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ABSTRACT

GENARI, J. Agent models for disease propagation. 2024. 127 p. Dissertação (Mestrado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

As we experienced a major pandemic the necessity of smart interventions became very clear, but
the decision for the best interventions to implement are usually based on educated guesses as
each disease behaves differently and the macro behavior of the population can be very difficult
to predict. Inappropriate interventions usually fail to consider heterogeneities in communities
and can put the most susceptible part of the population at risk. To help in the evaluation of
interventions, we developed highly modular and configurable software for stochastic agent model
simulations: COMORBUSS, a software where the population is constructed in an organic way.
Every person in the community is represented in the simulation and has an established routine,
some actions are fixed (such as the time when that person goes and comes back from work), and
some are randomly taken following probabilities to achieve a mean behavior. COMORBUSS can
also be expanded in functionally with modules using some simple interface methods implemented
in the main classes. With COMORBUSS and an airborne spread model for inside classrooms we
tested different strategies for the return of schools after the first wave of the Covid-19 pandemic
for the city of Maragogi-AL, in those simulations we arrived at the conclusion that for the
safe opening of schools during a pandemic appropriate NPIs and behavioral protocols must be
adopted, the vaccination of school teacher and other school staff is of paramount importance, as
those workers are not only more susceptible than students, but they are also the main vectors
of transmission. Uncontrolled school opening can be very dangerous as infection rates inside
schools can explode leading to a significant increase in cases in the community.

Keywords: agent models, disease simulation, dynamic populations, stochastic models.
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CHAPTER

1
INTRODUCTION

1.1 Motivation

Infectious diseases can spread explosively and be more damaging in communities where
they find that their transmission mechanics are compatible with the social structure and dynamics.
As an example, the different levels of the social integration of elders in Italian and German
families are often used to explain why this group had such different levels of mortality between
these two countries (MORFELD et al., 2021). In order to be effective, public health protocols
must identify the most vulnerable groups in a community and the critical infection routes
produced by that community structure and behavior, in order to change such elements in ways
that suppress the transmission chains.

Finding these optimal changes can also lead to smarter protocols that minimize the social
impact of the proposed interventions. However, this is also extremely challenging, and it is an
effort that needs to be made case by case, as one cannot assume that the optimal policy for city
A will be equally effective in city B. This is due to the extreme heterogeneity found between
communities. In many cases, even in the same city can have completely different population
densities, service infrastructures, and social behaviors. In a deeply unequal country as Brazil,
even two neighbors can live in completely different realities; just take a look at the city of Rio de
Janeiro for a classic example.

Although strict containment policies may be necessary (and sometimes even insufficient)
in some communities, the same results may be achieved through less restrictive and damaging
measures in smaller communities. Moreover, social and economic characteristics may lead to
structural vulnerabilities in some communities so that they are disproportionately affected by a
pandemic (COELHO et al., 2022). Clearly, one cannot expect long lockdowns to protect families
living in communities with high occupational density in their households, limited access to
protective equipment (and in many cases, even clean water and soap) and which have no option



20 Chapter 1. Introduction

but to carry on with jobs with high exposure due to financial and food insecurity.

In this perspective static social models might not achieve the most realistic picture. Every
individual may play multiple roles across different social contexts, and the simple routines
prescribed by each role of every person in the community mix together to form a large and
complex system. Such a system is also susceptible to change due to internal interaction as a
consequence of external interventions. Moreover, this system is reactive to the threats posed by
the public health crisis it is facing, and it has memory, with previous infections and interventions
interfering with present and future infection chains.

Many agent models for diseases use static contact networks (e.g. Kerr et al. (2020)),
usually derived from the contact matrices projected by Prem, Cook and Jit (2017). Such a strategy
can be highly efficient (in terms of computational cost and ease of modeling each new population)
but can also be limiting when evaluating interventions that can change the behavior of agents.
With a static contacts network such changes can only be modeled (in a very limited way) by
varying the weight of each edge in the network. It can also fail to capture the heterogeneities
of the population, usually disproportionally misrepresenting the most vulnerable part of the
population.

As computers grow more powerful, large stochastic agent simulations become possible.
In those simulations, the population behavior is modeled in an organic way where each particle
has a social role (a defined household, relatives, workplace, shopping habits, etc.) and each action
is taken or not depending on a predefined schedule and by a group of probabilities, mimicking as
closely as possible the human behavior. The intrinsic stochastic nature of such modeling requires
that for each population, the simulation must be run many times with different random seeds to
observe the mean behavior (and the possible extremes) for that population.

In this dissertation we will describe COMORBUSS, a bio-social agent model for the
study of disease propagation in a community and the evaluation of mitigation measures, and
some of its results. COMORBUSS is stochastic in its nature, dynamically generating contact
networks in each step of the simulation depending on the location of each particle at each
time. COMORBUSS is also highly modular, allowing new behaviors or even new infection
mechanisms to be relatively easily programmed and used in simulations (GENARI et al., 2022).

1.2 Research questions and the structure of this disserta-
tion

Throughout this text, we have taken on many questions regarding the advantages, limi-
tations, and applications of agent-based models in epidemiology. The main questions that are
addressed in this work are:

• What are the common features and history behind Agent-based models?
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• Can we identify and address limiting modeling choices and features in some of the most
interesting models for epidemiological applications?

• Can we tailor intervention policies during a pandemic to a particular community’s demog-
raphy and infrastructure in a systematic and transportable approach?

• How can we integrate epidemiological and social data not only to model heterogeneous
behavior that is aware of social context, but also to calibrate these more realistic models?

• Can we build an adaptable interface to our model in order to respond effectively to relevant
questions on intervention policy as they emerge in a pandemic (e.g., mix different infection
models or types of social contact mechanics)?

• How can thousands of simulations be organized and performed systematically as real-
izations of counterfactual scenarios in order to quantitatively evaluate the efficacy of
interventions in a practical setting?

In the first chapter of this dissertation we motivate the development of agents model and
describe Maragogi, and justify why it is our model city. In Chapter 2 we define agents-based
models, explore the history of such models, and evaluate four other models comparable to
our model and what distinguishes our own model. In Chapter 3 we explore in detail the inner
workings of the community model and the epidemiological model inside COMORBUSS and
how they interact to generate disease spread and the interventions implemented. In Chapter 4 we
describe how all the data necessary to run a community model were collected and processed to
be used in COMORBUSS. We show a real application of COMORBUSS in Chapter 5, where
we evaluate the impact of schools opening during a pandemic, and evaluate different scenarios to
mitigate this impact. And finally in Chapter 6 we discuss the results from the schools evaluation
and the potential impact and possible applications of models such as COMORBUSS.

1.3 Maragogi: our model city

The COVID-19 pandemic brought together policy makers, mathematicians, and epi-
demiologists in order to find effective interventions and minimize the damage of the pandemic.
Many of the interventions evaluated in this work were brought to our consideration by the
Mayor´s Office for the city of Maragogi (AL), with which we developed a very productive
partnership, coordinated by Professors Krerley Oliveira and Sérgio Lira (UFAL). It was thanks
to this collaboration that we were able to acquire much data on the city’s infrastructure, social
dynamics, and pandemic response, which allowed for detailed modeling. Moreover, we argue in
this section that Mararogi is a good representative of average municipalities in Brazil and that
the lessons learned from its modeling can be very valuable for the pandemic response in a large
number of cities in our country.
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Maragogi is located in the northeast of the state of Alagoas approximately 137 km from
the capital Maceió, see Figure 1.

Figure 1 – Maragogi location in Brazil. Left panel depicts 27 administrative divisions of Brazil, where
Alagoas state is highlighted in black. Right panel displays the city of Maragogi (in black)
inside Alagoas state.

Demographics. The national 2010 survey (IBGE. . . , 2021) estimated that Maragogi had
28749 inhabitants, see Table 1. Note that in 2010 the population was mostly composed of young
people (0 - 40 yo) and when compared to the current estimate, we observe a significant shift
toward the mid-age (29 - 69 yo).

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ Total
2010 6016 6694 5220 4160 2861 1850 1177 539 232 28749

(%) 20.93 23.28 18.16 14.47 9.95 6.44 4.09 1.87 0.81 100
2019 5542 6276 5967 4704 4102 2954 1933 1005 219 32702

(%) 16.95 19.20 18.25 14.39 12.54 9.04 5.91 3.07 0.67 100
Table 1 – Age pyramid of Maragogi. The age pyramid shown in the first row corresponds to the national

2010 survey (IBGE. . . , 2021) . In the second row, the age pyramid for 2019 is constructed
using two databases and corrected due to biases in the data (such as duplicate registers for same
individuals).

The national survey for 2019 estimated the population size in 32702 and 33351 in 2021
(IBGE. . . , 2021). To construct the age pyramid of Maragogi in 2019 we merged two databases.
For the interval 0-79 y we used the Programa da Saúde da Família (PSF) — public health
assistance program — summing over a total of 34598 inhabitants. For the 80 y - 100 + interval,
we imported individuals for each 5-year interval from the Maragogi age pyramid estimated in the
national 2019 survey (IBGE. . . , 2019), and the total number. We constructed the age pyramid of
Table 1 multiplying by the factor 32702/34598 that corresponds to the fraction between the total
population size estimated in 2019 and the population size from the PSF data.

Comparing with other Brazilian cities, the left panel of Figure 2 shows the population
size range between 10000 and 50000 inhabitants, which is the range corresponding to 44% of
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Brazilian cities, and encompasses the city of Maragogi located within it.
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Figure 2 – Maragogi-AL in comparison with Brazilian cities. Cumulative histogram of the total popula-
tion of Brazilian cities (left panel), GDP per capita (right panel) as a function of the proportion
of municipalities (IBGE. . . , 2010). The GDP per capita is conditioned on the group of Brazil-
ian cities between 10000 and 50000 inhabitants.

This range of cities between 10000 and 50000 inhabitants covers mainly cities that
share common characteristics in terms of social and epidemiological synergy: small population
size, low occupation density, and disease vectors such as public transport are not significant. In
addition, there is a small portion of vertical urbanization.

Table 2 contains the probabilities of symptomatic cases, severe cases, and deaths ag-
gregated by age group. Crossing those proportions with Maragogi’s age pyramid (Table 1)
we obtain an expected hospitalized/infected ratio of ph = 3.304% and a death/infected ratio
of pd = 0.441% in general. Figure 3 displays the age-based probabilities of death and hospi-
talization for COVID-19 (computed using the statistics in Table 2) calculated for Brazilian
cities.

Age 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+
psym 0.5 0.55 0.6 0.65 0.70 0.75 0.80 0.85 0.9
phosp 0.0001 0.0001 0.011 0.034 0.043 0.082 0.118 0.166 0.184
pdeath 0.00002 0.00006 0.0003 0.0008 0.0015 0.006 0.022 0.051 0.093

Table 2 – Age based probabilities for COVID-19.

To put the city of Maragogi into context worldwide, Figure 4 shows the cumulative
histogram of the total population from the simplemaps database containing 28372 and 41000
cities corresponding to US and world cities, respectively (UNITED. . . , 2021; WORLD. . . , 2021).
We observe that the city of Maragogi is above the center in both cases, suggesting that it is a
small urban area with an worldwide average population size (OECD. . . , 2020).

Economic aspects. If we narrow our analysis to this 10000 and 50000 inhabitants range,
center panel in Figure 2 shows that Maragogi had GDP per capita close to the median in 2010.
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Figure 3 – Age based probabilities of death and hospitalization for COVID-19 calculated for Brazil-
ian cities. Expected death (left panel) and hospitalization (right panel) probabilities for Brazil-
ian cities in the range 10000 and 50000 inhabitants. For hospitalization is assumed any
individual developing COVID-19 severe symptoms, see Table 2.
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Figure 4 – Maragogi-AL in comparison with cities in United States and World. The left panel displays
the cumulative histogram of the total population of US cities (UNITED. . . , 2021) and the
right panel displays World cities (WORLD. . . , 2021) as a function of the proportion of cities.
Dashed lines in black correspond to 10000 and 50000 inhabitants for reference while the
orange shows the Maragogi population.

To illustrate the distribution of socioeconomic activities in the city, see Figure 5, which shows
the economic value added in the last years.

The service sector is represented by a network of hotels and establishments that provide
accommodation for travelers. We discarded this hospitality service sector from our analysis
because most accommodation establishments were closed during the period of our analysis
(Strategic plan May 2020, from City Hall information).

The farming activity splits into crops (44.7%), pastures (33.6%), woods, and forests
(7.9%) in 2017. The Instituto Nacional de Colonização e Reforma Agrária - INCRA has registered
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Figure 5 – Economic value added from 2002 to 2018. Each economic sector contribution in Maragogi
with respect to the total. Administration public includes Defense, Education, Public health and
Social security.

in terms of the Cadastro Ambiente Rural (CAR) 363 farming organizations, of which 89%
correspond to small-holder farming organizations. Within this category of smallholder farming
organizations, approximately 6% consist of rural settlements1, where 1475 families practice
agricultural activities (INCRA. . . , 2021; SICAR. . . , 2021). This familiar agricultural activity
results in commercialization of products weekly in street market (under initiative of the City
Hall).

Education. We filtered the data for schools belonging to municipalities in the range
of interest. The data is composed by educational institution and school level (kindergarten,
elementary, and high school) of INEP 2020 (INEP. . . , 2020), see Figure 6. Figure 6 shows the
density of school occupation in Maragogi in the context of Brazilian cities within the range of
interest. The distributions are similar in all levels of education, in particular Early Childhood
Education (ECE), Elementary and High schools in the range of interest, the average of students
per class corresponds to 15.25, 17.87 and 25.30, respectively, compared to 19.54, 19.49 and
23.37 of Maragogi schools.

1 Rural settlement is defined as a portion of land that rural workers undertake to live on the plot and
exploit it for their livelihood, using exclusively family labor (ASSENTAMENTO, 2021).
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Figure 6 – Student per class distribution inside schools over cities within the range of 10000 and
50000. The solid black line corresponds to the occupation density distribution over Brazilian
cities within the range of 10000 and 50000 inhabitants and Maragogi’s is represented in blue.
Left, center and right panels display the distribution for Early Childhood Education, Elementary
school and High school, respectively.
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CHAPTER

2
AGENT-BASED MODELS: REVIEW

Before discussing the development and application of our agent-based model, COMOR-
BUSS, let us take a step back and present a short review of this class of models, as well as some
of its most interesting representatives, developed before and during the COVID-19 pandemic.
Agent-based models (ABMs) are computational models that simulate and track individual units,
which have behaviors defined by sets of rules or probabilities and can interact with each other or
their environment. Based on this design, another popular name for this class is Individual-Based
Models (IBM). These autonomous agents (which can model human individuals or other entities
such as disease vectors or even organizations) can be individually tracked or intervened upon
with the objective of assessing their effects on the system as a whole. These models are used in
various fields, including economics, ecology, and epidemiology.

Focused on epidemiology, ABMs allow for a better representation of individual hetero-
geneity of behavior and characteristics, something that is very difficult to represent in differential
equation models, for example. ABMs also can allow the behavior of individuals to be constructed
in an organic way, where the complete behavior of each individual emerges from a simple set
of intuitive rules, which also better represents the heterogeneity of individuals. This detailed
characterization, as well as the ability to track each unit, constitutes a natural tool in the modeling
and evaluation of public health policies, social interventions, and even the testing and deployment
of pharmaceutical interventions (provided that we have a good biological model for the agents).

2.1 History

Before the 2000s, the complexity and applicability of ABMs were notably limited due
to several key factors. Firstly, the computational power available at the time was a significant
constraint. The intricate calculations required to simulate individual behaviors and interactions
in ABMs demand substantial computational resources, which were not as advanced or readily
accessible sufficiently before the 2000s. Secondly, the lack of sophisticated data collection and
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processing technologies limited the amount and quality of data that could be fed into these
models, restricting their accuracy and applicability. Furthermore, the interdisciplinary approach
necessary to develop and implement effective ABMs was less prevalent because fields such as
computer science, ecology, and social sciences were not as integrated as they are today. Limited
software tools and programming languages suitable for creating complex simulations also posed
a challenge. All of these factors contributed to the relatively simplistic nature and restricted use
of ABMs in various domains before the turn of the millennium.

The review by Willem (WILLEM et al., 2017) provides a detailed panorama of the
development of ABMs between 2006 and 2015, when AMBs experienced significant advances
and expansion of applications in the field of infectious disease transmission. One of the key
advances was the growing diversification of the diseases modeled using ABMs, extending from
endemic to emerging infections. This expansion was accompanied by a greater focus on the
incorporation of intervention strategies and the evaluation of economic outcomes within models,
indicating a shift from theoretical explorations to more practical policy-oriented applications.
This was supported by the increasing ability of the ABMs to simulate complex heterogeneous
interactions, both between and within hosts. This reflects a deeper understanding of the stochastic
nature of infectious diseases and the importance of individual variability in disease dynamics.

However, the period also highlighted several challenges in the field of ABMs. A major
issue was the inconsistency and ambiguity in the terminology used to describe these models,
which posed obstacles to effective communication and knowledge sharing between disciplines.
The lack of standardized reporting protocols and detailed model descriptions further compounded
this problem, making it difficult to replicate studies or build upon previous work. Despite
these challenges, Willem et al. (2017) underscored the potential of ABMs to improve targeted
interventions for endemic infections and the importance of open-source collaboration. This point
has been already made, as early as 2006, by Patlolla et al. (2006), and reinforced by Hunter,
Namee and Kelleher (2017).

In Patlolla et al. (2006) the authors emphasize the significance of agent-based models in
understanding complex systems, particularly in the realm of public health and epidemiology. It
underscores the versatility of ABMs in simulating the spread of infectious diseases, considering
the dynamic interactions between individuals and their environment. This work also highlights
the potential of ABMs to aid in policy-making by providing insights into the effectiveness of
different intervention strategies. It stresses the importance of integrating diverse data sources
and the need for interdisciplinary collaboration in developing more comprehensive and accurate
models. Hunter, Namee and Kelleher (2017), on the other hand, address a critical aspect of
agent-based modeling in epidemiology: the need for a standardized taxonomy to classify and
understand the diverse range of ABMs. Their work presents a structured framework to categorize
these models based on specific criteria like disease type, societal model, transportation, and
environmental factors.
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In the next sections, we will explore two ABMs developed before and two developed
during the COVID-19 pandemic, and, at the end, a brief introduction of our model. We will
explore each model’s advantages and disadvantages and discuss the limitations of each model,
motivating the development of COMORBUSS.

2.2 EMOD

The Epidemiological MODeling software - EMOD (BERSHTEYN et al., 2018) is
a multi-disease agent-based model developed by the Institute for Disease Modeling (IDM),
Bellevue, Washington, United States of America. EMOD was originally developed to simulate
the spread of malaria but later was extended to other infectious diseases such as Polio, Dengue
and HIV, among others. Beyond the pre-programmed disease models, EMOD allows for new
custom disease models to be programmed through a class interface either in C++ or Python.

Disease propagation occurs between agents (or vector agents) localized in the same
cell of a spatial grid, by default mixing, and infection probabilities are uniform inside each
cell. An alternative infection behavior can be configured using the Heterogeneous Intra-Node
Transmission option, where the population is divided into configurable groups, and infections
between groups are weighted by a transmission matrix. Agents are assigned to a fixed cell, but
migration between cells can be configured.

Advantages

• Very efficient to run, as reported by the developers, "typically on the scale of minutes to
tens of minutes, depending on how the model is configured" (it is not clear for what size
of simulation);

• Multi-disease, it has a set of disease dynamics already configured and an interface for
programming custom disease dynamics;

• A large set of self tests already programmed by professional programmers;

• An internal system of messages which can be used to create sophisticated interventions;

• Ability to track all vectors (as agents) or a weighted sub-sample of vectors;

• Modular approach allows base functionality to be extended;

Disadvantages

• Low-resolution spatial grid (minimum cell size ∼ 1km2);
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• Default infection behavior is uniform inside cells (which are already quite large); Hetero-
geneous Intra-Node Transmission can be configured to add weights to infections between
certain groups of agents, but this is still not as fine-grained as we would like it to be;

• Hard to configure ("configurability comes at the cost of ease-of-use"), configuration is
done through large JSON files;

• Static demographic model;

• More than 4 years without active development;

Although EMOD simulations can be very efficient, it does not implement any social
dynamics, this limits the kinds of interventions that can be simulated. Heterogeneous Intra-Node
Transmission can partially mitigate this issue, but infection is still defined by a fixed matrix of
weights between each of the defined population groups. EMOD is highly modular in the disease
model, but the population model is rigid and does not allow for any deep customization like
COMORBUSS’s allows. Both software are complex to configure and require many parameters,
but this is a cost of being highly configurable; in this criterion, COMORBUSS mitigates this by
offering reasonable default parameters for almost every parameter.

2.3 PanSim
Pandemics Simulator - PanSim (REGULY et al., 2022) is an agent-based model devel-

oped by the PPCU University, Budapest, Hungary, specifically for the COVID-19 pandemic.
PanSim was developed to simulate the Hungarian town of Szeged, but other cities can be sim-
ulated, given the necessary parameters. It was developed in C++ and is parallelized to run in
CPUs using OpenMP or in a GPU using CUDA. This makes the software highly efficient: as
reported by the developers, it can run a simulation of one year with 179500 agents in a 10 minute
time step in 64 seconds in a single NVidia V100 GPU).

In PanSim agents have different types (infants, elementary school students, full-time
workers, etc.), and each type of agent has a few possible schedules to work, go to school,
use services, etc. Each of these schedules has a probability associated (it is not clear in the
documentation if the definition of the schedule for each agent is done at the start of the simulation
and fixed for the whole simulation or if the schedule can change during a single simulation). In
each time step, the infection mechanics are based on identifying the location of the agents and, for
each location, adding up the infectiousness of the agents in that (weighted by a location-specific
factor). Finally, this effective infectiousness value is used to challenge susceptible agents in
that location. The disease model in PanSim is a slightly altered SEIRD (Susceptible, Exposed,
Infectious, Recovered, Diseased) compartmental model that apparently cannot be easily changed
to simulate other kinds of disease. Pansim also implements a vaccine model that modulates the
agent’s susceptibility and a few NPIs like quarantines, testing policies, services closing, etc.
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Advantages

• Highly efficient to run: it can perform simulations of hundreds of thousands of agents for
large but fine-grained time intervals in minutes in a powerful enough GPU;

• Reasonably configurable (mortality for different types of agents, quarantines, testing
policies, services closing, etc.);

• Agents can have pre-existing conditions that affect mortality and medical services usage;

• Good spatial characterization: available houses, workspaces and schools are passed as
parameters with coordinates, other locations are generated at random given the number of
each type of location;

Disadvantages

• Not well documented: only the original paper, supplementary information and a few
“readme” files available;

• Highly optimized implementation is not easily extended (functionality like contact tracing,
public transport, vaccination trials, etc., can not be easily implemented);

PanSim is highly efficient, but this efficiency comes at the cost of extensibility. It has a
good set of parameters for the simulation, but it does not have any interface to extend functionality:
things we have done and we plan to do with COMORBUSS (mostly by using the modules API),
like the airborne transmission model, contact tracing, public transport and vaccination trials,
could not be easily done within PanSim. And the lack of public documentation about the usage
and internal workings of PanSim only exacerbates those difficulties.

2.4 Nosoi

Nosoi (LEQUIME et al., 2020) is an agent-based model developed in R focusing on dual
host epidemics (such as arboviruses). It is based on the critical assumption that “the number
of hosts infected during a simulation is orders of magnitude smaller than the total exposed
population”, and on this assumption hosts (both human and vectors) only enter the simulation
when they get infected. This allows Nosoi to be used to simulate populations in large geographical
regions, since only a fraction of the population needs to be represented in the simulation (as seen
in the examples given in the documentation, like on Lequime and Dellicour (2021)).

In a Nosoi simulation, each agent has a probability of moving, exiting the simulation
(dying, being cured, leaving the study area, etc.) and of transmitting the pathogen, when a
transmission occurs, a new agent enters the simulation. These probabilities are given as functions
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by the user; the user also has to provide functions to calculate the standard deviation of the
random walk in the space if the agent moves and the number of contacts for each agent.

Advantages

• Very simple and easy to use interface;

• Extra parameters (discrete or continuous) for agents can be defined and used on the core
functions;

• Can be used to run large geographical regions (with spatial modeling done by the user);

Disadvantages

• Only applicable to low prevalence epidemics (critical assumption);

• Focused on dual-host type diseases (but it can run single-host diseases);

• Simplistic disease model (no built-in infection mechanics, only simulate infectious agents);

• No built-in social model, making it a bad candidate to evaluate social intervention;

Complex scenarios can be modeled in Nosoi, but all the complexity must be modeled
and programmed by the user inside the agents’ parameters and the 5 functions to calculate the
probabilities, movement, and contacts. This makes Nosoi highly flexible, at the cost of almost
every part of the simulation to be modelled by the user. Nosoi itself does not offer any social
model and a very simple disease model. We also were unable to find any documentation on
Nosoi’s efficiency, it probably has reasonable or good efficiency, since it doesn’t run the entire
population inside the simulation.

2.5 Covasim

COVID-19 Agent-based Simulator - Covasim (KERR et al., 2020) is an agent-based
model developed in Python by the Institute for Disease Modeling (IDM) specifically for the
COVID-19 pandemic. Covasim uses a modified SEIR model with compartments for multiple
levels of symptomatic presentation. It has no discrete spatial model, different contact networks
are used depending on where the particle is located.

It has three modes for contacts: (i) static contact networks generated by SynthPops,
another software developed by IDM, these networks try to better represent realistic interactions
in the different contexts; (ii) random contact networks, these are more dynamic but do not
realistically represent most interactions between people; and (iii) a hybrid contact where a mix of
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both modes are used. The static, random or hybrid social structure implemented on Covasim fails
to capture any heterogeneity in the population, and it also makes difficult to represent certain
kinds of interventions that changes the particles behaviour in specific locations.

Covasim also has a few pre-programmed interventions, such as quarantines and a simple
contact-tracing (based on a given probability of being traced), as well as a modular interface for
interventions, where the user can pass functions that can read and change simulation parameters in
each step. It also has a vaccination mechanic, where vaccines uniformly reduce the susceptibility
of agents.

Advantages

• Fairly efficient (it can run tens of thousands of particles for 90 days in seconds);

• Simple to configure (at the cost of flexibility);

• Good documentation;

• Powerful set of calibration and analysis tools;

Disadvantages

• High reliance on static contact networks based on inferences from few pre-pandemic
observations and low granularity in social settings;

• Very limited interface for extending functionality (only an interface for custom interven-
tions is available);

• Most interventions are based on susceptibility with low or no heterogeneity;

Covasim has a simple but effective way to extend it’s functionality for interventions. But
it’s social model is not organic and heavily relies on synthetic fixed contact networks; this limits
the kinds of scenarios that can be simulated with Covasim and in most cases fail to represent
heterogeneities in the simulated communities. Covasim also has a fixed SEIR disease model
with no interface to extend or replace the disease model.

2.6 COMORBUSS

COmmunitary Malady Observer of Reproduction and Behavior via Universal Stochastic
Simulations - COMORBUSS (GENARI et al., 2022), is a bio-social agent model initially
developed in Python, by the ModCovid collaboration, for studying the spread of the SARS-CoV-
2 within communities and assessing the impact of various mitigation measures. It stands out for
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it’s dynamic and modular nature, employing a unique approach to model population behavior
and interactions.

It implements a modified SEIR model, with different compartments for different symp-
tomatic presentations, but due to it’s modular approach this base model can be easily extended.
For example we already have implemented an module to extend the symptoms from asymp-
tomatic, light, and severe, to any number of symptoms configured by the user. The social model
inside COMORBUSS is built in an organic way, where every agent has a house, place of work,
shops it visits, etc, and a defined routine (made of fixed schedules for work, school, etc, and
visitation frequency for others like markets, shops, etc) and contacts are generated dynamically
on each simulation step (typically 1h), each kind of location has a specific network generator
modeled to mimic the typical behavior of agents in each location.

COMORBUSS has implemented mechanics for quarantines, lockdowns, social isolation,
vaccinations, public transport, testing policies and others. Beyond all the built in functionality
it also offers a robust coding API to be used to modify or extend any part of the simulation,
this was extensively used to evaluate the impact of schools reopening using COMORBUSS,
where a new airborne infection mechanism was implemented to simulate closed spaces, also
a sophisticated school model (class separation, schedule, teacher assignment, etc.) and school
specific interventions (reductions in teaching time, classes segregation, class wide and school
wide suspension based on testing policies, etc.) where implemented as modules extending the
original COMORBUSS functionality for this work.

Advantages

• Organic social modeling, contact networks are dynamically generated at each simulation
step based on agents’ social roles, locations, and schedules;

• Highly modular, allowing for the integration of new behaviors, interventions, or infection
mechanisms (while still providing a robust base model);

• Detailed agent roles, each agent in the simulation has defined social roles, such as house-
hold membership, workplace associations, and shopping habits, contributing to the realism
of the model;

• Built in tools for running simulations with varying parameters and to visualize and analyse
sets of simulations;

Disadvantages

• Computational intensity, due to it’s detailed and dynamic nature, COMORBUSS may
require significant computational resources (particularly for large populations or extended
simulation periods);
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• Complex configuration, the complexity and modularity of the model might lead to chal-
lenges gathering the necessary data and configure the model;

COMORBUSS offers a unique approach to simulating disease spread and evaluating pub-
lic health interventions. It’s emphasis on dynamic contact networks and the ability to incorporate
varying behaviors (capturing population heterogeneities) and modularity make it a powerful tool
for understanding complex epidemiological dynamics in diverse community settings. However,
these advantages come with the trade-offs of increased computational demands and complexity
in model configuration and analysis.

2.7 Model comparison
In this comprehensive review, we have explored a variety of agent-based models (ABMs)

designed for epidemiological simulation, each with its unique strengths and limitations. The
comparison in Table 3 effectively summarizes their key attributes, offering a clear perspective
on their capabilities and suitability for different modeling scenarios. Models like EMOD and
PanSim demonstrate high computational efficiency, ideal for large-scale simulations, but they
vary in spatial characterization and flexibility. Nosoi, while highly customizable, is tailored for
low prevalence, dual-host type diseases, limiting its broader applicability. Covasim, specifically
designed for COVID-19, offers a balance of efficiency and functionality but relies heavily on
static contact networks and has limited extensibility.

COMORBUSS, our model, stands out for its dynamic and organic social modeling,
providing a nuanced simulation of interpersonal interactions and behavior. Its modularity and
detailed agent roles allow for a comprehensive exploration of various public health interventions
and their impacts on community spread, albeit at the cost of computational intensity and complex
configuration requirements. This model’s ability to adapt and incorporate a wide range of
behaviors and interventions makes it a powerful tool for understanding the intricate dynamics of
disease spread in diverse community settings.

The choice of an appropriate ABM for a particular epidemiological study hinges on the
specific requirements of the study, including the scale of the population, the level of detail needed
in social interactions, the nature of the disease being modeled, and the computational resources
available. Each model presents a unique set of features that make it suitable for different aspects
of epidemiological modeling and public health policy simulation. The advancement of these
models, especially in light of the recent COVID-19 pandemic, underscores the vital role of
ABMs in understanding and managing infectious diseases.
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Computational
Efficiency Configurability

Spatial
Characterization Social Model Interventions Extensibility Transmition Model

EMOD High High
Large regions at
low resolution None

Flexible
interventions
with messages
system

Limited
to disease
model and
interventions

Contact*, airborne,
STI, vector,
environmental,
can be extended

PanSim Very High Medium
Small regions at
high resolution

Model based
on inputted
individual
schedules

Limited

No support;
opensource,
but not well
documented

Contact*

Nosoi
Not
specified

Limited, most
modelling
done by the
user

Lower density,
allows for large
regions

Modelling
done by the
user

Modelling
done by the
user

Very high
(and needed)

Agents generated
as infected; Single
and dual-host
(vectors)

Covasim High Limited None
Static or
random

Limited;
can be extended

Limited to
interventions Contact*

COMORBUSS Medium High

No built-in spatial
characterization;
but can be
extended

Dynamic, based
on social roles
and contexts

Large set of
implemented
interventions;
can be combined
and extended

Very high
with API for
modules

Contact* and
airborne; can
be extended

Table 3 – Comparison of the explored Agent-Based Models (* definition of contact is sensitive to the spatial and social models)
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CHAPTER

3
COMORBUSS: MODEL DESIGN

COmmunitary Malady Observer of Reproduction and Behavior via Universal Stochastic
Simulations - COMORBUSS, is a bio-social agent model for the study of disease propagation in
a community and the evaluation of mitigation measures. Let us clarify each part of this statement.

An agent model is one where we simulate individual agents which represent persons in
the modeled community. These agents interact with each other and the environment according
to a set of rules and have their own characterization. This allows for the creation of models
which capture the heterogeneity of the real community we are studying. Moreover, mitigation
measures can be directly modeled by modifying the behavior of the agents (e.g. quarantines,
social isolation, reduction of students in classrooms) or the transmission of the pathogen (e.g.
masks and vaccination). In this way, the effectiveness of these mitigation policies can be measured
and compared directly, see Figure 7.

By bio-social, we mean to emphasize that COMORBUSS at its core is driven by two
stochastic models: one for disease progression and propagation based on the individual biology
of the agents, and the other for the social dynamics of the agents based on their identities and
roles in the community. Connecting these two models is the core modeling assumption that
disease transmission rides on social contacts produced by community dynamics. As the social
dynamics model drives the individual agents as workers or clients of the services which define
the infrastructure of the community (such as hospitals, schools, markets, restaurants, stores, etc.),
the agents meet at these locations and possibly infect others. As transmission is contextualized
by location and by the roles of the agents involved (e.g., client, worker), we can identify which
are the services that contribute the most to the driving force of the infection; see Figure 8.

COMORBUSS as an agent-based model possesses the following remarkable advantages
which are derived from our approach to directly model social dynamics and the omniscience
the model guarantees to the analyst:

• individualized and heterogeneous description of the community;
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• behavior models for interventions and their quantitative assessment, even with partial
compliance;

• realistic decision making models with dynamic criteria for adoption of interventions;

• ability to produce counterfactual scenarios regardless of the complexity of the scenario,
enabling direct comparison in experimentation;

As we saw in the last chapter, all these advantages make COMORBUSS a valuable tool
in both the evaluation of policies and the development and testing of new ideas and methods in
epidemiology. Now we will explore how the models inside COMORBUSS work and how they
interact to create those advantages.

3.1 Community Model
We seek the average epidemiological behavior and the associated variance for a city with

a given demography. This is done by simulating multiple realizations of a stochastic model for
the disease propagation in this community. In order to eliminate biases introduced by a single
societal network, we generate for each random seed a new community representation which
captures the following real demographic information of a given city:

• population size;

• age distribution (binned in groups of 5 years);

• household structure (size distribution and age distribution of members);

• service infrastructure;

• job allocation by age group.

3.1.1 Dynamics: stochastic model for community behavior

The core concept of COMORBUSS is the utilization of services to dynamically generate
contacts in our model community. As such, each relevant social context is modeled as a service,
even "the environment", as is dubbed random meetings on the streets and parks. The services
which have been modeled in this work are:

• health facilities: hospitals, public health clinics;

• educational facilities: schools and day-cares;

• essential stores: street markets, markets, supermarkets, food stores, construction stores;

• city hall and environment.
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3.1.1.1 Services as community drivers

In the intricate web of community dynamics, services play a pivotal role, acting as the
primary drivers that shape the movements and interactions of individuals within a community.
These services, encompassing various essential categories such as supermarkets, hospitals, and
other public facilities, become focal points where agents converge and interact in different roles.

Agents interact with these services in three distinct roles: as workers, visitors, or guests.
Workers are those who are employed by the service, visitors are regular users of the service, and
guests are individuals who are temporarily attached to a service due to specific circumstances
like hospitalization or quarantine. Each agent is typically linked to a specific instance of a service
category, creating a consistent pattern of visitation. However, flexibility is maintained as agents
can be reassigned to different instances if circumstances such as service closures arise. This can
happen when a service is closed due to a lack of workers (all workers being in quarantine or
hospitalized).

Each service has two defining restrictions: its working days and hours, as well as the
age groups allowed to use it. Another key parameter is the average period of visitation for that
service (e.g. one can say that any person visits the supermarket every week). From this we have
the average frequency in days that the service is visited and, using the number of working hours
of that service, we compute the hourly probability that an agent will visit that service.

During every hour that a service is open, free visitors are randomly selected and sent to
the instance of that service to which they are assigned. If the agent is unable to make a visit (e.g.
agent is working or visiting another service), the probability is accumulated to a later hour that
the service is open and the agent is available to visit. In this way, we organically produce "rush
hours", such as when many workers visit the supermarket after their working hours. After the
visit is concluded, the agent is returned to its address until it is selected again for some other
activity. Similarly, workers are sent to the instance of the service where they work during their
working hours. One can also assign the agents uniformly at different shifts. Guests are so far
defined only via hospitalization or quarantines, so their mobility is restricted until the associated
measure is completed. They are then returned to their home, where normal social activities are
resumed.

Another key component of our model is the interactions between agents within these
services, which are facilitated through dynamic service-specific contact networks. The intricacies
of these contact networks and their implications on agent interactions will be explored in detail
in Section 3.1.3.

This system of service-driven agent dynamics serves as a robust framework for modeling
community behavior. It captures the essence of how individual needs and activities are interwoven
with community services, creating a realistic and complex portrayal of community life. Any
nonpharmaceutical intervention can be modeled as temporary changes in the individual or
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collective behavior of the agents, and its consequences can be measured directly.

3.1.1.2 Visitation period

Leaving aside the interaction of agents within the service for a moment, the visitation of
agents is what contributes the most to the relevance of services in the disease spreading in the
community. COMORBUSS models the visitation of agents to a service by randomly picking
them according to a probability pv. This happens at every time step that the service is opened
and that the agents are free to visit, which means that they are not resting at home or visiting
any other service. The probability pv is then given by the inverse of the visitation period vp:
pv = 1/vp, where vp is a measure of how many time steps an agent takes to return to a service,
given that it is opened1. To make the visitation period independent of the opening of the service
and also of the magnitude of time steps, we assume that it is provided in consecutive days and
then we convert it to time steps. The conversion formula is given by

vp =
do

7
ho

∆t
vpc, (3.1)

where do is the total number of days a service is opened on a week, ho is the total number of
hours a service opens for a day, ∆t is the time step in hours, and vpc is the visitation period in
consecutive days. To calculate vpc, it suffices to know the total number of visitors vw a service
receives during a week, and the total number of agents vt that can in fact visit the service. With
these two values, the visitation period in consecutive days is given by

vpc = 7
vt

vw
. (3.2)

3.1.2 Creation: initializing a mimetic community model stochastically

3.1.2.1 Creating households while preserving age distribution and average household size

The agents are created in household groups that are defined sequentially and modified
such that real age distribution and average household size are respected. In order to avoid
unrealistic household structures (e.g. children living unsupervised) and to consider households
with sizes far from the average, we have created and carefully curated an artificial dataset of
households mimicking the households in the modeled city.

Although the generated population is smaller than the desired population, a household
is sampled from the reference population dataset. We then evaluate the average size of the
households created so far: If it is smaller than the desired average household size, a new agent is
added to this house; if it is larger, an agent is randomly removed from this house.

1 A direct implication of this definition is that the visitation period cannot have time length less than that
of a time step
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Figure 9 – Age distribution. Comparison of real age distribution of Maragogi-AL and for a few randomly
generated populations using our algorithm.

The probabilities used in the selection of agents to be added or removed is computed
from the difference between the real age distribution and that of the current agent population.
We then look at the resulting values for the age groups of the agent candidates.

• If removing an agent: we consider as candidates for removal only the agents whose age
groups had negative values in the difference between distributions. We then assign the
absolute value of these differences to each agent and normalize them so that they sum to 1.
Each value is then used as the probability of removing the corresponding agent.

• If adding an agent: we consider candidates for creation only agents whose age groups had
positive values in the difference between distributions. We then filter these positive values
and normalize them so that they sum to 1. These are used as the probabilities for selecting
an agent of the corresponding age group for creation.

3.1.2.2 Household initialization of compartmental data

In contrast to ODE simulations using compartmental models, which only require the
compartment values for initialization, a bio-social agent-based simulation also requires relating
compartments with social characteristics in the community. For example, in a community with
250 individuals initialized with 5 infectious ones, having the 5 agents living in the same house
or having them living in 5 different houses generates very different results. In the first case, the
disease cannot spread more in the same house, while in the second case, it can use the time
infected individuals stay at home to spread to others. While a random initialization can still be
used to generate a certain tendency in simulations, the high variation in the outcomes demands
several realizations in order to reduce standard deviation. Since the preferred environment for
spread is always individuals’ homes, see (CURMEI et al., 2020), the average results can also be
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misleading. The reason is that a random initialization of a few agents will most likely position
only one infected agent per home. Another drawback of this approach is that it ties simulation
results, and therefore calibrated parameters, to the number of agents in the community, thus
making it difficult to export results to other cities of similar but still different attributes.

Ideally, one should be able to relate compartment data to age, social role and household
distribution in a time-dependent manner. This level of information would allow a complete
disassociation of the probability of infection p, the main parameter calibrated in this work, from
the community and its individuals. Unfortunately, it is clear that such data is not available in
practice and that collecting it in a meaningful representative way would be nearly impossible.
We propose a synthetic half-way solution to this problem, which consists of using data gathered
from social behavior and household structure to determine the time-independent probability of a
given compartment structure being present at a given home.

The technique we use to synthetically detach the calibrated infection probability p

from most population characteristics is to answer the following question: Given a home with n

individuals such that it has at least one of its members with an active compartment state, what
is the chance that a given compartment configuration is present during the disease life of that
home? To answer this question, let us first clarify the meaning of some of these terms:

• Active compartment state: exposed or infectious states.

• Disease life at a home: the period of time in which at least one individual in that home is
in an active compartment state.

• Compartment configuration: distributing codes for each compartment, such as S, E, I, R, a
configuration is any member of the combinations of n codes out of the 4 possible ones.
For example, with n = 3, the configuration SEE tells us that the home has one susceptible
person and two exposed ones. After some time, the same home can have the following
configuration: SEI, which means that one of the exposed persons became infectious.

To determine the probability that a compartment configuration occurs at a home during
its disease life, we divide the time a configuration is present at that home by the total time of
its disease life. We do that for as many houses as possible, averaging out the probabilities for
houses with the same number of people. Figure 10 shows the values we used to initialize active
houses with 3 people. From the figure we deduce that if a house with 3 people is active, and
all states are possible, then the most likely configuration to occur is SSI, with about 26.6% of
chance. The second most likely configuration is SSE, with about 23% chance. The least likely
configuration is the one with two exposed individuals and one susceptible one, with about 0.05%
of chance, and so on. Notice that a random initialization would most likely have much higher
probabilities towards SSE and SSI, with the remaining ones not present in most realizations of
the community. It is also important to mention that when the probability of infection changes,
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Figure 10 – Initial household state configurations. Compartment configuration probabilities used for
active homes occupied by tree people

so do the probabilities of compartment configuration. In general, whenever we talk about the
probability of infection in this work, we also include the probabilities of inherent compartment
configuration that accompany it.

The compartment configuration probabilities should be approximately the same for any
point in time, and they also should not depend on the population number, only its household
structure and overall social behavior. As a result, we can safely use these probabilities to
distribute compartment labels to individuals in a randomly selected active home, as long as there
are active compartment labels to distribute. After all active compartment labels are distributed,
we randomly select houses to contain a given proportion of susceptible and recovered individuals.
This proportion is also estimated from homes that have ended their disease life, and therefore do
not contain individuals in the active compartment.

Although the procedure just described allows for a consistent initialization of compart-
ment states along homes in a community, collecting the data necessary to do so is still a hard task.
However, if we suppose that the overall social behavior of the community is well captured, and
also that the disease modeling inside homes is realistic, then we can conclude that the probability
of infection itself determines the probability of each compartment configuration occurring at
an active home. This is the argument that allows us to use COMORBUSS to determine the
probabilities of compartment configuration. The idea is that, to simulate a community for a given
probability of infection p, we first use another simulation to determine the compartment configu-
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rations for each possible size of a home. That is, we perform many realizations of a community
disease spread using random initialization of states first. Next, we use houses whose disease
life is fully captured by the simulations to determine the probabilities for each compartment
configuration. Once these probabilities are derived, they are used to initialize compartment states
of a second simulation, being that the one that approaches the real life’s initial spread the most.

3.1.2.3 Service infrastructure and job allocation

Each service category (e.g. hospitals, supermarkets, schools, etc.) is created as a computer
object sharing common defining and operating parameters. Inside each of these objects, we
instantiate the same number of these service locations as are known to be had by the modeled
city. One of the defining parameters is the average number of workers in the service category
and the age groups that are known to function as workers. From this, when the service is created,
we randomly select agents in the population of the appropriate age group and assign them as
workers for that service. More detailed assignment procedures are, in principle, possible but are
unavailable due to lack of required data.

3.1.3 Contacts: Service-specific networks

By collecting the list of visitors, workers, and guests in an instance of a service at any
given time, we naturally know the collective history of the community and the sets of agents
that can interact. However, how these agents interact is closely associated with the social context
at that time. As examples: one does not interact closely between tables in a restaurant while
the waiter interacts with the set of tables they are responsible for, as well as coworkers; in a
classroom or factory, people are rigidly placed in space for most of the time.

Therefore, we need to consider the social context of the agents in the process of taking
the list of agents in a location and producing a contact network. COMORBUSS identifies each
particular service having its own network structure, so distinct network models are built when
representing restaurants, markets, hospitals, or schools.

All network models share as a common feature the ability to contain in each service tree
types of individuals: workers, visitors, and guests. Workers of a particular service are individuals
who stay in this service for a daily time period during a realization of the stochastic community. In
contrast, visitors are individuals who visit a single time step that service respecting a frequency of
visitation during the simulation. And finally guests are individuals that for a temporary duration
of time have their default location changed from one’s house to that service (e.g. hospitalized or
quarantined individuals).

All these types of individuals are specialized for each service to mimic realistic features
that one may find in real-world services. For example, waiters in restaurants are modeled as
workers who have contacts with visitors. The same idea is applicable to cashiers in markets.
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Therefore, these observations must also be taken into account in the modelling of contact
networks. Below, we detail the network model for each service.

3.1.3.1 Standard networks: houses and generic services

In houses or generic services, no network configuration can be assumed. As a result, we
utilize a standard network model to generate contacts. The contacts in this model are randomly
distributed for each agent according to a given average number. This average value may change
as the number of agents increases or decreases within the services, as discussed in Section
3.1.3.2. However, the generated contact networks are still dynamic, varying as agents are added
or removed.

Contact networks are generated, with few exceptions, using the Erdos-Renyi model,
where the probability pER of an edge being added is given by pER = cavrg/(N−1). Here, cavrg is
the average number of contacts, and N is the total number of nodes in the graph. The parameter
cavrg depends on the definition of contacts, and in this work we assume it to be the following:
’two people two meters or less away from each other for the duration of an hour.’

3.1.3.2 Contact varying with agglomeration

Any contact network needs a fundamental parameter, the average number of contacts
(vertices) across the nodes. By default, this input parameter is fixed for each type of network.
However, its variation over time may need to be considered in some social contexts due to the
high variation of the occupational density of people in that place. For example, in the case of
markets, there are rush hours in which the agglomeration is higher. It is also common in this type
of service that there are considerably fewer clients at the beginning or end of the work day. To
deal with the non-uniformity of the number of agents within each service, we propose a formula
to adjust the average number of contacts. The idea comes from supposing that the opportunity
for a contact is directly linked to the space available to the agents.

Suppose that two of N agents get in contact with each other whenever they share some
specified area A around their position in space. The expression relating cavrg(N), A and N is
given by

E(cavrg(N)) =
N(N−1)

2 A
N

=
N −1

2
A, (3.3)

where E is the expectation operator. This formula comes from assuming random walking of N

agents within a given service with transit area A. To avoid knowing the transit area, we suppose
that a sample N0, cavrg,0 := cavrg(N0) is collectable, and then we approximate A through the
formula

A ≈
2cavrg,0

N0 −1
. (3.4)
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As a result, the expression for the mean number of contacts cavrg(N) varying with the number of
agents N is

cavrg(N)≈ cavrg,0
N −1
N0 −1

. (3.5)

Equation (3.5) is used in some of the contact networks introduced in the following. For
example, in the case of markets, supermarkets, or street markets, the formula can be used to
adjust the average number of contacts between visitors shopping in services. In the case of
hospitals, the formula can be used to calculate the average number of contacts among visitors.
Another place where such an expression is useful is in the contact network for homes. Assuming
equally sized homes, one can infer that the more people at home, the more contacts. Since the
number of people at home varies throughout the day, such a formula is well suited to capture the
dynamics of movement inside a home.

3.1.3.3 Networks for environment layer

The dynamic in environment layers is very individual-specific and, therefore, we approx-
imate it by random walking. The formula for the average number cavrg of contacts between N

agents in the environmental layer with transit area A is given by equation (3.3). The transit area
A is in this case given by:

A =
πr2

Au
, (3.6)

where r is an infection radius, and Au is the urban area available in the environment layer. The
radius of infection is given by half of the largest distance between two agents such that they can
be considered in contact. We assume 2 meters as a default value.

Although random, contacts may follow some tendency according to the age of the agents.
We used the probabilities exposed in Figure 11, which have been derived from Table 2 of (Del
Valle et al., 2007).

3.1.3.4 Network for restaurants

Waiters are restaurant workers who have the greatest potential to become super spreaders
of diseases inside their workplace. This happens because they come into contact, as a group, with
every visitor who enters the restaurant. As a result, waiters define a special group of workers that
must receive special treatment regarding their contact network.

Taking into account the social roles of waiters in restaurants, we model contacts in three
categories:

• visitor-visitor contacts.

• waiter-visitor contacts.

• worker-worker contacts.
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Figure 11 – Contact probability matrix. Color map representing probabilities that if a person from an
age group in the y-axis met someone, that person belongs to the age groups in the x-axis.

With these categories in mind, the restaurant contact networks are configured by setting
the following parameters: the portion of workers who are waiters, the average number of contacts
among workers, and the mean number of people sitting around the same table. Because this last
parameter is usually difficult to estimate, it can be discarded, in which case the tables are evenly
distributed among the waiters in the restaurant.

The contact network for workers is created randomly, always respecting the mean number
of contacts provided as input. Among these workers are those composed of waiters, who get
in contact with every visitor on the tables they serve. These visitors in turn get in contact with
everyone else at the same table.

Figure 12 shows an example of a network for a given restaurant with 5 visitors, 2 waiters,
and 3 other workers. Notice that only waiters, identified by ids 1878 and 867, are those who get
in contact with visitors. However, it is clear that other workers are in contact with each other.
The same thing happens to visitors at the same table.

3.1.3.5 Network for markets

The contact network for markets is similar to that of restaurants in the sense that there
exists a class of workers that needs different treatment: cashiers. While other workers usually do
not get in contact very frequently with visitors, every visitor is required to make contact with
a cashier, either directly or indirectly through shared surfaces, such as shopping belts or credit
card machines. Second-order contacts include those among visitors and among workers.
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Figure 12 – Example of a dynamic network for restaurants. Agents (with their ids in circles) in red are
workers, agents in blue are visitors. Numbers inside each circle represent the identification
number of that agent.

The contacts between workers and visitors are created randomly, with respect to a given
average of contacts provided as input. The contacts between visitors and cashiers are also random,
but in this case each visitor is assigned to a cashier. Cashiers are fixed agents that comprise a
fixed proportion of all workers in markets.

Figure 13 shows an example of a network for a market. Notice that every visitor (blue
agent) gets in contact with at least one worker. Cashiers are workers (red agents) who get in
contact with many visitors. Example of cashiers in the figure are those with ids 1479 and 9059.
Example of non-cashiers are those with ids 1922 and 2059

3.1.3.6 Network for schools

Schools have two different network models: one for class time and one for break time.
During classes, the nature of contacts among students can be very geographical, as students tend
to stay seated for long periods of time. During breaks, students are free to walk in public spaces
inside the schools. As a result, the distinction between two types of networks is needed.

During class time, we propose a network that connects agents according to nearby
neighbors, where students are assumed to follow a geographical disposition of a rectangle.
Teachers are treated separately, since they usually move more frequently. The frequency of
contact between a student and a teacher may vary according to the age of the student. For
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Figure 13 – Example of a dynamic network for markets. Agents (circles) in red are workers, agents
in blue are visitors. Numbers inside each circle represent the identification number of that
agent. A fraction of the workers is designated as cashiers and each client passes through one
of them.

example, for students who are toddlers, contact is frequent, but for university students, direct
contacts are unusual. The parameters for this type of network are the number of students in a
class and the average number of contacts between teachers and students.

During the break time, we propose a simple network in which students get in contact at
random. The factor that influences this type of network the most is the number of classes allowed
to have a break together, as well as the different ages of the students. The parameters of this
network are the number of classes to have a break together and the average number of contacts
among students.

Figure 14 shows a network for classes within a school. The teacher is identified by the id
1772.

3.1.3.7 Network for hospitals

Networks for hospitals have, in addition to workers and visitors, admitted persons (hereby
labeled guests) who stay in the facility for long periods of time. While these people are admitted,
they come into contact with only a few hospital workers. The workers, on the other hand, get
in contact with other workers, and some get in contact with visitors as well. Visitors are yet
another type of individual which comprises those who seek help in the occasional sickness,
as well as those only visiting admitted persons. The need to distinguish between three types
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Figure 14 – Example of a dynamic network for classes in schools. Students are geographically posi-
tioned in lines, with one teacher in charge.

of agent makes this type of network more complex than those introduced previously. Another
source of complexity is the fact that some workers are assigned to deal with a specific disease in
a pandemic scenario, in an attempt to contain the spread of the disease among workers.

The contact with visitors is adjusted by providing the average number of contacts between
themselves, with hospital workers, and with the admitted persons. Contacts among workers
take into account the two classes of workers: typical workers and disease workers. The average
number of contacts between typical workers, among disease workers, and between typical
workers and disease workers must be provided. This last number is typically very small. Finally,
the average number of contacts between admitted people and disease workers is a key parameter
that can determine the spread of the disease in the hospital.

Figure 15 exemplifies the hospital network. Agents with ids 567, 7372, and 4955, in
purple, have been admitted to the hospital. Agents 9943, 7828, 9345 are disease workers, the
only workers who get in contact with admitted people. However, they may also get in contact
with other workers, in the figure, exemplified by the contact between agent 9345 and agent 435.
This last worker may get in contact with another worker, as demonstrated by its connection to
the agent 1132. Workers also get in contact with visitors, which can be seen by the connection
between agent 435 and agent 8391. Finally, several visitors (in blue) also get in contact with
each other, as exemplified by the connection between agent 517 and agent 9300.
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Figure 15 – Example of a dynamic network for hospitals. Agents (circles) in red are workers, agents
in blue are visitors, agents in purple have been admitted to the hospital and are placed in a
COVID-19 dedicated ward. Numbers inside each circle represent the id of that agent.

3.1.4 Community-defining Parameters

The described community model inside a COMORBUSS simulation can be configured
with the following parameters:

• city_name: Name of the city being simulated;

• population_ages: A list for the number of agents in each age group. The age groups are
currently separated in intervals of five years from 0 to 100 years, and another age group
for 100 years or more. The total number of persons in the city is given from the sum of all
of these values;

• persons_per_home: Average number of people in a single home;

• population_graph: A network containing synthetic or real house structures;

• services: A list containing parameters for each service, these parameters are described
below.

3.1.4.1 Services Parameters

Every service is defined by the following parameters:
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• name: Name of the service;

• number: Number of instances of this service;

• days: Days of the week the service is open to visitation;

• hours: Hours of the day the service is open to visitation;

• visitation_period: Mean period in days each agent visits this service;

• age_groups: List of age groups that visits this service;

• workers: Parameters to select workers of different types in this service. Each type can be
configured with the following:

– name: Name of the worker type;

– number: Number of this worker type by instance;

– shifts: Shifts available for this type of worker, workers are uniformly distributed
between shifts;

– age_groups: List of age groups that can be this type of worker.

• rooms: Rooms to distribute workers; each room type is defined with a fixed number for
each worker type; rooms of each type are created until there are no more workers of the
required type available. At the end all remaining workers are placed in the "public" room
that is the same room used by visitors;

• net_type and net_par: Type of network and its parameters to be used to generate
contacts in this service;

• inf_prob_weight: Weight applied to the infection probability in this service (used to
reduce the infection probability in outdoor services).

3.1.5 Transportation layer

A layer for transportation can be optionally activated in COMORBUSS. This layer
intercepts all changes in placement during a simulation and places particles in a transport
network for a set window of time. In this network, the population is divided into two groups that
are randomly assigned at initialization according to the percentage of the population using public
transportation services.

• private transport: this group is isolated during the time the particle is in the transport
layer;



54 Chapter 3. COMORBUSS: Model design

• public transport: this group is described by smaller non connected graphs, the size of
which is defined by an input distribution with mean corresponding to the average number
of users in each vehicle of the public transportation system of the modeled city. The
contact networks in each vehicle employ an Erdös-Renyi generator with the mean number
of contacts taken as input from the user.

After the desired time in the transportation layer, the particles are placed at their destination.
Without the transportation layer enabled, all particle movement is instantaneous.

3.2 Epidemiological Model

3.2.1 Progression: stochastic compartmental model for the disease

At any time, the state of an agent with respect to the modeled disease falls into one of
the following compartments:

• (S) Susceptible: the susceptible portion of the individuals in the population. This part of
the population comprises people who had never had contact with the disease and, therefore,
are susceptible to infection.

• (E) Exposed: the exposed (or incubating) portion of the individuals in the population.
Individuals in this scenario have already had contact with the disease but are still in
the incubation stage of the disease. This means that they have been infected but are not
infectious.

• (I) Infectious: the agent carries the virus and is infectious. The disease itself can manifest
itself in different ways, which are subcategorized as

– (Ps) Pre-symptomatic: particles have already become infectious, but they have not
yet developed a viral load large enough to show symptoms.

– (As) Asymptomatic: this type of particle has passed the activation of the disease, but
will never show symptoms. However, they are still infectious.

– (Sy) Symptomatic with mild symptoms: the population in this compartment is those
who show mild symptoms.

– (Ss) Symptomatic with severe symptoms: the population in this compartment is those
who show severe symptoms.

• (R) Recovered: the recovered particles have gone through all the stages of the disease, and
that have overcome the disease.

• (D) Deceased: the deceased particles have gone through all stages of the disease, developed
severe symptoms, and died from it.
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When contracting the virus (being exposed), the agents follow the transition diagram
shown in Figure 16. The transition between states is stochastic, with transition probabilities
being the inverse of the average period in which people remain in that compartment, according to
(KERR et al., 2020). The values and references for these periods can be found in the maragogi_-
base_conf.py file2. After becoming infectious, an agent remains pre-symptomatic for two days,
after which there is the activation event when it is decided whether the disease will manifest as
asymptomatic or symptomatic with mild or severe symptoms. Infectious agents recover with a
probability estimated from the average duration of the infection; note that the duration of the
disease in the case of severe symptoms is longer and such agents can instead convert to the
Deceased compartment with a probability dependent on the age group of the agent, see details in
Section 4.2.
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Figure 16 – Disease progression. Diagram illustrating how agents can transition between states of the
disease.

3.2.2 Transmission: disease spread from contacts

3.2.2.1 Standard: contact through location-contextualized network

The standard transmission model for COMORBUSS is based on contact networks in a
location. The first condition for transmission is that a susceptible agent be in contact with an
infectious one. Provided such a meeting happens, the susceptible agent converts to the exposed
compartment if a random number drawn from a uniform distribution (in unit interval) is less
than or equal to the probability of an infection occurring. This probability is the product between
the infection probability that is produced by the calibration of the model, the susceptibility of
the susceptible agent (which depends on its age group and vaccination status), and a correction
parameter which accounts for contacts that do not last the entire time step of an hour.

2 <https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/
maragogi_base_conf.py>

https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
https://gitlab.com/ggoedert/comorbuss/-/blob/paper_school_protocols/schools-paper-scripts/maragogi_base_conf.py
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If this random decision process results in a new infection, the compartment of the
previously susceptible agent is rewritten as exposed, and the location, time, and source of the
infection are recorded in an infection tree.

3.2.2.2 Specialized: aerosol transmission model in indoor locations

In many closed locations where people are present for long periods of time, the main form
of infection is not through direct contact with an infectious person, but by inhaling infectious
particles that are suspended in the air and accumulate over time. Naturally, modeling this process
requires more detailed information on that location since it depends on its volume and rate of air
exchange with the outside. These details are not readily available for most services, but for the
purposes of this study we acquired the data of the two major schools in the modeled city.

We developed a modified Wells-Riley model which takes into account different pa-
rameters for teachers and students. Not only do we consider that these two groups may have
different masks, but teachers also release more infectious particles since they speak loudly and
continuously.

COMORBUSS naturally tracks all the agents in each classroom and identifies which
are infectious. By solving a differential equation for the concentration of infectious particles
over time, we compute the balance of absorbed and released particles by students and teachers.
We then compute the dose absorbed by each agent in the last time step and from this dose we
evaluate the probability that that agent is infected. The modeling details are provided in Section
A. Once an infection is produced, we randomly select a source among the infectious individuals
in that room and store all the details of this new infection and the usual infection tree.

3.2.3 Disease-defining Parameters

The described disease model within a COMORBUSS simulation can be configured with
the following parameters:

• inf_probability: Probability that an infectious particle will pass the infection in an
encounter.

• susceptibility: Susceptibility of a particle (defined by age group), the final probability
of an infection to occur in an encounter will be given by the inf_probability of the
source particle multiplied by the susceptibility of the susceptible particle.

• inf_duration: Mean duration of asymptomatic or mild symptomatic infection (infectious
state).

• inf_severe_duration: Mean duration of a severe symptomatic infection (infected state).

• inf_incubation: Mean duration of the incubation period (exposed state).
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• inf_sympt_timeto: Time between the transition to the infectious state and the activation
of symptoms.

• inf_prob_sympt: Probability of an infected particles developing symptoms (defined by
age group).

• inf_severe_sympt_prob: Probability that an infected particle develops severe symptoms
(defined by age group).

• inf_severe_death_prob: Probability of an infected particle to die (defined by age
group).

• inf0_perc: Percentage of particles in each infection compartment at the beginning of
the simulation. This is obtained by sampling of the distribution of cases in the initial step
inferred in the calibration process.

• inf0_perc_symp: Percentage of infected particles in each symptoms compartment at the
beginning of the simulation.

3.2.4 Extra symptoms

The extra symptoms module is an easy way to extend the core epidemiological model.
With it extra symptoms can be configured with different probabilities (even for each age group);
those symptoms can replace, or not, the main symptoms probabilities, if replacing each extra
symptoms is given a severity class to determine if the case is considered mild or severe, if an
individual has no extra symptom, they are considered asymptomatic.

3.3 Interventions

COMORBUSS implements a few types of interventions; these interventions can be
broadly classified into two types: nonpharmaceutical interventions (NPIs) are interventions
made to simulate public policies like quarantines, lockdowns, closure of services, etc., or changes
in behavior such as social isolation, on the other hand pharmaceutical interventions are used to
simulate vaccines, tests, etc. Most of those interventions can and will use information from other
interventions to modulate its parameters, e.g., closure of services depending on the number of
positive tests. In this section, we will explore the interventions implemented in our model.

3.3.1 Quarantines

Quarantine policies are a group of NPIs implemented in COMORBUSS intended to
isolate individuals inside a simulation based on an individual’s parameters. Quarantines in
COMORBUSS can:
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• Isolate symptomatic patients in their house, where they will only leave the house if their
symptomatic state changes to severe;

• Isolate suspected cases in a hotel or other service, where the individuals don’t go home or
outside during the quarantine;

• Isolate hospital workers from their families, where they go to a hotel or other service after
their work shift instead of their house;

Among other types of quarantine. When setting up a quarantine policy in COMORBUSS,
the user must specify a filter to select individuals to enter and to exit quarantine, a new default
placement (service or home) for the quarantined individuals, and whether the quarantined
individuals should work or visit other services. Each quarantine policy can be configured with
the following parameters:

• name: Name of the quarantine policy;

• delay: Delay between the particle is selected to quarantine and the start of the quarantine
in days;

• filter_in: A sequence of nested tuples of strings and values to be evaluated to se-
lect agents to enter quarantine, strings can be population attributes (see particles states
attributes), comparative operators, binary operators or markers;

• filter_out: Filters to select agents to end quarantine;

• placement: Placement marker or name of the service for the place where the agent should
quarantine;

• confine_particles: If true agent will not work or visit services;

• allow_requarantine: If true, allow agents to be quarantined more than once in this
quarantine.

3.3.2 Social Isolation

Social isolation in COMORBUSS models a change in behavior of the population. When
social isolation is active, a percentage of the population reduces their social activities by reducing
or stopping the visitation of certain services and reducing the time they spend outside their
homes. Social isolation can be configured with the following parameters:

• social_isolation: Enables social isolation mechanics;

• isol_pct_time_series: Day-dependent array with the fraction of population that fol-
lows social isolation;
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• isol_stay_prob: Probability p that particles already in social isolation in a day remain
in social isolation in the next day. Therefore, the probability that particles not in social
isolation follow social isolation is 1− p. Notice that even if p = 0, the particles in the first
age group are still isolated at home. In fact, it may happen that the actual percentage of the
population being isolated is larger than the one provided because of this fact. However, if
p < 0, then no social isolation measure is applied. Quarantined particles are still isolated
at the respective quarantine places.

3.3.3 Lockdowns and Services Closures

Lockdowns are NPIs implemented in COMORBUSS intended to restrict the movement
of the entire population or a fraction of the population. When setting up a lockdown policy,
the user can pass an array with the days inside the simulation where the lockdown must be
followed or set limits on population parameters (number of cases, etc.) to dynamically start and
end lockdowns. The percentage of the population that follows the lockdowns can also be set.
During lockdowns, the visitation to services is reduced or stopped depending on the settings;
individuals will not leave the house to go to the environment. Services can also be completely
closed depending on population parameters, or in configured days, each service can be configured
with its own set of closure policies. Lockdowns and services closures can be configured with the
following parameters:

• lockdown: A boolean value that informs if the lockdown measure is to be applied to the
community or not;

• lockdown_adhere_percent: the percentage of the population adhering to the lockdown
measure. During lockdown, the percentage of the population effectively being isolated
home is given by the maximum value between lockdown_adhere_percent keyword’s
value and isol_pct_time_series keyword’s value for that day;

• lockdown_decision_offset: A time period in days to delay the decision on whether to
start or end the lockdown measure.

• decision: The decision process to be used on lockdowns and closure of services, see
sub-section below (specific decisions can be set individually for each service with the
decision parameter in the service’s parameters dictionary);

• decision_par_lockdown: Parameters for the decision process to start and stop lock-
downs;

• decision_par_services_closing: Global parameters for the decision process to open
or close services (specific parameters can be set individually for each service with the
decision_par parameter in the service’s parameters dictionary);
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3.3.3.1 Decision process

The decision process used on closure of services and lockdown are protocols already
implemented in the software, to use those mechanics the user must select one of the decision
process available and also set the parameters for the decision process for lockdowns and services
closures. The decision process for closure of services can be set globally, or it can be set
individually in the service’s parameters dictionary. The available decision processes are as
follows:

• BY_DIAGNOSTICS: Decisions are taken by the percentage of diagnosed particles (decision
parameters: start_frac and stop_frac);

• BY_INFECTIOUS: Decisions are taken by the percentage of infectious particles (decision
parameters: start_frac and stop_frac);

• BY_SYMPTOMATICS: Decisions are taken by the percentage of symptomatic particles (deci-
sion parameters: start_frac and stop_frac);

• FIXED_PERIOD: Decisions are taken by a fixed period (decision parameters: start_day
and stop_day).

3.3.4 Contact tracing

Contacts between particles can be traced inside COMORBUSS, by default this data is
not stored due to the computational cost, but it can be optionally stored. However, the power of
contact tracing is where it is setup to work with other interventions, for example, a quarantine
policy can be configured to use tracing data to isolate individuals who had contact with confirmed
cases. A tracing percentage can also be configured to better represent imperfect tracing, with the
following parameter:

• tracing_percent: Fraction of the population that has tracing capability.

3.3.5 Testing

Our model also has a robust testing/diagnostics module, allowing multiple testing policies
to be configured in each simulation. For each testing policy, the user can configure who takes
the tests with an individuals filter, how many tests are applied per day, the sensitivity and
specificity of the test, the time between the test is applied and the result, the period in the
simulation where the policy is active, and if individuals can be retested. After an individual is
tested, they are marked as positive or negative, and this information can then be used to guide
other interventions such as when to start/stop lockdowns, close services, etc. The information of
whether an individual’s test was true or not is also stored in the simulation and can be used in the
simulation analysis. The parameters for each testing policy are:
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• name: Name of the testing policy;

• start_day and end_day: Dates to start and stop the testing policy inside the simulation;

• filter_particles: A sequence of nested tuples of strings and values to be evaluated
to select agents to apply testing, strings can be population attributes (see particles states
attributes), comparative operators, binary operators or makers;

• number_per_day: Number of tests to be applied in the selected population, particles
selected with filter_particles will be selected randomly to test if there are not enough
tests. If set to -1 will test all particles selected with filter_particles;

• sensitifity: Sensitivity value for the test in the [0.,1.] interval;

• specificity: Specificity value for the test in the [0.,1.] interval;

• test_delay: Time in days between an agent is selected to be tested and the test is made;

• result_delay: Time in days between an agent is tested and the result is available;

• allow_retest: Allow particles to retest the test ("yes", "no" or "negative");

• retest_delay: Time since the last result for a particle to be allowed retest.

3.3.6 Vaccination

Finally, COMORBUSS has a highly flexible vaccination module. This module allows
different vaccine models and different vaccination campaigns to be integrated into simulations.
Each vaccination campaign can be configured with:

• name: Name of the vaccination policy;

• start_day and stop_day: Dates to start and stop the vaccination inside the simulation;

• filter: Filters to select individuals to receive vaccine (can be passed as logical expression
or function);

• filter_parameters: Parameters of the filter functions (if given as functions);

• priority_function: Function to prioritize individuals to receive vaccines;

• effectiveness: Dictionary of biological effectiveness for the vaccine, the effectiveness
can affect any individual parameter such as susceptibility, infectiousness, probability of
symptoms or death, etc. Each effectiveness can be passed as a single value, an array with an
immunological curve, or as a function that generates the immunological curve depending
on the individual parameters.
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• effectiveness_parameters: Parameters of the effectiveness functions (if given as
functions);

• adverse_effects: Names and probabilities of adverse effects (can be configured per age
group);

• doses_per_day: Number of doses to be applied per day during the campaign;

• keep_last_value: Determines if the last value on the immunological curve should be
kept or the individual should return to the initial state;

• only_not_vaccinated: Determines if the vaccination should be applied in already vac-
cinated individuals;

• vaccinate_at_start: Determines whether vaccination should be applied at the start of
the simulation, for example, to simulate a previously vaccinated population;

This set of parameters allows COMORBUSS to model from simple 0-1 vaccines where
the individual is granted full or no immunity, to leaky vaccines or more sophisticated vaccine
models with dynamic immunological curves or effectiveness to other individual parameters such
as probability of symptoms. Each vaccine also has configurable adverse effects, this can be used,
for example, with the extra symptoms module to evaluate cost-benefit scenarios of vaccinations.

3.4 Code availability

3.4.1 Distribution and Documentation

COMORBUSS has a project webpage under the link https://comorbuss.org, where all
the developments, results, and links are assembled.

The source code for COMORBUSS is available in the repository https://gitlab.com/ggoedert/comorbuss
under license AGPLv3. The version of the code together with all required input files and simula-
tion scripts is available under the tag Paper_Maragogi_Schools.

The complete documentation of the COMORBUSS library is available on https://docs.comorbuss.org/
under license CC BY-SA 4.0.

3.4.2 Dependencies

Here we specify all the versions of the computer libraries used for the present work.
COMORBUSS is written in Python (version 3.7.7) and requires the following modules:

• numpy v.1.18

https://comorbuss.org/
https://gitlab.com/ggoedert/comorbuss
https://www.gnu.org/licenses/agpl-3.0.en.html
https://docs.comorbuss.org/
https://creativecommons.org/licenses/by-sa/4.0/


3.4. Code availability 63

• matplotlib v.3.1.3

• pandas v.1.0.5

• seaborn v.0.10.1

• h5py v.3.10

• h5dict v.0.2.2

• scipy v.1.5.0

• portion v.2.0.2

• networkx v.2.5.1

• tqdm v.4.46.0

• numba v.0.53.1
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CHAPTER

4
DATA INTEGRATION

In the design of COMORBUSS flexibility was a paramount feature. However, this
flexibility comes at the cost of requiring a substantial number of parameters to accurately
represent the myriad of dynamics in community interactions and epidemic progression. This
chapter focuses on the crucial aspects of data collection and processing which are indispensable
for the operation of the COMORBUSS model. We will explore the various sources from which
data was gathered, encompassing a wide range of demographic, socioeconomic, and behavioral
patterns. In addition, the chapter will detail the methodologies employed in processing these
data, ensuring their compatibility with our model.

4.1 Modeling household networks
We used three databases to reconstruct a social network of household contacts: Programa

Saúde da Família (PSF), Programa Bolsa Família (BOLSA) and Sistema de Monitoramento

da COVID-19 (SMC). These city-owned databases correspond, respectively, to a public health
assistance program, a social assistance program, and a software to register covid-19 health
attendance. The data from the first two databases was previously collected from non-structured
sources such as PDF files and processed. By combining data from the other two sources,
we managed to capture the distribution of household family size for at least 2/3 of the city
population.

Each of the following tables were constructed containing one column that specifies for
each person (row in the table) which household group it belongs to, hence by grouping rows in
the table by this group-column value we can obtain the network structure.

The Programa da Saúde da Família is the largest database containing 26721 rows, but it
is the poorest in detail with only 4 columns, namely:

• nome: Token representing the name of each person;
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• cns: Token representing the health program id, (cadastro nacional de saúde - cns) of each
person (will be used later for merging the tables);

• idade: The age of each person;

• codigo_familiar_psf : A token representing the group (family code) of each person;

Since the data was available in PDF format, we made a JavaScript script to download
files from each family, extracting the text using the Python library called pdfplumber. We noticed
that the fields were well defined between some specific sets of words, so we used string matching
techniques to filter the information from each field and structure the text.

The Programa Bolsa Família database is the second largest database, containing 18682
rows and 11 columns concerning rich data about the beneficiary of the social program, with 99%
of the data collected in 2016 or later. For this reason, we chose this table to be the fundamental
source of data for the construction of the network, as will be detailed in Section II. The columns
contain data related to:

• Personal information: Tokens representing the name of each person, the name of their
parents, cns id and cpf id which stands for cadastro de pessoa física, an individual id used
in Brazil that can uniquely represent each person throughout the databases. The age of
each person.

• Work information: Various columns detailing work information.

• Family information: A token representing the group (family code) of each person in the
database, as well as a field (column) describing the family-role of the beneficiary. The
address of the house where each person lives (is the same for each person in the same
group).

The Sistema de Monitoramento COVID-19 database is the one containing detailed
information about the health status of people in the city, concerning the actual pandemic. It is by
far the smallest database with only 1602 rows and 14 columns with data related to:

• Personal information: Tokens representing the name of each person, the name of their
mother, CNS id and CPF. The age of each person.

• Medical information: Various columns detailing medical information about the evolution
of the patient’s status throughout the year (date of first symptoms, date that the patient
tested positive or recovered), etc.

• Family information: A token representing the group (family code) of each person in the
database. The address (neighborhood) of the house where each person lives.
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The idea of integration of the three databases assumes the following propositions:

• BOLSA database offers us a reasonable idea of the distribution of families across the
population.

• Medical information from all patients should be used, whenever possible.

An important fact to note is that the three databases do not share a common key, e.g., CPF

or CNS in order to merge the data without repetition. Hence, we propose the following approach
to merge the databases (let B, S, P denote BOLSA, SMC and PSF databases respectively):

1. Let I1 = B∩S. The intersection is found using the key CPF.

2. If C = S− I1, let I2 =C∩P. The intersection is found using the key CNS.

3. The merged database M is obtained by the disjoint union of the following tables: I1 ∪ I2 ∪
(B− I1)∪ (S− I2 ∪ I1).

We finish this process with a final table M with 19973 rows and several columns,
containing roughly 2/3 of the city’s population, regarding household contact, economic and
health data of its citizens. This table is used to assign each person to a group, based on the
grouping column (family code) of each source database.

Figure 17 – Group size distribution of the M database.

We further expand the database M by incorporating persons registered only in the table
P that have a relative (the same person in the group) in the table I2, as described above, resulting
in a final table with 20350 rows.
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Figure 18 – Database diagram. PSF - Programa Saúde da Família, BOLSA-Programa Bolsa Família and
SMC-Sistema de Monitoramento Clínico.

The merged database M is used to construct the network of contacts G trough the
following steps:

1. Create, for each row in M a node in G with its respective attributes (columns of M).

2. Group each node in G by its grouping column (family code). If a node has more than 1
valid family code we choose to group it by the following priority: firstly family code from
B, secondly from P, and thirdly from S.

3. If vertices u and v are in the same group as constructed in the previous step, create an edge
(u,v) in the network. That process ultimately yields a network composed of only fully
connected components (cliques), which represents the household contacts.

4. We try to further connect cliques in the network by checking parenthood relationships
based on the mother / father names in the B section of the database (those nodes who have
a valid B family code attribute). We first select nodes that have unique names and then
map each name to its node label. For each node u in the network, we find nodes f and
m that have the name attribute equal to the father name and the mother name attribute of
node u, respectively. If f and m both have the same family code, we create edges (u,m)

and (u, f ). Notice that it is possible to find only node f or only node m (exclusively). In
such a case, we just create the edge between the child and parent node.
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The caution taken in the last step of checking the uniqueness of the names and if nodes
m and f belong to the same family is due to the fact that common names might pose a problem
on creating edges in such a way, as they would form clusters that are little related to the real
parenthood relationships.

The edges created by step 3 are labeled INTRAFAMILIAR edges (relating to contacts
within families), while edges created by step 4 are labeled INTERFAMILIAR edges (relating to
contacts between distinct but related families).

Figure 19 – Local picture of the network. One can see the cliques (dense clusters) interconnected by
edges. Nodes are colored by age.

The resulting network has 27235 edges, 24596 being INTRAFAMILIAR. The average
degree of the network considering only such edges is about 2.4 as we can see in the histogram
below:

Figure 20 – Node degree distribution, considering only edges within cliques.

In the end to ensure complete anonymity of the data, we ran the algorithm described in
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Section 3.1.2.1 to generate a new synthetic database to be used and distributed with COMOR-
BUSS, while still preserving the same macro characteristics as the real data.

4.2 SARS-COV2 DATA PROCESSING
Our reconstruction is based on data collected in Maragogi-AL using the Sistema de

Monitoramento COVID-19. From the anonymous database, we accessed the attendances of each
tested patient, in case of hospitalization, the hospitalization date, and in case of death, the death
date. Each attendance entry is composed of attendance date, symptom onset date, test type (rapid
or RT-PCR) and test result (positive or negative), see Listing 1.

1: "5": { // anonymized patient id

2: " attendances ": {

3: "1174": { // attendance unique id

4: " result ": " negative ",

5: " test_type ": "rapid",

6: " attendance_date ": "2020 -05 -11",

7: " symptom_onset_date ": "2020 -05 -07"

8: },

9: "1375": {

10: " result ": " positive ",

11: " test_type ": "TR -PCR",

12: " attendance_date ": "2020 -06 -17",

13: " symptom_onset_date ": null // unfilled attendance

date

14: }

15: },

16: " hospitalization_date ": "2020 -06 -18",

17: " death_date ": null ,

18: }

Source code 1 – Patient data example. This patient had two appointments, the first with a
negative result and the last, one month later, with a positive result. The patient was hospitalized
one day after the second appointment, but did not die.

Most quantities required for the reconstruction, such as number of hospitalizations,
deaths, and attendances, evolve over time. We chose to reconstruct the curve until July 25.

To account for false negatives and false positives, we also needed information about the
specificity and sensitivity of the tests. In general, only 52 of the 1722 tests performed until July
25 were RT-PCR tests.

Different brands of rapid tests were used throughout the year. The utilization dates in
Table 4 were informed by Maragogi’s health professionals, and the accuracies were taken from
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(ANVISA, 2020). The RT-PCR test was assumed to have 100% specificity and sensitivity.

Test brand Utilization Specificity Sensitivity
Wondfo Apr 11 - Jun 25 99,57% 86,43%
One-Step COVID-2019 Test

MedTeste May 01 - Jun 22 99,3% 97,4%
MedTeste Coronavírus (COVID-19) IgG/IgM

Advagen Jun 23 - Aug 31 96% 85%
COVID-19 IgG/IgM LF

Lungene Sep 01 - Oct 28 96,48% 91,06%
COVID-19 IgG/IgM Rapid Test. Cassette

Table 4 – Usage and accuracy of rapid tests.

Using data from Table 4 and assuming that when more than one rapid test is available,
they are used equally, we obtain the overall daily specificity and sensitivity of the rapid tests
(see Figure 21). From Table 2 in Section 1.3, we use the expected probabilities resulting from
the hospitalized / infected ratio ph = 3.304% and the death/infected ratio of pd = 0.441% in
general.

Finally, the distributions of infection times were given by (KERR et al., 2020), namely:

• Incubation period (length of time between exposition and viral shedding): log-normal with
mean 4.6 days and deviation 4.8;

• Symptom onset period (length of time after viral shedding has begun and before an
individual has symptoms, when one has symptoms): log-normal with mean 1 day and
deviation 1;

• Recovery period (length of time after incubation while the individual is infectious): log-
normal with mean 8 days and deviation 2 for non hospitalized patients or with mean 14
days and deviation 2.4 for hospitalized patients.

4.2.1 The reconstruction algorithm

Reconstruction of susceptible, exposed, infectious, and recovered curves was performed
by taking the mean over 400 curves generated stochastically. Each generated curve is also saved
for later use in calibration.

To build these curves, we need to know, for each infected person, when one enters
and leaves each compartment. For example, we know the date of attendance of the patient in
Listing 1 for both attendances. We also know the hospitalization date and the symptom onset
date for the first attendance. But the date on which the patient was exposed to the virus, when
it became infectious, or recovered is unknown. This missing information will be reconstructed
using previously known distributions, as listed in the last section, or resampling from the data.
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The reconstruction has tree main steps: test data correction, individual timeline recon-
struction, and case estimate, each will be described on the next sections.

4.2.2 Test data correction

The test data correction step relies on two minor steps: sampling incomplete test type
and inference of true positives (T P) and true negatives (T N).

4.2.2.1 Sampling incomplete test type

First of all, we treated incomplete data. For each incomplete test type field (104 out of
1722) with date t, we sampled its type (either rapid or RT-PCR) using all tests with known test
type from the same date t.

4.2.2.2 Inference of true positives and true negatives

The next step is to arbitrate whether the test results are correct or not (for rapid tests,
since RT-PCR tests are always assumed to be correct).

Let T P be the percentage of true positives, T N of true negatives, FP of false positives
and FN of false negatives. By definition, specificity (e) and sensitivity (s) are given by

e =
T N

T N +FP
and s =

T P
T P+FN

, (4.1)

but we want to evaluate the probability of true positives (pT P) and true negatives (pT N), i.e.,

pT P =
T P

T P+FP
and pT N =

T N
T N +FN

. (4.2)

We aim to write both equations above in terms of known quantities: the specificity and
sensitivity are known from the technical notes (ANVISA, 2020), and p = T P+FP comes from
the total number of positive tests throughout the period. From Equation (4.1) we have

T N
(

1− 1
e

)
+FP = 0 and T P

(
1− 1

s

)
+FN = 0 (4.3)

and from T P+FP+T N +FN = 1,

T P+FP = p and T N +FN = 1− p. (4.4)

Thus,

T P−T N
(

1− 1
e

)
= p and T N −T P

(
1− 1

s

)
= 1− p. (4.5)

Solving (4.5), we have

T P =
p+(1− p)

(
1− 1

e

)
1−

(
1− 1

s

)(
1− 1

e

) and T N =
(1− p)+ p

(
1− 1

s

)
1−

(
1− 1

s

)(
1− 1

e

) . (4.6)
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Therefore,

pT P =
1+ 1−p

p

(
1− 1

e

)
1−

(
1− 1

s

)(
1− 1

e

) and pT N =
1+ p

1−p

(
1− 1

s

)
1−

(
1− 1

s

)(
1− 1

e

) . (4.7)

These quantities evolve with time, as the proportion of positive tests varies over time.
So, for a given day t we let p(t) be the ratio p calculated using a 21-day window centered on
t (which matches the disease cycle used in the calibration). Also, let e(t) and s(t) be the mean
specificity and sensitivity of the rapid tests available on day t.
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Figure 21 – Daily specificity e(t), sensitivity s(t) and constructed probabilities pT P(t) and pT N(t) in
Equation (4.7). Note the dashed curves also rely on the sampling incomplete test types, so it
changes over each realization of the reconstructed curve. Since the standard deviations are
minimal, we chose to plot only the mean curve. Until April 28, only negative results were
reported by rapid tests and the moving average has a window of 21 days.

Using the curves pT P and pT N , one can determine whether a given rapid test was positive
or negative. We run that decision stochastically for each attendance with a rapid test. From now
on, when we refer to positive tests, we are talking about the tests we judged as positive.

4.2.3 Individual timeline reconstruction

Each individual has one or more attendances. From the first attendance with a positive
test result, if it exists, we took the date of onset of the symptom and the date of attendance.

Let i be an agent, τ i
E its exposition date, τ i

I the day it becomes infectious, τ i
sym the

symptom onset day and τ i
R the recovery (or death) date, the individual disease timeline is the

tuple (τ i
E ,τ

i
I ,τ

i
sym,τ

i
R). The value τ i

sym is the only one we know and any other value can be
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stochastically constructed using the distributions in (KERR et al., 2020), namely:

τ
i
I − τ

i
E ∼ lognormal(4.6,4.8)

τ
i
sym − τ

i
I ∼ lognormal(1,1)

and for non hospitalized patients

τ
i
R − τ

i
I ∼ lognormal(8,2)

or hospitalized patients

τ
i
R − τ

i
I ∼ lognormal(14,2.4).

Some attendances do not have information on the date of onset of symptoms (around 23% of
positive cases). Again, from the filled data we derived the distribution of the time between
symptom onset and medical attendance, only over positive cases, and then sampled the onset
date of unfilled entries.

4.2.4 Number of Cases estimation

The ratios

number of hospitalizations
number of cases

and
number of deaths
number of cases

(4.8)

should approximate the inferred ratios ph = 0.03304 and pd = 0.00441, respectively. Let
NB(q,n) be the negative binomial distribution with success probability q, which counts the
number of Bernoulli failures that should occur until n success. In the period until July 25, a total
of 18 individuals died and 119 were hospitalized. So, we can model the number of cases as

Th = NB(ph,119)+119 or as Td = NB(pd,18)+18. (4.9)

Using the number of hospitalizations, we have E(Th) =
119
ph

≈ 3601 with a 90% confi-
dence interval of [2966,4033]. Using the number of deaths, we have E(Td) =

18
pd

≈ 4086 with
a 90% confidence interval of [2623,5760]. Both confidence intervals agree, although the confi-
dence interval estimated using deaths is larger. Since it has a narrower confidence interval, we
use T = Th to estimate the total number of cases.

It is also interesting to note that the data appear consistent, the ratio between recorded
deaths and recorded hospitalizations is 18

119 ≈ 15.1% and the ratio pd
ph

is approximately 13.3%, a
small difference.
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4.2.5 The final curve

Let H be the set of all hospitalized individuals and N the set of all non-hospitalized
infected individuals, define

EH(t) = ∑
i∈H

1[τ i
E ,τ

i
I)
(t) , IH(t) = ∑

i∈H
1[τ i

I ,τ
i
R)
(t), RH(t) = ∑

i∈H
1[τ i

R,∞)(t). (4.10)

Let EN(t), IN(t), and RN(t) be defined analogously. Also, let

CH = ∑
i∈H

1[τ i
A,∞)(t) and CN = ∑

i∈N
1[τ i

A,∞)(t), (4.11)

where τ i
A is the first attendance date with a positive result.

Assuming no subnotification among hospitalizations and deaths. Also, using T cases on
July 25th, we define

α =
T −CH(t∗)

CN(t∗)
, (4.12)

where t∗ is July 25th, CH(t∗) = 119 and CN(t∗) varies depending on the missing data reconstruc-
tion, the inference of test results and the individual timeline reconstruction. Then, the quantity α

captures the ratio between the overall mild cases and the mild cases followed. On average, only
16.75% of patients with mild or no symptoms sought medical help.

Finally, we reconstruct the curves:

E(t) = EH(t)+αEN(t) , I(t) = IH(t)+αIN(t) and R(t) = RH(t)+αRN(t). (4.13)

The procedure has four stochastic steps: test type resampling, test result correction,
symptom onset date resampling, and individual timeline reconstruction. The final curve is given
by the mean of 400 trials; see Figure 22. Of course, the curve of susceptible individuals (S(t)) is
given by the total population minus the sum E(t)+ I(t)+R(t).

4.3 Parameter estimation
In this section, we describe how to use data collected from Maragogi-AL city to estimate

some main parameters of the model, such as those in the definition of services. We also specify
the calibration procedure used to approximate the poorly estimated or unknown parameters
whose variance influences the SEIR curves the most.

In the sections to come, we first focus on the estimation of some key parameters in
the definition of services. Section 4.3.1 gives reasoning to the choice of the average number
of contacts within homes, and also to the relation between the probability values of indoor
and outdoor infection. Sections 4.3.2 and 4.3.3 are intended to explain the estimation of the
most relevant service parameters with respect to disease transmission: the visitation period and
the network parameters. Finally, the next two sections detail the calibration process and the
sensitivity of the results with respect to the population size, respectively.
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Figure 22 – Final estimated curve for exposed, infectious and recovered compartments. The solid
lines are the mean over all 400 trials and the dashed ones represent one standard deviation up
and below.

4.3.1 Estimation of parameters for household and indoor/outdoor
environments

Regarding the specific epidemic history of Maragogi-AL city, one notices that a large
portion of the population stayed home during the period we consider in this study. This fact is con-
firmed from the Inloco geolocation data (currently under the name of Incognia (INCOGNIA. . . ,
2021))1. From the high level of social isolation in this period, we assume that the transmission
rate in homes was higher compared to the rate in other environments, such as essential services.
The transmission rate of the household, denoted Rh, is introduced in Curmei et al. (2020), and
is defined by the average number of new infections caused by an infected individual within its
household. Given the intense social isolation in Maragogi-AL, we have used the highest value
of Rh estimated by Curmei et al. (2020) as our reference. This leads to choosing the average
number of 1 hour contacts chomes inside a home so that the total number of new infections in
houses during the period considered is about 70% of the total. In our simulations, we have used
chomes = 0.7.

Transmission rates also vary considerably for indoor and outdoor environments2. From
the meta-analysis of Nishiura et al. (2020), it is inferred that indoor environments increase 18.7
times the probability of disease contagion compared to outdoor environments. We consider this
aspect in our simulations, multiplying the infection probability within outdoor environments by

1 The company uses high resolution smartphone geolocation data to generate the social isolation index
time series, see (INCOGNIA. . . , 2021). However, we must point out that due to geographic limitations,
the regional cellphone signal is not captured with high quality, causing an underestimation of the social
isolation index

2 Outdoor environments in Maragogi-AL, for the sake of our study, include the environmental layer (see
Section 3.1.3.3) and street markets
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a weight equal to 1/20.

4.3.2 Estimation of service’s visitation period

The services visitation period is one of the parameters that most influences the spread
of the disease in a given city, since it controls the influx of agents within services. In Section
3.1.1.2 we define the visitation period and also how to estimate it. In this section, we describe
how we collected the data for the actual values of this parameter for each service in the city of
Maragogi-AL.

Street market: street market opens at Saturdays, from 6:00 to 12:00. During the pan-
demics, an average of 3000 people visited the street fair every day it opened; see Section 1.3.
Assuming that all people in age groups 5 and above can visit the fair, the calculation for vpc is

vpc = 7
vt

vw
= 7

20884
3000

≈ 48.73 days.

Hospitals: the total number of hospital visits in each hospital unit (UPA and SAMU)
from April 29 to June 28, 2020 was 3579 and 304, respectively. To estimate the actual number of
people who visited the hospitals during this period of time, we must take into account the other
people accompanying these attendees. In order to do that, let us suppose that at least children
from the first 3 age groups are accompanied by an adult, and that the same happens to elderly
from the 13th age group and above.

Assuming that everyone in Maragogi had the same number of contacts with the disease,
we estimate from susceptibility psus and the probability of developing severe symptoms psev,
what the portion po of attendees who brought another person with them to the hospital:

po =
⟨psus ∗ psev, popce⟩
⟨psus ∗ psev, popt⟩

≈ 0.2496,

where ∗ is the point-wise multiplication of vectors, ⟨·, ·⟩ is the inner product, popt is the vector
of all people from all age groups, and popce agrees with popt for children or elderly, but has
null entries otherwise.

The UPA attendees do not all come from Maragogi, but the hospital estimates that at
least half of them do. Taking all this information into account, we estimate the visitation to the
hospitals to be

vpc = (180−120)
32702

(0.5∗3579+304)∗1.2496
≈ 750 days.

USFs: the USFs open during the week only, but they receive much more people than
hospitals. From day 130 to day 210 of 2020, they have attended a total of 7334 people. Taking
into account people who come accompanied, the visitation period for USFs is

vpc = (210−130)
32702

7334∗1.2496
≈ 285.5
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Supermarkets: to account for visitation routines in supermarkets, 5 of the largest of its
kind have been interviewed. The supermarkets “Preço bom” have reported 3000 attendances
every week, while supermarkets “Supermar”, “Mercado Nacional” and “Mercadinho Durare”
have reported an average of 550 attendances weekly. As a result, the visitation period for this
category of services in days is

vpc = 7
20884
3550

≈ 41.18,

as long as all age groups above 20 years old are considered consumers.

Markets: given the big difference in the contact network for supermarkets and other
types of markets, we decided to separate them into two distinct types of service. For markets,
which are more local and smaller in size, we gathered information from two representatives,
namely markets “Mini Carrefour” and “Mercadinho do Beto”. These two markets reported an
average of 50 visitors per week. We then assumed a similar visitation for all other 37 instances,
which allowed us to estimate the following visitation period, in days:

vpc = 7
20884
50∗39

≈ 74.97.

Food Stores and Construction stores: the other types of services that received people
and that remained opened during the period considered were grouped into two categories:

• Food stores: all other types of services that sell specialized food, such as fruits and
vegetables and beverages. This category also includes pharmacies.

• Construction stores: all types of stores that sell maintenance equipment, such as those for
civil engineering, household equipment, vehicle parts, etc.

These two types of stores are small, and we assumed that their visitation periods were twice and
four times longer than the visitation period of markets, respectively.

4.3.3 Estimation of service’s contact network parameters

In this section, we describe the data used in the contact network parameters for Maragoggi-
AL services, according to their definition given in Section 3.1.3.

Contacts are a way to quantify the opportunity for disease spreading if agents entering
contact have the proper compartmental state. In this work, we have assumed that a contact has
the following definition: “two people two meters or less from each other for the duration of one
hour”.

A general procedure to quantify the network parameters, as described in the following
sections, is

1. estimate the average amount of time tcont people at two meters or less away from each
other;
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2. quantify the number of contacts by taking into account tcont instead of one hour;

3. derive a weight wcont to be multiplied by the parameter values, scaling contacts to the
duration of one hour.

As an example, wcont would be given by wcont = 1/12 if tcont is 5 minutes. That would mean that
a person having 12 contacts of five minutes would equal having one of one hour.

Street Markets: for street markets, we have used the model described in section 3.1.3.5
with some few modifications:

• All workers are cashiers, hereby denominated sellers;

• Visitors can get in contact with more than one cashier/seller.

Since there are only two categories of agents inside street markets, cashiers and visitors, we need
to approximate three parameters: the average number of contacts among sellers, the average
number of contacts among visitors, and the average number of contacts between the two of them.

Before obtaining values for the average number of contacts, we need to estimate its
average length of time tcont . We have done so using recordings of individuals collected by drones
on one of the days the street market opened. Following the routine of anonymous people on
the street market, we calculated tcont to be 5 minutes. Now we are in a position to estimate the
average number of contacts.

Contacts among sellers: There were 185 sellers in the street markets during the time considered,
distributed along 120 stands. 55 of these stands were owned by a seller and 65 of them had two
sellers as owners. We assume that the stands with two sellers were constantly in contact and that
an average of 3 contacts of 5 minutes happened between sellers of different stands each hour. As
a result, the average number of contacts csellers between sellers per hour is

csellers ≈
65∗12+3∗120

120
≈ 6. (4.14)

Contacts between sellers and visitors: from the frames collected by drones during the opening
hours of the street market, we estimate that about 300 people stayed around the stands every
hour. We have also estimated that visits took 50 to 60 minutes on average. As a result, an average
of 2 visitors were found around 60 stands, while 3 visitors stayed constantly close to 60 stands.
In the worst case scenario, we have all groups of three people getting in contact with 2 sellers, 5
groups of two people getting in contact with 2 sellers, and the remaining 55 groups of two people
getting in contact with 1 seller. As a result, the maximum number of contacts of 5 minutes that
visitors have with sellers cmax

vis→sell is

cmax
vis→sell ≈ 12

60∗3∗2+5∗2∗2+55∗2∗1
458

≈ 12.8, (4.15)



80 Chapter 4. Data integration

where 458 is the average number of visitors present in the street market per hour, considering
visits of 55 minutes. Analogously, in the best case scenario, 55 groups of three visitors are found
around the stands of one seller, 5 groups of three visitors stay close to the stands with two sellers,
and the remaining 60 groups of two visitors get in contact with two sellers per hour. In this case,
we see that the minimum number of contacts of 5 minutes that visitors have with sellers cmin

vis→sell

is
cmin

vis→sell ≈ 12
55∗3∗1+5∗3∗2+60∗2∗1

458
≈ 8.3. (4.16)

Taking the average between the worst and best case scenarios, we see that the average number of
contacts cvis→sell that visitors have with sellers is

cvis→sell ≈
cmax

vis→sell + cmin
vis→sell

2
≈ 10.6. (4.17)

Contacts among visitors: From the data acquired through drone observations, we know that
about 3000 people attend the street market when it opens. In addition, since visitors take about
55 minutes to shop, we also know that about 458 people visit the street market per hour. Of these
people, some are shopping, and some are assumed to be randomly walking in the transit area of
the fair. The remaining few formed clusters of people socializing. From our observations, the
average number and amount of people in each cluster is

• 1 cluster of 5 people: 5×4/2 = 10 1-hour contacts;

• 3 clusters of 4 people: 3(4×3)/2 = 18 1-hour contacts;

• 11 clusters of 3 people: 11(3×2)/2 = 33 1-hour contacts;

• 23 clusters of 2 people: 23(2×1)/2 = 23 1-hour contacts.

The number of 1-hour contacts happening in stands where 2 visitors could be found is 60(2×
1/2) = 60, and the total number of contacts that occur in the stands where 3 visitors could be
found is 60(3× 2/2) = 180. Finally, for the random walking of the remaining 62 people, we
assume an infectious radius of 2 meters. Whenever agents are found at less than this distance
from each other, we count a contact. However, since the transit area of the fair is approximately
1607m3, it makes sense to consider this type of contact only for a number of people larger than
1607/4π ≈ 128. As a result, only the above two types of contacts are considered and, therefore,

cvisitors ≈ 12
324
458

≈ 8.5, (4.18)

where cvisitors is the average number of 5-minute contacts happening among visitors per hour.

Hospitals and other health facilities: for hospitals and other health facilities networks
(that do not treat diagnosed individuals), data have been acquired from the city hall. For this type
of service, the contact network employed is that introduced in Section 3.1.3.7, for which we have
the following parameters:
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• pdis.w.: percentage of hospital workers that deal specifically with the pandemics disease in
question;

• cworkers: average number of 1-hour contacts among non-disease workers;

• cdis.w.: average number of 1-hour contacts among disease workers;

• cdis.w.→w.: average number of 1-hour contacts from disease workers to non-disease workers;

• cvisitors: average number of 1-hour contacts among visitors;

• cvis.→w.: average number of 1-hour contacts from visitors to non-disease workers.

• cguests→dis.w.: average number of 1-hour contacts from guests (admitted persons) to visitors.

According to city hall data, the values of the above parameters for campaign hospitals are:
pdis.w.= 0.19, cworkers = 2, cdis.w.= 2.9, cdis.w.→w.= 0.2, cvisitors = 2, cvis.→w.= 1, and cguests→dis.w.=

0.15. For other types of health facility, the difference is that there are no disease workers who
specifically deal with admitted persons. Therefore, the non-zero values for the above parameters
are: cworkers = 2, cvisitors = 2, and cvis.→w. = 1.

Markets, supermarkets, food stores and construction stores: the data used in the
network parameters of these services have also been collected from city hall estimates. The type
of network used here is that presented in Section 3.1.3.5, whose main parameters are

• cworkers: average number of 5-minute contacts among workers;

• cvisitors: average number of 5-minute contacts among visitors;

• cvis.→w.: average number of 5-minute contacts from visitors to workers;

• pcashier: percentage of workers that are cashiers.

For supermarkets, the above parameters have been estimated to be equal to: cworkers = 3,
cvisitors = 3, cvis.→w. = 0.25, and cvis.→w. = 0.22. For the remaining services, these parameters
are: cworkers = 3, cvisitors = 3, cvis.→w. = 0.25, and cvis.→w. = 0.29.

City hall: for the city hall we have used the standard Erdos-Renyi model, where the
probability pER of an edge being added is given by pER = cavrg/(N − 1). Here, cavrg is the
average number of contacts, and N is the total number of nodes on the graph. However, the value
of cavrg has been calibrated along with the probability of infection due to lack of information,
and also due to the high number of workers compared to the remaining services (355 versus 916).
The calibrated value ended up being cavrg = 0.61 1-hour contacts per hour. See Section 4.4.

Environmental layer: for the environmental layer, which comprises agents out of home
who are not in either of the other services, we have used the network model explained in Section
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3.1.3.3. The only customizable parameter in this network is the urban area, which in the case of
the Maragogi-AL city is: 7.654km2.

Schools: for schools we have used an entirely different transmission model which is not
based on physical contacts but rather on the aerosol transmission of infectious particles. See
Section A for details.

4.4 The optimization program
After directly calculating or estimating all parameters that we consider relevant for

simulating a community, we are left with the task of approximating the infection probability
p ∈ [0,1] and the mean number of 1-hour contacts c ∈ R+ between workers at the City Hall.
Since infection probability is a very behavior-dependent parameter, it is difficult to approximate
it directly. Similarly, the contact network inside the City Hall could not be assumed from a
priori information. To find parameter values that best fit the disease data, we use an optimization
program to estimate these parameters for the period considered. In this section, we describe the
methodology used in this optimization step, and we also provide numerical evidence that it is, in
fact, well suited for the task.

Let x̂ be a candidate for approximating x = (p,c). We evaluate how close x̂ is to x using
the Wasserstein distance as a goodness of fit as follows:

• Let D be a set of time markers (in our case, days), and let E be defined by

E = {(s,e, i,r) ∈ [0,1]4 : s+ e+ i+ r = 1}. (4.19)

Then X = D ×E contains any SEIR curve evaluated at times in D . We define {Xi}n
i=1 as

the possible SEIR trajectories generated by our SEIR curve reconstruction (see Appendix
4.2) and {Xy

j }m
j=1 be m i.i.d. trajectories generated by our model when we use the parame-

ters in (y1,y2) = y ∈ [0,1]×R+ as the infection probability p = y1 and the mean number
of 1-hour contacts c = y2. We also set ν̂ as the empirical measure given by {Xi}n

i=1 and µ̂y

as the empirical measure obtained from {Xy
j }m

j=1.

• The L1-Wasserstein distance between ν̂ and µ̂y is given by

W1(ν̂ , µ̂
y) = inf

γ∈Γ(ν̂ ,µ̂y)

∫
X ×X

||X −Y ||1dγ(X ,Y ), (4.20)

where Γ(ν̂ , µ̂y) is the set of all couplings of ν̂ and µ̂y. In our case, with empirical measures
having finite support, one can evaluate Equation 4.20 using linear programming, so we
employ the solution implemented on the Python Optimal Transport package (FLAMARY
et al., 2021).

• We evaluate
x̂ = argminyW1(ν̂ , µ̂

y) (4.21)
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Figure 23 – Reference susceptible and infectious compartmental distribution curves for the city of
Maragogi-AL in comparison to their calibrated versions calculated from COMORBUSS.
The recovered curves also include the deceased compartment. The solid curves represent the
mean over 384 samples, the dotted curves limit a 95% percentile of the distribution, and the
colored clear region is bounded by two shifted mean curves. These shifted curves are obtained
by summing and subtracting the point-wise standard deviation over the 384 samples.

in three steps: 1) using a population size of N = 10000, we perform a grid search to narrow
down the search space; 2) still using N = 10000, the search for an optima in the narrowed
space is performed by applying the Nelder-Mead algorithm; 3) we apply Nelder-Mead
with N = 32702 (the real population size). The first two steps using a small population
size reduce the computational cost of the process, and the last one corrects any artifact
produced by rescaling to N = 10000.

In practice, we use n = m = 384 and D as the days between May 9 and July 25 2020.
The calibration procedure just described generates the following approximations for (p,c):
p ≈ 0.1356 and c ≈ 0.6116. The L1-Wasserstein distance between the approximated optima
and the reference curves is then given by W1(ν̂ , µ̂

(0.1356,0.6116)) = 9.3× 10−3. The resulting
SEIR curves are compared to the reference curves in Figures 23,24. We notice a very good fit,
especially for the susceptible and recovered compartments. These compartments are, in fact,
usually the ones obtained with the highest accuracy for the reference curves.

The quality of x̂. The Wasserstein distance is a widely used goodness-of-fit measure
(SOMMERFELD; MUNK, 2016; ARJOVSKY; CHINTALA; BOTTOU, 2017) for determining
how close are two distributions. It has well-known concentration bounds when the measures
are empirically approximated, which is exactly our case (see (DEDECKER; MERLEVÈDE,
2019; ARJOVSKY; CHINTALA; BOTTOU, 2017)). A good indicator of quality for the estimate
x̂ is how closely one can recover a calibration parameter when COMORBUSS generates the
input SEIR data using a given value for this parameter. We check this property experimentally
by using the infection probability as the calibration parameter aforementioned. The experimental
protocol is as follows:
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Figure 24 – Reference exposed and infectious compartmental distribution curves for the city of
Maragogi-AL in comparison to their calibrated versions calculated from COMORBUSS.
The solid curves represent the mean over 384 samples, the dotted curves limit a 95% percentile
of the distribution, and the colored clear region is bounded by two shifted mean curves. These
shifted curves are obtained by summing and subtracting the point-wise standard deviation
over the 384 samples.

• Let p ∈ [0,1] be fixed and S1, · · · ,S50 be 50 disjoint sets of 384 seeds each (we took
S1 = {1001, · · · ,1384}, S2 = {1384+1, · · · ,1000+2 ·384}, etc.);

• We set in COMORBUSS the infection probability as p = 0.15, the mean number of 1-hour
contacts in the City Hall as c = 0.3, and the population size as the full value N = 32702,
and we run simulations using the seeds from Si, i = 1, · · · ,50. This procedure generates
50 empirical measures ν̂

(0.15,0.3)
i , i = 1, · · · ,50;

• For each ν̂
(0.15,0.3)
i , i = 1, · · · ,50, we solve

x̂i = argminy∈[0,1]W1(ν̂
(0.15,0.3)
i , µ̂y). (4.22)

To simplify the procedure and reduce computational cost, we fix y2, the second coordinate
of y as y2 = 0.3. That is, we effectively only calibrate for the infection probability in this
test. Nevertheless, this showcases the effectiveness of the proposed calibration procedure.

After trying to recover p= 0.15 as the infection probability using the procedure described
above, we obtain the following approximation p̂ for p: p̂ = 0.147±0.0008. We notice that the
approximation for p is very close to the original value we attempted to recover. This simulation
asserts not only that the optimization program is effective for approaching the real observed
value for (p,c), according to the input data, but also that the scaling made in COMORBUSS for
the population size is effective (see the section below).
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4.5 Remarks about the population size

The most critical parameter for controlling computational time is the population size N.
As a result, understanding the impact of this parameter on changes in results is essential.

Sensitivity analysis on population size N generally focuses on how the distribution of
the final epidemic size (i.e., the distribution of the total number of cases after the epidemic
ends) evolves with N. The dependence of a classical stochastic compartmental SEIR model with
respect to N has been analyzed in (GREENWOOD; GORDILLO, 2009; BIBBONA; SIROVICH,
2017). In (GREENWOOD; GORDILLO, 2009), the authors provide experimental evidence that
although the aforementioned distributions converge as N grows, their convergence is slow. This
fact is verified by noticing that even with N on the order of 104, significant differences can still
be observed as N grows.

We designed a similar experiment for our model. Unlike the compartmental model, our
stochastic agent-based model constructs an entire city and assigns individuals to networks (e.g.
family structures, school networks, services networks). Approximating real populations using
values of N distinct from the real population size may incur rescaling errors. Looking at the
total number of individuals assigned to each relevant social activity modeled in the city of
Maragogi-AL, we determined that the minimum population size necessary to keep at least one
individual in each social role is N = 1000.

To test how the final epidemic size changes with respect to N, we evaluate the results ob-
tained from COMORBUSS by setting N ∈{1000,2000,3000,4000,5000,10000,15000,20000,30000}.
We make 384 simulations for each value of N, and each simulation is run until the sum of ex-
posed and infectious individuals becomes zero. Subsequently, we evaluated the percentage of the
population that was infected, calling it the final size of the epidemic. The results are shown in
Figure 25.

The outcome of our tests, shown in Figure 25, agrees with the results exposed in (GREEN-
WOOD; GORDILLO, 2009). We understand these results from a probabilistic perception. For
small population sizes, statistical fluctuations are more significant, since probabilistic events
such as spreading the disease or recovering from it occur less frequently. This can lead to rapid
decay in epidemic measures in more realizations of the community, leading even to bimodal
distributions for the final epidemic size (see Figure 25). On the other hand, for large population
sizes, the number of agents is prone to sustain the epidemic for a longer period of time. This
is because we have a larger number of probabilistic events, which smooth out probabilistic
fluctuations. This behavior helps to shift the distribution of the final epidemic size towards its
right-sided mode (the process is clearly seen in Figure 25, where the histograms tend to the right
hand side of the vertical dotted line as N increases).

In (GREENWOOD; GORDILLO, 2009) the authors point out that the final epidemic
size distributions display a bimodal behavior with two peaks. Our simulations also give evidence



86 Chapter 4. Data integration

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 1000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 2000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 3000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 4000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 5000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 10000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 15000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 20000

0.00 0.05 0.10 0.15 0.20
0

20

40

60

N = 30000

Figure 25 – Histograms of the final epidemic size for different values of N. The y-values are normalized
so that the histograms represent a distribution. For low values of N the histograms are shifted
towards the left side of the vertical dotted line, while for high values of N the tendency
flips to the right hand side of the line. The variance decays as N grows, but the shape of the
distribution still changes even for high values of N. Low values of N also show evidence of
bi-modal behavior.

of the bimodal structure, especially for small populations (see Figure 25). This shows that
COMORBUSS is capable of incorporating the classical properties of stochastic compartmental
models.

Figure 26 helps to summarize how N affects the model’s behavior, which we can outline
as two regimes:

• Low values (N of order 103). Here, the epidemic has a more unpredictable behavior (the
clouds are less concentrated), and it finishes sooner without infecting a large number of
people (the clouds in the figure are shifted southwest). In fact, the average final epidemic
size and the average final day for N = 1000 were 7.5% and 80.3 days, respectively. For
N = 30000 they were 12.9% and 199.0 days, respectively;

• High values (N of order 104). Here, the epidemic has a more predictable behavior (the
clouds in the figure are concentrated) and also a longer duration. Although for low values
of N a longer duration is associated with larger epidemic sizes, this behavior is softened
by high values of N: the correlation ρ between both variables decreases as N increases.
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Figure 26 – Final epidemic size (y-axis in %) vs number of days until the epidemic ends (x-axis in
days) for different values of N.The initial condition is (S,E, I,R) = (.971, .007, .01, .012)
for all realizations of the community. The X marker inside the clouds is the average over all
points. The dotted line is a linear regression on the data, and ρ is the correlation between both
variables (epidemic size and its total duration).

These results show that one must avoid approximating population size of order 104 using
population sizes of order 103 whenever possible. Approximations between the same magnitudes
are possible since the population sizes of 10000, 20000 and 30000 display average final epidemic
sizes of 12.85%, 12.87% and 12.94%, respectively. Other variables are not as robust with respect
to changes in population size. For instance, the average total duration of the pandemic for a
population size equal to 10000, 20000, and 30000 was 168.2, 190.1 and 199.0 days, respectively.

As a rule of thumb, we choose to approximate the population of Maragogi-AL (32702
individuals) using N = 10000 on the most computationally expensive and repetitive routines,
such as the calibration process described above. For less expensive routines, such as those
comparing different opening scenarios for schools, we make no approximation (N = 32702).
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CHAPTER

5
APPLICATION: PROTOCOL EVALUATION

FOR SAFE SCHOOL ACTIVITIES

The educational system plays a fundamental role in the socio-intellectual development
and mental health of children and adolescents. During the COVID-19 pandemic, the impact of
school closures on society has been enormous. UNESCO reported that, as of April 8, 2020, up to
188 countries closed schools nationwide. In developing countries, such as Brazil, the nutritional
well-being of children was put in jeopardy, as families rely on school meals. And yet, in Brazil
alone, schools remained closed full-time for 191 days in 2020 affecting 44.3 million children.
However, given the frequent contact during a school day, the prevalence of mild symptoms
in children and the role of school as a source of contacts that bridge family nuclei, there is
understandable concern that face-to-face classes could drive uncontrolled spreading of the virus.

In view of the negative physical and mental consequences for students, together with
the educational deficit imposed by school closures, the ECDC agency points out that transmis-
sion mitigation measures are necessary for students to have a safe socialization and learning
environment (COVID-19. . . , 2021). Therefore, a major concern is the evaluation of mitigation
protocols (THOMPSON; AL., 2020) to understand the impact of each measure within the school
community.

Living in a household with a child who goes to school physically increases the risk of
being infected by up to 38%. Similarly, school teachers are 1.8 times more likely to be infected
than those working from home (LESSLER et al., 2021) and the return of face-to-face classes has
been directly related to outbreaks (COVID-19. . . , 2021). Mitigation measures such as separating
student groups, quarantining exposed students and professionals, wearing masks, maintaining
adequate air ventilation, vaccinating risk groups, and monitoring the emergence of cases can all
decrease the number of new cases (GURDASANI et al., 2021; MUNDAY et al., 2021; LESSLER
et al., 2021).

Often, mitigation measures are put in place simultaneously, making it difficult to disen-



90 Chapter 5. Application: Protocol evaluation for safe school activities

tangle their individual impact on transmission from temporal case report datasets. The lack of
infrastructure, personnel, and laboratory equipment may also limit the use of these measures
in developing countries, especially when they are based on resource intensive practices such as
testing and subsequent contact tracing of cases. Thus, it becomes crucial to identify effective
mitigation practices a priori.

Our aim in this chapter is to quantitatively assess the effects of vaccination (SILVA et al.,
2021) and NPIs protocols and find effective protocols for school activities. Our study shows that
classes can be kept open safely, provided that the correct combination of measures is adopted.
Relying on a single measure is mostly not effective or stable, but simple measures can go a long
way when properly combined and implemented.

5.1 Materials and methods

5.1.1 Data collection

The city of Maragogi in Northeast Brazil has 33,000 inhabitants (IBGE. . . , 2021) and
is a representative of at least 40% of Brazilian cities in terms of income and demographics.
Moreover, its demography is also typical worldwide, being located above the 50% quantile
in a sample of 28,372 North American cities and 41,000 global cities, using the simplemaps
database (UNITED. . . , 2021; WORLD. . . , 2021), see Section 1.3 for further details.

Through a partnership with the city of Marogogi, established since March 2020, we
developed a Clinical Monitoring System to track and trial all severe acute respiratory syndrome
patients. We also geolocalized the patients and integrated this information with public data to
obtain household socio-economic data and family clusters Section 4.1. The data integration is
illustrated in the upper left panel of Fig. 27. For our study, we used data from May 9, 2020, to
July 25, 2020, consisting of 18 confirmed deaths and 119 hospitalizations. In this period 1722
tests were performed, namely 52 RT-PRC tests and 1670 antibody tests (in majority COVID-19
IgG/IgM, see Section 4.2 for further details).

This study was approved by UFAL institutional Ethics Committee (CAAE: 43058821.9.
0000.5013).

5.1.1.1 Services

We mapped the services that were allowed to be open during the period under government
regulations and interviewed a sample of businesses to estimate daily occupation. The bulk of
such services are food stores, building supply stores, restaurants, and other minor retail services
as described in 3.1.1.
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SIMULATION AND EVALUATION OF NPIs MEASURES
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Figure 27 – Pipeline overview description. Data is collected as patients attend health institutions. Health
professionals register patients’ personal, epidemiological, and geolocation data to the Clinical
Monitoring System (CMS), which is blended with socio-economical and household data.
Using these data, we estimate the number of Exposed (blue), Infectious (red), and Recovered
(green) individuals. All the pre-processed data is used to calibrate our stochastic agent-based
model, COMORBUSS. From bottom left to right: a schematic representation of the social
dynamics of COMORBUSS, producing contacts between individuals in different social
contexts. The colored circles represent the state of individuals and the lines represent relevant
physical contacts capable of producing contagions. Once calibrated, the model is used to
estimate the effectiveness of NPIs.

5.1.1.2 Street markets

We estimated the usage of important open air services such as street markets by images
collected by drones. We processed the images using the Drone Deploy mapping software marking
tool (DRONE. . . , 2020) to evaluate the mean size and duration of the cluster of people less than
2 meters apart during opening hours, as well as the average time spent by individuals in the street
market. In Section 1.3, we also show that cities with demographics similar to Marogogi have
analogous street market behavior.
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5.1.1.3 Health services

During the period considered, the triage of all COVID-19 related cases was performed in
a field hospital. We interviewed the health secretary’s staff to obtain data on the mean appointment
time and the mean number of contacts a patient has with doctors and other patients. This also
provided data on the mean number of contacts among staff, see 3.1.3.7.

5.1.2 Inference of states from data

We estimate the epidemiological SEIR curve from attendance data from our Clinical
Monitoring System. The SEIR curve corresponds to the trajectory of the population over the
period of observation in the states: susceptible, exposed, infectious, and recovered. The challenge
is to transform the information of an individual reported in the attendance data into these states
of the entire city population over time, correcting for subnotification.

Under the hypothesis that all severe cases (hospitalization and death) are reported in our
Clinical Monitoring System, for each reported individual, we estimated the number of unreported
infected individuals using a negative binomial (NB) distribution and consequently the total
number of cases in the city over the period of observation. We modeled the total number of cases
by T = NB(ph,119)+119, where ph ≈ 3.304% is the estimated probability of hospitalization
for the city. We assume that these unreported individuals present their first symptoms at the same
time as reported individuals.

Having all individuals carrying the virus, we estimated how they progress across the
SEIR compartments based on the severity of the case and the distribution of the permanence
of each state (WÖLFEL et al., 2020). We rerun the statistical model 400 times to obtain SEIR
curve samples for the city, see Section 4.2 for further details. We denote by ν̂ the (empirical)
distribution induced by these samples, for example, the measure given by the uniform distribution
over the 400 obtained samples.

5.1.3 Agent based modeling

Agent based models are a class of computational models that track individual units
(agents) of objects of interest. In the case of communal disease transmission, the natural choice
for agents is the people who form that community and on whose contact the disease transmission
is based. The two most important advantages of these models are: i) we can directly incorporate
the biological and social heterogeneity of that community and investigate how it influences
transmission patterns; ii) we are omniscient regarding the simulated histories of the agents and
can reliably evaluate the effects of specific public health protocols via counterfactual analysis of
these histories.

Our agent-based model, called COMORBUSS (COmmunitary Malady Observer of
Reproduction and Behavior via Universal Stochastic Simulations), takes all these advantages a
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few steps further: we built a full model for the social dynamics of general communities in order
to produce the contacts that drive disease propagation. We achieve this via a general modeling
procedure of a city’s infrastructure, which can be systematically applied to any city via data
integration. Moreover, our model is aware of the different roles the agents play in the various
services that compose the infrastructure and produces contacts accordingly. This allows us to
pinpoint the impact of a specific service and related mitigation protocols on disease spreading,
as well as track the resultant infection tree. To avoid overopecialized simulations of a single city,
COMORBUSS stochastically produces for every simulation a realization of the transmission
trajectory for the city in the class defined by the desired demographic and infrastructure data. For
instance, each simulation has its own household network while satisfying the same distributions
that describe the household structure in that community. In the following, we describe the main
parts of the model and elaborate on its many details in Chapter 3. The most important parameters
are classified and explained in Figure 28.

Services Parameters

     number: Number of instances of this service in the city;
     hours: Openning and closing hours;
     days: Days of the week service opens;
     visitation_period: Mean time between visitations 
for each particle in the population;
     isolation_visit_frac: Factor to reduce 
visitations if an particle is in isolation;
     net_par: Configurations for the dynamic encounters  
network inside service;
     workers: Parameters to select workers and it's 
schedules, location inside service, etc;
     inf_prob_weight: Factor to apply to the probability 
of infections in this service;

For each service modeled:

Population Parameters

     population_ages: Number of citzens by age goup;
     population_graph: Samples of households 
structures (number of persons and respective ages);
     persons_per_home: Mean number of persons per 
household;

Disease Parameters

     inf_probability: Probability of an infection given 
an encounter between an S and a I particle;
     inf_prob_sympt and inf_severe_sympt_prob: 
Probability by age goup of an infected particle to develop 
symptoms and severe symptoms;
     inf_severe_death_prob: Probability of an 
infection to end in death of the particle;
     inf_duration and inf_severe_duration: 
Mean time a particle stays infectious for normal and severe 
infections;
     inf_incubation: Mean time in the exposed state 
(incubation);
     susceptibility: Susceptibility to an infection by 
age group;

     isol_pct_time_series: A daily percentage of 
citzens that stayed at home;
     quarantines: Configurations relative to quarantines 
and hospitalizations of severe particles;
     diagnostics: Configurations relative to available 
diagnostics to the population;

Interventions Parameters

Figure 28 – Most relevant parameters. A non exhaustive classification of parameters used for a CO-
MORBUSS simulation. A detailed description of parameters can be found in Chapter 3, while
a complete list of parameters and their values can be found in the Git repository.

https://gitlab.com/ggoedert/comorbuss/-/tree/paper_school_protocols
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5.1.3.1 Modeling disease

Each agent is characterized by its age, which determines the susceptibility of the agent,
the probability of developing symptoms and the probability of dying from the disease. When
a susceptible agent encounters an infectious one (pre-symptomatic, asymptomatic, mildly, or
severely symptomatic), it has a probability of becoming exposed. After an incubation period, this
agent becomes pre-symptomatic, and after an activation period, its state is converted to either
asymptomatic, mildly, or severely symptomatic. The distribution of these states is empirically
estimated from actual statistics (LINTON et al., 2020; VERITY et al., 2020). After a random
period, the agents are converted to recovered (or deceased); see 3.2.
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Figure 29 – Combination of NPIs measures in comparison to the baseline model settings. Left panel:
Cases increase under different scenarios with unvaccinated teachers and staff. Right panel:
Case increase in different scenarios with vaccinated teachers and staff. The effective teaching
hours in hours/week h

w and case increase in school population with respect to baseline are
displayed for each NPI combination. In case the active monitoring is also applied, the mean
and standard deviation over 60 realizations for the effective teaching hours are shown. The
proportional increase in the number of cases is displayed as violin plots (median, lower, and
upper quartiles), with kernel density estimates for distributions.

5.1.3.2 Interventions for the schools evaluation

The scenarios simulated in this study are based on the first wave of infection in Maragogi,
so services related to tourism are closed. The other standard NPI adopted in the base scenario is
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social isolation based on telephonic triangulation data processed by (INCOGNIA. . . , 2021) to
provide the daily percentage of people who stayed home. This is modeled by randomly selecting
at the beginning of each simulation day the desired number of agents and confining them to their
homes for that day.

Standard testing policy is the sorological testing of symptomatic agents. Diagnosed agents
are quarantined at home if they present mild symptoms or are hospitalized if their symptoms are
severe. Quarantines and hospitalizations are lifted when agents leave the infectious compartment
after recovering or dying.

5.1.3.3 Intervention in School Dynamics

We implemented and combined the following NPIs in the context of schools:

• Reduced workload: daily teaching hours are reduced from 4 to 2 hours;

• Alternating groups: students are separated into two groups which attend the classroom in
alternating days;

• Use of masks: students and professors are supplied masks with given penetration factors;

• Active monitoring: suspicious cases are monitored and intermittent closing is declared
upon discovery of cases

– suspicious cases are students, professionals or their relatives which present symptoms;

– suspicious cases are tested and if the diagnose is positive the student is quarantined;

– the classroom associated to the quarantined person is closed for 14 days;

– if using alternating groups, only the group associated to the quarantined person is
suspended;

– if more than one classroom is closed in the span of a week, the whole school is closed
for a week.

The effects of these NPIs and their combinations are the main results of this work.

5.1.3.4 Aerosol transmission model: masks and air exchange

Interventions in the aerosol model are made by parameterizing Equation (A.14) in
Appendix A. We introduce values for the penetration factor of masks pi

m used by students and
professionals and test the efficacy of different scenarios with various values of the volume flow
rate Λ of air with the exterior. For reference, we highlight documented or recommended values
of these parameters.
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5.1.3.5 Vaccination model

The vaccination model used in this study is a simple binary infection model. Vaccinated
agents can become immune (susceptibility 0) with a probability given by the effectiveness
of the vaccine after a given period. If vaccination of an agent does not lead to immunity, its
susceptibility remains unchanged. In the present work, we assumed a worst-case scenario where
vaccines were not widely available and were prioritized for teachers and staff. Simulations with
vaccinated teachers and staff, they are initialized assuming that they have protective neutralizing
antibodies against COVID-19. This blocks any possible infection chain that begins with these
individuals.

Secondly, we investigate the effects of NPI adoption under different scenarios of partial
vaccination for the general population (see Fig. 30). Our main interest in this analysis is to
evaluate the viability of the proposed measures for countries with different vaccination coverage,
both in the well-covered European continent and in the undervaccinated African continent. We
observe that the correct choice of NPIs can effectively protect the community even for low
vaccination coverage, while poor adoption of NPIs can lead to high infection rates even for
high vaccination coverage. Since we are dealing with larger segments of the population rather
than just the school sub-population, these simulations were performed with a more realistic
vaccination model that only partially protects each agent with a biological efficacy of 98% for
infection, resulting in an effective vaccine efficacy of 90% for the scenario where no NPIs are
adopted. Although it tends to be more realistic, this model is highly complex to adjust and
interpret because the measured vaccine efficacy is closely related to the running epidemiological
scenario which responds to the adopted NPIs (KASLOW, 2021; STRUCHINER; HALLORAN,
2007; MADEWELL et al., 2021).

5.1.3.6 Modeling Services

The city infrastructure is modeled by creating individual instances for each service
(schools, hospitals, markets, restaurants, shops, etc.) and by assigning agents to work/visit that
location if they belong to an appropriate age group (a child may not work at a shop, and an adult
may not attend class). Worker agents are relocated to that service location during their shifts,
whereas the visits of client agents are simulated stochastically. An hourly visitation rate of a
service by an agent is empirically estimated, taking into account the service’s opening hours and
average visitation frequency of real clients; for details, see 3.1.1.2. Additionally, agents may be
assigned as guests to special services, which implies that their standard location is changed from
their homes to that service instance. In this way, we distinguish between hospitalizations, hotel
quarantines, and nursing home patients.

A novel point of our model is the creation of contact networks contextualized by social
activity. The ratio of encounters between workers and clients, as well as the clustering properties
of a contact network, naturally depend on the observed social context. For example, in restaurants
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Figure 30 – Population fraction infected at the end of the simulation period (77 days) under varying
vaccination coverage.

there is a clustering of clients belonging to the same table, and contact between different tables
is mediated by the contact of a shared waiter. Contact networks in schools, hospitals, stores, etc.,
are all considerably different from each other. COMORBUSS updates random contact networks
every hour for all agents in service instances, while respecting the characteristic architecture of
the contact network of that type of service and distinguishing between the social roles of agents.
Details and examples may be found in 3.1.3.

5.1.4 Model calibration and closed schools as baseline

We aggregate socio-geographical data, as well as epidemiological data to COMORBUSS
from May 9th 2020 to July 25th 2020, and leave the infection probability p and the mean number
of contacts c in the City Hall to be calibrated using the empirical measure ν̂ obtained from the
inference of states from data (see Section C). For a given y = (q,d) ∈ [0,1]×R+ we denote by
µ̂y the empirical measure given by 400 independent realizations of COMORBUSS with p and
c chosen as (p,c) = y. We construct an estimate x̂ for x = (p,c) by minimizing over all y the
L1-Wasserstein distance between ν̂ and µ̂y, see Section 4.3.

We initialize the community according to its demographics and household distribution,
see Section 4.3. The disease state of agents is proportional to the average inferred epidemiological
data for day May 9th 2020. The calibrated model is in excellent agreement with the estimated
data and we use it as a baseline. This scenario resulted in an average of 3007±249 new infections



98 Chapter 5. Application: Protocol evaluation for safe school activities

in the population, in which 25% of those infections occurred in the school population, a measure
that will serve as a baseline for keeping schools open in study cases.

5.1.5 Poorly ventilated classrooms

In poorly ventilated classrooms, the main transmission mechanism is aerosols emitted
by an infected agent. Aerosols can remain suspended in the air, thereby reaching agents far
from the original emitters (MORAWSKA; CAO, 2020; POYDENOT et al., 2021). To model
this exhaled air without reference to the microscopic pathogen concentration, we follow the
exposition in (MILLER et al., 2021; BAZANT; BUSH, 2021), which describes the evolution of
the quanta concentration in a closed space. Quanta, introduced by Wells, measure the expected

rate of disease transmission, interpreted as the transference of the quanta of infection between
pairs of infected and susceptible agents (RILEY; MURPHY; RILEY, 1978).

In our model, we denote by C (quanta/m3) the total concentration of quanta inside a
classroom of volume V . Classrooms contain a total of N agents, with S susceptible individuals,
Is infected students and It infected teachers. All breathe uniformly at a rate B = 0.5 m3/h. Since
mask wearing can decrease the amount of aerosols emitted into the air, we denote for each agent
the penetration mask factor pi

m ∈ (0,1), with i = s, t: see Fig. 31.

quanta
concentration

breathing
rate

outdoor air
flow rate

CLASSROOM

Figure 31 – Airborne transmission model inside school environment. The classroom is an enclosed
space in which airborne transmission has a high chance of occurrence. Contaminated particles
are spread over the classroom, allowing long range infections. The fresh air rate flow Λ

quantifies the classroom ventilation. The quanta concentration C varies in the environment
depending on the breathing activity.

Each person exchanges quanta with the air depending on breathing activity. We introduce
the concentration of quanta expelled by students Cs = 40 (quanta/m3) and teachers Ct = 72
(quanta/m3) (BAZANT; BUSH, 2021) (corresponding to voice counting (MORAWSKA et al.,
2009)). Under a well-mixed room assumption, the total concentration of quanta C (quanta/m3)
inside the classroom satisfies the mass equation:

V
dC
dt

=−(ΛV +NB)C+B(CsIs ps
m +CtIt pt

m). (5.1)
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Note that our setting is based on the fact that airborne particles remain airborne before being
extracted by outdoor air flow Λ (typically reported as air changes per hour or ACH) or inhaled
by an agent. We investigate the poor ventilation limit Λ = 0 and the fresh air flow (Λ > 0), see
Appendix A.

The amount of quanta inhaled by the i th agent within the class over a period of time t

is the inhaled dose Di(t) = Bpi
m
∫ t

0 C(t)dt. We evaluate this integral over the solution to Equa-
tion (5.1). Using the inhaled dose of each agent, we plug it into the Wells-Riley model to calculate
the probability that a susceptible individual is infected (MILLER et al., 2021; POYDENOT et al.,
2021), which consists of estimating the risk of infection in indoor environments via the inhaled
dose.

pi
indoor(t) = 1− e−riDi(t),

where ri is the relative susceptibility (an age-based measure (ZHANG et al., 2020)) for the agent
i. We set the relative susceptibility of children (age 0 to 14 years), adults (age 15 to 64 years),
and the elderly (over 65 years) to ri = 0.23, 0.68, 1, respectively. To determine the source of
infection of a particular exposed individual, we pick a random individual uniformly from all the
infectious individuals in the enclosed space; see Appendix A.

5.2 Results and Discussion

We present three classes of results, each with their own implications for the design of
health protocols: i) effectiveness analysis of a large set of protocols; ii) analysis of how the
most relevant protocols depend on good mask practices and ventilation; iii) predictions on the
effectiveness of the protocol when challenged by more infectious viral strains.

It must be noted that, while our model can be easily applied to other communities via
our systematic data integration procedure, acquiring good quality datasets and ensuring their
compatibility is the most limiting challenge in our methodology. For example, we have found
that in many cities the census data and the database describing the available services are offset
by a few years. We had the experience of modeling cities which had explosive growth during
those years and these two datasets became so incompatible that there were not enough agents
from the demographic data to work on the most recent infrastructure. We naturally need to rely
on interpolation and extrapolation of historical datasets in such cases. Regardless, we find that a
close collaboration with city managers, as we had in Maragogi, is ideal for ensuring the quality
of the data, as well as in identifying trends and supporting modeling choices. This is critical
in order to evolve the model as we learn more about the disease, and the social behavior also
changes in response to it. Our experience in this process was documented on Chapter 4.
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5.2.1 NPIs and vaccination

In 27 schools, the total school population is 8,528, with 7,557 students. We quantified
the effects of five NPIs on the school population, which consists of teachers, school staff, and
students. Each NPI is described in Fig. 32. Although there is still controversy in the literature
on the efficiency of surgical masks for filtering particles (CHENG et al., 2021) and side effects
(KISIELINSKI et al., 2021), we assign mask quality via their permeability factors pm, as
indicated in Fig. 32.

NPI Description

Active 
Monitoring

Schools function under the following measures:

Symptomatic people are tested;

Teachers which had contact with a 
classroom in which there were confirmed 
cases are tested and suspended for 14 days 
in the case of positive result;

If a case is found in a classroom, their 
activies are suspended for 14 days;

School is closed for one week if there are 
two cases in distinct classes within a week.

Students are tested and isolated (14 days) 
when they are symptomatic or a family 
member is confirmed positive;

Reduced 
Workload

    Schools function with shifts of two hours 
instead of four hours.

Alternating 
Groups

Schools function with reduced class sizes, and
in particular classes are separated into 2 groups 
having in-person activities on alternate days.

Use of 
Mask Teachers and staff 

with N95.

Low quality:

Good quality:

N95 or PFF2: 

Figure 32 – NPIs description. The icons distinguish the nonpharmaceutical interventions evaluated in
this study. In scenarios involving masks, the mask penetration factor pm is uniform for all
individuals, except for teachers wearing PFF2 masks.

We simulate school activities with different NPI and compute the percentage increase in
cases with respect to the baseline. The results are presented in Fig. 29 along with the effective
teaching hours. Conducting classes in full shift and wearing only poor quality masks leads to
a 559% increase in infections. We note that the wearing of N95 masks by teachers and staff
is particularly effective in reducing the number of cases compared to other scenarios, and we
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highlight this NPI in Fig. 29 (darker color). Active monitoring prevents spread, at the expense of
the effective number of teaching hours.

In the simulation, we assume that the vaccinated teachers and staff are initialized with
protective neutralizing antibodies against COVID-19. This blocks any possible infection chain
starting from these individuals. The right panel of Fig. 29 displays the effectiveness of NPI
combinations with vaccinated employees. If employees are not vaccinated, case rates increase in
all scenarios. The case increases in the highlighted (darker color) scenarios are reduced for both
unvaccinated and vaccinated employees, indicating that they are a potential source of infection
for the school population.

We also analyze the robustness of our results when considering a larger city, using, as
an example, the regional capital of Curitiba with almost 2 million inhabitants. We observe how
bad protocols lead to a sharp increase in infections while good ones successfully avoid this
phenomenon. Most notably, the relative effectiveness rank between intervention is preserved,
even if the case increase relative to the baseline is less pronounced, see more details in the
Appendix B. This not only shows the stability of the protocols but also indicates that smaller
cities are more vulnerable and need appropriate protocols.

We also consider the effectiveness of NPI scenarios under different levels of vaccination
coverage, see Fig. 30. Our motivation is to assess the viability and safety of public health
decisions even in countries with low coverage, such as African countries. In fact, even with a
low vaccination coverage, we find that a good choice of NPIs in schools also protects the larger
community better. At the same time, poorly chosen or nonexistent NPIs may leave communities
highly exposed, regardless of vaccination coverage. We therefore stress the importance of
appropriate NPIs and protocols, whether or not the underlying country enjoys good vaccine
coverage. We recall that cities are modeled with only essential services operating, including
schools. The lessons learned here extend to other services and social contexts to avoid the
worsening of outbreaks.

5.2.2 Sensitivity analysis: mask penetration and ventilation

We quantify the relevance of mask penetration factor pm and ventilation air flow rate Λ

for the increase in COVID-19 cases in cities. Assuming that all pupils wear masks with the same
pm, Fig. 33 shows the impact of the penetration factor on the number of cases if schools are kept
open. The results are sensitive to the penetration factor of the masks, as seen by comparing the
first (poor quality or practices, pm = 0.5) and second (high quality masks, pm = 0.3) simulation
scenarios, showing a decrease of almost 200% in cases regardless of the vaccination status of
employees. We also observe that the use of N95 masks by employees increases the effective
teaching hours in scenarios with active monitoring.

Fig 34 shows the sensitivity analysis when the ventilation rate is varied inside classrooms.
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Figure 33 – Sensitivity analysis across mask penetration factor pm. Cases increase in school population
(solid lines) versus the mask penetration (mean values over 60 realizations for each pm value).

Based on the recommendations of the American Society of Heating, Refrigerating and Air
Conditioning Engineers (ASHRAE) (ASHRAE. . . , 2021), we calculated the minimal ventilation
rate of Λ1 = 0.8 h−1 for unoccupied classrooms using their average dimensions in Maragogi.
The ventilation rates for the half full and full classrooms are Λ2 = 3.8 h−1 and Λ3 = 6.6 h−1,
respectively; for more details, see Appendix A.

5.2.3 Scenarios with more infectious variants

When investigating the effectiveness of school safety protocols during infection waves
caused by new, more infectious variants, we are drawn to the limiting worst-case scenarios. As
such, we assume that the new variant completely avoids acquired immunity from vaccination
or previous infections. New variants are modeled by an increase in population susceptibility,
therefore encompassing both our contact and aerosol transmission models. Susceptibility is
increased by the multiplying factor over all age groups as a limiting case.

The results are depicted in Fig. 35. As expected, the total infected population increases
monotonically with the increase in susceptibility, with poor protocols for school activities leading
to extreme infection rates in the community. Most importantly, not only do good protocols still
lead to a remarkable decrease in infection rates, but the relative rank of effectiveness between
protocols is preserved regardless of how much susceptibility is increased. This shows the stability
of good protocols and makes the point that their adoption should always be a top priority, even
when faced with potentially new variants.
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Figure 34 – Sensitivity analysis across ventilation Λ. Cases increase in school population (mean and
standard deviation) as a function of classroom ventilation rate. Dashed lines indicate the
recommended ventilation rates: Λ1 = 0.8 h−1 (unoccupied room), Λ2 = 3.8 h−1 (half occupied
room), and Λ3 = 6.6 h−1 (fully occupied room), following the ASHRAE standard for an
average classroom in Maragogi.
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Figure 35 – Population infected in case of increase in susceptibility. For each intervention scenario, we
show the distribution in the percentile of the population infected provided the susceptibility
of the population is increased uniformly by a multiplying factor.
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CHAPTER

6
CONCLUSION

6.1 Conclusions on policy evaluation for schools

The airborne transmission mechanism of COVID-19 is the main cause of infections
in school environments in classrooms with poor air circulation. Since many classrooms are
equipped with air conditioning or heating, most have poor air circulation. Therefore, reducing the
size of the class does not necessarily curb spread because an infected person can emit aerosols
that stay in the air and infect students far away from the same classroom.

Vaccination of employees is an essential measure. However, in the absence of other
measures, such as monitoring and quarantines, the number of cases in cities is likely to increase
by 177% if only the use of low-quality masks and alternating classes is implemented.

The penetration factors provided by manufacturers and used in our simulations are
idealized. In practice, the fit of a mask and the practices of users result in lower filtration efficacy.
In fact, after testing a contagion model based on a study of Canadian classrooms (HOU; KATAL;
WANG, 2021), we compared the ensuing results with our own aerosol model under the same
class conditions but varying penetration factors, in order to estimate its value in these classrooms.
We were alarmed to find that the effective penetration factor for Canadian classrooms in that
study was only 0.5, despite the assumption of high-quality masks. It would therefore be of
great benefit to educate the general population on proper mask use. Otherwise, the potential
effectiveness of the sanitary protocols will be compromised as the penetration factor achieving
increases (Fig. 33).

All these findings can be explained by three facts: teachers are more susceptible than
children, they expel more virulent particles since they are constantly speaking loudly, and they
are the most effective bridges of transmission between isolated classes. Therefore, high quality
masks not only protect the individual teacher, but also suppress community infection.

Our most striking result is that one must adopt the appropriate NPIs and behavioral
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protocols to safely continue school activities during a pandemic, regardless of vaccination
coverage. Good protocols can protect countries even with poor vaccination coverage. In contrast,
bad protocols can seriously aggravate the underlying public health crises even in countries
with very high vaccination coverage. This is in great part due to the long duration of social
contacts in schools, which easily leads to breakthrough infections without proper protocols. This
is particularly relevant given that in many countries children are not routinely vaccinated for
COVID-19, or when preparing for the emergence of new variants with potentially low cross
immunity.

There is no single solution to a pandemic, but we draw hope in showing that the proper
combination of NPIs, vaccination, and behaviors allows the safe continuation of activities as
fundamental and important as teaching.

6.2 General conclusions

COMORBUSS, as an advanced bio-social agent model, has a large potential in the
realm of epidemiological simulations. Its intricate design and the ability to simulate complex
community dynamics and disease propagation provide an invaluable tool for public health
research and policy making. The versatility of the model is demonstrated through its application
to various scenarios, including the impact of COVID-19 in school environments, demonstrating
its potential to inform and guide effective public health strategies.

A key strength of COMORBUSS lies in its dynamic nature, allowing for the organic
representation of community behavior. This is achieved through a bottom-up approach, where
complex interactions emerge from simple rules determining behavior. The flexibility of the
model, with its ability to adapt to different community structures and behavioral patterns, makes
it universally applicable, transcending geographical and demographic boundaries.

Incorporating non-pharmaceutical and pharmaceutical interventions in the model offers a
comprehensive view of the potential outcomes of various public health strategies. This includes
detailed simulations of quarantine protocols, social isolation measures, lockdowns, contact trac-
ing, testing policies, and vaccination campaigns. Each intervention can be fine-tuned, providing
a realistic representation of its implementation and effectiveness in different community settings.

We have verified the extensive and powerful applicability of agent models throughout this
master’s program. In particular in our own work to assess the effects of public health protocols
during the COVID-19 pandemic, we anticipate the significant social impact of designing public
health policies tailored to specific communities. At the same time, we recognize limitations and
difficulties in the development and use of these types of model, many of which were addressed
in our development of COMORBUSS. However, we still see the need for a better theoretical
foundation for analytical methods and standardization of experimental frameworks, especially
employing the language of causal inference (MARSHALL; GALEA, 2015). We shall dedicate
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future works in this direction, along with other practical applications, such as optimizing vaccine
efficacy tests or the evaluation of risk-benefit scenarios.

In conclusion, COMORBUSS stands as a testament to the power of interdisciplinary
collaboration in tackling complex public health challenges. By bridging the gap between epi-
demiology, social sciences, and computational modeling, it offers a nuanced understanding of
disease dynamics within communities. As we continue to face global health challenges, tools
like COMORBUSS will be instrumental in shaping informed, effective, and context-sensitive
public health policies.
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APPENDIX

A
AIRBORNE TRANSMISSION MODEL

A.1 Aerosol-based model for infections in a closed envi-
ronment

A.1.1 Relevant length and time scales for aerosol particles

Pathogen-carrying aerosol particles are expelled by infected individuals in a range of
radii ranging from 0.1 µm to 1 mm. Most of these particles are in the sub-micrometer scale, and
the size distribution of the droplets depends on the breathing activity, varying from 0.1 µm to
5.0 µm with a peak around 0.5 µm (MORAWSKA et al., 2009).

Pathogens carried by airborne droplets have a typical lifetime inside the enclosed space,
so we consider the damping rate of the pathogen concentration λc. This rate depends on the radius
r of airborne droplets (BAZANT; BUSH, 2021; BAZANT et al., 2021), and it encompasses four
distinct mechanisms

λc(r) = λa +λ f (r)+λs(r)+λv(r), (A.1)

where λa accounts for outdoor air exchange rate, λ f is the room filtration rate (filtration due
to mechanical ventilation or people breathing in the room and absorbing infectious airborne
particles), λs is the net sedimentation rate, and λv stands for the deactivation rate of the aerosolized
pathogen (which depends on humidity and droplet size).

Although the definition of air quality inside enclosed space varies over international
standards (KHOVALYG et al., 2020), ASHRAE (American Society of Heating, Refrigerating and
Air-Conditioning Engineers) described in the technical notes1 that the minimum recommended
outdoor air exchange rate depends on the environment. Namely, for American homes λa =

0.35 h−1, while for classrooms of children aged 5 to 9 years λa = 0.8 h−1. Those are the minimal

1 ASHRAE 62.1 — Ventilation for Acceptable Indoor Air Quality.
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recommended values and as we will see correspond to the largest order of magnitude among all
other terms in Equation (A.1).

For most air conditioning systems in Brazil, a filtration system is absent and is not coupled
to the mechanical ventilation. However, in our model we assume that aerosol consumption arises
from people breathing in the classroom and filtering air in their respiratory system. Therefore,
we consider that the filtration rate can be estimated by λ f = NB/V , where N is the number of
people in the room, B is the average breathing rate, and V is the volume of the classroom. We
consider the values of B = 0.5 m3/h, V = 150 m3 (average volume of Maragogi classrooms) and
N = 20, which yields λ f = 0.07 h−1.

The size of the droplets determines the sedimentation rate λs. For droplets larger than a
critical radius r > rc, the sedimentation rate due to gravity is high and contributes significantly
to λc. Hereafter, we consider airborne transmission as that associated with droplets with radius
r < rc, since those droplets remain suspended in the air for long periods of time (typically a few
hours in a closed classroom) and contain viral loads capable of producing long-range airborne
transmission. The realistic values for rc range from 1.3 µm to 5.5 µm (BAZANT; BUSH, 2021).

The sedimentation rate (drop settling rate) is given by λs = v̄s(r̄)/H, where H is the
height of the enclosed space. Fixing the sedimentation velocity v̄s = 0.108 m/h (BAZANT
et al., 2021) (the effective radius of respiratory drop is r = 0.5 µm), and the height H of the
Maragogi classrooms being in the range of 2.57−2.85 m, we estimate that λs lies in the interval
0.038−0.042 h−1. Therefore, for biologically relevant droplets of submicrometer radius, settling
can be safely neglected (BAZANT; BUSH, 2021).

In the following section, we will closely follow (BAZANT; BUSH, 2021; BAZANT
et al., 2021), and assume a size-dependent sedimentation rate λs(r) = vs(r)/H = λa(r/rc)

2

as the inverse of the time taken for a drop in radius r to sediment from ceiling to floor in a
quiescent room. Hence, Bazant and co-authors propose that for the relevant droplet size range in
consideration, one may write

λc(r) = λa

[
1+

( r
rc

)2]
+λv(r)+λ f (r). (A.2)

The viral deactivation rate (non-infectious) λv(r) depends on the droplet radius and other
quantities, such as temperature and humidity. Therefore, by aggregating the data of influenza
viruzes, we can extrapolate a linear relationship between relative humidity in the environment
RH for SARS-CoV-2 (BAZANT; BUSH, 2021). We adopted λv = 0.6RH h−1 (since Maragogi
is a coastal tropical city, RH can be a significantly high factor).

A.1.2 Time-evolution of radius-resolved particle concentration

We assume that the air is well mixed in the room to evaluate the concentration of
infectious airborne pathogens dependent on time suspended in a classroom of volume V occupied
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by N individuals, I infected and N − I susceptible individuals. Following Bazant and Bush
(2021), we assume that the radius-resolved concentration of infectious aerosol-borne pathogen
in a classroom with well-mixed air conditions evolves according to

V
∂c(r, t)

∂ t
=

I

∑
j=1

Pj(r, t)−V λc(r, t)c(r, t), (A.3)

where c(r, t) is the number-density of virion particles in the room carried by aerosol droplets
with radius r (given in virions per volume per radius), Pj(r, t) is the pathogen production rate due
to respiratory activity of a given infectious individual j in the room, and λc(r, t) is the pathogen
concentration relaxation rate.

The production term of a single infectious individual is given by

Pj(r, t) = B j(t)p j
m(r)q j(r, t), (A.4)

where B j(t) is the individual breathing rate, p j
m(r) is the mask penetration factor of droplets of

radius r, and q j(r, t) is an activity dependent concentration of exhaled virions in droplets of radius
r (number of virions per volume of air per radius of droplet). Moreover, we may specify that for
each infectious individual q j(r, t) = n j

d(r, t)Vd(r)cv(r), where n j
d(r, t) is the size distribution of

the emitted droplets (number density of the expelled droplets of radius r), Vd(r) = 4πr3/3 is the
volume of the droplet, and cv(r) is a microscopic viral concentration (concentration of virions
per volume of the droplet).

We point out that infected individuals emit virions in droplets with a given size dis-
tribution that quickly evolves (in a time scale shorter than one second) to a stationary profile
q(r) that can be suspended in the air for longer time (for minutes or hours). Therefore, for the
relevant contagion time scale in a closed room (from minutes to hours), the production term P in
Equation (A.4) is time independent under a constant breathing rate B. Moreover, we also assume
λc(r, t) = λc(r) for steady ventilation conditions.

For simplicity, we assume that the average breathing rate for students and teachers is a
constant value B regardless of their activity. The mask penetration factor pm(r) lies in the unit
interval [0,1] - so it might be associated with a probability that a particle will penetrate the mask
tissue - and depends on the droplet size distribution. Based on experimental observations (CHEN;
WILLEKE, 1992), from now on we assume that the mask penetration factor is approximately
constant in this submicrometer size range and evaluate pm = pm(r) at an effective aerosol radius
r to be defined below in Equation (A.11).

Consider that at t = 0, N individuals enter a room of volume V and zero initial concen-
tration of airborne viral particles, c0(r) = c(r, t = 0) = 0. These individuals wear masks with
equal penetration factor pm and only one individual is infectious among them. They remain in
the room for a given period of time τ , maintaining constant respiratory activity (breathing and
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talking). The time evolution of the radius-resolved concentration is given by

1
λc(r)

∂c(r, t)
∂ t

=
P(r)

V λc(r)
− c(r, t), (A.5)

which can be integrated to

c(r, t) = c0(r)e−λc(r)t +
P(r)

V λc(r)
[1− e−λc(r)t ], (A.6)

where P(r) = B pm q(r) and λc(r)> 0 for the relevant range of droplet size.

The probability of a susceptible person to be infected in the room depends not only on
the total number of virions inhaled, but also on the power of a virion to cause an infection when
it carries a droplet of a given radius r. Therefore, we define the infectious dose inhaled by an
individual exposed to the room from t = 0 to t = τ as

D(τ) =
∫

τ

0
dt

∫
∞

0
dr B pm(r)c(r, t) i(r), (A.7)

where i(r) is the infectivity of the aerosolized pathogen in a droplet of radius r. i(r) can
be interpreted as proportional to the probability that a single virion causes an infection in a
susceptible person when it is inhaled in a droplet of radius r (in Refs. (BAZANT; BUSH, 2021;
BAZANT et al., 2021), i(r) is equivalent to ci(r)).

The transient term in Equation (A.6) vanishes after long exposition times τ ≫ λ−1
c . In

this condition we have the following linear dependence of the inhaled dose with τ ,

D(τ)≈ B2

V
pm

2
τ

∫
∞

0
dr

q(r)i(r)
λc(r)

=
B2

V
pm

2
τ

Cq

λc
, (A.8)

where as in (BAZANT; BUSH, 2021) we have defined

Cq ≡
∫

∞

0
dr q(r)i(r), (A.9)

λc
−1 ≡

∫
∞

0 dr q(r)i(r)λc(r)−1∫
∞

0 dr q(r)i(r)
. (A.10)

Moreover, the effective infectious drop radius r can now be chosen such that

λc(r = r) = λc. (A.11)

The realistic physical parameters give us a range of r = 0.3− 5 µm. Bazant and co-authors
(BAZANT; BUSH, 2021) have used r = 2 µm to fit data from super-spreading events and the
Wuhan outbreak; to monitor air quality indoors Ref. (BAZANT et al., 2021) uses r = 0.5 µm for
a closed space.

We consider that the probability p(τ) of a susceptible individual to be infected when
inhaling a given aerosolized pathogen dose D(τ) is given by the exponential distribution (Wells-
Riley model)

p(τ) = 1− e−srD(τ), (A.12)
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where sr is the age-dependent relative susceptibility of infection (an age-based measure (ZHANG
et al., 2020)) for a person. This expression follows from the simplest assumption that any
infectious viral particle can trigger an infection by independent action of all inhaled viral
particles, leading to a Poisson process (POYDENOT et al., 2021). For low-dose inhalation,
D ≪ 1, the probability can be approximated by p(τ)≈ srD(τ). This result is equivalent to the
probability calculated for the school safety guidelines in (BAZANT; BUSH, 2021).

A.1.3 Effective airborne transmission

For our epidemiological model, it suffices to estimate the mean infectious viral load
concentration of exhaled air Cq defined in Eq. (A.9). We will consider q(r, t) = q(r) for any
infectious individual in a room, so Cq is a time independent constant that represents its average
concentration of exhaled “quanta”, depending on its respiratory activity. Cq is typically expressed
in units of quanta per volume of air and represents the important epidemiological parameter that
can be numerically estimated based on real outbreak data.

Infectivity i(r) (quanta RNA copies −1) represents the probability that a pathogen sur-
viving inside the host will initiate infection, or we can interpret taking the inverse of infectivity
i−1, which corresponds to the “infectious dose” of pathogens from aerosol droplets inhaled that
cause infection with probability 1− (1/e) = 63%.

To convert the infectious dose quantified in terms of RNA copies to infectious quanta
(which is the measure we use in our model), two parameters must be known a priori: i) the
number of infectious particles (RNA copies) needed to initiate infection (cRNA, RNA copies
PFU−1), and (ii) the conversion parameter quanta to plate-forming unit (PFU) (cPFU , PFU
quanta−1). Hence, the expression for determining i(r) is

i(r) =
1

cRNA(r) cPFU(r)
.

Currently there are no cPFU values available for SARS-CoV-2 in the scientific literature for this
value (BUONANNO; MORAWSKA; STABILE, 2020), or characterization of size-dependent
distributions q(r), nd(r) and cv(r). Therefore, we estimate the adopting values for SARS-CoV-1.
On the other hand, the parameter cRNA has been estimated to be 1.3×102 RNA copies PFU−1.

Equation (A.9) implies that we should be able to characterize the concentration of virions
suspended in the air on droplets of all sizes that are capable of causing an infection. Therefore,
we define the total concentration of infectious aerosolized virions per volume of air as

C(t) =
∫

∞

0
c(r, t)i(r)dr, (A.13)

where C is given in units of quanta per volume of air. Multiplying Equation (A.3) by i(r) and
integrating for all r one derives

V
dC
dt

=−(ΛV +NB)C+B(CsNs ps
m +CtNt pt

m), (A.14)
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where C is the quanta per unit of volume of air in the room, Λ+NB/V = λc is the effective rate
of relaxation of quanta concentration, pm = pm = pm(r) is the effective mask penetration factor.
We consider the masks of the teachers to have pt

m, and the masks of the students to be present
ps

m. The effective radius r for relevant infectious aerosol droplets is given by Eq. (A.11), where
we make the following approximation∫

∞

0
λc(r)c(r, t)i(r)dr ≈ λcC(t).

We consider in Equation (A.14) that the volume V classroom is occupied by N individuals,
in which S are susceptible, Ns are infected students and Nt are infected teachers. Each person
exchanges air masses with the environment at an average breathing rate B, inhales a C(t)

quanta concentration, and exhales a different concentration. We introduce heterogeneity in the
concentration of quanta expelled by students and teachers, assuming that they perform different
breathing activities (BAZANT; BUSH, 2021): Cs = 40 (quanta/m3) is the concentration of
quanta expelled from students such that Cstudents

q = Cs, and Ct = 72 (quanta/m3) denotes the
concentration expelled by teachers (corresponding to voiced counting (MORAWSKA et al.,
2009)), such that Cteachers

q =Ct .

The amount of quanta inhaled by a person inside the class over an exposition time τ is
the inhaled dose in Eq. (A.7), which can be writen as

D(τ) = B pm

∫
τ

0
C(t)dt,

where t = 0 stands for the time the person enters the room and the total concentration of quanta
C (quanta/m3) inside the classroom evolves according to Eq. (A.14). Finally, the probability
p(τ) of a susceptible individual being infected when inhaling a given aerosolized pathogen dose
D(τ) is given by Eq. (A.12).

Infectivity is known to differ between different age groups and pathogen strains, a
variability captured by the relative susceptibility sr in Eq. (A.12). For example, based on the
study of transmission in quarantined households in China (ZHANG et al., 2020), Bazant and
Bush (BAZANT; BUSH, 2021) suggest assigning sr = 1 to the elderly (over 65 years old),
sr = 0.68 to adults (aged 15-64) and sr = 0.23 to children (aged 0-14) for the original Wuhan
strain of SARS-CoV-2, which we adopt here as well.

A.1.4 Characteristic parameter values

A.1.5 Outdoor air exchange rate

Although the definition of air quality within an enclosed space varies according to interna-
tional standards (KHOVALYG et al., 2020), we selected ASHRAE. As described in the technical
notes of ASHRAE 62.1 (Ventilation for acceptable indoor air quality), additional requirements
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to take into account airborne transmission are not covered by the minimum ventilation rates used
here. For ASHRAE 62.1 the minimum ventilation rate is calculated as

λa = ΛpN +ΛaA (A.15)

where Λp is the outdoor airflow rate required per person, N is the number of people in the
ventilation zone during use, Λa is the outdoor air flow rate required per unit area and A is the
net occupiable floor area of the ventilation zone. Both Λp and Λa are reference ventilation rates
determined by the ASHRAE standard and depend on the type of enclosed space (we adopted
values of Educational Facilities - Classrooms of ages 5 to 8 and age 9 plus). As mentioned in
the main text, we adopted three reference values regarding distinct situations rather than any
arbitrary values:

• Unoccupied: it consists of the minimum ventilation rate letting N = 0. Take the mean
area of the Maragogi classroom group in our database, we obtained the ventilation rate as
Λ1 = 0.8 h−1.

• Half occupied density: assumes half the occupation density for classrooms. So, the ventila-
tion rate accounts for both factors N and A. Using the same mean area value as previously,
we obtain Λ2 = 3.8 h−1.

• Full occupied density : it consists of full occupation density, and by repeating a similar
calculation we obtain Λ3 = 6.6 h−1.

Note that all reference outdoor exchange air flows above are larger than sedimentation and
inactivation rate in the model.
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APPENDIX

B
GENERALIZATION FOR CURITIBA-PR

B.1 Robustness of results for the capital Curitiba

We show some results of our investigation on the effects of mitigation protocols in
schools for the city Curitiba, the largest state capital in the south of Brazil with nearly 2 million
inhabitants. This is a very well developed city, among the highest ranked in the country with
respect to HDI, which is in the very high range.

The results presented consider potential interventions during the infection wave that
occurred between June 14th 2020 and October 12th 2020.

We look at the main scenarios of Figure 4, namely scenarios I, III, V, and VIII, as well
as the scenarios where schools remain open with no NPIs and the baseline where schools are
closed. We observe that, while the city of Curitiba is less susceptible to the measures, with an
increase in cases showing a lower magnitude, the results are structurally robust and present
the same relative hierarchy of effectiveness as the one shown in our main study.

B.1.1 Inference of states from data of Curitiba

The inference of states in the case of Curitiba is similar to the inference of states made
for Maragogi in Section 4.2. The data used for this inference are available at OPENDATASUS
(OPENDATASUS. . . , 2020). The structure of these data differs from the structure of the data
collected for Maragogi mainly because we have no information about the brands of the tests
used, meaning that we cannot take into consideration false positives or false negatives.

The population of Curitiba is approximately 60 times bigger than the population of
Maragogi. This enables us to avoid dealing with attendance or hospitalization data, which are
prone to higher bias, and use the more robust death data to infer the states on a daily basis (as
done in (MELLAN et al., 2020)).
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To infer the states, we use a negative binomial with the daily number of deaths and the
overall probability of death (computed using the Table 2), then we infer, using the distributions
in (KERR et al., 2020), the time each reconstructed individual spent in each state. As in the main
study, this process is repeated 400 times to generate a distribution.

B.1.2 Baseline scenario

The baseline scenario we consider in this section is the one obtained from the modeling of
COVID-19 disease in the city during the period of June 14th 2020 to October 12th 2020. During
the period considered, the city of CURITIBA-PR was also in lockdown, though interventions
were softer compared to those applied to the city of MARAGOGI-AL during the first wave of
the disease. From the city’s official instructions regarding the opening/closure of services during
the first wave, we grouped the services allowed to open during the period into the following
categories:

• Hospitals: it comprises all type of health facilities in which possible COVID-19 infected
patients were received, including campaign hospitals or not;

• Health Facilities: it includes all other type of health facilities not contained in the category
above;

• Supermarkets: the set of all market facilities commercializing mainly food, of medium to
large size according to (IBGE-. . . , 2019) (code 47.11−3);

• Markets: the set of all market facilities commercializing mainly food, of small size accord-
ing to (IBGE-. . . , 2019) (code 47.12−1);

• Food stores: the set of small food stores commercializing essential products (meat, dairy,
etc., codes 47.21−1, 47.22−9, 47.23−7, 47.24−5);

• Construction stores: the set of store facilities which sell construction equipment, sell
vehicle fuel and provide maintenance to vehicle engines (codes 47.3, 47.4 and 45);

• Drug stores: the set of pharmacies and similar stores (code 47.7);

• Industry: the set of industries which depend on production lines to deliver its products
(codes 10 to 17, and 19 to 33);

• Construction: the set of companies specialized in construction, which demand physical
presence of many workers on site (codes 41 to 43);

• Non-essential: all type of services not included above, except schools.
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Data on the total number of facilities and the total number of employees have been gathered,
for most services, from (IBGE-. . . , 2019). Data for the total number of facilities and the total
number of hospital and health facility employees were taken from (CNES-HEALTH. . . , 2020).
Schools were not opened during the period considered, but we have taken them into account in
comparison scenarios (see Section B.1.4). Data on students and teachers, as well as classes and
schools, have all been taken from (INEP. . . , 2020; INEP. . . , 2020).

During the period considered, according to the city’s official instructions, almost all
of the services mentioned above were opened, most with restrictions on the opening time and
total number of people per square meter. In our simulations, we have considered that from
July 1st 2020 to July 21st 2020, construction stores and non-essential services remained closed.
These services were opened during the rest of the period considered in normal opening time.
Other services were also opened at normal times during the period considered. The impact of
restrictions on opening time and people capacity for services has been taken into account in the
calibration of the average number of contacts in these services. See Section B.1.3 for details.

The visitation period and contact network parameters for hospitals, health facilities,
markets, supermarkets, food stores, and construction stores have been assumed to be the same
as those collected for Maragogi-AL (see Section 4.3). The visitation period for drug stores was
used 4 times that of the markets, and the network parameters for this service were chosen equal
to those of the markets as well. Services named construction, construction stores, industry and
non-essential services did not receive clients, therefore, their visitation period was conceptually
infinite. However, the contact network parameters assumed for these services have been calibrated
from the SEIR data (see Section B.1.3 below).

We have also considered that modeling the public transportation system was relevant for
the spread of COVID-19 in Curitiba-PR (as opposed to what was assumed for Maragogi-AL).
The contact network and general behavior of the transportation system are described in Section
3.1.5.

B.1.3 Calibration of the model

The calibration process used in the city of Curitiba-AL is identical to that exposed in
Section 4.4, except that more parameters were optimized in this case. We have calibrated 4
parameters in total, which are listed in the following:

• p: the infection probability parameter, the same type calibrated for the city of Maragogi-
AL;

• fviol: the fraction of non-essential services that violated city hall instructions regarding
their opening during the period considered. This parameter was not assumed necessary at
first, but it proved needed eventually during the calibration process;
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• cne: the average number of 1-hour contacts between workers of industry, construction and
non essential services. Notice that we have assumed the same parameter for the three types
of service;

• ctransp: the average number of 1-hour contacts between users of the public transportation
system.

We have observed from a simple sensibility analysis that the first two of these parameters caused
a much higher impact on the SEIR curves generated from COMORBUSS as an output. Since
calibrating the four parameters simultaneously has been proved to be an intense and nearly
impractical computational task, we have chosen to calibrate them in two steps. First, we optimize
cne and ctransp, keeping p as in Section 4.4 and fviol = 0. This first calibration procedure gave
us the following approximate values for these parameters: cne = 0.2 and ctransp = 0.1. Fixing
cne and ctransp by these calibrated values, we optimized for p and fviol in a second step. The
final values for these last parameters were found to be p = 0.0434 and fviol = 0.879, with an
L1-Wasserstein distance of 1.35×10−2 between the SEIR curve distributions of the target and
reference.
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Figure 36 – Effectiveness comparison for different demographics. Relative increase in cases for differ-
ent scenarios for Curitiba-PR compared to Maragogi-AL.
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B.1.4 Robustness of results

After the modeling and calibration for the city of Curitiba, we perform simulations
with 60 seeds using five different policy scenarios which are compared again to the baseline
where schools are kept closed. The increase in cases relative to this baseline is depicted for each
scenario in Figure 36.

Most remarkably, the relative rank of protocol effectiveness is the same as observed
for a city of small demography, such as Maragogi. This highlights the robustness of the pro-
tocols across different demographics. Second, we note that cities of smaller demographics
are susceptible to greater case increase due to bad choices of protocols. This highlights their
greater vulnerability and, coupled with their larger representation in national and international
demographic distributions, justifies our choice of focus for this study.
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