• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-26112018-152514
Document
Author
Full name
Cleonice Fatima Bracciali
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1991
Supervisor
Committee
Linhares, Odelar Leite (President)
Dias, Sandra Maria Venturelli Ferreira
Lopes, Vera Lucia da Rocha
Title in Portuguese
VERSÃO INTERVALAR DE MÉTODOS NUMÉRICOS PARA A SOLUÇÃO DO PROBLEMA DE AUTO-VALORES DE MATRIZES
Keywords in Portuguese
Não disponível
Abstract in Portuguese
O objetivo principal deste trabalho é apresentar e analisar métodos numéricos intervalares para a solução do problema de auto-valores de matrizes reais. Serão apresentados métodos intervalares para a limitação dos auto-valores e respectivos auto-valores de matrizes simétricas (Nickel, Zhiying), e desenvolvidas versões intervalares de métodos numéricos para a determinação do polinômio característico de matrizes ( Leverrier-Faddeev, Danilevsky), bem como de métodos numéricos iterativos clássicos (Rutishauser, Francis) para a solução do citado problema.
Title in English
Not available
Keywords in English
Not available
Abstract in English
The main purpose of this thesis is to introduce and analyse interval numerical methods for the solution of the eigenvalue problem of real matrices. Interval methods for bounding the eigenvalues and respective eigenvectors of symmetric matrices (Nickel, Zhiying) are presented. Interval versions of numerical method for determining the characteristic polinomial of matrices (Leverrier-Faddeev, Danielevsky), and those of some classical numerical methods (Rutishauser, Francis) to solve the above mentioned problem are also presented.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-11-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.