• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-26102018-123022
Document
Author
Full name
Henrico Bertini Brum
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2018
Supervisor
Committee
Nunes, Maria das Graças Volpe (President)
Fernandes, Eraldo Luís Rezende
Pardo, Thiago Alexandre Salgueiro
Silva, Nadia Felix Felipe da
Title in Portuguese
Expansão de recursos para análise de sentimentos usando aprendizado semi-supervisionado
Keywords in Portuguese
Análise de sentimentos
Anotação de córpus
Aprendizado semisupervisionado
Abstract in Portuguese
O grande volume de dados que temos disponíveis em ambientes virtuais pode ser excelente fonte de novos recursos para estudos em diversas tarefas de Processamento de Linguagem Natural, como a Análise de Sentimentos. Infelizmente é elevado o custo de anotação de novos córpus, que envolve desde investimentos financeiros até demorados processos de revisão. Nossa pesquisa propõe uma abordagem de anotação semissupervisionada, ou seja, anotação automática de um grande córpus não anotado partindo de um conjunto de dados anotados manualmente. Para tal, introduzimos o TweetSentBR, um córpus de tweets no domínio de programas televisivos que possui anotação em três classes e revisões parciais feitas por até sete anotadores. O córpus representa um importante recurso linguístico de português brasileiro, e fica entre os maiores córpus anotados na literatura para classificação de polaridades. Além da anotação manual do córpus, realizamos a implementação de um framework de aprendizado semissupervisionado que faz uso de dados anotados e, de maneira iterativa, expande o mesmo usando dados não anotados. O TweetSentBR, que possui 15:000 tweets anotados é assim expandido cerca de oito vezes. Para a expansão, foram treinados modelos de classificação usando seis classificadores de polaridades, assim como foram avaliados diferentes parâmetros e representações a fim de obter um córpus confiável. Realizamos experimentos gerando córpus expandidos por cada classificador, tanto para a classificação em três polaridades (positiva, neutra e negativa) quanto para classificação binária. Avaliamos os córpus gerados usando um conjunto de held-out e comparamos a FMeasure da classificação usando como treinamento os córpus anotados manualmente e semiautomaticamente. O córpus semissupervisionado que obteve os melhores resultados para a classificação em três polaridades atingiu 62;14% de F-Measure média, superando a média obtida com as avaliações no córpus anotado manualmente (61;02%). Na classificação binária, o melhor córpus expandido obteve 83;11% de F1-Measure média, superando a média obtida na avaliação do córpus anotado manualmente (79;80%). Além disso, simulamos nossa expansão em córpus anotados da literatura, medindo o quão corretas são as etiquetas anotadas semi-automaticamente. Nosso melhor resultado foi na expansão de um córpus de reviews de produtos que obteve FMeasure de 93;15% com dados binários. Por fim, comparamos um córpus da literatura obtido por meio de supervisão distante e nosso framework semissupervisionado superou o primeiro na classificação de polaridades binária em cross-domain.
Title in English
Extending sentiment analysis resources using semi-supervised learning
Keywords in English
Corpus annotation
Semi-supervised learning
Sentiment analysis
Abstract in English
The high volume of data available in the Internet can be a good resource for studies of several tasks in Natural Language Processing as in Sentiment Analysis. Unfortunately there is a high cost for the annotation of new corpora, involving financial support and long revision processes. Our work proposes an approach for semi-supervised labeling, an automatic annotation of a large unlabeled set of documents starting from a manually annotated corpus. In order to achieve that, we introduced TweetSentBR, a tweet corpora on TV show programs domain with annotation for 3-point (positive, neutral and negative) sentiment classification partially reviewed by up to seven annotators. The corpus is an important linguistic resource for Brazilian Portuguese language and it stands between the biggest annotated corpora for polarity classification. Beyond the manual annotation, we implemented a semi-supervised learning based framework that uses this labeled data and extends it using unlabeled data. TweetSentBR corpus, containing 15:000 documents, had its size augmented in eight times. For the extending process, we trained classification models using six polarity classifiers, evaluated different parameters and representation schemes in order to obtain the most reliable corpora. We ran experiments generating extended corpora for each classifier, both for 3-point and binary classification. We evaluated the generated corpora using a held-out subset and compared the obtained F-Measure values with the manually and the semi-supervised annotated corpora. The semi-supervised corpus that obtained the best values for 3-point classification achieved 62;14% on average F-Measure, overcoming the results obtained by the same classification with the manually annotated corpus (61;02%). On binary classification, the best extended corpus achieved 83;11% on average F-Measure, overcoming the results on the manually corpora (79;80%). Furthermore, we simulated the extension of labeled corpora in literature, measuring how well the semi-supervised annotation works. Our best results were in the extension of a product review corpora, achieving 93;15% on F1-Measure. Finally, we compared a literature corpus which was labeled by using distant supervision with our semi-supervised corpus, and this overcame the first in binary polarity classification on cross-domain data.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-10-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.