• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2012.tde-26072012-095418
Documento
Autor
Nome completo
Bao Yiqi
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2012
Orientador
Banca examinadora
Cancho, Vicente Garibay (Presidente)
Bolfarine, Heleno
Louzada Neto, Francisco
Título em português
Estimação e diagnóstico na disribuição Weibull-Binomial-Negativa em análise de sobrevivência
Palavras-chave em português
Análise de sobrevivência
Distribuição binomial negativa
Distribuição Weibull
Inferência bayesiana
Modelos de sobrevivência de fração de cura
Resumo em português
Neste trabalho propomos a distribuição Weibull-Binomial-Negativa (WBN) considerando uma estrutura de ativação latente para explicar a ocorrência do evento de interesse, em que o número de causas competitivas é modelado pela distribuição Binomial Negativa, e os tempos não observados devido às causas seguem a distribuição Weibull. Em geral, as causas competitivas podem ter diferentes mecanismos de ativação, sendo assim os casos de primeira ativação, última ativação e ativação aleatória foram considerados no estudo. Desse modo o modelo proposto inclui uma ampla distribuição, tais como Weibull-Geométrico (WG) e Exponencial-Poisson Complementar (EPC), introduzidas por Barreto-Souza et al. (2011) e G. et al. (2011), respectivamente. Baseando-nos na mesma estrutura, consideramos o modelo de regressão locação-escala baseado na distribuição proposta (WBN) e o modelo para dados de sobrevivência com fração de cura. Os principais objetivos deste trabalho é estudar as propriedades matemáticas dos modelos propostos e desenvolver procedimentos de inferências desde uma perspectiva clássica e Bayesiana. Além disso, as medidas de diagnóstico Bayesiana baseadas na 'psi'-divergência (Peng & Dey, 1995; Weiss, 1996), que inclui como caso particular a medida de divergência Kullback-Leibler (K-L), foram consideradas para detectar observações influentes
Título em inglês
Estimation and diagnosis for the Weibull-Negative-Binomial distribution in survival anaçysis
Palavras-chave em inglês
Bayesian inference
Negative binomial distribution
Survival analysis
Survival models with a cure fraction
Weibull distribution
Resumo em inglês
In this work we propose the Weibull-Negative-Binomial (WNB) considering a latent activation structure to explain the occurrence of an event of interest, where the number of competing causes are modeled by the Negative Binomial distribution and the no observed time due to the causes following the Weibull distribution. In general, the competitive causes may have different activation mechanisms, cases of first, last and random activation were considered in the study. Thus, the proposed model includes a wide distribution such as Weibull-Geometric distribution (WG) and Exponential-Poisson complementary (EPC) introduced by (Barreto-Souza et al., 2011) and (G. et al., 2011) respectively. Based on the same structure, we propose a location-scale regression model based on the proposed distribution (WNB) and the model for survival data with cure fraction. The main objectives of this work is to study the mathematical properties of the proposed models and develop procedures inferences from a classical and Bayesian perspective. Moreover, the Bayesian diagnostic measures based on the 'psi'-divergence (Peng & Dey, 1995; Weiss, 1996), which includes Kullback-Leibler (K-L) divergence measure as a particular case, were considered to detect influential observations
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
BaoYiqirev.pdf (1.66 Mbytes)
Data de Publicação
2012-07-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.