covering spheres. T1 tries to explain the training set with
hyper-spheres. Suppose that every example in the training set has a hypersphere with
radius zero. If we gradually increase the radius of all hyperspheres, some will touch a
hypersphere from a different class. When that happens, both hyperspheres stop growing.
The method stops when there is no more growing hypersphere. The hyperspheres that are
contained in another hypersphere are discarded. Decomposed T1 is the ratio between the
number of remaining hyperspheres for each class and the number of examples in each
class.

6.2.1.3 Linear Separability Measures

These measures assess whether the classes can be linearly separable in the attribute space.
They assume that a classification problem solved with a hyperplane is simpler than another with
a non-linear boundary. The measures from this category considered in this article are L1, L2,
and L3.

• L1: The minimized sum of error distance of a linear classifier. In L1, one linear model
(e.g., a linear SVM) is built using the training dataset and calculating the distances of erro-
neous instances to the obtained hyperplane. Decomposed L1 is the sum of these distances
per class. L1 is equal to 0 for linearly separable problems.

• L2: The training error of a linear classifier. Decomposed L2 is the training error of a
linear classifier per class. Higher values are expected for non-linear separable classes.

• L3: Nonlinearity of the linear classifier. L3 is based on the same method of N4. A test
set is interpolated, and instead of an NN classifier, N3 uses a linear classifier to predict the
labels of the examples from the test set.

Although the data CMs showed to be useful for different applications, their computational
cost may prevent them from being used on applications that have time restriction. To overcome
this, we suggest in this paper to estimate them using a MtL approach.



122 Chapter 6. Simulating Complexity Measures on Imbalanced Datasets

6.2.2 Meta-learning

Rice, J. (1976) (RICE, 1976) initially addressed the algorithm selection problem. In this
study, the author proposed an abstract model to systematize the algorithm selection problem to
predict the best algorithm when more than one algorithm is available. The main components
in this model are the problem instances space (P) composed by datasets, the instance features
space (F) based on the meta-features used to describe the datasets, the algorithms space (A) with
the pool of ML algorithms that might be recommended, and the evaluation measures space (Y )
responsible for assessing the performance of the ML algorithms in solving the problem instances
contained in P. By using the previous sets, the MtL system can obtain an algorithm able to map
a dataset x, described by the meta-features f , into one (or more) algorithm α able to solve the
problem with an acceptable predictive performance according to Y , i.e., with maximum y(α(x))

Smith-Miles, K. (2008) (SMITH-MILES, 2008) improved this abstract model by propos-
ing generalizations that can also be applied to the algorithm design problem. In this proposal,
some components are added: the set of MtL algorithms; the generation of empirical rules or
algorithm rankings; the examination of the empirical results, which may guide theoretical support
to refine the algorithms.

One crucial component of the previous models is the definition of the set of standard
meta-features (F) used to describe the general properties of datasets. These meta-features must
be able to provide evidence about the future performance of the algorithms in A (SOARES;
PETRAK; BRAZDIL, 2001; REIF, 2012) and to discriminate, with a low computational cost,
the performance of a group of algorithms. (RIVOLLI et al., 2018) gathered the most used
meta-features in the literature. We consider such meta-features in this paper. Next, we describe
the essential categories of meta-features. For further information, please check (RIVOLLI et al.,
2018).

The main standard meta-features used in the MtL literature can be divided into:

• Simple: meta-features that are easily extracted from data (REIF et al., 2014), with low
computational cost (REIF, 2012). They are also named general measures (CASTIELLO;
CASTELLANO; FANELLI, 2005).

• Statistical: meta-features that capture statistical properties of the data (REIF et al., 2014),
mainly of localization and distribution, such as average, standard deviation, correlation,
and kurtosis. They can only characterize numerical attributes (CASTIELLO; CASTEL-
LANO; FANELLI, 2005).

• Information-theoretic: meta-features based on information theory (CASTIELLO; CASTEL-
LANO; FANELLI, 2005), usually entropy estimates (SEGRERA; PINHO; MORENO,
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2008), which capture the amount of information in (subsets of) a dataset (SMITH-MILES,
2008).

• Model-based: meta-features extracted from a model induced from the data (REIF et al.,
2014). They are often based on properties of decision tree (DT) models (BENSUSAN;
GIRAUD-CARRIER; KENNEDY, 2000; PENG et al., 2002), when they are referred to
as decision-tree-based meta-features (BENSUSAN; GIRAUD-CARRIER; KENNEDY,
2000).

• Landmarking: meta-features that use the performance of simple and fast learning algo-
rithms to characterize the datasets (SMITH-MILES, 2008). The algorithms must have
different biases and should capture relevant information with a low computational cost.

• Others: standalone, time-related, concept and case-based meta-features (VANSCHOREN
et al., 2012; MUÑOZ et al., 2018), clustering and distance-based measures (VUKICEVIC
et al., 2016; PIMENTEL; CARVALHO, 2019), among others. These describe characteris-
tics that do not fit in the other groups.

The definition of the set of problem instances (P) is another concern, when the ideal
would be to use a large number of diverse datasets, in order to induce a reliable meta-model. To
reduce the bias in this choice, datasets from several data repositories, like UCI2 (DUA; GRAFF,
2017) and OpenML3 (VANSCHOREN et al., 2013), can be used.

The algorithm space A represents a set of candidate algorithms to be recommended in the
algorithm selection process. Ideally, these algorithms should also be sufficiently different from
each other and represent all regions in the algorithm space (MUÑOZ et al., 2018). Different
measures can evaluate the models induced by the algorithms. For classification tasks, most of the
studies in the MtL use accuracy. However, other indices, like Fβ , AUC, and kappa coefficient,
can also be used. For regression problems, Mean Squared Error (MSE) or Root MSE (RMSE)
(or normalized versions of such measures) are usually employed.

After the extraction of the standard meta-features from the datasets and the evaluation
of the performance of a set of algorithms for these datasets, the next step is labeling each
meta-example in the meta-base. Brazdil et al. (BRAZDIL et al., 2009) summarize the three main
properties frequently used to label the meta-examples in MtL: (i) the algorithm that presented the
best performance on the dataset (a classification task); (ii) the ranking of the algorithms according
to their performance on the dataset (a ranking classification task), where the algorithm with

2 https://archive.ics.uci.edu/ml/index.php
3 http://www.openml.org/
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the best performance is top-ranked; and (iii) the performance value obtained by each evaluated
algorithm on the dataset (a regression task).

6.3 Methods

In this section, we describe the experimental setup performed in this paper. First, we
describe how the meta-dataset was built, second, we describe how we evaluated the MtL that
estimates the simulated CMs, and third, we explain the computational cost experiment to compare
the runtime execution between the groups of measures. Finally, we analyzed the simulated CM
on real datasets when preprocessing techniques are used to balance them.

6.3.1 The meta-dataset

We used 161 binary datasets, in which 41 datasets have less than 25% of minority class
instances, while the remaining 120 ones have more than 25% of minority class instances. We
call these two sets of datasets, respectively, the high imbalanced and the low imbalanced datasets.
Table 23 shows the number of examples, features, and percentage of minority class of all 161
datasets considered.

Table 23 – Characteristics of the datasets used to build the meta-dataset

Characteristic Min value Max value Mean value
Number of Instances 34 5,278 509
Number of Features 3 95 16

Percentage of minority class 4% 49% 33%

Both sets combined are used to build the meta-dataset. For each dataset, we extracted the
standard meta-features and the decomposed data CMs. The standard meta-feature set corresponds
to the meta-features of the meta-base, while the set of CMs corresponds to the target features.

6.3.2 The meta-learning

We used regressor models to predict the value of each decomposed CM, induced by
the Distance Weighted k-Nearest Neighbor (DWNN), Random Forest (RF) and Support Vector
Regressor (SVR). As baselines, we used the Random (RD) and Mean (DF) approaches. The
RD approach consists of selecting randomly one value for each CM using the training set. The
DF approach consists of using the mean value of each CM on the training set. We performed a
leave-one-out sampling to evaluate the strategies. We measured the error of the meta-regressor
using Mean Squared Error (MSE). We also analyzed the trade-off between the computational
cost of the standard meta-features, the original CMs, and the simulated CMs.
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6.3.3 Preprocessing techniques analysis

In order to evaluate whether the simulated CMs can be helpful in practical analysis,
we also performed an experiment using two traditional preprocessing techniques, Random
Undersampling (RU) and Synthetic Minority Over-sampling Technique (SMOTE) (CHAWLA
et al., 2002). We randomly selected 19 datasets with less than 25% of the minority class. For
each selected dataset, we applied the preprocessing techniques with different sample sizes, up to
100%, in which 0% represents that no instances were sampled and 100% represents a sampled
dataset with a proportion of 1 : 1 between the classes. Each selected dataset and its sampled
datasets versions are not used in the training phase. For each sampled dataset, we extracted the
standard meta-features, the CMs, and the simulated CMs, in which the latter has never seen this
dataset nor its original one. In that way, we can track the evolution of both CMs, as the sample
size increases. Figure 28 illustrates the experimental pipeline.

Figure 28 – Evaluation methodology used in the experiments.
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The 161 datasets were selected from the OpenML repository (VANSCHOREN et al.,
2013). They represent diverse context datasets, with binary classes and no missing values. The
standard meta-features were extracted using the mfe4 package, whereas the CMs were extracted
using the ImbCoL5 package. The simulated CMs are available in a R package called SImbCoL6.

6.4 Results and Discussion

In this paper, we show that a MtL approach is effective in simulating the CMs. For that,
first, we evaluated a MtL approach to predict the CMs based on simple and fast meta-features. We
show that our approach has a low error rate on estimating them, that it performs better than the

4 https://github.com/rivolli/mfe
5 https://github.com/victorhb/ImbCoL
6 https://github.com/victorhb/SImbCoL
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baselines. In order to prove the efficiency of that strategy, we also evaluate the time to simulate
the CMs. The results indicate that they are faster than the original ones for all datasets. The last
analysis shows that the simulated CMs are as helpful as the original ones when estimating the
difficulty after applying preprocessing techniques.

Figure 29 shows the MSE for each regression approach for high and low imbalanced
datasets. The x-axis shows the regressors, including the baselines in the shadowed area. The
y-axis shows the MSE. The colors represent whether the simulation error is related to the positive
(P) class, the minority class, or the negative (N), which is the majority class. On the right part of
the figure, the name of the CMs in question are displayed.

The MSE analysis indicates that the meta-regressors outperformed the baselines with
a better predictive performance for almost all cases. Even on F2 and T1, CMs that the MtL
regressors had the highest MSEs, the regressors performed better than the baselines. Compared to
the N class, the P class CMs tend to be more difficult to induce, especially on the high imbalanced
datasets. Besides, the regressors showed lower MSE for the low imbalanced datasets, compared
to those high imbalanced.

We performed a paired Friedman-Nemenyi statistical test with a confidence level of 95%.
The test confirmed that both DWNN and RF regressors performed better than the baselines and
SVR for almost all CMs. Also, the test showed that RF performed better than the DWNN on N2
and N3 CMs. For that reason, in the subsequent analysis, we only consider RF as meta-regressor.

Figure 30 shows a heatmap of the Pearson’s correlation between the original and sim-
ulated CMs using RF. Each column and row corresponds to the classes and the original CMs,
respectively. Each box is colored according to the correlation, from white (lowest correlation) to
gray (highest correlation). The correlation values are also shown inside the heatmap’s cells.

Most correlations are higher than 70%, and all presented a p-value lower than 0.05. N1
is the CM with the highest correlation for both classes, corroborating with the results on MSE.
Although the MSEs of the N class were lower than the P class, the mean values of correlations for
the P class is 0.83, and 0.79 for the N class. The linearity measures are responsible for bringing
down the mean correlations of the N class. Most of the original linearity CMs values for the N
class is grouped close to zero, which made their MSE estimation small but affected negatively
their correlation.

Figure 31 illustrates the feature importance of the RF meta-regressor through the increase
of MSE considering the top 30 meta-features. The x-axis represents the meta-features sorted,
and the y-axis shows the MSE generated by leaving out the meta-feature.

According to the results, the most important meta-features are based on statistical,
landmarking, information-theoretic, and model-based. The statistical meta-features are the
canonical correlation between the predictive attributes, and the class is present. From landmarking
measures, they are related to the performance of simple meta-models induced by the k-NN, the
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Figure 29 – MSE of the regressors, considering each CM for each class on different levels of imbalance.
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Figure 30 – The correlation between the original CM and the CM simulated by RF.
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Figure 31 – The feature importance of the meta-dataset using RF.
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DT algorithm, and the Naive Bayes. The information-theoretic measures highlighted are the
mutual information and the concentration coefficient for each pair of attributes. The model-based
measures are related to the proportion of training instances to the DT model leaf, the number
of nodes of the DT model per number of instances, and the number of nodes per attribute. We
observe that there is a difference between the feature importance for the P class and the N class.
The difficulty of the minority class is related to a group of meta-features that is, according to the
results, less relevant to the majority class’s difficulty.

Figure 32 compares the time to compute the standard meta-features, the original and
simulated CMs. The time is presented on a log-scale to improve visualization. Each point
represents a dataset, and those in the diagonal line indicate when the time is similar, the ones
above the main diagonal means that y-axis spent more time to be computed than the strategy
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from the x-axis, while values below that line indicate the opposite.

Figure 32 – Time elapsed to extract the standard meta-features, original and simulated CMs for each
dataset.

(a) Runtime of the standard meta-features and
the original CMs.
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(b) Runtime of the simulated and original CMs.
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Source: Barella, Garcia and Carvalho (2020).

In Figure 32a all datasets are above the main diagonal, meaning that, for all datasets,
calculating the original CMs took more time than extracting the standard meta-features. The
extraction of the standard meta-features is the most time-consuming process of simulating the
CMs after the models are built. In Figure 32b almost all datasets are above the main diagonal,
meaning that calculate the original CMs took more time than extracting the simulated CMs.
Thus, we show that a MtL approach using such meta-features is faster than calculating the CMs.

In Figure 33, we can see the mean values of the original and simulated CMs after applying
SMOTE and RU with various sample sizes. The selected measures are L2, N1 and N3, the most
imformative CMs (BARELLA; GARCIA; CARVALHO, 2019). The x-axis represents the sample
size from 10% to 100%, e.q. how balanced the dataset is, and the y-axis represents the mean
values of CMs. The figure shows the results for both classes, P and N, separately.

As the datasets get more balanced, the P class becomes less difficult, and the N class
usually gets more difficult. While SMOTE decreases more the complexity than RU in the P
class, RU tends to increase more the complexity of the N class. The main difference between
original and simulates CMs occurs for N3 measures after applying SMOTE. In all other cases, the
simulated CMs are similar to the original ones. Therefore, both original and simulated measures
follow this pattern, giving evidence that the simulated CMs are as useful as the original CM to
track data complexity when applying data balancing techniques.
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Figure 33 – Mean values of original CMs and simulated CMs after applying SMOTE and RU with various
sample sizes.
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6.5 Conclusions

Measuring data complexity is useful for several ML applications, such as supporting
the preprocessing techniques and estimating the expected difficulty of a classification problem.
Although CMs are very important in these areas, they have a high computational cost that may
prevent their popularization and efficient use. In this paper, we showed that a MtL approach
is faster and yet effective to simulate them. For that, meta-models were induced based on
standard meta-features, which have a lower computational cost. The main results indicate that
the simulated CMs can predict the original CMs with low error and can be obtained at a lower
computational cost. Moreover, the simulated CMs also tracks the data complexity when applying
preprocessing techniques.

Future work shall look to increase the simulated CMs performance for the minority class,
especially on the more imbalanced datasets. To improve the performance, we would like to
investigate other meta-features, optimize the simulated CMs, evaluate other MtL approaches such
as ranking, and investigate hyperparameter tuning for the classification algorithms. Additionally,
we only considered binary datasets in this study. Multi-class datasets are more challenging and
require further investigation.
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CHAPTER

7
CONCLUSION

The nature of learning from imbalanced datasets is diverse and strongly related to other
data intrinsic characteristics. For that reason, measuring class imbalance is not enough to explain
and understand the problems encountered when applying ML to such datasets, while popular
DCMs fail at this task. In this context, little attention has been paid to developing measures to
assess imbalanced datasets characteristics.

Although several techniques for imbalanced datasets were proposed in the literature,
no technique performs best in all classification tasks. This has recently lead the attention of
researchers to build recommendation systems for such techniques. To the best of our knowledge,
no work has approached recommending both pre-processing and algorithm-level techniques
before.

This thesis investigated DCMs for imbalanced datasets. Based on empirical studies on
artificial and real datasets, it can be concluded that the decomposed DCMs are useful in assessing
the difficulty in imbalanced datasets. It was presented evidence of the descriptive ability of the
decomposed DCMs, an example of an application using them as meta-features, and a way to
reduce their computational cost.

An MtL system to recommend pre-processing and algorithm-level techniques was imple-
mented. It used a set of well-known meta-features along with DCMs and decomposed DCMs.
It performed better than a baseline considering predictive error. Using the system also reduces
the computational cost compared to brutal force search in most cases. A faster estimation of the
DCMs may decrease the system’s computational cost, which was also addressed in this thesis.

7.1 Limitations and Future Work

Although the experiments were limited to small dimension datasets, it contained many
datasets from different and diverse contexts. Still, high dimensional datasets may pose a problem
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in measuring the data complexity regarding computational cost. For example, the computational
cost of measures based on NNs would increase intensely as the number of instances or features
increases. Although models to estimate the decomposed DCMs were successfully implemented,
further research is needed to determine if other solutions give more accurate results with lower
computational cost, for example, techniques for estimating NNs (LIU; MOORE; GRAY, 2006).

This research clearly illustrates the decomposed DCMs applied to binary classification
tasks, but it also raises questions about their use on multiclass ones. Some measures can not be
directly applied to multiclass datasets, and it is not clear whether a decomposition one versus
one or one versus all is the preferred approach. Still, the package we let available implements the
latter.

The implemented recommendation system approached a diverse set of techniques for
imbalanced datasets, but it did not recommend hyperparameters for any of the recommended
elements. Classification algorithms and techniques for imbalanced datasets may need hyperpa-
rameter tuning to induce a model better. This problem is addressed as future work.

7.2 Main Contributions

This thesis successfully answered its research question: “How to define measures able
to assess the complexity of imbalanced datasets and use these measures to recommend pre-
processing and algorithm-level techniques with a good predictive performance for imbalanced
datasets?”. During this research, several products were implemented to validate each specific
hypothesis. All of these products were made available in three ready-to-use packages. In summary,
the main contributions of this thesis are the following.

• A set of DCMs able to assess the difficulty of imbalanced datasets, even after applying
pre-processing techniques

• A package in R implementing the decomposed DCMs 1

• Evidence of the effectiveness of the decomposed DCMs as meta-features in an MtL system
to recommend pre-processing and algorithm-level techniques

• A package in R implementing the MtL system to recommend techniques 2

• A solution to the computational cost of the decomposed DCMs

• A package in R implementing the simulated decomposed DCMs 3

1 https://github.com/victorhb/ImbCoL
2 https://github.com/victorhb/recommimb
3 https://github.com/victorhb/SImbCoL
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Moreover, the following research papers were written. Papers not indicated as under

review or yet to be submitted are published.

• Barella, V. H., Garcia, L. P., de Souto, M. P., Lorena, A. C., & de Carvalho, A. (2018,
July). Data complexity measures for imbalanced classification tasks. In 2018 International
Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

• Barella, V., Garcia, L., & de Carvalho, A. (2019, October). The Influence of Sampling on
Imbalanced Data Classification. In 2019 8th Brazilian Conference on Intelligent Systems
(BRACIS) (pp. 210-215). IEEE.

• Barella, V. H., Garcia, L. P., & de Carvalho, A. C. (2020, October). Simulating Complexity
Measures on Imbalanced Datasets. In Brazilian Conference on Intelligent Systems (pp.
498-512). Springer, Cham.

• Barella, V. H., Garcia, L. P., de Souto, M. P., Lorena, A. C., & de Carvalho, A. Assessing
the Data Complexity of Imbalanced Datasets. Under review

• Barella, V. H., Japkowicz, N., Garcia, L. P., & de Carvalho, A. Recommending Techniques
for Imbalanced Datasets Using Meta-Learningand Data Complexity Measures. Yet to be

submitted

Based on the results, data science practitioners should consider measuring the data
complexity of imbalanced datasets, whether it is to interpret the data characteristics, select
techniques, or develop new ones.
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Table 24 – Information about the 102 datasets used in the experiment to evaluate the data complexity
measures

OpenML
ID

Number of
Instances

Number of
Features

% Minority
Class

OpenML
ID

Number of
Instances

Number of
Features

% Minority
Class

31 1000 21 30 927 42 17 40.48
43 306 4 26.47 928 46 5 45.65

444 132 4 46.21 931 662 4 47.43
463 180 33 13.89 934 1156 6 22.15
467 52 10 48.08 938 42 11 45.24
472 87 4 40.23 945 76 7 47.37
714 125 5 39.2 949 559 5 14.31
717 508 11 43.7 950 559 5 3.4
724 468 4 44.44 958 2310 20 14.29
729 44 4 38.64 962 2000 7 10
733 209 7 26.79 964 36 23 33.33
736 111 4 47.75 983 1473 10 42.7
747 167 5 22.75 987 500 24 16
748 163 6 28.83 988 67 16 38.81
753 194 33 46.39 991 1728 7 29.98
758 67 16 26.87 994 846 19 25.77
764 450 4 12.22 1009 63 32 39.68
767 475 4 12.84 1014 797 5 19.45
770 625 7 49.6 1016 990 14 9.09
772 2178 4 44.49 1020 2000 65 10
777 47 8 42.55 1025 400 6 22.5
778 252 15 49.21 1026 155 9 31.61
780 51 7 41.18 1045 145 95 5.52
782 120 3 47.5 1050 1563 38 10.24
785 45 47 48.89 1055 89 9 22.47
787 50 6 48 1061 107 30 18.69
790 55 3 43.64 1064 101 30 14.85
791 43 3 39.53 1066 145 95 41.38
800 74 28 41.89 1067 2109 22 15.46
801 185 4 47.03 1073 274 9 48.91
811 264 3 38.26 1075 130 9 8.46
818 310 9 46.77 1443 661 38 7.87
825 506 21 44.07 1444 1043 38 12.18
826 576 12 41.49 1446 296 38 12.84
827 662 4 49.7 1450 125 40 35.2
841 950 10 48.63 1451 705 38 8.65
848 38 6 26.32 1452 745 37 2.15
859 74 10 41.89 1462 1372 5 44.46
860 380 3 48.68 1464 748 5 23.8
875 100 4 19 1473 100 10 12
882 60 16 48.33 1487 2534 73 6.31
885 131 4 36.64 1488 195 23 24.62
890 108 8 29.63 1495 250 7 42.8
891 93 7 38.71 1504 1941 34 34.67
893 73 6 45.21 1506 470 17 14.89
895 222 3 39.64 1600 267 45 20.6
900 400 7 41.25 23499 277 10 29.24
907 400 8 48.5 40669 160 7 43.75
915 315 14 42.22 40705 959 45 36.08
921 132 4 34.85 40710 303 14 45.54
925 323 5 45.82 40981 690 15 44.49
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Table 25 – Information about the 102 datasets used in the experiment to evaluate the data complexity
measures

OpenML
ID

Number of
Instances

Number of
Features

% Minority
Class

OpenML
ID

Number of
Instances

Number of
Features

% Minority
Class

37 768 9 34.9 946 88 3 48.86
40 208 61 46.63 947 559 5 4.29
50 958 10 34.66 951 559 5 2.33
53 270 14 44.44 955 151 6 34.44
59 351 35 35.9 965 101 18 40.59

311 937 50 4.38 969 150 5 33.33
336 267 23 20.6 970 841 71 37.69
448 120 4 35 973 178 14 39.89
450 264 5 7.2 974 132 5 38.64
459 83 4 44.58 996 214 10 35.51
461 100 7 27 997 625 5 46.08
465 97 11 24.74 1004 600 62 16.67
479 92 11 20.65 1006 148 19 45.27
713 52 4 46.15 1011 336 8 42.56
719 137 8 31.39 1012 194 30 35.57
721 200 11 48.5 1013 138 3 6.52
731 96 5 48.96 1015 72 4 16.67
741 1024 3 49.71 1048 369 9 44.72
745 159 16 33.96 1054 161 40 32.3
750 500 8 49.2 1059 121 30 7.44
765 475 4 13.47 1060 63 30 12.7
771 108 5 44.44 1062 36 30 22.22
774 662 4 47.89 1063 522 22 20.5
788 186 61 41.4 1065 458 40 9.39
795 662 4 49.4 1071 403 38 7.69
796 209 8 25.36 1121 294 12 28.57
798 106 58 22.64 1167 320 9 33.44
804 70 8 48.57 1412 226 24 15.49
814 468 3 45.3 1441 123 40 13.01
815 52 10 46.15 1442 253 38 10.67
817 48 5 47.92 1447 327 38 12.84
820 235 13 39.57 1448 194 40 18.56
835 48 5 43.75 1449 253 38 10.67
836 34 9 44.12 1463 100 6 32
853 506 14 41.3 1467 540 21 8.52
857 40 8 35 1480 583 11 28.64
862 87 11 48.28 1490 182 13 28.57
864 60 8 45 1494 1055 42 33.74
865 100 4 7 1498 462 10 34.63
867 130 3 19.23 1510 569 31 37.26
874 50 6 42 1511 440 9 32.27
886 500 8 49.8 1524 310 7 32.26
887 61 3 47.54 1556 120 7 49.17
892 50 8 48 4329 470 17 14.89
902 147 7 46.94 40660 42 12 30.95
905 39 4 30.77 40680 1324 11 22.05
906 400 8 48.25 40683 88 9 27.27
908 400 8 48 40702 1066 11 17.07
909 400 8 49.25 40999 2351 47 44.02
941 189 10 47.62 41007 2352 47 40.35
942 50 5 48
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Figure 34 – Comparison of the characteristics of both groups of datasets
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