• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2011.tde-28072011-160306
Document
Auteur
Nom complet
Eduardo Alves Ferreira
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2011
Directeur
Jury
Mello, Rodrigo Fernandes de (Président)
Figueiredo, Mauricio Fernandes
Lopes, Alneu de Andrade
Titre en portugais
Detecção autônoma de intrusões utilizando aprendizado de máquina
Mots-clés en portugais
Detecção de intrusão
Resumé en portugais
A evolução da tecnologia da informação popularizou o uso de sistemas computacionais para a automação de tarefas operacionais. As tarefas de implantação e manutenção desses sistemas computacionais, por outro lado, não acompanharam essa tendência de forma ágil, tendo sido, por anos, efetuadas de forma manual, implicando alto custo, baixa produtividade e pouca qualidade de serviço. A fim de preencher essa lacuna foi proposta uma iniciativa denominada Computação Autônoma, a qual visa prover capacidade de autogerenciamento a sistemas computacionais. Dentre os aspectos necessários para a construção de um sistema autônomo está a detecção de intrusão, responsável por monitorar o funcionamento e fluxos de dados de sistemas em busca de indícios de operações maliciosas. Dado esse contexto, este trabalho apresenta um sistema autônomo de detecção de intrusões em aplicações Web, baseado em técnicas de aprendizado de máquina com complexidade computacional próxima de linear. Esse sistema utiliza técnicas de agrupamento de dados e de detecção de novidades para caracterizar o comportamento normal de uma aplicação, buscando posteriormente por anomalias no funcionamento das aplicações. Observou-se que a técnica é capaz de detectar ataques com maior autonomia e menor dependência sobre contextos específicos em relação a trabalhos anteriores
Titre en anglais
Autonomous intrusion detection via machine learning
Mots-clés en anglais
Intrusion detection
Resumé en anglais
The use of computers to automatically perform operational tasks is commonplace, thanks to the information technology evolution. The maintenance of computer systems, on the other hand, is commonly performed manually, resulting in high costs, low productivity and low quality of service. The Autonomous Computing initiative aims to approach this limitation, through selfmanagement of computer systems. In order to assemble a fully autonomous system, an intrusion detection application is needed to monitor the behavior and data flows on applications. Considering this context, an autonomous Web intrusion detection system is proposed, based on machine-learning techniques with near-linear computational complexity. This system is based on clustering and novelty detection techniques, characterizing an application behavior, to later pinpoint anomalies in live applications. By conducting experiments, we observed that this new approach is capable of detecting anomalies with less dependency on specific contexts than previous solutions
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
dissertacao_bw.pdf (724.17 Kbytes)
Date de Publication
2011-07-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.